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Chapter 1

Introduction

In this paper, we use tools from analytic number theory to estimate the number of triples of a given
height satisfying the abc conjecture. Associated to any non-zero integer n is its radical

rad(n) = Hp.
pln

We say that a triple (a,b,¢) € N* with ged(a,b,c) = 1 is an abe triple of exponent \ if
a+b=c, rad(abc)<c .

The well-known abc conjecture of Masser and Oesterlé asserts that, for any A < 1, there are only finitely
many abe triples of exponent A. The best unconditional result is due to Stewart and Yu [12], who have
shown that finitely many abc triples satisfy rad(abc) < (logc)3~¢. Recently, Pasten [11] has proved a new
subexponential bound, assuming that a < ¢!~¢, via a connection to Shimura curves. In this paper we
shall focus on counting the number N, (X) of abe triples of exponent \ in a box [1, X3, as X — oc.

Definition 1.1. For A > 0 define N,(X) as the number of triples (a,b,c) € N? with a + b = ¢,
ged(a, b, ¢) = 1 and rad(abc) < .

Given A > 0, an old result of de Bruijn [4] implies that
Lemma 1.2. For any € > 0, we have
#{n <z :rad(n) <2 } <, 2 = (1.0.1)

Proof.
It suffices to show that for any integer k > 2 we have

{n < X : rad(n) = k}| < XO(1/loglog X), (1.0.2)

To prove (1.0.2), write k = p, --p, as distinct primes p; < - < p,. Then rad(n) = k implies that
n=p;"*p, " for some integers m,,...,m, > 1. Therefore, the number of n < X in question is

Hn <X: rad(n) = k}| < Z ) lzjgrmj(logpj)glogX

IA

Z / 1Zj<rtj(logpj)glogX1tj€(mjfl,mj]ngrdtl dtr
my,...,m,.>17R" -
:VOI({(t17"'7t’r‘) S Rgo H tl(logp1)+...+t7‘(logpr> g 10gX}>

o
(log X)7eCrp—r
]1:[1 logp;

by calculating the volume of a simplex. Moreover, we have

r r+1 r+1
Hlogpj > H logj = exp (Z log 10gj> > (logr)Te ),
! 5 -

J=1 Jj= J=2



Hence for some Cjy > 1

Cylog X\" log X
< . = - Tro e Y
[{n < X: rad(n) =k} < ( rlogr ) < exp (O(loglogX))

since r = w(k) < (1 + o(1))(log X)/(loglog X) by the prime number theorem.
O

Any triple (a, b, ¢) counted by N, (X) must satisfy rad(abc) < X*, and so we must have min{rad(a) rad(b), rad(b) rad(c),
X223 since a,b, ¢ are pairwise coprime. An application of (1.0.1) now leads to the following “trivial
bound”.

Proposition 1.3. Let A > 0. Then N,(X) = O.(X?3+¢), for any € > 0.

Proof. Any triple (a, b, ¢) counted by N, (X) must satisfy rad(abc) < X*, and so we must have min{rad(a) rad(b), rad(b) rac
X?2M3 since a,b,c are pairwise coprime. An application of 1.2 now leads to the following “trivial
bound”. O

The primary goal of this paper is to give the first power-saving improvement over this simple bound
for values of A close to 1.

Theorem 1.4. Let A € (0,1.001) be fized. Then N,(X) = O(X33/50).

Here we note that 33/50 = 0.66. By comparison, the trivial bound in Proposition 1.3 would give
N{(X) = O(X9666%2) and Ny go1(X) = O(X%667). Moreover, we see that Theorem 1.4 gives a power-
saving when A\ € (0.99,1.001). We emphasise that this power-saving represents a proof of concept of the
methods; we expect that the exponent can be reduced with substantial computer assistance.

Theorem 1.4 also applies for A slightly greater than 1, which places it in the realm of a question by
Mazur [10]. Given a fixed A > 1, he asked whether or not N, (X) has exact order X*~!. In fact, Mazur
studies the refined counting function

Definition 1.5. For «, 8,y > 0, define S,
such that

,8,,(X) as the number of (a,b,c) € N3 with ged(a,b,c) = 1

a,b,c€[1,X], a+b=c, rad(a)<X® rad(b) <X rad(c) < X".
The argument used to prove Proposition 1.3 readily yields

Lemma 1.6.
S

a5 (X) € Xmintatfedy fiaie, (1.0.3)

for any e > 0.
Proof. O

Mazur then asks whether S, 5 (X) has order Xo+h+y=1if o + B+ > 1. Evidence towards this has
been provided by Kane [9, Theorems 1 and 2], who proves that

Xat+B+r—1—e <, S (X) <. Xat+B+y—1+e +X1+E,

a,B,y
for any € > 0, provided that «, 3,y € (0,1] are fixed and satisfy o+ 5 + v > 1. This result gives strong
evidence towards Mazur’s question when o + 84 v > 2, but falls short of the trivial bound (1.0.3) when
a+B+v<3/2

When considering abc triples of exponent A < 1, we always have a4+ 8+~ < A < 1, and the methods of
Kane give no information in this regime. Indeed, we are not aware of any general estimates when A < 1,
beyond Proposition 1.3. Nonetheless, there do exist specific Diophantine equations which are covered by
the abc conjecture and where bounds have been given for the number of solutions. For example, it follows
from work of Darmon and Granville [5] that there are only finitely many coprime integer solutions to the
Diophantine equation P + y? = 2", when p, ¢, € N are given and satisfy 1/p+ 1/q+ 1/r < 1.



Proof outline

We now describe the main ideas behind the proof of Theorem 1.4. In terms of the counting function
Sy p,(X), our task is to show that whenever a, 3,7 € (0, 1] satisfy a + 3+~ < A, we have S, 5. (X) <
X2M3=n for some n > 0. A simple factorisation lemma (Proposition 2.6) will reduce the problem of
bounding S, 677<X ) to the problem of bounding the number of solutions to various Diophantine equations

of the shape ‘ ‘ ‘
[T+ T1v - 1+

j<d j<d j<d

with specific constraints z; ~ X%, y, ~ X%, z, ~ X% on the size of the variables, for admissible
values of a;, b;,¢; (depending on «, 8,). We then bound the number of solutions to these Diophantine
equations using four different methods. The first of these (Proposition 3.1) uses Fourier analysis and
Cauchy-Schwarz to estimate the number of solutions, leading to a bound that works well if two of the
exponent vectors (a;);, (b;);, (¢;); are somewhat “correlated”. The second method (Proposition 3.2) uses
the geometry of numbers and gives good bounds when one of ay,b;,c; is large. The remaining tools
come from the determinant method of Heath-Brown (Proposition 3.14) and uniform upper bounds for
the number of solutions to Thue equations (Proposition 3.15). For every choice of the exponents a;,b;, ¢;
we shall need to take the minimum of these bounds, which leads to a rather intricate combinatorial
optimisation problem. This is solved by showing that at least one of the four methods always gives a
power-saving over Proposition 1.3 when A is close to 1.

