XML Syntax for XQuery 1.0 (XQueryX) Page 1 of 21

®

W3C
XML Syntax for XQuery 1.0 (XQueryX)

W3C Working Draft 07 June 2001

This version:

http://www.w3.0rg/TR/2001/WD-xqueryx-20010607
Latest version:

http://www.w3.0rg/TR/xqueryx
Editors:

Ashok Malhotra (Microsoft) <ashokma@microsoft.com>
Jonathan Robie (Software AG) <jonathan.robie@softwareagusa.com>
Michael Rys (Microsoft) <mrys@microsoft.com>

Copyright ©2001 w3c® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document
use and software licensing rules apply.

Abstract
This paper presents an XML Syntax for [XQuery Working Draft].

Status of this document

This document is the first publicly available W3C Working Draft of XQueryX, for review by W3C
members and other interested parties. It is a draft document and may be updated, replaced, or made
obsolete by other documents at any time. The XQueryX DTD and XML Schema will track the XQuery
1.0 syntax and will be changed as often as the XQuery 1.0 syntax is changed in future Working
Drafts. It is inappropriate to use W3C Working Drafts as reference material or to cite them as other
than "work in progress".

Comments on this document should be sent to the W3C mailing list www-xml-query-

comments@wa3.org, which is archived at http://lists.w3.org/Archives/Public/www-xml-query-
comments/.

This document was produced by the W3C XML Query Working Group, which is part of the W3C XML

Activity. A list of current W3C Recommendations and other technical documents can be found at
http://Aww.w3.0rg/TR/.

Table of contents

1 Introduction

2 Mapping the Syntax
3 Examples from the XQuery Working Draft in XML Syntax

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 2 of 21

3.1 Example 1

3.2 Example 2

3.3 Example 3

3.4 Example 4
4 An XML Schema for the XQuery XML Syntax
5 A DTD for the XQuery XML Syntax

Appendices

A References

B XQuery Issues (Non-Normative)

B.1 Issue List

B.2 XQueryX Issues

1 Introduction

The XML Query 1.0 Requirements] states that "The XML Query Language MAY have more than one
syntax binding. One query language syntax MUST be convenient for humans to read and write. One
query language syntax MUST be expressed in XML in a way that reflects the underlying structure of
the query."

XQueryX is an XML representation of an XQuery. It was created by mapping the productions of the
XQuery abstract syntax directly into XML productions. The result is not particularly convenient for
humans to read and write, but it is easy for programs to parse, and because XQueryX is represented
in XML, standard XML tools can be used to create, interpret, or modify queries.

There are several environments in which XQueryX may be useful:

« Parser Reuse. In heterogeneous data environments, a variety of systems may be used to
execute a query. One parser can generate XQueryX for all of these systems.

= Queries on Queries. Because XQueryX is represented in XML, queries can be queried and can
be transformed into new queries. For instance, a query can be performed against a set of
XQueryX queries to determine which queries use FLWR expressions to range over a set of
invoices.

= Generating Queries. In some XML-oriented programming environments, it may be more
convenient to build a query in its XQueryX representation than in the corresponding XQuery
representation, since XML tools can be used to do so.

= Embedding Queries in XML. XQueryX can be embedded directly in an XML document.

2 Mapping the Syntax

XQueryX is a close representation of the abstract syntax found in Appendix B of the [XQuery Working
Draft]. For each production in the abstract syntax, we created an equivalent XML representation. For
instance, the abstract syntax contains the following productions:

FLWREX pr ii= (Ford ause | Letd ause)+ Wered ause? "return" Expr
For C ause = "for" Variable "in" Expr ("," Variable "in" Expr)*
Let O ause = "let" Variable ":=" Expr ("," Variable ":=" Expr)*
Wher ed ause = "where" Expr

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 3 of 21

The following XQueryX content models closely mirror the structure of the above productions:

< ELEMENT flw ((forAssignnment | |etAssignnen)+, where?, return)>
<! ELEMENT f or Assi gnment %expr essi on; >
<! ATTLI ST f or Assi gnrment vari abl e CDATA #REQUI RED>
<! ELEMENT | et Assi gnrment %expr essi on; >
<I ATTLI ST | et Assi gnnent vari abl e CDATA #REQU RED >
<! ELEMENT where (%expression;)>
<! ELEMENT return (%expression;)>

Since XQuery uses the Expression production liberally to allow expressions to be flexibly combined,
XQueryX uses the %expression parameter entity in these same contexts to allow all expression types
to occur.

