
XML Syntax for XQuery 1.0 (XQueryX) Page 1 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX)

W3C Working Draft 07 June 2001

This version:
http://www.w3.org/TR/2001/WD-xqueryx-20010607

Latest version:
http://www.w3.org/TR/xqueryx

Editors:
Ashok Malhotra (Microsoft) <ashokma@microsoft.com>
Jonathan Robie (Software AG) <jonathan.robie@softwareagusa.com>
Michael Rys (Microsoft) <mrys@microsoft.com>

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document
use and software licensing rules apply.

Abstract

This paper presents an XML Syntax for [XQuery Working Draft].

Status of this document

This document is the first publicly available W3C Working Draft of XQueryX, for review by W3C
members and other interested parties. It is a draft document and may be updated, replaced, or made
obsolete by other documents at any time. The XQueryX DTD and XML Schema will track the XQuery
1.0 syntax and will be changed as often as the XQuery 1.0 syntax is changed in future Working
Drafts. It is inappropriate to use W3C Working Drafts as reference material or to cite them as other
than "work in progress".

Comments on this document should be sent to the W3C mailing list www-xml-query-
comments@w3.org, which is archived at http://lists.w3.org/Archives/Public/www-xml-query-
comments/.

This document was produced by the W3C XML Query Working Group, which is part of the W3C XML
Activity. A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR/.

Table of contents

1 Introduction
2 Mapping the Syntax
3 Examples from the XQuery Working Draft in XML Syntax

XML Syntax for XQuery 1.0 (XQueryX) Page 2 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 3.1 Example 1
 3.2 Example 2
 3.3 Example 3
 3.4 Example 4
4 An XML Schema for the XQuery XML Syntax
5 A DTD for the XQuery XML Syntax

Appendices

A References
B XQuery Issues (Non-Normative)
 B.1 Issue List
 B.2 XQueryX Issues

1 Introduction

The [XML Query 1.0 Requirements] states that "The XML Query Language MAY have more than one
syntax binding. One query language syntax MUST be convenient for humans to read and write. One
query language syntax MUST be expressed in XML in a way that reflects the underlying structure of
the query."

XQueryX is an XML representation of an XQuery. It was created by mapping the productions of the
XQuery abstract syntax directly into XML productions. The result is not particularly convenient for
humans to read and write, but it is easy for programs to parse, and because XQueryX is represented
in XML, standard XML tools can be used to create, interpret, or modify queries.

There are several environments in which XQueryX may be useful:

? Parser Reuse. In heterogeneous data environments, a variety of systems may be used to
execute a query. One parser can generate XQueryX for all of these systems.

? Queries on Queries. Because XQueryX is represented in XML, queries can be queried and can
be transformed into new queries. For instance, a query can be performed against a set of
XQueryX queries to determine which queries use FLWR expressions to range over a set of
invoices.

? Generating Queries. In some XML-oriented programming environments, it may be more
convenient to build a query in its XQueryX representation than in the corresponding XQuery
representation, since XML tools can be used to do so.

? Embedding Queries in XML. XQueryX can be embedded directly in an XML document.

2 Mapping the Syntax

XQueryX is a close representation of the abstract syntax found in Appendix B of the [XQuery Working
Draft]. For each production in the abstract syntax, we created an equivalent XML representation. For
instance, the abstract syntax contains the following productions:

FLWRExpr ::= (ForClause | LetClause)+ WhereClause? "return" Expr
ForClause ::= "for" Variable "in" Expr ("," Variable "in" Expr)*
LetClause ::= "let" Variable ":=" Expr ("," Variable ":=" Expr)*
WhereClause ::= "where" Expr

XML Syntax for XQuery 1.0 (XQueryX) Page 3 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

The following XQueryX content models closely mirror the structure of the above productions:

 <!ELEMENT flwr ((forAssignment | letAssignmen)+, where?, return)>
 <!ELEMENT forAssignment %expression;>
 <!ATTLIST forAssignment variable CDATA #REQUIRED>
 <!ELEMENT letAssignment %expression; >
 <!ATTLIST letAssignment variable CDATA #REQUIRED >
 <!ELEMENT where (%expression;)>
 <!ELEMENT return (%expression;)>

Since XQuery uses the Expression production liberally to allow expressions to be flexibly combined,
XQueryX uses the %expression parameter entity in these same contexts to allow all expression types
to occur.