Notation

We shall use  ~ X to denote x € [X,2X] and we put [d] = {1,...,d}. We denote by 7(n) = Edln 1 the
divisor function.



Chapter 2

Reduction to Diophantine equations

We will work with a variant of S, 5. (X)
Definition 2.1. Let S}, 5 (X) to be the number of (a,b,¢) € N3 with ged(a,b,c) = 1 and
c€[X/2,X], a+b=c, rad(a)~X?® rad(d)~ X? rad(c)~ X".
We begin by noting that by the pigeonhole principle,

Lemma 2.2. We have

N,(X) < (log X)* max S 5.4 (X). (2.0.1)
a,B,7>0 "
a+B+y<A
Proof. O

Theorem 2.3. There exists € > 0 such that for allc € 7> and X,Y,Z € [Rd>0. we have

B,(c,X,Y,Z) <« X066~ (2.0.2)
Proof. O
Proof of Theorem 1.4. O

The following result allows us to bound S;”&W(X ) in terms of the number of solutions to certain

monomial Diophantine equations. In order to state it, we need to introduce the quantity B,

Definition 2.4. For ¢ € Z3 and X,Y,Z € R%,. we have

>

wiNXiayiNE’ziNZi )
Bd(07 X, Y7 Z) = # (X7 Yy, Z) € [Ngd TG ngd 1’? + Cy ngd y; =C3 ngd Zj . (203)
ng(Cl ngd xjv Ca ngd yja C3 ngd Zj) =1

Lemma 2.5. Let € € (0,1/2), and let 2 <n < X be an integer. Then there exists a factorisation
— J
n=c H 5,
j<5e?

for positive integers x ., ¢ such that ¢ < X/2, the x; are pairwise coprime, and

Y

X—¢ H xjgrad(n)g)(E H ;.

jg%a*2 jg%e*z

Proof. Fix 2<n < X and let K = 2[¢*], M = |5¢2|. Define

yi=[]r

pIn



For j < M, we set

Y, fOI'j%K, m—K|m/K
x;=q" \m/K] ] and c = H Ym [m/K]
Yillopgym ™ for j =K, M

All the z; are pairwise coprime, since the y; are pairwise coprime.

Note that by definition ¢[] =11,,-, Ym =n < X. In particular,

J<M J
1/M
o< ( T1 )" < xm.
m>M m>M

Then, since m — K|m/K| < K, it follows from the definition of ¢ that

m>M

Thus
rad(n) < rad(c) H rad(z;) < X¢/? H z;

j<M <M
On the other hand, we have
|m/K] K m VK 1/K /2
CEK—ZJKHy S(yK-Hym) <nt/t < XEE
m>M m>M
Recalling that the y; are squarefree and pairwise coprime for j # K, gives the lower bound
rad(n HymEHa: >X5/2Ha:
m>1 J<M j<M
J#+K
as claimed. O

Proposition 2.6. Let o, 3,y € (0,1] be fized and let X > 2. For any € > 0 there exists an integer
d =d(e) > 1 such that the following holds. There exist Xq,..., X4, Y1, ..., Yy, Z1,..., Z; > 1 satisfying

d d d
xot < J[X; <2xets, X< [y <2x%, X« [] 7, <2x0 (2.0.4)
j=1 j=1 j=1
and
[[x<x [yvi<x x =< ][]z<x (2.0.5)
=1 =1 j=1

and pairwise coprime integers 1 < c;,cq,c5 < X%, such that

Z,B,'y(X) <<€ XEBd<C’ Xa Y7 Z)

Proof of Proposition 2.6. We may assume that X is large enough in terms of &, since otherwise the claim
is trivial. Let (a,b,c) be a triple counted by S, 5 (X). Apply Lemma 2.5 (with £2/2 in place of ¢) to
each of a, b, ¢ to obtain factorisations of the form

where d = [10e 4] and 1 < ¢, ¢y, ¢3 < X /4. Since (a, b, ¢) is counted by St 5.~(X), we have ged(a, b, ¢) =
1 and a+b = ¢, so a, b, c are pairwise coprime. Hence, all the 3d+3 numbers z;, y;, 2;, ¢{, C5, ¢35 are pairwise
coprime. Note also that by the properties of the factorisation given by Lemma 2.5, we have

X~ E/QHQ,‘ < rad(a XE/QHJJ X’E/znngrad(b)ng/QHyj,

j<d j<d j<d j<d
E/QHZ < rad(c) < X¢/? sz.
Jj<d j<d



Since rad(a) ~ X rad(b) ~ X? rad(c) ~ X7 for all triples under consideration, this implies

Xo—e < ij < Xa+5’ XB—e < Hyj < Xﬁ+s7 X< H z; < Xte,
Jj<d j<d j<d

By dyadic decomposition, we can now find some X;,Y;, Z; such that (2.0.4) and (2.0.5) hold, and such
that
(X) <. (logX)* Y~ By(c,X,Y,Z).

ceN?
C1,C2,c3< X/

ij,ﬂ,'v

Now the claim follows from the pigeonhole principle. O



Chapter 3

Upper bounds for integer points

3.1 Fourier analysis

The following result uses basic Fourier analysis to bound the quantity defined in (2.0.3).

Proposition 3.1 (Fourier analysis bound). Letd > 1, >0 and A > 1 be fized. Let
Xy XY, Y 24,0, Z; > 1

and put
A = max (X Y. Z,). (3.1.1)

1<i<d

Let ¢ = (cy,¢q,¢3) € 73 satisfy 0 < |ey], |esl, |es] < AA. Then

L (XY.Z, ) 2
By(c,X,Y,Z) < AEH]<d< i ;) .

