Dual View Random Solved Random Open
FALSIFIABLE Open, but could be disproved with a finite counterexample.
Let $G$ be a graph with chromatic number $k$ containing no $K_k$. If $a,b\geq 2$ and $a+b=k+1$ then must there exist two disjoint subgraphs of $G$ with chromatic numbers $\geq a$ and $\geq b$ respectively?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
This property is sometimes called being $(a,b)$-splittable. A question of Erdős and Lovász (often called the Erdős-Lovász Tihany conjecture). Erdős [Er68b] originally asked about $a=b=3$ which was proved by Brown and Jung [BrJu69] (who in fact prove that $G$ must contain two vertex disjoint odd cycles).

Balogh, Kostochka, Prince, and Stiebitz [BKPS09] have proved the full conjecture for quasi-line graphs and graphs with independence number $2$.

For more partial results in this direction see the comprehensive survey of this problem by Song [So22].

See also the entry in the graphs problem collection.

View the LaTeX source

This page was last edited 06 December 2025.

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None
The results on this problem could be formalisable None
I am working on formalising the results on this problem None

Additional thanks to: Quanyu Tang

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #628, https://www.erdosproblems.com/628, accessed 2026-02-13