Now consider a FLWR expression in XQuery:

FOR $b I N docurnent ("bi b. xm ")// book
WHERE $b/ publ i sher = "Mrgan Kauf mann" AND $b/year = "1998"
RETURN

$b/title

The equivalent in XQueryX is as follows:

<g: query xm ns:qg="http://ww. w3. or g/ 2001/ 06/ xquer yx" >
<q: flw>
<q: f or Assi gnnent vari abl e="$b" >
<Q: step axi s="SLASHSLASH'>
<q: function name="docunent" >
<@g: const ant dat at ype="CHARSTRI NG' >bi b. xm </ q: const ant >
</ g: function>
<Qg:identifier>book</qg:identifier>
</ qg: step>
</ q: f or Assi gnnent >
<g: wher e>
<q: function nane="AND'>
<q: function name="EQUALS">
<g: step axi s="CH LD'>
<q: vari abl e>$b</ g: vari abl e>
<g:identifier>publisher</q:identifier>
</ q: st ep>
<g: const ant dat at ype="CHARSTRI NG' >Mor gan Kauf mann</ q: const ant >
</ g: function>
<q: function name="EQUALS">
<(g: step axi s="CH LD'>
<q: vari abl e>$b</ g: vari abl e>
<g:identifier>year</q:identifier>
</ q: st ep>
<g: const ant dat at ype="CHARSTRI NG'>1998</ q: const ant >
</ g: function>
</ qg: function>
</ g: wher e>
<Q:return>
<Qg: step axi s="CH LD'>
<q: vari abl e>$b</ g: vari abl e>
<g:identifier>title</qg:identifier>
</ qg: step>
</ qg:return>

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 4 of 21

</q:flw>
</ q: query>

Note that path expressions are expanded to show their structure. Also, note that the prefix syntax for
binary operators like AND makes the precedence explicit. In general, humans find it easier to read an
XML representation that does not expand path expressions, but it is less convenient for programmatic
representation. We are not proposing XQueryX as a convenient syntax for humans to read and write,
so we slant our representation toward the programmer.

The appendices of this document provide an XML Schema and a DTD that define the entire XQueryX
language. In the rest of this paper, we will show the XQueryX generated for several queries.

3 Examples from the XQuery Working Draft in XML Syntax

3.1 Example 1

Here is Q13 from the the [XQuery Working Draft] : "List each publisher and the average price of its
books."

FOR $p IN distinct(docunent ("bib.xm")//publisher)
LET $a : = avg(docunent ("bi b.xm ")/ /book[publisher = $p]/price)
RETURN
<publ i sher >
<name>{ $p/text() }</nane>
<avgprice>{ $a }</avgprice>
</ publ i sher >

Here is the equivalent XML syntax.

<g: query xm ns:q="http://ww. w3. or g/ 2001/ 06/ xquer yx" >
<q: flw>
<q: f or Assi gnnent vari abl e="$p" >
<q: function nanme="di stinct">
<Qg: step axi s="SLASHSLASH' >
<g: functi on nanme="docurent ">
<g: const ant dat at ype="CHARSTRI NG' >bi b. xm </ q: const ant >
</ q: functi on>
<qg:identifier>publisher</qg:identifier>
</ qg: step>
</ qg: function>
</ g: f or Assi gnnment >
<q: | et Assi gnnment vari abl e="$a" >
<qg: function nane="avg">
<Q: step axi s="CHI LD'>
<q: functi on nane="docunent" >
<g: const ant dat at ype="CHARSTRI NG' >bi b. xm </ q: const ant >
</ q: functi on>
<(g: step axi s="CH LD'>
<q: pr edi cat edExpr >
<qg:identifier>book</q:identifier>
<g: pr edi cat e>
<g: function nane="EQUALS">
<qg:identifier>publisher</q:identifier>
<q: vari abl e>$p</ q: vari abl e>
</ g: function>
</ q: pr edi cat e>
</ q: pr edi cat edExpr >

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 5 of 21

<g:identifier>price</q:identifier>
</ q: st ep>
</ qg: step>
</ qg: functi on>
</ qg: | et Assi gnnment >
<g: return>
<g: el enent Const r uct or >
<Q: t agNane>
<qg:identifier>publisher</q:identifier>
</ g: t agName>
<q: el enent Const ruct or >
<q: t agNanme>
<qg:identifier>name</q:identifier>
</ q: t agNane>
<Qg: step axi s="CH LD'>
<q: vari abl e>$p</ g: vari abl e>
<g: nodeKi ndTest ki nd="TEXT" />
</ q: st ep>
</ g: el enent Const r uct or >
<q: el enent Const r uct or >
<q: t agNanme>
<g:identifier>avgprice</q:identifier>
</ q: t agNane>
<g: vari abl e>$a</ q: vari abl e>
</ g: el enent Const ruct or >
</ g: el enent Const ruct or >
</q:return>
</qg:flw>
</ qg: query>

Note the representation of a function call. Since avg() is a built-in function, the function declaration is
not represented in the above query.

3.2 Example 2

Here is Q15 from the the [XQuery Working Draft] : "Invert the structure of the input document so that,
instead of each book element containing a list of authors, each distinct author element contains a list
of book-titles."