Max;>1 HJ 0 mod ¢ Z

Proof. By the orthogonality of characters, we have

B,(e,X,Y,Z) < / > Y ela(a]lel+e]ly - e]l#))de

T Xy Y 2 D j<d j<d j<d
/ 51(0)5,(0)5;(~a) da
where
Sia) = > elaciyay—af), Syla)= D elacyyyi-yl),
2~ X m g~ Xy YL~ ya~ Yy

Then Cauchy-Schwarz gives

1

b/
By(e.X,Y,Z) < (/ 15, (a |2da> (/0 52(a>|2|53(a)2da) I L (312

By Parseval’s identity and the divisor bound, we have

1
11:/ 1Sy (@)Pda= " #{(@f, ... ) 2~ X, VG, ay2d e ad = faf )
0 T~ X Vi (3.1.3)

< IIx5™

j<d



for any € > 0. Using Cauchy-Schwarz again, for any i < d we have

2
<T@ ][] 2
j#0 mod i

|S5()? = Z e(acgzy Z(Cil)

zj~Z;Vi<d

where )

T(a) = Z

z;~Z;¥j#0 mod i

e(acgzy -+ 29)
zj~Z;Vj=0 mod 7

Let ir be the largest multiple of 4 in [1,d]. Then
1
L= [ 1SSy (@] da
0

< 11 Zj-/o 1S,()2 T(a) da (3.1.4)

j#0 mod i
= II %~
7#0 mod i

where N is the number of

/

(215 ey Zgy 2y ey 20) €N (g ) €N (), - Yq) € NG
such that

/ /
Up¥i~ Vi z~ 2y 5~ 2

for all j <d, and

(I 2 T #) I dvells-alli-o

j=0 mod i j=0 mod i j#0 mod i j<d j<d

Let us write

N=N,+N,, (3.1.5)
where Nl is the contribution to N from tuples with szo mod i z; = szo mod i z;j , and NQ is the contri-
bution of the complementary tuples.

Then by the divisor bound we have
N, = #{yj,yg ~Y, 2~ Zpvi<d s [yl = Hy;-j} < [[zyv} " (3.1.6)
J J J

for any ¢ > 0. In order to bound N,, we first note that a — b | a’ — b’ for any integers a # b and i > 1.
Thus for any integers n # 0 and i > 2,

#{(a,b) € 7% :a’ — b = n}| < T(|n|)n;‘ax#{b €Z:(b+d)—b =n} <, |n|5.
n
This follows from the divisor bound and the fact that (z + d)’ — 2* — n is a polynomial of degree i — 1.

(Importantly, this argument fails when i = 1, since then the polynomial (z + n)® — 2* — n is identically
0.) Hence, on appealing to the divisor bound, we obtain

4 4 d+r . ~ !~ 4 1
F o« Y2 mex (215 ey 2y 20 ...‘,zir) eN P2 Z; 2 ZJ‘V]
2 J n

j<d 0<|n|<AA+K? C3(Hj£0 mod i Zg B HjEO mod i Z;j) HjﬁéO mod ¢ Zj =
< l_IYjQZ;/2 - max #{(a,b,c) €EN3: c(a® —b') = n} (3.1.7)
i<d 0<|n|<AA+k?
2
< AT Y2
J<d



Combining (3.1.4), (3.1.5), (3.1.6) and (3.1.7), we deduce that

pear 1z (Tvz+11v7)
J J

7#0 mod 1

(3.1.8)
<& I z' ] (Y]z; + Yfzj).
7=0 mod 7 J
Plugging (3.1.3) and (3.1.8) back into (3.1.2), we conclude that
1
By(e,X,Y,2) < I, < A [ 2z* [[(x;v,2,(v;+ )%,
7=0 mod % J
which is the desired bound. O

3.2 Geometry of numbers

We can supplement Proposition 3.1 with the following bound, where B,;(c,X,Y,Z) is defined in (2.0.3).

Proposition 3.2 (Geometry of numbers bound). Let d > 1 and € > 0 be fized, and let
Xy, XYy, Y0 24, Zy > 1

Let ¢ € (cq, ¢y, ¢3) € Z3 have non-zero and pairwise coprime coordinates. Then for A as in (3.1.1),

(1 o g KTl YTl 2 )
max{|c; | [[, X7, [eo| [T, Y7, les|I1; 25} )

Proof. Takeany sets I, I’ I” C [d]. Let (€1, ..., @g, Y1, Yqs 21, - » 24) De a tuple counted by B,(c, X,Y,Z).
We fix a choice of x;,y;,2; € Z for all indices  in I,I’,I”, respectively, and define

_ i _ i _ i
ay —C1H$m az—cznym a3 =C3 Hzm

B,(c,X,Y,Z) <A® min (HX IR Zi)
el

’
LI',1 C[d] i iel’ icl”

el iel’ wel”
v =], y=[1u =[] 4,
i¢l i¢l’ i¢l”
x=[[xi v=][[vi, z=]]z
i¢l i¢l’ i¢l”

Then ged(aq,aq,a3) = 1 and ged(z,y,z) = 1. According to Heath-Brown [6, Lemma 3], the number of
triples (z,y, z) that contribute to By(c,X,Y,Z) is

XY ”Z
max{|a1|X, lay|Y, |a3|Z}'

< 1+

Moreover, by the divisor bound, any triple (z,y,z) corresponds to O_(Af) choices of %;, Y, Z, with
i¢1,j¢I',r¢I”. We arrive at the desired upper bound by summing over the choices z;,vy,,2; € Z,
with ¢in I,1,1”. O

Theorem 3.3. Let ged(ay, aq,a3) = 1. Then for X, Xy, X5 > 1, we have

X, X5 X

# (21,09, 25) € 2%+ ged(zy,29,23) = 1, 73] < Xy, 12y + @y + a3253 =0) < 1 + max, {|a,| X, }’

Proof. O

3.3 Determinant method

In this section we will record a bound for By(c,X,Y,Z) in (2.0.3) that proceeds via the determinant
method of Bombieri-Pila [2] and Heath-Brown [8]. See [1] for a gentle introduction to the determinant
method. We first record a basic fact about the irreducibility of certain polynomials.



Lemma 3.4. Let r > 1 and let g € Clz]| be a polynomial which has at least one root of multiplicity 1.
Then the polynomial g(x) — y" is absolutely irreducible.

Proof. We may assume a factorisation g(z) = I(z) ...1,(x)%, with pairwise non-proportional linear
polynomials I;,...,1, € Clz] and exponents ej,...,e, € N such that e; = 1. But C[z] is a unique
factorisation domain and so we can apply Eisenstein’s criterion with the prime [; in order to deduce
that g(z) — y" is irreducible over C[y]. It then follows that g(x) — y" is irreducible over C, as claimed in
the lemma. O

Let p, g, r be positive integers and let a,,ay, a3 € Z,,. We shall require a good upper bound for the
counting function

2] < X, [yl <Y, || < Z }

N(X,Y,Z) = # {(x,% 2) € Ly + ged(z,y) = ged(, 2) = ged(y, 2) = 1
a1 7P +ayy? +azz" =0

for given X,Y, Z > 1. This is achieved in the following result.
Bombieri-Pila [2, Theorem 4]

Theorem 3.5. Let f(x) be a C* function on a closed subinterval of [0, N|, and suppose thatF(z, f) =0,
where F(x,y) € R[z,y] is absolutely irreducible of degree d > 2. Suppose that |f'(x)| < 1. Then

#{(x, f(x)) € {1,..., N}*} <4 (log N)ONI N1/d
Proof. O
Heath-Brown Theorem 15

Theorem 3.6. Let F € Z[zy,...,x,] be an absolutely irreducible polynomial of degree d, and let € > 0
and By, ..., B, > 1 be given. Define

B = max (HB:)

(€1,5€5,) i<n

where the mazimum is taken over all integer n-tuples (e, ..., e,,) for which the corresponding monomial
:cfl cexen oceurs in Fwith non-zero coefficient.
Then there exists D = D(n,d,c) and an integer k with

M) Y “H))

ke T log | FI 2 exp (0= 1) (525

satisfying the following: There are k polynomials Fy, ..., F}, € Z[xy,...,x,]| coprime to F, with deg F; < D,
such that every root of F(zy,...,x,) =0 with z; < B; is also a root of Fy(xy,...,x,) =0, for some j < k.