Now consider a FLWR expression in XQuery:

FOR $b IN document("bib.xml")//book
WHERE $b/publisher = "Morgan Kaufmann" AND $b/year = "1998"
RETURN
 $b/title

The equivalent in XQueryX is as follows:

 <q:query xmlns:q="http://www.w3.org/2001/06/xqueryx">
 <q:flwr>
 <q:forAssignment variable="$b">
 <q:step axis="SLASHSLASH">
 <q:function name="document">
 <q:constant datatype="CHARSTRING">bib.xml</q:constant>
 </q:function>
 <q:identifier>book</q:identifier>
 </q:step>
 </q:forAssignment>
 <q:where>
 <q:function name="AND">
 <q:function name="EQUALS">
 <q:step axis="CHILD">
 <q:variable>$b</q:variable>
 <q:identifier>publisher</q:identifier>
 </q:step>
 <q:constant datatype="CHARSTRING">Morgan Kaufmann</q:constant>
 </q:function>
 <q:function name="EQUALS">
 <q:step axis="CHILD">
 <q:variable>$b</q:variable>
 <q:identifier>year</q:identifier>
 </q:step>
 <q:constant datatype="CHARSTRING">1998</q:constant>
 </q:function>
 </q:function>
 </q:where>
 <q:return>
 <q:step axis="CHILD">
 <q:variable>$b</q:variable>
 <q:identifier>title</q:identifier>
 </q:step>
 </q:return>

XML Syntax for XQuery 1.0 (XQueryX) Page 4 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 </q:flwr>
</q:query>

Note that path expressions are expanded to show their structure. Also, note that the prefix syntax for
binary operators like AND makes the precedence explicit. In general, humans find it easier to read an
XML representation that does not expand path expressions, but it is less convenient for programmatic
representation. We are not proposing XQueryX as a convenient syntax for humans to read and write,
so we slant our representation toward the programmer.

The appendices of this document provide an XML Schema and a DTD that define the entire XQueryX
language. In the rest of this paper, we will show the XQueryX generated for several queries.

3 Examples from the XQuery Working Draft in XML Syntax

3.1 Example 1

Here is Q13 from the the [XQuery Working Draft] : "List each publisher and the average price of its
books."

FOR $p IN distinct(document("bib.xml")//publisher)
LET $a := avg(document("bib.xml")//book[publisher = $p]/price)
RETURN
 <publisher>
 <name>{ $p/text() }</name>
 <avgprice>{ $a }</avgprice>
 </publisher>

Here is the equivalent XML syntax.

<q:query xmlns:q="http://www.w3.org/2001/06/xqueryx">
 <q:flwr>
 <q:forAssignment variable="$p">
 <q:function name="distinct">
 <q:step axis="SLASHSLASH">
 <q:function name="document">
 <q:constant datatype="CHARSTRING">bib.xml</q:constant>
 </q:function>
 <q:identifier>publisher</q:identifier>
 </q:step>
 </q:function>
 </q:forAssignment>
 <q:letAssignment variable="$a">
 <q:function name="avg">
 <q:step axis="CHILD">
 <q:function name="document">
 <q:constant datatype="CHARSTRING">bib.xml</q:constant>
 </q:function>
 <q:step axis="CHILD">
 <q:predicatedExpr>
 <q:identifier>book</q:identifier>
 <q:predicate>
 <q:function name="EQUALS">
 <q:identifier>publisher</q:identifier>
 <q:variable>$p</q:variable>
 </q:function>
 </q:predicate>
 </q:predicatedExpr>

XML Syntax for XQuery 1.0 (XQueryX) Page 5 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 <q:identifier>price</q:identifier>
 </q:step>
 </q:step>
 </q:function>
 </q:letAssignment>
 <q:return>
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>publisher</q:identifier>
 </q:tagName>
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>name</q:identifier>
 </q:tagName>
 <q:step axis="CHILD">
 <q:variable>$p</q:variable>
 <q:nodeKindTest kind="TEXT" />
 </q:step>
 </q:elementConstructor>
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>avgprice</q:identifier>
 </q:tagName>
 <q:variable>$a</q:variable>
 </q:elementConstructor>
 </q:elementConstructor>
 </q:return>
 </q:flwr>
</q:query>

Note the representation of a function call. Since avg() is a built-in function, the function declaration is
not represented in the above query.

