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Chapter 1

Introduction

In this paper, we use tools from analytic number theory to estimate the number of triples of a given
height satisfying the 𝑎𝑏𝑐 conjecture. Associated to any non-zero integer 𝑛 is its radical

rad(𝑛) = ∏
𝑝∣𝑛

𝑝.

We say that a triple (𝑎, 𝑏, 𝑐) ∈ ℕ3 with gcd(𝑎, 𝑏, 𝑐) = 1 is an 𝑎𝑏𝑐 triple of exponent 𝜆 if

𝑎 + 𝑏 = 𝑐, rad(𝑎𝑏𝑐) < 𝑐𝜆.

The well-known 𝑎𝑏𝑐 conjecture of Masser and Oesterlé asserts that, for any 𝜆 < 1, there are only finitely
many 𝑎𝑏𝑐 triples of exponent 𝜆. The best unconditional result is due to Stewart and Yu [12], who have
shown that finitely many 𝑎𝑏𝑐 triples satisfy rad(𝑎𝑏𝑐) < (log 𝑐)3−𝜀. Recently, Pasten [11] has proved a new
subexponential bound, assuming that 𝑎 < 𝑐1−𝜀, via a connection to Shimura curves. In this paper we
shall focus on counting the number 𝑁𝜆(𝑋) of 𝑎𝑏𝑐 triples of exponent 𝜆 in a box [1, 𝑋]3, as 𝑋 → ∞.

Definition 1.1. For 𝜆 > 0 define 𝑁𝜆(𝑋) as the number of triples (𝑎, 𝑏, 𝑐) ∈ ℕ3 with 𝑎 + 𝑏 = 𝑐,
gcd(𝑎, 𝑏, 𝑐) = 1 and rad(𝑎𝑏𝑐) < 𝑐𝜆.

Given 𝜆 > 0, an old result of de Bruijn [4] implies that

Lemma 1.2. For any 𝜀 > 0, we have

# {𝑛 ≤ 𝑥 ∶ rad(𝑛) ≤ 𝑥𝜆} ≪𝜀 𝑥𝜆+𝜀. (1.0.1)

Proof.
It suffices to show that for any integer 𝑘 ≥ 2 we have

|{𝑛 ≤ 𝑋 ∶ rad(𝑛) = 𝑘}| ≪ 𝑋𝑂(1/ log log 𝑋). (1.0.2)

To prove (1.0.2), write 𝑘 = 𝑝1 ⋯ 𝑝𝑟 as distinct primes 𝑝1 < ⋯ < 𝑝𝑟. Then rad(𝑛) = 𝑘 implies that
𝑛 = 𝑝𝑚1

1 ⋯ 𝑝𝑚𝑟𝑟 for some integers 𝑚1, … , 𝑚𝑟 ≥ 1. Therefore, the number of 𝑛 ≤ 𝑋 in question is

|{𝑛 ≤ 𝑋 ∶ rad(𝑛) = 𝑘}| ≤ ∑
𝑚1,…,𝑚𝑟≥1

1∑𝑗≤𝑟 𝑚𝑗(log 𝑝𝑗)≤log 𝑋

≤ ∑
𝑚1,…,𝑚𝑟≥1

∫
ℝ𝑟

1∑𝑗≤𝑟 𝑡𝑗(log 𝑝𝑗)≤log 𝑋1𝑡𝑗∈(𝑚𝑗−1,𝑚𝑗] ∀𝑗≤𝑟d𝑡1 ⋯ d𝑡𝑟

= vol({(𝑡1, … , 𝑡𝑟) ∈ ℝ𝑟
≥0 ∶ 𝑡1(log 𝑝1) + ⋯ + 𝑡𝑟(log 𝑝𝑟) ≤ log 𝑋})

= (log 𝑋)𝑟𝑒𝑂(𝑟)𝑟−𝑟
𝑟

∏
𝑗=1

1
log 𝑝𝑗

by calculating the volume of a simplex. Moreover, we have

𝑟
∏
𝑗=1

log 𝑝𝑗 ≥
𝑟+1
∏
𝑗=2

log 𝑗 = exp (
𝑟+1
∑
𝑗=2

log log 𝑗) ≫ (log 𝑟)𝑟𝑒−𝑂(𝑟).
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Hence for some 𝐶0 > 1

|{𝑛 ≤ 𝑋 ∶ rad(𝑛) = 𝑘}| ≪ (𝐶0 log 𝑋
𝑟 log 𝑟 )

𝑟
≪ exp (𝑂( log 𝑋

log log 𝑋 )),

since 𝑟 = 𝜔(𝑘) ≤ (1 + 𝑜(1))(log 𝑋)/(log log 𝑋) by the prime number theorem.