Proof. O

Theorem 3.7. Given integers n,ay,ay # 0, there are at most O, p(|nayay Xy X5|%) many solutions
(xq,m5) € 7% such that |z;| < X; and

n = a,z? + ayz3.
Proof. Suppose n = a,z? + ayx3. Then a;n = a2z? + a;a,23. Let D be the squarefree part of ajas.
Then the number of solutions (z, x,) with |z;| < X, to this equations is at most the number of solutions
(my,my) to a;n = m? + Dm3 with |m,| < X;a,a,. For any such solution, we have m; + v—Dm, | an
in Q(v—D). The claim follows from the divisor bound in quadratic fields, in Lemma 3.8. O

Lemma 3.8. Let ¢ > 0. Let D > 1 be a squarefree integer, and set K = Q(v/—D). Then for all a € K,
the number of ideals dividing (o) in K is O(NE).

Proof. Mimics the proof over the integers using the fundamental theorem of arithmetic, but with ideals
[See link in comment] O

Theorem 3.9. Given integers n,a,,a, # 0 and p > 3, there are at most O(p* ")) many solutions
(2q,m5) € 7% such that |z;| < X, and

— P D
n = a,2] + ayxy.

10



Proof. O
Definition 3.10. Let w(n) denote the number of distinct prime factors of an integer n.

Lemma 3.11. For any n > 2, we have w(n) < log(3n)/loglog(3n).

Proof. O

Lemma 3.12. Let ¢ > 0 and D > 1 and assume that p,q,r € [1, D] are integers. Then
11
N(X,Y,Z) <. p Zmin (Xq,Yp) (XY),
where the implied constant only depends on € and D. Furthermore, if p = q > 2, then we have
N(X,Y,Z) <. p Z(|layaga3| XY Z)°.

Proof. We fix a choice of non-zero integer z € [—Z, Z], of which there are O(Z). When z is fixed, the
resulting equation defines a curve in A% and we can hope to apply work of Bombieri-Pila [2, Theorem 4],
which would show that the equation has O, p(max(X,Y) m+E) integer solutions in the region |z| < X
and |y| <Y, where the implied constant only depends on ¢ and D. This is valid only when the curve
is absolutely irreducible, which we claim is true when z # 0. But, for fixed z € Z,, the polynomial
asy? + a32" has non-zero discriminant as a polynomial in y. Hence the claim follows from Lemma ?7.
Rather than appealing to Bombieri-Pila, however, we can get a sharper bound by using work of Heath-

Brown [8, Theorem 15]. For fixed 2 € Z_, this gives the bound OE_’D(min(X% , Y%)(XY)E) for the number
of available x,y. O

Lemma 3.13. Let ¢ > 0 and D > 1 and assume that p = q,r € [1, D] are integers. Then
N(X,Y,Z) <. p Z(lajasa3| XY Z)*.
where the implied constant only depends on £ and D.

Proof. Suppose now that p = ¢ > 2. Then, for given z € Z_, we are left with counting the number of
integer solutions to the equation N = aq2P + ayy?, with |z|, |y| < max(X,Y’), and where N = —a3z".
For p = 2 this is a classical problem in quadratic forms. The bound O, p((|a;a;N|XY)) follows from
Heath-Brown [7, Theorem 3], for example. For p > 3 we obtain a Thue equation. According to work
of Bombieri and Schmidt [3], there are at most O(p**“(IND) solutions, for an absolute implied constant.
Using the bound w(|N]) < log(3|N|)/(loglog(3|N])), this is O, p((|as|Z)?), which thereby completes the
proof of the lemma. O

Using these lemmas we can now supplement Propositions 3.1 and 3.2 with further bounds for B,(c, X, Y, Z),
as defined in (2.0.3).

Proposition 3.14. Let d > 1, and let
X,y Xy Y9, Y0 24, Z, > 1

Let ¢ € (¢q, ¢y, c5) € Z3,. Then for A as in (3.1.1), we have

#0°

11
B,(c,X,Y,Z) « A® HXijZj -1§r(11i>n1 ((Xqu)_1 min (Xﬁ,Yf)) )

j<d

Proof. Let (1, ..., Tg, Y1y s Ygs 215 -+ » 2q) b€ a tuple counted by B,(c, X,Y,Z). For any integers p,q > 1,
we fix all but z,, and y, and apply the first part of Lemma 3.12. This gives

1 1
By(c,X,Y,Z) <« A [[ X, ][V ] % - min <X,;’,Yq”> ,
j<d j<d j<d
J#FP J#q

from which the statement of the lemma easily follows. O

11



Proposition 3.15. Let d > 1, and let
Xy, X0 Ve Yy 2y 2y > 1.
Let ¢ € (c1,¢p,¢3) € Z3,. Then
; -1
By(e,X,Y,Z) < A [[ X;¥;7; - ?ZIQH(XJ.YJ.) :
j<d j<d
pli
where A is given by (3.1.1).

Proof. Let (1, ..., T4, Y1y s Ygs 215 - » 2q) D€ a tuple counted by B,(c,X,Y,Z). We collect together all
indices which are multiples of p for any integer p > 2. Applying the second part of Lemma 3.13 now gives

By(c,X,Y,Z) <A [ Xz, [] 2,
Jj<d Jj<d
j#0 mod p j=0mod p

from which the statement easily follows. O
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Chapter 4

Combining the upper bounds

4.1 Preliminaries

Throughout this section, let € > 0 be small but fixed. We now have everything in place to prove

Theorem 1.4 for any
A€ (0,140 —¢).

and
6 <0.001 —e.

We shall write § as a symbol rather than its numerical value in order to clarify the argument. As will be
clear from the proof, a somewhat larger value of § would also work.

Our goal is to prove that the upper bound in (??) holds for S*

a,ﬁ,'y(X)7 for any aaﬂ;'y such that

a+fB+y<A<I+0—c¢. (4.1.1)

The following result allows us to limit the range of «, 8,7 under consideration.