3.2 Example 2

Here is Q15 from the the [XQuery Working Draft] : "Invert the structure of the input document so that,
instead of each book element containing a list of authors, each distinct author element contains a list
of book-titles."

<author_list>
 {
 FOR $a IN distinct(document("bib.xml")//author)
 RETURN
 <author>
 <name>{ $a/text() }</name>
 {
 FOR $b IN document("bib.xml")//book[author = $a]
 RETURN $b/title
 }
 </author>
 }
</author_list>

This can be represented in XML syntax as

<q:query xmlns:q="http://www.w3.org/2001/06/xqueryx">
 <q:elementConstructor>
 <q:tagName>

XML Syntax for XQuery 1.0 (XQueryX) Page 6 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 <q:identifier>author_list</q:identifier>
 </q:tagName>
 <q:flwr>
 <q:forAssignment variable="$a">
 <q:function name="distinct">
 <q:step axis="SLASHSLASH">
 <q:function name="document">
 <q:constant datatype="CHARSTRING">bib.xml</q:constant>
 </q:function>
 <q:identifier>author</q:identifier>
 </q:step>
 </q:function>
 </q:forAssignment>
 <q:return>
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>author</q:identifier>
 </q:tagName>
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>name</q:identifier>
 </q:tagName>
 <q:step axis="CHILD">
 <q:variable>$a</q:variable>
 <q:nodeKindTest kind="TEXT" />
 </q:step>
 </q:elementConstructor>
 <q:flwr>
 <q:forAssignment variable="$b">
 <q:step axis="SLASHSLASH">
 <q:function name="document">
 <q:constant datatype="CHARSTRING">bib.xml</q:constant>
 </q:function>
 <q:predicatedExpr>
 <q:identifier>book</q:identifier>
 <q:predicate>
 <q:function name="EQUALS">
 <q:identifier>author</q:identifier>
 <q:variable>$a</q:variable>
 </q:function>
 </q:predicate>
 </q:predicatedExpr>
 </q:step>
 </q:forAssignment>
 <q:return>
 <q:step axis="CHILD">
 <q:variable>$b</q:variable>
 <q:identifier>title</q:identifier>
 </q:step>
 </q:return>
 </q:flwr>
 </q:elementConstructor>
 </q:return>
 </q:flwr>
 </q:elementConstructor>
</q:query>

3.3 Example 3

Here is Q19 from the the [XQuery Working Draft] : " Make an alphabetic list of publishers. Within each

XML Syntax for XQuery 1.0 (XQueryX) Page 7 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

publisher, make a list of books, each containing a title and a price, in descending order by price." It
illustrates the structure of sorting expressions in XQueryX.

<publisher_list>{
 FOR $p IN distinct(document("bib.xml")//publisher)
 RETURN
 <publisher>
 <name>{ $p/text() }</name>
 {
 FOR $b IN document("bib.xml")//book[publisher = $p]
 RETURN
 <book>
 { $b/title }
 { $b/price }
 </book>
 SORTBY(price DESCENDING)
 }
 </publisher>
 SORTBY(name)
}</publisher_list>

Here is the equivalent XML syntax.

<q:query xmlns:q="http://www.w3.org/2001/06/xqueryx">
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>publisher_list</q:identifier>
 </q:tagName>
 <q:sortBy>
 <q:flwr>
 <q:forAssignment variable="$p">
 <q:function name="distinct">
 <q:step axis="SLASHSLASH">
 <q:function name="document">
 <q:constant datatype="CHARSTRING">bib.xml</q:constant>
 </q:function>
 <q:identifier>publisher</q:identifier>
 </q:step>
 </q:function>
 </q:forAssignment>
 <q:return>
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>publisher</q:identifier>
 </q:tagName>
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>name</q:identifier>
 </q:tagName>
 <q:step axis="CHILD">
 <q:variable>$p</q:variable>
 <q:nodeKindTest kind="TEXT" />
 </q:step>
 </q:elementConstructor>
 <q:sortBy>
 <q:flwr>
 <q:forAssignment variable="$b">
 <q:step axis="SLASHSLASH">
 <q:function name="document">