<aut hor _|ist>

{
FOR $a I N di stinct (docurent ("bi b. xm ")/ /aut hor)
RETURN
<aut hor >
<name>{ $a/text() }</name>
{
FOR $b I'N docurent ("bi b. xm ") //book[aut hor = $a]
RETURN $b/title
}
</ aut hor >
}

</ aut hor _|ist>
This can be represented in XML syntax as

<g: query xm ns: gq="http://ww. w3. or g/ 2001/ 06/ xquer yx" >
<q: el enent Const r uct or >
<Q: t agNane>

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 6 of 21

<g:identifier>author_list</q:identifier>
</ q: t agNane>
<qg: flw>
<q: f or Assi gnnent vari abl e="$a" >
<q: function name="di stinct">
<(g: step axi s="SLASHSLASH'>
<q: function nanme="docunent ">
<g: const ant dat at ype="CHARSTRI NG' >bi b. xm </ q: const ant >
</ q: function>
<qg:identifier>author</qg:identifier>
</ q: st ep>
</ g: function>
</ g: f or Assi gnmrent >
<Qg: return>
<g: el enent Const r uct or >
<Q: t agNane>
<g:identifier>author</q:identifier>
</ q: t agNane>
<q: el ement Const r uct or >
<g: t agName>
<qg:identifier>name</q:identifier>
</ q: t agNane>
<Qq: step axi s="CH LD'>
<q: vari abl e>$a</ q: vari abl e>
<g: nodeKi ndTest ki nd="TEXT" />
</ q: step>
</ q: el ement Const ruct or >
<q: flw>
<q: f or Assi gnment vari abl e="$b" >
<(g: step axi s="SLASHSLASH'>
<q: function name="docunent" >
<(: const ant dat at ype="CHARSTRI NG' >bi b. xm </ q: const ant >
</ g: function>
<Q: pr edi cat edExpr >
<qg:identifier>book</q:identifier>
<q: pr edi cat e>
<qg: function nanme="EQUALS" >
<qg:identifier>author</qg:identifier>
<q: vari abl e>$a</ g: vari abl e>
</ q: functi on>
</ q: predi cat e>
</ q: pr edi cat edExpr >
</ qg: step>
</ q: f or Assi gnnent >
<g: return>
<Q: step axis="CH LD'>
<q: vari abl e>$b</ g: vari abl e>
<g:identifier>title</qg:identifier>
</ q: step>
</q:return>
</q:flw>
</ q: el enent Const ruct or >
</ qg:return>
</qg:flw>
</ q: el ement Const r uct or >
</ g: query>

3.3 Example 3

Here is Q19 from the the [XQuery Working Draft] : " Make an alphabetic list of publishers. Within each

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 7 of 21

publisher, make a list of books, each containing a title and a price, in descending order by price." It
illustrates the structure of sorting expressions in XQueryX.

<publ i sher _|ist>{
FOR $p I'N di stinct(docunent ("bib.xm ")//publisher)
RETURN
<publ i sher >
<name>{ $p/text() }</name>

{
FOR $b I N docunent ("bi b. xm ")//book[publisher = $p]
RETURN
<book>
{ sb/title }
{ $b/price }
</ book>
SORTBY(pri ce DESCENDI NG
}
</ publ i sher>
SORTBY(nane)

}</ publisher_|ist>
Here is the equivalent XML syntax.

<g: query xm ns:gq="http://ww. w3. or g/ 2001/ 06/ xquer yx" >
<q: el ement Const r uct or >
<q:t agNanme>
<qg:identifier>publisher_list</q:identifier>
</ q: t agNane>
<qQ: sort By>
<g: flw>
<q: for Assi gnnent vari abl e="$p" >
<qg: functi on nane="di stinct">
<(: step axi s="SLASHSLASH'>
<q: function nane="docunent" >
<Q: const ant dat at ype="CHARSTRI NG'>bi b. xn </ q: const ant >
</ qg: function>
<g:identifier>publisher</q:identifier>
</ qg: step>
</ q: functi on>
</ g: f or Assi gnment >
<q:return>
<q: el ement Const r uct or >
<g: t agName>
<g:identifier>publisher</q:identifier>
</ q: t agNane>
<g: el enent Const r uct or >
<q: t agNane>
<g:identifier>nane</q:identifier>
</ q: t agNane>
<Qg: step axi s="CH LD'>
<q: vari abl e>$p</ g: vari abl e>
<qg: nodeKi ndTest ki nd="TEXT" />
</ qg: step>
</ g: el enent Const r uct or >
<Q: sort By>
<g: flw>
<q: for Assi gnnent vari abl e="3$b" >
<(: step axi s="SLASHSLASH' >
<q: functi on nane="docurent ">