Proposition 4.1. Let o, 8,7y > 0, and let € > 0 be fized. Then
S*

oz,B,'y<X) & X0.66—82/2,
unless min{a + B, 8+ v,7 + a} > 0.66 — 2.
Proof. This is an immediate consequence of (1.0.3) (with £2/2 in place of ¢). O
In the light of Proposition 2.6 (with £2 in place of €), we wish to bound By(c, X, Y, Z) for any pairwise
coprime integers 1 < |¢,|, |eol, [es] < X©°, any fixed d > 1, and any choice of X;,Y;, Z; > 1, for 1 <i<d
that satisfies (2.0.4) and (2.0.5). Moreover, «, 3, satisfy (4.1.1).
It will be convenient to define

Definition 4.2. Define a,,b;,¢; € Ry, via

X, =X%, Y, = X0, Z, = X¢,

for1<i<d,and a;, =b, =c¢; =0 for i > d.

 ia; <1, > b <1, 1-e2< Y i <1 (4.1.2)

i<d i<d i<d

Proof. Follows from 2.6 O

Lemma 4.3.

In particular, in the light of (4.1.1) and Proposition 4.1, we may henceforth assume that
Lemma 4.4. We have

D (a;+b;) > 066 —e% > (a;+¢;) >066—c% Y (b +c;)>0.66—c (4.1.3)
i<d i<d i<d
and
D (a;+b;+e)<1+6—e (4.1.4)
i<d

13



Proof. Follows from (4.1.1) and Proposition 4.1. O
Definition 4.5. It will be convenient to henceforth define

log B;(¢,X,Y,Z)

= 2¢2
= log X

Our goal is now to show that v < 0.66, since then (??) is a direct consequence of Proposition 2.6.
This will then imply Theorem 1.4, via (2.0.1) and (??).
Before proceeding to the main tools that we shall use to estimate v, we first show that we may assume

that )
032—6<Y a;, Y by D ¢, <034+05— o,

i<d i<d i<d

using the argument of Proposition 4.1.

Proposition 4.6.

032—=0<Y a, > by > ¢ <o34+5—7 (4.1.5)

i<d i<d i<d

Proof. Indeed, suppose that . ¢; > 0.34 4+ 0 —e/2. Then (4.1.4) implies that

i<d

> (a;+b;) <0.66 — e,

i<d

whence (1.0.3) yields v < 0.66. This shows that we may suppose that the upper bound in (4.1.5) holds.
Suppose next that > . ¢; < 0.32 —§. Then, by the upper bound in (4.1.5), we have

i<d “i
D (b +e;) <0.66— —,
i<d 2
which is again found to be satisfactory, via (1.0.3). O

Thus we may proceed under the assumption that the parameters a,,b,, ¢; satisfy (4.1.4)-(4.1.5).

7 17

4.2 Summary of the main bounds

We now recast our bounds in Sections 3.1-3.3 in terms of an upper bound for v, using the parameters
a;,b;,¢;. In all of the following bounds, we may freely permute the exponent vectors (a;), (b;), (¢;).

Proposition 4.7 (Fourier bound).
1
v< 5(1 +d+ ;max a;,b;) — ITIn12>L)1<(am, bm)).

Proof. Tt follows from Proposition 3.1 that

v<3e? 4 = ; (a +b; + ¢; + max(a;, b;) — Irlnlg)l(bm).
Permuting variables, the claim now follows from (4.1.4). O
Proposition 4.8 (Geometry bound).
RTETR W (1 (15 SRS LS ST B W o8 2§
LI, Icld icl iel’ iel” iel iel’ iel”
Proof. Applying Proposition 3.2, we obtain

v <38+ min, (Za YA +max<o S+ Y+ Y e —Zw))v

i¢l’ ¢ 1" el iel’ el”

14



where the minimum runs over subsets I,1’,1” C [d]. Taking the lower bound }. i = 1 - g2,
from (4.1.2), it follows that

< —

v < 4e? —|—Ir§1/1n” (Za —|—Zb +Zc -+ max (0 Zm +Zzb —|—ch 1)) (4.2.1)
¢l ¢ l” el el’ iel”

The proof now follows from (4.1.4). O

Proposition 4.9 (Determinant Bound).

a, b
v < min (1+5—a b—l—mln(p q)).
p,q=1 q p

Proof. Proposition 3.14 implies that
a, b
v<3e?+ Z(ai + b, + ¢;) — max (min (p, q> —a, — bq) .
i<d p,q>1 q p
The claimed bound now follows from (4.1.4). O

Proposition 4.10 (Thue bound).

v<l4+4§— maxZa +b;).

pli

Proof. This easily follows from Proposition 3.15 and (4.1.4). O

4.3 Completion of the upper bound for v

Assuming that 6 < 0.001 and e > 0 is sufficiently small, the remainder of this paper is devoted to a proof
of the upper bound
v < 0.66,

for any choice of parameters a;, b,, ¢; satisfying the properties recorded in (4.1.2)- (4.1.5). From this point

19 7,’
onward, we will tacitly assume those properties hold.

Definition 4.11. It will be convenient to define constants §,, d,,d, via
> a, =3 CoY b= LY e = (4.3.1)
i<d i<d i<d

together with
5ab = 5a + 5b7 5110 = 5(1 + 60? 51)0 = 6b + 50’

and 0, := 0, + &, + ..
Lemma 4.12. We have

8t Oer Ope < 0.006 + €2, (4.3.2)
—0.006 — 3§ < 8,,6,,0, <0.013+ 6§ + ¢, (4.3.3)
and
—§5<68,<00l+e. (4.3.4)
Proof. Tt follows from (4.1.3) that
Sabs Oacs Ope < 0.006 + €2,

and from (4.1.5) that B B
—0.006 — 6 < d,,6,0, <0.0134+ 9 + ¢,

and from (4.1.4) that 1 —d, < 1+ 6. Moreover, (4.3.2) implies 20, = d,; + 0, + . < 0.02 + 3£2, so we
must have
—0 <6, <0.01 +e.

15



Definition 4.13. Define s, :=a; + b, + ¢;.
Referring to (4.1.2), it will be convenient to record the inequalities
2 1
D (i—1)a; < R > (i—2)a, < 5 a1+ 20, > (i—3)a, < 2a, +ay + 35, (4.3.5)
i>2 i>3 i>4
that follow by subtracting. Similar relations hold for b; and ¢;, and thus for s;.