XML Syntax for XQuery 1.0 (XQueryX) Page 8 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 <q:constant datatype="CHARSTRING">bib.xml</q:constant>
 </q:function>
 <q:predicatedExpr>
 <q:identifier>book</q:identifier>
 <q:predicate>
 <q:function name="EQUALS">
 <q:identifier>publisher</q:identifier>
 <q:variable>$p</q:variable>
 </q:function>
 </q:predicate>
 </q:predicatedExpr>
 </q:step>
 </q:forAssignment>
 <q:return>
 <q:elementConstructor>
 <q:tagName>
 <q:identifier>book</q:identifier>
 </q:tagName>
 <q:step axis="CHILD">
 <q:variable>$b</q:variable>
 <q:identifier>title</q:identifier>
 </q:step>
 <q:step axis="CHILD">
 <q:variable>$b</q:variable>
 <q:identifier>price</q:identifier>
 </q:step>
 </q:elementConstructor>
 </q:return>
 </q:flwr>
 <q:sortfield order="DESCENDING">
 <q:identifier>price</q:identifier>
 </q:sortfield>
 </q:sortBy>
 </q:elementConstructor>
 </q:return>
 </q:flwr>
 <q:sortfield>
 <q:identifier>name</q:identifier>
 </q:sortfield>
 </q:sortBy>
 </q:elementConstructor>
</q:query>

Note that the XQueryX representation of a sorted expression encloses both the expression to be
sorted and the sort fields in one <q:sortBy/> element. This is a significant restructuring of the query
syntax, but it makes the scope of the sort clearer.

3.4 Example 4

Here is Q26 from the the [XQuery Working Draft] : "Using a recursive function, compute the maximum
depth of the document named "partlist.xml."

NAMESPACE xsd = "http://www.w3.org/2001/XMLSchema"

FUNCTION depth (ELEMENT $e) RETURNS xsd:integer
{
 IF empty($e/*)
 THEN 1
 ELSE max(depth($e/*)) + 1

XML Syntax for XQuery 1.0 (XQueryX) Page 9 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

}

depth(document("partlist.xml"))

Here is the equivalent XML syntax.

<q:query xmlns:q="http://www.w3.org/Quilt" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <q:functionDefinition functionName="depth" datatype="xsd:integer">
 <q:argumentDeclaration name="$e" datatype="ELEMENT" />
 <q:ifThenElseExpr>
 <q:function name="empty">
 <q:step axis="CHILD">
 <q:variable>$e</q:variable>
 <q:identifier>*</q:identifier>
 </q:step>
 </q:function>
 <q:constant datatype="INTEGER">1</q:constant>
 <q:function name="PLUS">
 <q:function name="max">
 <q:function name="depth">
 <q:step axis="CHILD">
 <q:variable>$e</q:variable>
 <q:identifier>*</q:identifier>
 </q:step>
 </q:function>
 </q:function>
 <q:constant datatype="INTEGER">1</q:constant>
 </q:function>
 </q:ifThenElseExpr>
 </q:functionDefinition>

<!-- The function call: -->

 <q:function name="depth">
 <q:function name="document">
 <q:constant datatype="CHARSTRING">partlist.xml</q:constant>
 </q:function>
 </q:function>
</q:query>

In the above example, note the syntax used for function definitions and function calls.

4 An XML Schema for the XQuery XML Syntax

Here is the XML Schema for the proposed syntax.