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 8 of 21

<g: const ant dat at ype="CHARSTRI NG' >bi b. xm </ q: const ant >
</ q: function>
<q: pr edi cat edExpr >
<qg:identifier>book</q:identifier>
<g: pr edi cat e>
<q: function name="EQUALS">
<qg:identifier>publisher</q:identifier>
<g: vari abl e>$p</ q: vari abl e>
</ g: function>
</ g: predi cat e>
</ q: pr edi cat edExpr >
</ q: step>
</ g: f or Assi gnrrent >
<Q: return>
<q: el enent Const r uct or >
<Q: t agNane>
<g:identifier>book</q:identifier>
</ q: t agNane>
<(g: step axi s="CH LD'>
<qg: vari abl e>$b</ g: vari abl e>
<g:identifier>title</qg:identifier>
</ q: step>
<Qq: step axi s="CH LD'>
<q: vari abl e>$b</ g: vari abl e>
<g:identifier>price</qg:identifier>
</ q: step>
</ q: el ement Const ruct or >
</ qg:return>
</qg:flw>
<qg:sortfield order="DESCEND NG' >
<g:identifier>price</qg:identifier>
</qg:sortfield>
</ q: sort By>
</ q: el ement Const ruct or >
</ q:return>
</q:flw>
<g:sortfiel d>
<Qg:identifier>name</q:identifier>
</qg:sortfield>
</ g: sort By>
</ q: el ement Const r uct or >
</ q: query>

Note that the XQueryX representation of a sorted expression encloses both the expression to be
sorted and the sort fields in one <q:sortBy/> element. This is a significant restructuring of the query
syntax, but it makes the scope of the sort clearer.

3.4 Example 4

Here is Q26 from the the [XQuery Working Draft] : "Using a recursive function, compute the maximum
depth of the document named "partlist.xml."

NAMESPACE xsd = "http://ww. w3. or g/ 2001/ XM_Schena"

FUNCTI ON dept h (ELEMENT $e) RETURNS xsd: i nt eger
{

I F enpty($el*)

THEN 1

ELSE nax(depth($e/*)) + 1

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX)

}

dept h(docunent ("partlist.xm"))

Here is the equivalent XML syntax.

Page 9 of 21

<g: query xmns:qgq="http://ww. w3.org/Quilt" xmns:xsd="http://ww. w3. org/ 2001/ XM_Sc

<qg: functionDefinition functi onNane="depth" datatype="xsd:integer">

<q: ar gunent Decl ar ati on nanme="$e" dat at ype="ELEMENT" />
<q: i f ThenEl seExpr >
<g: function nane="enpty">
<Qg: step axi s="CH LD'>
<q: vari abl e>$e</ q: vari abl e>
<g:identifier></q:identifier>
</ qg: step>
</ qg: functi on>
<g: const ant dat at ype="I| NTEGER' >1</ q: const ant >
<q: function nane="PLUS">
<q: function name="max">
<qg: function nane="depth">
<Qg: step axi s="CH LD'>
<q: vari abl e>$e</ g: vari abl e>
<g:identifier></qg:identifier>
</ q: step>
</ q: functi on>
</ g: function>
<Qg: const ant dat at ype="| NTEGER' >1</ q: const ant >
</ qg: function>
</ q:if ThenEl seExpr >
</ q: functionDefinition>

<l-- The function call: -->

<q: functi on nane="dept h">
<q: functi on nane="docurent ">
<Q: const ant dat at ype="CHARSTRI NG'>partli st.xnl </ g: const ant >
</ qg: function>
</ q: function>
</ g: query>

In the above example, note the syntax used for function definitions and function calls.

4 An XML Schema for the XQuery XML Syntax

Here is the XML Schema for the proposed syntax.

<?xm version = "1.0" encoding = "UTF-8"?>
<xsd: schema xm ns:xsd = "http://ww. w3. or g/ 2001/ XM_Schenma" >
<xsd: group nane = "expression">

<xsd: choi ce>
<xsd: el emrent ref
<xsd: el enent ref
<xsd: el enent ref
<xsd: el enent ref
<xsd: el enent ref
<xsd: el ement ref

"vari abl e"/ >
"constant"/>
"function"/>

"flw"/>

"el ement Constructor"/>
"predi cat edExpr"/ >

http://ww.w3.org/ TR/xqueryx

8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 10 of 21

<xsd: el ement ref = "sortBy"/>
<xsd: el enent ref = "ifThenEl seExpr"/>
<xsd: el enent ref = "quantifier"/>
<xsd: el enent ref = "exprList"/>
<xsd: el enent ref = "step"/>
<xsd:element ref = "identifier"/>
<xsd: el ement ref = "nodeKindTest"/>

</ xsd: choi ce>
</ xsd: gr oup>
<xsd: el enent nane = "query">
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement ref = "functionDefinition" mnQCccurs = "0"
maxQccurs = "unbounded"/ >
<xsd: group ref = "expression"/>

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "functionDefinition">
<xsd: conpl exType>
<xsd: sequence>