Proposition 4.14. To show v < 0.66, it suffices to assume

a;+bj, a;+cj, by +c¢; <0.34 494, (4.3.6)
for each j > 2, and moreover,
ay +ay+by+by, aytay+cytcy, by+by+cyt+cy <0344 6. (4.3.7)
Hence 3
S5, 83, 89 + 54 < 0.51 + 56. (4.3.8)

Proof. By the Thue bound, we have

v < 1"‘5_1;1;2)(%;(%"‘@),

and similarly for a; + ¢; and b; + ¢;. Now (4.3.6) follows by taking p = j and restricting the sum to i = j,
while (4.3.7) follows by taking p = 2 and restricting ¢ < 4.
Finally, (4.3.6) and (4.3.7) imply

3 3

Lemma 4.15. We may assume
$1+ 89 <0.34 + 0. (4.3.10)

Proof. If s; 4+ sy > 0.34 4+ § then the Geometry bound and (4.3.8) imply that

v<max (1, s 4+2sy) — s — 8,49
=max(l — 8; — 85,85) + 8
< max (0.66,0.51 + 30) = 0.66.

Thus we may proceed under the premise that

51+ 89 <0.34 + 6.

O
Lemma 4.16. For any j > 3, allow 7; to be an element
T; € {aj, bj,cjy85,a; +bj,a;+¢;, b5+ cj}. (4.3.11)
Then
T, € (0.34 — 5 — sy 40, 0'66;75;_5) — 1 < 0.66 (4.3.12)
and )
T, € (0.34 sy +6,0.33 55) —s 1 < 0.66. (4.3.13)
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Proof. The Geometry bound gives

v < max (1, s; + 2s, —I—jT») -

=max (1 —s; — sy — 7},

Thus we have v < 0.66 if 7, 6(034—81—32—1—(5 %5126

— 85 +6,0.33 — 732 — 7) Similarly, by the Geometry bound, we have

if 75 € (0.34 —

§1—8—T;+0
+(j—17;) +9.

<max(l,s; +373) — s, —713+9

= max (1 — s, — 73,273) + 4.
Thus v < 0.66 if 73 € (0.34 — s, +6,0.33 — 3).
Lemma 4.17. We have )
asg > >3 — 46, — 3a; — 2a,,
1 5 3 1
as > g — 5(50, —2CL1 — 5@2 — 50/4.
Therefore
>1—40, —3sy — 259,
and 5 5 )
S3 21— 5(55 — 28, — 352~ 5%

Proof. Note that (4 3.5) gives 3o, a; < 3o, (i —
3 X5 (i = 3)a;

:,_5 —a; — Gy — Za

>4

and

:,_5 — Q] — Gy — Gy — g a;

125

Analogous bounds hold for b5 and c5, and so we obtain

3 21—46, — 35,
5
8321—5(58—281—

We shall need to split the argument according to whether s, < 0.3 or sy > 0.3.
¢ in all that follows.

generality, we shall assume that a; > by >

Case 1: Assume s, > 0.3.
Lemma 4.18. If sy > 0.3,

3)a; < 2a; + ay + 39,. Similarly, we have ).
1(2a; 4+ ay — ay + 30,). These imply that

—3a; — 2a,,
1 1
g 6 —2a1 —§a2—§a4.
— 259,
1
582 — 584.

57 <0.0446

and sy < 0.21 4 36.
Proof. Note that (4.3.10) gives

$,<034— 5,46 <

and (4.3.8) gives

5, < 0.51 — 52+ 6

We further split into subcases.

17

0.04 + 6,

<0.21 + 5

). In particular when j = 3, we have v < 0.66

(4.3.14)

(4.3.15)

(4.3.16)

i>5 a; S

O

Without loss of

(4.3.17)

(4.3.18)



Subcase 1.1: Assume b; < 0.34 — s, — s, + 9.
Lemma 4.19. v < 0.66 in the case sy > 0.3 and by < 0.34 —s; — 55 + 0.

Proof. Then
by + 3 < 2b3 < 2(0.34 — 51 — 55+ 0)
< 0.68 — 255 + 26
1 1

for sy > 0.3 and 0 < 0.001. Hence, in view of (4.3.13), we may assume bs + ¢35 < 0.34 — s; — s, + 0. But
then it follows from (4.3.16), (4.3.8) and (4.3.17) that

5 3 1
a3=s3—(b3+cg)21—5(5@—231—552—534—(0.34—51—82—|—6)
5 1
= 0.66— 26, — 5, — 3(55+5,) =6

5

> 0.66 — 8, — (0.04 4 0)

a

1 3
— 5051+ 58) 6

> 0.365 — gé — 30.

a

But (4.3.1) implies that § — &, > ag > 0.365 — 36, — 36. Thus (4.3.3) implies that

0.0316 < gaa +36 < g

(0.013 46 +€) + 36 < 0.02 + 50.

This contradicts our assumption ¢ < 0.001. O

Subcase 1.2: Assume b; > 0.34 — s, — s, + 9.
Lemma 4.20. v < 0.66 in the case sy > 0.3 and by > 0.34 — s; — 55 + 0.

Proof. By (4.3.13) we may assume
1 1
by > 033 = 55, — 0. (4.3.19)

By permuting the variables in (4.3.5), we have

1
D (i—=2)b,; < 3~ by by + 26,

>4

We also have b; < s; <0.34 — s, + 0 by (4.3.10). Thus

1/1 11 6 6
S hi<s (540 - <:(z+031— — (03322
>0 2(3+b1 b3+25b> S(5 0845, 15— (033- 2 - %)+ 2,)
1S
<033—582_§7

since (4.3.3) ensures that §, < 0.013 + & + ¢ (and we have § < 0.001). A fortiori the same bound holds
for 3., a;. Thus, in the light of (4.3.13), taking ¢ > 0 small we may assume that

ay, by, 05,05, 06,0 < 0.34 — s, — 59 + 0.

Now write M; = max(a;,b;) and m,; = min(a,,b;), so that m; + M; = a; + b;. By the Fourier bound

17 71 17 71
we have

v< %(1 +6+i§2dmax(ai,bi) —max(aQ,bz)) = %(1 +6+;Mi).
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On using (4.3.1), this implies that

Ww—1—0<Y M;< Y M+ (a;+D,)

2 2Fi<6 =7
2
= Z Mi+§_6ab_2(ai+bi)
24i<6 i<6
2
= §_5ab_ Z m; — (ag + by).
274i<6

Next we lower bound a, + by,. To do this, we observe that by (4.3.5) we have
42(1 \Z 3)a; = 2ay + ay + 36, — a, — 2a5 — 3ag,
=T =7
whence
L s da, <y +1(2 +ay + 36 2a; — 3ag) 1Z(? ) + 35
- —0, = ;< a; + =(2a; +a —ay —2a5 —3ag) = — —d)a; + —0,.
3 a - a; £ i 4 1 2 a 4 5 6 4 L % 4@
Thus ay > 15 — & 22#%( i)a; — L6, and similarly by > 7t — 1 22#@(7—@')@ — 15, Since mg = by,
it now follows that

