Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
Let $1=d_1<\cdots <d_{\tau(n)}=n$ be the divisors of $n$ and\[G(n) = \sum_{1\leq i<\tau(n)}\frac{d_i}{d_{i+1}}.\]Is it true that $G(n)\to \infty$ for almost all $n$? Can one prove an asymptotic formula for $\sum_{n\leq X}G(n)$?
Erdős writes it is 'easy' to prove $\frac{1}{X}\sum_{n\leq X}G(n)\to \infty$.

Terence Tao has observed that, for any divisor $m\mid n$,\[\frac{\tau(n/m)}{m} \leq G(n) \leq \tau(n),\]and hence for example $\tau(n)/4\leq G(n)\leq \tau(n)$ for even $n$. It is easy to then see that $G(n)$ grows on average, and in general behaves very similarly to $\tau(n)$ (and in particular the answer to the first question is yes). Tao suggests that this was a mistaken conjecture of Erdős, which he soon corrected a year later to [448].

Indeed, in [Er82e] Erdős recalls this conjecture and observes that it is indeed trivial that $G(n)\to \infty$ for almost all $n$, and notes that he and Tenenbaum proved that $G(n)/\tau(n)$ has a continuous distribution function.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None
The results on this problem could be formalisable None
I am working on formalising the results on this problem None

Additional thanks to: Terence Tao

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #673, https://www.erdosproblems.com/673, accessed 2026-02-13