<xsd: el enent ref = "argunentDecl aration” m nCccurs = "0"
maxQccurs = "unbounded"/ >
<xsd: group ref = "expression"/>
</ xsd: sequence>
<xsd: attribute name = "functionNanme" use = "required" type = "xsd:strir
<xsd:attribute name = "datatype" use = "required" type = "xsd:string"/>

</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nane = "argunent Decl arati on">
<xsd: conpl exType>
<xsd:attribute name = "nane" use = "required" type = "xsd:string"/>
<xsd:attribute name = "datatype" use = "required" type = "xsd:string"/>

</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el enent nane = "exprlList">
<xsd: conpl exType>
<xsd: choi ce m nCccurs = "0" maxCccurs = "unbounded">
<xsd: group ref = "expression"/>

</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent nane = "predi cat edExpr">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref = "expression"/>
<xsd: el enment ref = "predicate" nmaxCccurs = "unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "predicate">
<xsd: conpl exType>
<xsd: choi ce>
<xsd: sequence>
<xsd: el ement ref

"rangeFront />

<xsd: el enment ref = "rangeTo"/>
</ xsd: sequence>
<xsd: group ref = "expression"/>

</ xsd: choi ce>
</ xsd: conpl exType>

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 11 of 21

</ xsd: el enent >
<xsd: el enent nane = "rangeFroni >
<xsd: conpl exType>
<xsd: choi ce>
<xsd: group ref = "expression"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "rangeTo">
<xsd: conpl exType>
<xsd: choi ce>
<xsd: group ref = "expression"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement nane = "variable" type = "xsd:string"/>
<xsd: el ement nane = "identifier" type = "xsd:string"/>
<xsd: el ement nane = "constant">

<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base = "xsd:string">
<xsd:attribute name = "datatype" type = "xsd:string"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nane = "function">
<xsd: conpl exType>
<xsd: choi ce mi nCccurs = "0" maxQccurs = "unbounded" >
<xsd: group ref = "expression"/>
</ xsd: choi ce>
<xsd:attribute name = "nane" use = "required" type = "xsd:string"/>

</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent nane = "flw">
<xsd: conpl exType>
<xsd: sequence>

<xsd: choi ce maxCccurs = "unbounded">
<xsd: el ement ref = "forAssignment"/>
<xsd: el ement ref = "l etAssignnment"/>

</ xsd: choi ce>
<xsd: el enent ref "where" m nCccurs = "0"/>
<xsd: el enent ref = "return"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "forAssi gnment">
<xsd: conpl exType>
<xsd: choi ce>

<xsd: group ref = "expression"/>
</ xsd: choi ce>
<xsd:attribute name = "variable" use = "required" type = "xsd:string"/>

</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane = "| et Assi gnnment">
<xsd: conpl exType>
<xsd: choi ce>

<xsd: group ref = "expression"/>
</ xsd: choi ce>
<xsd:attribute name = "variable" use = "required" type = "xsd:string"/>

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 12 of 21

</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent nane = "where">
<xsd: conpl exType>
<xsd: choi ce>
<xsd: group ref = "expression"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent nane = "return">
<xsd: conpl exType>
<xsd: choi ce>
<xsd: group ref = "expression"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "if ThenEl seExpr">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref "expression"/>
<xsd: group ref = "expression"/>
<xsd: group ref "expression"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "sortBy">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref = "expression"/>
<xsd: el ement ref = "sortfield" maxCccurs = "unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent nane = "sortfield">
<xsd: conpl exType>
<xsd: choi ce>

<xsd: group ref = "expression"/>
</ xsd: choi ce>
<xsd:attribute name = "order" use = "default" value = "ASCENDI NG' >

<xsd: si npl eType>
<xsd:restriction base = "xsd: NMTCKEN' >
<xsd: enuneration val ue = "ASCEND NG'/ >
<xsd: enuneration val ue = "DESCENDI NG'/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane = "quantifier">
<xsd: conpl exType>
<xsd: sequence>

<xsd: el enent ref = "quantifierAssignnent"/>
<xsd: group ref = "expression"/>
</ xsd: sequence>
<xsd:attribute name = "type" use = "default" value = "SOWE">

<xsd: si npl eType>
<xsd:restriction base = "xsd: NMTCKEN' >
<xsd: enuneration value = "SOVE"/ >
<xsd: enuner ati on val ue "EVERY" [>
</xsd:restriction>

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 13 of 21

</ xsd: si npl eType>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "quantifierAssi gnment">
<xsd: conpl exType>
<xsd: choi ce>

<xsd: group ref = "expression"/>
</ xsd: choi ce>
<xsd:attribute name = "variable" use = "required" type = "xsd:string"/>

</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el erent nanme = "el emrent Constructor">
<xsd: conpl exType>
<xsd: sequence>