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:group name = "expression">
 <xsd:choice>
 <xsd:element ref = "variable"/>
 <xsd:element ref = "constant"/>
 <xsd:element ref = "function"/>
 <xsd:element ref = "flwr"/>
 <xsd:element ref = "elementConstructor"/>
 <xsd:element ref = "predicatedExpr"/>

XML Syntax for XQuery 1.0 (XQueryX) Page 10 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 <xsd:element ref = "sortBy"/>
 <xsd:element ref = "ifThenElseExpr"/>
 <xsd:element ref = "quantifier"/>
 <xsd:element ref = "exprList"/>
 <xsd:element ref = "step"/>
 <xsd:element ref = "identifier"/>
 <xsd:element ref = "nodeKindTest"/>
 </xsd:choice>
 </xsd:group>
 <xsd:element name = "query">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "functionDefinition" minOccurs = "0"
 maxOccurs = "unbounded"/>
 <xsd:group ref = "expression"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "functionDefinition">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "argumentDeclaration" minOccurs = "0"
 maxOccurs = "unbounded"/>
 <xsd:group ref = "expression"/>
 </xsd:sequence>
 <xsd:attribute name = "functionName" use = "required" type = "xsd:string"/>
 <xsd:attribute name = "datatype" use = "required" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "argumentDeclaration">
 <xsd:complexType>
 <xsd:attribute name = "name" use = "required" type = "xsd:string"/>
 <xsd:attribute name = "datatype" use = "required" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "exprList">
 <xsd:complexType>
 <xsd:choice minOccurs = "0" maxOccurs = "unbounded">
 <xsd:group ref = "expression"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "predicatedExpr">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref = "expression"/>
 <xsd:element ref = "predicate" maxOccurs = "unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "predicate">
 <xsd:complexType>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element ref = "rangeFrom"/>
 <xsd:element ref = "rangeTo"/>
 </xsd:sequence>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 </xsd:complexType>

XML Syntax for XQuery 1.0 (XQueryX) Page 11 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 </xsd:element>
 <xsd:element name = "rangeFrom">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "rangeTo">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "variable" type = "xsd:string"/>
 <xsd:element name = "identifier" type = "xsd:string"/>
 <xsd:element name = "constant">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base = "xsd:string">
 <xsd:attribute name = "datatype" type = "xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "function">
 <xsd:complexType>
 <xsd:choice minOccurs = "0" maxOccurs = "unbounded">
 <xsd:group ref = "expression"/>
 </xsd:choice>
 <xsd:attribute name = "name" use = "required" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "flwr">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice maxOccurs = "unbounded">
 <xsd:element ref = "forAssignment"/>
 <xsd:element ref = "letAssignment"/>
 </xsd:choice>
 <xsd:element ref = "where" minOccurs = "0"/>
 <xsd:element ref = "return"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "forAssignment">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 <xsd:attribute name = "variable" use = "required" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "letAssignment">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 <xsd:attribute name = "variable" use = "required" type = "xsd:string"/>

XML Syntax for XQuery 1.0 (XQueryX) Page 12 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "where">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "return">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "ifThenElseExpr">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref = "expression"/>
 <xsd:group ref = "expression"/>
 <xsd:group ref = "expression"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "sortBy">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref = "expression"/>
 <xsd:element ref = "sortfield" maxOccurs = "unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "sortfield">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 <xsd:attribute name = "order" use = "default" value = "ASCENDING">
 <xsd:simpleType>
 <xsd:restriction base = "xsd:NMTOKEN">
 <xsd:enumeration value = "ASCENDING"/>
 <xsd:enumeration value = "DESCENDING"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "quantifier">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "quantifierAssignment"/>
 <xsd:group ref = "expression"/>
 </xsd:sequence>
 <xsd:attribute name = "type" use = "default" value = "SOME">
 <xsd:simpleType>
 <xsd:restriction base = "xsd:NMTOKEN">
 <xsd:enumeration value = "SOME"/>
 <xsd:enumeration value = "EVERY"/>
 </xsd:restriction>

XML Syntax for XQuery 1.0 (XQueryX) Page 13 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "quantifierAssignment">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 <xsd:attribute name = "variable" use = "required" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "elementConstructor">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "tagName"/>
 <xsd:element ref = "attributeConstructor" minOccurs = "0"
 maxOccurs = "unbounded"/>
 <xsd:choice minOccurs = "0" maxOccurs = "unbounded">
 <xsd:group ref = "expression"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "tagName">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref = "identifier"/>
 <xsd:element ref = "variable"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "attributeConstructor">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "attributeName"/>
 <xsd:element ref = "attributeValue"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "attributeName">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref = "identifier"/>
 <xsd:element ref = "variable"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "attributeValue">
 <xsd:complexType>
 <xsd:choice>
 <xsd:group ref = "expression"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "step">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref = "expression"/>
 <xsd:group ref = "expression"/>