2 1
W—1—8< by > mi—(é—f (7—i)(ai+bi)—z5ab)
24i<6

3 2#<6 15 5 5
2
<t 5ab + - (GM1 +my + dag — by + 3M, + 2M, + M6) (4.3.20)

Thus, using (4.3.19) and the bound az + by < 0.34 4 ¢ coming from (4.3.6), we have
az — by <4(0.34 — by +0) — by

s 30 s 1)

4(0.01 + =22 3322 _ 2

< (00+2+2) (0.33 5 2)
5 135
= —0.29 + —
2 + 2

Also 6M, +m, < 6s, and recall M,, My, My < 0.34 — s; — sy + 0. Hence plugging back into (4.3.20), we
conclude

2 1 ) 130
—1-0< =+ 5 5(631+(552—0.29+7)+6(0.34—51—32+6))
2 1 7
= 75 7(1. — S5y +130)
< G + + 5 75 552 +13
= 7 13
< 0.483 — 10%2 + 5ab + 36
_ 7 2 - 5. 13
< 0.483 — —(0.3) + =(0.006 + £2) + —4 < 0.279,
10 5 5
since s, > 0.3, § < 0.001, and (4.3.2) implies that d,, < 0.006 + €2. Hence v < &2 = 0.65, which is more
than satisfactory. O

Lemma 4.21. v < 0.66 in the case s4 > 0.3.
Proof. Immediate from Lemmas 4.19 and 4.20. O

Case 2: Assume s, < 0.3.

Lemma 4.22. 5
by <017+ 2. (4.3.21)
Proof. Tt follows from (4.3.6) that
2, < ag + by < 0.34+ 5, (4.3.22)
whence by < 0.17 + g. O
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Lemma 4.23.
as > 0.32 —46, — sy — 26. (4.3.23)

Proof. We have 0.17 + § < 0.33 — 3 — & since s, < 0.3 and § < 0.001. Thus, in view of (4.3.13), we may

assume that by, c3 < 0.34 —s; — sy + 0. Then (4.3.15) gives

ag =83 — (bg+c¢g) 21 —40, —3s; — 255 —2(0.34 — 51 — 55 + 0)
= 0.32— 46, — s, — 26.

We shall proceed by separately handing the subcases
Sy 0
2.1: ag >0.32 2.2: b3+c3<0.33—5—§.
These will be instrumental to proving the following subcases

2.3: 4s; + 35, > 0.71, 2.5: 0.066 < s, <0.204,
2.4: 45+ 55 <04, 2.6: 25, — s, > 0.025.

Handling these subcases will complete the proof.
Lemma 4.24. Assuming 4.27, 4.28, 4.29, 4.50, v < 0.66 in the case sy < 0.3.

Proof. Indeed 2.3,2.4,2.6 each define half-planes that cover [0,1]2 \ T, for the closed triangle T" with
vertices

(51,85) € {(0.06125,0.155), (0.0785,0.132), (0.07083,0.116)}.
But then 2.5 covers T. Hence subcases 2.3-2.6 will complete the proof of Case 2. O

Subcase 2.1: Assume a5 > 0.32
Lemma 4.25. v < 0.66 in the case sy < 0.3 and a3 > 0.32.

Proof.
By (4.3.6) we have bs,c3 < 0.34 + 9 — a3 < 0.02+ 0. Let m; = min(b;,¢;), M, = max(b;,c;), and

t; =b; + ¢; = m; + M;. If M := max,-4 M; > 3(0.09), then using § < 0.001 and the Determinant bound
(with variables permuted) yields

M 2 1
1/<1+5—a3—M+min<?,%> <146 —ay— M <1+6—032— 5(0.09) < 0.636.

This is satisfactory. We may therefore assume that M; < 2(0.09) for i > 4. Then ¢; < 2M; < 0.135 for

i > 4. Moreover, Y (i — 1)t; < § + 8., by (4.1.2) and (4.3.1). Appealing to the Geometry bound in the
form (4.2.1), we deduce that

1/<€—|—a3+b3+m4+2ti—l—maX(O,Zisi—i’)(a:}+b3)—4m4—2iti—l).
i>5 i i>5

Thus we have v < max(vy,vy) + €, where

vy = a3+b3—|—m4—|—2ti and 1y ::Zisi—2(a3—|—b3)—3m4—2(i—1)ti_1~

i>5 i>5
Using (4.3.5), we see that
1
v <a3+b3+m4+t5+52(i—1)ti

126

1 1,4
<a3+b3+§t4+t5+g(§+5bc—t2—2t3—3t4—4t5).

Using a3 + by < 0.34+ 6 (which follows from (4.3.21)), §,, < 0.006 + &2, and t5 < 0.135, we conclude that

1,4 1,4 _
" <a3+b3+g<g+5bc+t5> <o.34+5+5(§+0.006+52+0.135> < 0.637.

20



Similarly, on recalling ). ia; < 1, we have ) is; —1 < ). it;, whence

vy <Y ity — Y (i — 1)t; — 2(ag + by) — 3m,
i

25

— Zti + ) (i — 1)t — 2(ag + by) — 3my

<4

2
=37 Ope + 1ty — 2(ag — c3) + 3My,
by (4.3.1). Using ¢4, < s, < 0.3, ¢35 < 0.02 + J, and a5 > 0.32 by assumption, we conclude that
2 3
vy < 3~ 0p. +0.3—2(0.3—9)+3- 1(0.09) < 0.57 — 0, + 24.

Thus v, < 0.6, since (4.3.3) implies that §,, > —0.013 — 26, and § < 0.001. Combining the bounds for
vy and vy, we conclude that v < max(vy,v,) + & < 0.64, which suffices. O

Subcase 2.2: Assume by + ¢y < 0.33 — 2 — 2.

Lemma 4.26. v < 0.66 in the case s.2 < 0.3 and bs + ¢3 < 0.33 — 2 — 2.

Proof. Then by (4.3.13) we may assume 73 = b3 + ¢3 < 0.34 — 51 — 55 + 0. By (4.3.16) we have

5) 3 1
a3:s3—(b3—|—c3)>1—565—251—552—554—(0.34—51—52—1—5)
5 1

= 0.66— 20, — 5, = 5(s5+ 5,) = 4.

It follows from (4.3.4) that 6, < 0.01 4+ ¢ and from (4.3.8) that s, + s, < 0.51 4+ 36/2. Hence

1
~(0.51 + 3—5) —§>0.38—s, — 3.