<xsd: el enent ref = "tagName"/>

<xsd:elenent ref = "attributeConstructor” m nCccurs = "0"
maxQccurs = "unbounded"/ >

<xsd: choi ce m nCccurs = "0" nmaxCccurs = "unbounded">
<xsd: group ref = "expression"/>

</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "tagNane">
<xsd: conpl exType>
<xsd: choi ce>
<xsd: el enent ref "identifier"/>
<xsd: el ement ref = "variable"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "attributeConstructor">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref "attribut eNane"/ >
<xsd: el ement ref = "attributeVal ue"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "attri buteNane">
<xsd: conpl exType>
<xsd: choi ce>
<xsd: el enent ref "identifier"/>
<xsd: el ement ref = "variable"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane = "attri buteVal ue">
<xsd: conpl exType>
<xsd: choi ce>
<xsd: group ref = "expression"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent nane = "step">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref = "expression"/>
<xsd: group ref = "expression"/>

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 14 of 21
</ xsd: sequence>
<xsd:attribute nane = "axis" use = "required">
<xsd: si npl eType>
<xsd:restriction base = "xsd: NMTCKEN' >
<xsd: enuneration val ue = " DEREFERENCE"/ >
<xsd: enuneration val ue = "ANCESTCR'/ >
<xsd: enuneration val ue = " ANCESTORORSELF"/ >
<xsd: enuneration value = "ATTR BUTE"/ >
<xsd: enuneration value = "CH LD'/ >
<xsd: enuneration val ue = "DESCENDANT"/ >
<xsd: enuneration val ue = " DESCENDANTORSELF"/ >
<xsd: enuneration value = "FOLLON NG'/ >
<xsd: enuneration value = "FOLLON NGSI Bl LI NG'/ >
<xsd: enuneration val ue = "NAVESPACE'/ >
<xsd: enuneration val ue = "PARENT"/>
<xsd: enuneration val ue = "PRECED NG'/ >
<xsd: enuneration val ue = "PRECED NGSI BLI NG'/ >
<xsd: enuneration value = ""/>
<xsd: enuneration val ue = "SLASHSLASH'/ >
<xsd: enuneration value = "SELF"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
<xsd:attribute nane = "abbrevi ated" use = "default" value = "true">
<xsd: si npl eType>
<xsd:restriction base = "xsd: NMTOKEN' >
<xsd: enuneration value = "true"/>
<xsd: enuneration value = "fal se"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enrent nanme = "dot">
<xsd: conpl exType/ >
</ xsd: el enent >
<xsd: el enent nane = "dotdot">
<xsd: conpl exType/ >
</ xsd: el enent >
<xsd: el enrent nanme = "nodeKi ndTest ">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref = "pi Target Test" m nCccurs = "0"/>

</ xsd: sequence>
<xsd:attribute name = "ki nd"

<xsd: si npl eType>
<xsd:restriction base = "xsd: NMTOKEN' >

use =

"required">

<xsd: enuneration val ue = "NODE"/ >
<xsd: enuneration value = "TEXT"/>
<xsd: enuneration val ue = "COMVENT"/ >
<xsd: enuneration val ue = "DATA"/>
<xsd: enunerati on val ue = "PROCESSI NG_| NSTRUCTI ON'/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent nane = "pi Target Test" type = "xsd:string"/>

</ xsd: schema>

http://ww.w3.org/ TR/xqueryx

8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 15 of 21

5 A DTD for the XQuery XML Syntax

Here is the DTD for the proposed syntax. Again, productions from the[XQuery Working Draft] are
shown as comments followed by equivalent DTD constructions.

Note that the examples shown above make heavy use of namespaces. Since DTDs do not support
namespaces this limits the ability to validate XQueries using DTDs especially in the case of element
construction.

<IENTITY % ORDER LI TERALS " (ASCENDI NG | DESCENDI NG " >
<IENTITY % QUANTI FI ER_TYPE "(SOME | EVERY)">
<IENTITY % expression "(qg:variable | g:constant | qg:function | q:flw
| q:elementConstructor | q:predicatedExpr | g:sortBy | q:ifThenEl seExpr
| g:quantifier | q:exprList | g:step | g:identifier | g:nodeKi ndTest)">
<IENTITY % AXI S_TYPE " (DEREFERENCE | ANCESTOR | ANCESTORORSELF
| ATTRIBUTE | CH LD | DESCENDANT | DESCENDANTORSELF | FOLLOW NG
| FOLLOW NGSI BI LI NG | NAMESPACE | PARENT | PRECEDI NG
| PRECEDI NGSI BLI NG | SLASHSLASH | SELF)">
<IENTI TY % NODE_KI ND "(NODE | TEXT | COMMENT | DATA | PROCESSI NG | NSTRUCTI ON) " >
<! ELEMENT q: query (q:functionDefinition* , %expression;)>
<! ELEMENT q: functionDefinition (q:argunentDeclarati on®* , %expression;)>
<I ATTLI ST q: functionDefinition functionName CDATA #REQU RED
dat at ype CDATA #REQUI RED >