XML Syntax for XQuery 1.0 (XQueryX) Page 14 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

 </xsd:sequence>
 <xsd:attribute name = "axis" use = "required">
 <xsd:simpleType>
 <xsd:restriction base = "xsd:NMTOKEN">
 <xsd:enumeration value = "DEREFERENCE"/>
 <xsd:enumeration value = "ANCESTOR"/>
 <xsd:enumeration value = "ANCESTORORSELF"/>
 <xsd:enumeration value = "ATTRIBUTE"/>
 <xsd:enumeration value = "CHILD"/>
 <xsd:enumeration value = "DESCENDANT"/>
 <xsd:enumeration value = "DESCENDANTORSELF"/>
 <xsd:enumeration value = "FOLLOWING"/>
 <xsd:enumeration value = "FOLLOWINGSIBILING"/>
 <xsd:enumeration value = "NAMESPACE"/>
 <xsd:enumeration value = "PARENT"/>
 <xsd:enumeration value = "PRECEDING"/>
 <xsd:enumeration value = "PRECEDINGSIBLING"/>
 <xsd:enumeration value = ""/>
 <xsd:enumeration value = "SLASHSLASH"/>
 <xsd:enumeration value = "SELF"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name = "abbreviated" use = "default" value = "true">
 <xsd:simpleType>
 <xsd:restriction base = "xsd:NMTOKEN">
 <xsd:enumeration value = "true"/>
 <xsd:enumeration value = "false"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "dot">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name = "dotdot">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name = "nodeKindTest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "piTargetTest" minOccurs = "0"/>
 </xsd:sequence>
 <xsd:attribute name = "kind" use = "required">
 <xsd:simpleType>
 <xsd:restriction base = "xsd:NMTOKEN">
 <xsd:enumeration value = "NODE"/>
 <xsd:enumeration value = "TEXT"/>
 <xsd:enumeration value = "COMMENT"/>
 <xsd:enumeration value = "DATA"/>
 <xsd:enumeration value = "PROCESSING_INSTRUCTION"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "piTargetTest" type = "xsd:string"/>
</xsd:schema>

XML Syntax for XQuery 1.0 (XQueryX) Page 15 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

5 A DTD for the XQuery XML Syntax

Here is the DTD for the proposed syntax. Again, productions from the[XQuery Working Draft] are
shown as comments followed by equivalent DTD constructions.

Note that the examples shown above make heavy use of namespaces. Since DTDs do not support
namespaces this limits the ability to validate XQueries using DTDs especially in the case of element
construction.

<!ENTITY % ORDER_LITERALS "(ASCENDING | DESCENDING)">

<!ENTITY % QUANTIFIER_TYPE "(SOME | EVERY)">

<!ENTITY % expression "(q:variable | q:constant | q:function | q:flwr
 | q:elementConstructor | q:predicatedExpr | q:sortBy | q:ifThenElseExpr
 | q:quantifier | q:exprList | q:step | q:identifier | q:nodeKindTest)">

<!ENTITY % AXIS_TYPE "(DEREFERENCE | ANCESTOR | ANCESTORORSELF
| ATTRIBUTE | CHILD | DESCENDANT | DESCENDANTORSELF | FOLLOWING
| FOLLOWINGSIBILING | NAMESPACE | PARENT | PRECEDING
| PRECEDINGSIBLING | SLASHSLASH | SELF)">

<!ENTITY % NODE_KIND "(NODE | TEXT | COMMENT | DATA | PROCESSING_INSTRUCTION)">

<!ELEMENT q:query (q:functionDefinition* , %expression;)>

<!ELEMENT q:functionDefinition (q:argumentDeclaration* , %expression;)>
<!ATTLIST q:functionDefinition functionName CDATA #REQUIRED
 datatype CDATA #REQUIRED >

<!ELEMENT q:argumentDeclaration EMPTY>
<!ATTLIST q:argumentDeclaration name CDATA #REQUIRED
 datatype CDATA #REQUIRED >