5
ay > 0.66 — (0.01+¢) =51 — o 5

Since § < 0.001, we see that ag > 0.34 — s; + J. Thus it follows from (4.3.13) that we may assume
Ty = ag > 0.33 — % > 0.32. Hence Subcase 2.1 completes the proof. O

Subcase 2.3: Assume 4s; + 3s, > 0.71.
Lemma 4.27. v < 0.66 in the case 5.2 < 0.3 and 4s; + 355 > 0.71.

Proof. Then the inequalities bs,c3 < 0.34 — s, — s, + 0 give
by + ¢3 < 0.68 — 2(s; + 55) + 26 < 0.325 — %2 +26.

Since 0 < 0.001, we see that by + ¢3 < 0.33 — 2 — g. Hence Subcase 2.2 completes the proof. O

Subcase 2.4: Assume 4s, + s, < 0.4.
Lemma 4.28. v < 0.66 in the case 5.2 < 0.3 and 4s; + s, < 0.4.

Proof. In this case, (4.3.6) and (4.3.23) give
by, cs < 0.34 — ag + 0 < 0.34 — (0.32 — 45, — 5, — 26) + 6 = 0.02 + 46, + 5, + 36.

In view of (4.3.4) and our assumption 4s; + s, < 0.4, we deduce that
by + ¢5 < 0.12 4 8¢ + 25, + 65 < 0.32—8—22+6§+85.

Since § < 0.001, we have by + c5 < 0.33 — 2 — 2. Hence Subcase 2.2 completes the proof. O

21



Subcase 2.5: Assume 0.066 < s, < 0.204.
Lemma 4.29. v < 0.66 in the case 5.2 < 0.3 and 0.066 < s, < 0.204.
Proof. Tt follows from (4.3.4) and (4.3.23) that

g > 0.32— 46, — s, — 26 > 0.28 — 4e — 5, — 26.

Thus ag > 0.34—s; —s,+6, since s, > 0.066 > 0.062+4+36 and 6 < 0.001. It now follows from (4 3.13)

that we may assume 73 =az > 0.33—2—3. Thus (4.3.6) gives by, c5 < 0.34—a3+3 < 0.01+%2+32, which

in turn gives b3 +c3 < 0.02+5,+30. Slnce 59 < 0.204 and 0 < 0.001, we deduce that by+c5 < 0 33 ——g.

Hence Subcase 2.2 completes the proof. O

Subcase 2.6: Assume 2s; — s, > 0.025.
Lemma 4.30. v < 0.66 in the case sy < 0.3 and 2s; — s5 > 0.025.

Proof.
In this case we note that the intervals in (4.3.13) overlap, since § < 0.001. Hence for any 74 belonging
to the set (4.3.11), we have

5
S (0.34 — 5 — 8546, 0.33— 5) — v < 0.66. (4.3.24)

Furthermore, in the light of Subcases S and S, we may assume that 4s; +3s, < 0.71 and 45, +55 > 0.4.
In particular, these imply that s; < %1 < 0.1775 and s, < 1(0.71 — 4s,) < £(0.71 — 0.4 + s5,), so that
59 < 0.155. Then, on appealing to Subcase Sg, we may assume that s, < 0.066. Similarly, it follows from
Subcase S; that we may also assume a5 < 0.32. Thus (4.3.24) and the bound § < 0.001 imply that we
may assume ag < 0.34 —s; — 55 + 9.

If we also had bg+ ¢4 < 0.34 — sy — 55+ 6, then we would have s3 = ag+bg+c3 < 0.68 —25; —255+24.
Combining this with (4.3.15), we would then conclude that

0.68 —2s; — 255 + 20 > 54 > 1 — 46, — 351 — 25,,

which implies that s; > 0.32 — 46, — 2J. Recalling (4.3.4) and the inequalities s; < 0.1775 and ¢ < 0.001,
this is a contradiction. Hence we may assume that bs 4+ ¢ > 0.34 — s; — s, + J, and by (4.3.24), we may
assume 74 = by +c3 > 0.33 — 3, 50 by > 0.165 — § > 0.164. Thus we have ag, by € [0.164,0.341 — s, — s,],
since 0 < 0.001. In particular the interval is nontrivial, so s; + s, < 0.1775.

Letting M, = max(a,, ;) and m,; = min(a,,b;), it follows from the Fourier bound that

(2R 71

< ;(1+5+Xi:max a;,b;) — max(ag,b3)> = ;(1+5+#23Mi>.

It follows from (4.3.1) that Y_ (M, +m,) = 2 — 4, and so

w—1—46 ;M M1+M2+;(Mi+mi)

2
= M, + M, + (g _5ab_iz<;(Mi +mz))
< g—éab—ml—mg—mng&
By (4 3.14) we have 3a; + 2ay + ag > 3 — 46,, and similarly, 3b; + 2b, + by > 3 — 46,. Thus

1
3
my > (% —2M, — M3 —4max(d,,6,)). This together with the bounds ¢ < 0.001 and (4.3.3) lead to the
upper bound

2 1 1

2v—1—-6< <3 —d, + §(2M2+M3 ~3 + 4max(d,,d)) —mg —mg — M;
5 2 1 2
§ 3M2 + - 3 max(d,, dp) —min(d,, o) — mg — §M3
5 2 - _ 2
<gt3Matyg 1001346+ €) + (0.006 + 8) — my — SMs

2
<0568 + 5 (M — My) —my,
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using 8,,, € [~0.006 — 8, 0.013 4+ § + €] and by + c5 > 0.33 — 3. Thus we have

1 1
v <0.784 + g(max(aQ, by) — max(ag, bg)) — B min(as, bs)

1 1
<0.784 + g(max(aQ, by) —as) — §b3 (4.3.25)
Next, if ay < by, let e, := a; for all ¢ > 1, otherwise let e, := b, for all ¢ > 1. In particular, note

€5 = min(a,, by) and e; > min(as, by) > ¢5. By a similar argument with (a;, b;); replaced by (e;, ¢;);, we
have

1 1
v <0.784 + g(max(eQ,CQ) — max(eg, c3)) — 3 min(es, ¢3)

1 1
<0.784 + g(max(eQ,cz) —e3) — 3¢5

Averaging the bound with (4.3.25), we obtain

1 1
v <0784 + g(max(ag,bQ) + max(ey, ¢y) — ag — €3) — Z(b3 +¢5)
1 )
1 )
< 0.784 + 2(0.066) — = (0.33 — §) < 0.658. (4.3.26)

Here we used max(ay, by) + max(ey, ¢y) = max (ay + by, max(ay, by) 4+ ¢5) < sy and ag + €3 > by +c5 >
0.33 — 2.
This completes the proof.

Theorem 4.31. v < 0.66.
Proof. Immediate from Lemmas 4.21 and 4.24. O
Proof of Theorem?2.3.
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