<! ELEMENT q: ar gurrent Decl arati on EMPTY>
<! ATTLI ST @: argunent Decl arati on nane CDATA #REQUI RED

dat at ype CDATA #REQUI RED >
<! ELEMENT q: exprList (%expression;)*>
<! ELEMENT q: pr edi cat edExpr (%expression; , q:predicate+)>
<! ELEMENT q: predi cate ((qg: rangeFrom, q:rangeTo) | %expression;)>
<! ELEMENT @: r angeFrom (%expr essi on;) >
<! ELEMENT @: rangeTo (%expression;)>
<! ELEMENT q: vari abl e (#PCDATA) >
<! ELEMENT q:identifier (#PCDATA)>

<! ELEMENT q: const ant (#PCDATA) >
<I ATTLI ST g: constant datatype CDATA #l MPLIED >

<! ELEMENT q: function (%expression;)*>
<! ATTLI ST q: function name CDATA #REQU RED >

<! ELEMENT q:flw ((qg:forAssignnment | q:letAssignment)+ , q:where? , q:return)>

<! ELEMENT q: f or Assi gnment %expr essi on; >

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 16 of 21

<! ATTLI ST q:

<! ELEMENT q:
<! ATTLI ST q:

<! ELEMENT q:
<! ELEMENT Q:
<! ELEMENT q:
<! ELEMENT q:

<! ELEMENT q:
<! ATTLI ST q:

<! ELEMENT q:
<I ATTLI ST q:

<! ELEMENT q:
<! ATTLI ST q:

<! ELEMENT q:
<! ELEMENT q:
<! ELEMENT q:
<! ELEMENT q:
<! ELEMENT q:
<! ELEMENT q:
<I ATTLI ST q:
<! ELEMENT q:
<! ELEMENT q:
<! ELEMENT q:

<! ATTLI ST q:
<! ELEMENT q:

forAssi gnment variabl e CDATA #REQU RED >

| et Assi gnment %expr essi on; >

| et Assi gnnent vari abl e CDATA #REQUI RED >

where (%expression;)>

return (%expression;)>

i f ThenEl seExpr (%expression; , %expression; , %expression;)>
sortBy (%expression; , q:sortfield+)>

sortfield (%expression;)>
sortfield order %ORDER LI TERALS; "ASCENDI NG' >

quantifier (qg:quantifierAssignment , %expression;)>
quantifier type %UANTI FI ER_TYPE, " SOVE' >

quanti fi er Assi gnnent (%expression;)>
quantifierAssignnent variable CDATA #REQU RED >

el ement Constructor (qg:tagName , q:attributeConstructor* , (%expression;
tagName (qg:identifier | q:variable)>
attri buteConstructor (q:attributeNane , q:attributeVal ue)>
attributeName (q:identifier | qg:variable)>
attri but eVal ue (%expression;)>
step (%expression; , %expression;)>
step axis Y%X S TYPE, #REQU RED
abbreviated (true | false) ‘'true' >
dot EMPTY>
dot dot EMPTY>

nodeKi ndTest (q: pi Tar get Test ?) >

nodeKi ndTest ki nd %NODE_KI ND; #REQUI RED >
pi Tar get Test (#PCDATA) >

A References

XML Query 1.0 Requirements
World Wide Web Consortium. XML Query 1.0 Requirements. W3C Working Draft, 15 Feb
2001. See http://www.w3.org/TR/xmiguery-req.
XQuery Working Draft
XQuery 1.0: A Query Language for XML. See http://www.w3.org/TR/xquery/
XQuery 1.0 Formal Semantics
World Wide Web Consortium. XQuery 1.0 Formal Semantics. W3C Working Draft, 7 June

2001. See http://www.w3.0rg/TR/query-semantics/.

http://ww.w3.org/ TR/xqueryx

8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 17 of 21

B XQuery Issues (Non-Normative)

This section contains the current issues for XQuery. The individual issues are shown in detail after an
abbreviated issues list.