<!ELEMENT q:exprList (%expression;)*>

<!ELEMENT q:predicatedExpr (%expression; , q:predicate+)>

<!ELEMENT q:predicate ((q:rangeFrom , q:rangeTo) | %expression;)>

<!ELEMENT q:rangeFrom (%expression;)>

<!ELEMENT q:rangeTo (%expression;)>

<!ELEMENT q:variable (#PCDATA)>

<!ELEMENT q:identifier (#PCDATA)>

<!ELEMENT q:constant (#PCDATA)>
<!ATTLIST q:constant datatype CDATA #IMPLIED >

<!ELEMENT q:function (%expression;)*>
<!ATTLIST q:function name CDATA #REQUIRED >

<!ELEMENT q:flwr ((q:forAssignment | q:letAssignment)+ , q:where? , q:return)>

<!ELEMENT q:forAssignment %expression;>

XML Syntax for XQuery 1.0 (XQueryX) Page 16 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

<!ATTLIST q:forAssignment variable CDATA #REQUIRED >

<!ELEMENT q:letAssignment %expression;>
<!ATTLIST q:letAssignment variable CDATA #REQUIRED >

<!ELEMENT q:where (%expression;)>

<!ELEMENT q:return (%expression;)>

<!ELEMENT q:ifThenElseExpr (%expression; , %expression; , %expression;)>

<!ELEMENT q:sortBy (%expression; , q:sortfield+)>

<!ELEMENT q:sortfield (%expression;)>
<!ATTLIST q:sortfield order %ORDER_LITERALS; "ASCENDING" >

<!ELEMENT q:quantifier (q:quantifierAssignment , %expression;)>
<!ATTLIST q:quantifier type %QUANTIFIER_TYPE; "SOME" >

<!ELEMENT q:quantifierAssignment (%expression;)>
<!ATTLIST q:quantifierAssignment variable CDATA #REQUIRED >

<!ELEMENT q:elementConstructor (q:tagName , q:attributeConstructor* , (%expression;)*)>

<!ELEMENT q:tagName (q:identifier | q:variable)>

<!ELEMENT q:attributeConstructor (q:attributeName , q:attributeValue)>

<!ELEMENT q:attributeName (q:identifier | q:variable)>

<!ELEMENT q:attributeValue (%expression;)>

<!ELEMENT q:step (%expression; , %expression;)>
<!ATTLIST q:step axis %AXIS_TYPE; #REQUIRED
 abbreviated (true | false) 'true' >

<!ELEMENT q:dot EMPTY>

<!ELEMENT q:dotdot EMPTY>

<!ELEMENT q:nodeKindTest (q:piTargetTest?)>

<!ATTLIST q:nodeKindTest kind %NODE_KIND; #REQUIRED >
<!ELEMENT q:piTargetTest (#PCDATA)>

A References

XML Query 1.0 Requirements
World Wide Web Consortium. XML Query 1.0 Requirements. W3C Working Draft, 15 Feb
2001. See http://www.w3.org/TR/xmlquery-req.

XQuery Working Draft
XQuery 1.0: A Query Language for XML. See http://www.w3.org/TR/xquery/

XQuery 1.0 Formal Semantics
World Wide Web Consortium. XQuery 1.0 Formal Semantics. W3C Working Draft, 7 June
2001. See http://www.w3.org/TR/query-semantics/.

XML Syntax for XQuery 1.0 (XQueryX) Page 17 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

B XQuery Issues (Non-Normative)

This section contains the current issues for XQuery. The individual issues are shown in detail after an
abbreviated issues list.

B.1 Issue List

B.2 XQueryX Issues

Issue 1 : Should path expressions be expanded? (xqueryx-expand-paths)

Description:

The current representation requires path expressions to be expanded. Should this be optional?

Issue 2 : Human readable XQueryX? (xqueryx-human-readable)

Description:

Should making XQueryX queries easier for humans to read and write be a goal?