B.1 Issue List

|Issue ||Priority||Status|
|1: Should path expressions be expanded?_(xqueryx-expand-paths) |
|2: Human readable XQueryX?_(xqueryx-human-readable) |
|3: Should XQueryX mirror the Formal Semantics? (xqueryx-semantics) |
|4: XQueryX and XSLT_(xqueryx-xslt) |
|5: XQueryX Operator Syntax_(xqueryx-operator-syntax) |
|6: Define Transformations from XQuery Grammar, (xgueux-define-transformation)|
|7: Representing Path Expressions_(xgueryx-path-expressions) |
|
|
|
|
|
|

|8: Representing //_(xqueryx-slash-slash)

|9: Symbol space for operators_(xqueryx-operators-symbolspace)
|10: Wildcard_(xqueryx-star-identifier)

|11: Type Expressions_(xqueryx-cast-treat-typeswitch)

|12: SCHEMA declaration_(xgueryx-schema-declarations)

|13: Case of Constants_(xgueryx-case-of-constants)

B.2 XQueryX Issues
Issue 1 : Should path expressions be expanded? (xqueryx-expand-paths)

Originator: XMLQuery
Locus: xqueryx

Description:
The current representation requires path expressions to be expanded. Should this be optional?
Issue 2 : Human readable XQueryX? (xqueryx-human-readable)

Originator: XMLQuery
Locus: xqueryx

Description:
Should making XQueryX queries easier for humans to read and write be a goal?

Issue 3 : Should XQueryX mirror the Formal Semantics? (xqueryx-semantics)

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 18 of 21

Originator: XMLQuery
Locus: xqueryx

Description:

Should XQueryX mirror rather than the abstract syntax of XQuery?
Issue 4 : XQueryX and XSLT (xqueryx-xsilt)

Originator: XMLQuery
Locus: xqueryx

Description:

Should there be some clear relationship between XQueryX and XSLT?
Issue 5 : XQueryX Operator Syntax (xqueryx-operator-syntax)

Originator: XMLQuery
Locus: xqueryx

Description:
XQueryX currently uses function syntax for operators:

<q: function name="PLUS">
<Qg: const ant dat at ype="1NTEGER' >1</ q: const ant >
<Qg: const ant dat at ype="1NTEGER' >2</ q: const ant >
</ g: function>

Several other possibilities have been suggested, eg:

<g: and/ > and <q: equal / >

or
<@: bi naryQper at or nane="AND"'/ >
<Q: bi naryQper at or nane="EQUALS"/>
or

<g: mat hQper at or nane="and"/> and <q: | ogi cal Qper at or nane="equal "/ >

Issue 6 : Define Transformations from XQuery Grammar (xqueryx-define-
transformation)

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 19 of 21

Originator: XMLQuery
Locus: xqueryx

Description:

A well defined mapping from the XQuery grammar productions to XQueryX should be defined. This is
more cost effective when both XQuery and XQueryX have settled down a bit more.

Issue 7 : Representing Path Expressions (xqueryx-path-expressions)

Originator: XMLQuery
Locus: xqueryx

Description:

Should path expressions be represented in a linear fashion, with the individual steps represented as a
sequence? One Working Group member has suggested that the path "doc("a")/b/c" should be
represented as follows:

<pat h>
<function name="doc" >
<const ant >a</ const ant >
</ function>
<step axi s="descendant">
<identifier>b</identifier>
</ st ep>
<step axi s="descendant">
<identifier>c</identifier>
</ st ep>
</ pat h>

Issue 8 : Representing // (xqueryx-slash-slash)

Originator: XMLQuery
Locus: xqueryx

Description:

In this document we use the constant SLASHSLASH as a fictive axis that corresponds to the
meaning of the "//" operator. In fact, this operator does not correspond directly to an axis, but to
descendant-or-self::node()/. For example, //para is short for /descendant-or-self::node()/child::para.
Since XQueryX must be able to translate back to the original XQuery syntax, we currently use
SLASHSLASH to preserve the original operator.

Is this the best way to represent the // operator in XQueryX?

Issue 9 : Symbol space for operators (xqueryx-operators-symbolspace)

Originator: XMLQuery
Locus: xqueryx

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 20 of 21

Description:

The current syntax does not distinguish functions from operators. Since a function may have the same
name as an operator, some mechanism must be chosen to disambiguate their names. For instance,
since a user can write a function named plus, perhaps the operator plus should be represented as:

<oper ator nane="pl us"/>

rather than

<function name="pl us"/>

Issue 10 : Wildcard (xqueryx-star-identifier)

Originator: XMLQuery
Locus: xqueryx

Description:

In Example 4, should * be used as an identifier? It should probably be a wildcard.
Issue 11 : Type Expressions (xqueryx-cast-treat-typeswitch)

Originator: XMLQuery
Locus: xqueryx

Description:

CAST, TREAT, and TYPESWITCH have no representation in this Working Draft. This must be added
soon.

Issue 12 : SCHEMA declaration (xqueryx-schema-declarations)

Originator: XMLQuery
Locus: xqueryx

Description:

There is currently no representation for schema declarations in XQueryX. This must be added.
Issue 13 : Case of Constants (xqueryx-case-of-constants)

Originator: XMLQuery
Locus: xqueryx

Description:

http://ww.w3.org/ TR/xqueryx 8/9/2001

XML Syntax for XQuery 1.0 (XQueryX) Page 21 of 21

Should XQueryX constants use upper or lower case?

http://ww.w3.org/ TR/xqueryx 8/9/2001