Issue 3 : Should XQueryX mirror the Formal Semantics? (xqueryx-semantics)

Issue Priority Status ID

1: Should path expressions be expanded? (xqueryx-expand-paths)

2: Human readable XQueryX? (xqueryx-human-readable)

3: Should XQueryX mirror the Formal Semantics? (xqueryx-semantics)

4: XQueryX and XSLT (xqueryx-xslt)

5: XQueryX Operator Syntax (xqueryx-operator-syntax)

6: Define Transformations from XQuery Grammar (xqueryx-define-transformation)

7: Representing Path Expressions (xqueryx-path-expressions)

8: Representing // (xqueryx-slash-slash)

9: Symbol space for operators (xqueryx-operators-symbolspace)

10: Wildcard (xqueryx-star-identifier)

11: Type Expressions (xqueryx-cast-treat-typeswitch)

12: SCHEMA declaration (xqueryx-schema-declarations)

13: Case of Constants (xqueryx-case-of-constants)

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

XML Syntax for XQuery 1.0 (XQueryX) Page 18 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

Description:

Should XQueryX mirror rather than the abstract syntax of XQuery?

Issue 4 : XQueryX and XSLT (xqueryx-xslt)

Description:

Should there be some clear relationship between XQueryX and XSLT?

Issue 5 : XQueryX Operator Syntax (xqueryx-operator-syntax)

Description:

XQueryX currently uses function syntax for operators:

 <q:function name="PLUS">
 <q:constant datatype="INTEGER">1</q:constant>
 <q:constant datatype="INTEGER">2</q:constant>
 </q:function>

Several other possibilities have been suggested, eg:

 <q:and/> and <q:equal/>

or

 <q:binaryOperator name="AND"/>
 <q:binaryOperator name="EQUALS"/>

or

 <q:mathOperator name="and"/> and <q:logicalOperator name="equal"/>

Issue 6 : Define Transformations from XQuery Grammar (xqueryx-define-
transformation)

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

XML Syntax for XQuery 1.0 (XQueryX) Page 19 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

Description:

A well defined mapping from the XQuery grammar productions to XQueryX should be defined. This is
more cost effective when both XQuery and XQueryX have settled down a bit more.

Issue 7 : Representing Path Expressions (xqueryx-path-expressions)

Description:

Should path expressions be represented in a linear fashion, with the individual steps represented as a
sequence? One Working Group member has suggested that the path "doc("a")/b/c" should be
represented as follows:

 <path>
 <function name="doc">
 <constant>a</constant>
 </function>
 <step axis="descendant">
 <identifier>b</identifier>
 </step>
 <step axis="descendant">
 <identifier>c</identifier>
 </step>
 </path>

Issue 8 : Representing // (xqueryx-slash-slash)

Description:

In this document we use the constant SLASHSLASH as a fictive axis that corresponds to the
meaning of the "//" operator. In fact, this operator does not correspond directly to an axis, but to
descendant-or-self::node()/. For example, //para is short for /descendant-or-self::node()/child::para.
Since XQueryX must be able to translate back to the original XQuery syntax, we currently use
SLASHSLASH to preserve the original operator.

Is this the best way to represent the // operator in XQueryX?

Issue 9 : Symbol space for operators (xqueryx-operators-symbolspace)

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

XML Syntax for XQuery 1.0 (XQueryX) Page 20 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

Description:

The current syntax does not distinguish functions from operators. Since a function may have the same
name as an operator, some mechanism must be chosen to disambiguate their names. For instance,
since a user can write a function named plus, perhaps the operator plus should be represented as:

 <operator name="plus"/>

rather than

 <function name="plus"/>

Issue 10 : Wildcard (xqueryx-star-identifier)

Description:

In Example 4, should * be used as an identifier? It should probably be a wildcard.

Issue 11 : Type Expressions (xqueryx-cast-treat-typeswitch)

Description:

CAST, TREAT, and TYPESWITCH have no representation in this Working Draft. This must be added
soon.

Issue 12 : SCHEMA declaration (xqueryx-schema-declarations)

Description:

There is currently no representation for schema declarations in XQueryX. This must be added.

Issue 13 : Case of Constants (xqueryx-case-of-constants)

Description:

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

Originator: XMLQuery

Locus: xqueryx

XML Syntax for XQuery 1.0 (XQueryX) Page 21 of 21

http://www.w3.org/TR/xqueryx 8/9/2001

Should XQueryX constants use upper or lower case?