Any triple (𝑎, 𝑏, 𝑐) counted by 𝑁𝜆(𝑋) must satisfy rad(𝑎𝑏𝑐) < 𝑋𝜆, and so we must have min{rad(𝑎) rad(𝑏), rad(𝑏) rad(𝑐), rad(𝑐) rad(𝑎)} <
𝑋2𝜆/3, since 𝑎, 𝑏, 𝑐 are pairwise coprime. An application of (1.0.1) now leads to the following “trivial
bound”.

Proposition 1.3. Let 𝜆 > 0. Then 𝑁𝜆(𝑋) = 𝑂𝜀(𝑋2𝜆/3+𝜀), for any 𝜀 > 0.

Proof. Any triple (𝑎, 𝑏, 𝑐) counted by 𝑁𝜆(𝑋) must satisfy rad(𝑎𝑏𝑐) < 𝑋𝜆, and so we must have min{rad(𝑎) rad(𝑏), rad(𝑏) rad(𝑐), rad(𝑐) rad(𝑎)} <
𝑋2𝜆/3, since 𝑎, 𝑏, 𝑐 are pairwise coprime. An application of 1.2 now leads to the following “trivial
bound”.

The primary goal of this paper is to give the first power-saving improvement over this simple bound
for values of 𝜆 close to 1.

Theorem 1.4. Let 𝜆 ∈ (0, 1.001) be fixed. Then 𝑁𝜆(𝑋) = 𝑂(𝑋33/50).
Here we note that 33/50 = 0.66. By comparison, the trivial bound in Proposition 1.3 would give

𝑁1(𝑋) = 𝑂(𝑋0.66 ̄6+𝜀) and 𝑁1.001(𝑋) = 𝑂(𝑋0.6674). Moreover, we see that Theorem 1.4 gives a power-
saving when 𝜆 ∈ (0.99, 1.001). We emphasise that this power-saving represents a proof of concept of the
methods; we expect that the exponent can be reduced with substantial computer assistance.

Theorem 1.4 also applies for 𝜆 slightly greater than 1, which places it in the realm of a question by
Mazur [10]. Given a fixed 𝜆 > 1, he asked whether or not 𝑁𝜆(𝑋) has exact order 𝑋𝜆−1. In fact, Mazur
studies the refined counting function

Definition 1.5. For 𝛼, 𝛽, 𝛾 > 0, define 𝑆𝛼,𝛽,𝛾(𝑋) as the number of (𝑎, 𝑏, 𝑐) ∈ ℕ3 with gcd(𝑎, 𝑏, 𝑐) = 1
such that

𝑎, 𝑏, 𝑐 ∈ [1, 𝑋], 𝑎 + 𝑏 = 𝑐, rad(𝑎) ≤ 𝑋𝛼, rad(𝑏) ≤ 𝑋𝛽, rad(𝑐) ≤ 𝑋𝛾.
The argument used to prove Proposition 1.3 readily yields

Lemma 1.6.
𝑆𝛼,𝛽,𝛾(𝑋) ≪𝜀 𝑋min{𝛼+𝛽,𝛼+𝛾,𝛽+𝛾}+𝜀, (1.0.3)

for any 𝜀 > 0.

Proof.

Mazur then asks whether 𝑆𝛼,𝛽,𝛾(𝑋) has order 𝑋𝛼+𝛽+𝛾−1 if 𝛼 + 𝛽 + 𝛾 > 1. Evidence towards this has
been provided by Kane [9, Theorems 1 and 2], who proves that

𝑋𝛼+𝛽+𝛾−1−𝜀 ≪𝜀 𝑆𝛼,𝛽,𝛾(𝑋) ≪𝜀 𝑋𝛼+𝛽+𝛾−1+𝜀 + 𝑋1+𝜀,

for any 𝜀 > 0, provided that 𝛼, 𝛽, 𝛾 ∈ (0, 1] are fixed and satisfy 𝛼 + 𝛽 + 𝛾 > 1. This result gives strong
evidence towards Mazur’s question when 𝛼 + 𝛽 + 𝛾 ≥ 2, but falls short of the trivial bound (1.0.3) when
𝛼 + 𝛽 + 𝛾 < 3/2.

When considering 𝑎𝑏𝑐 triples of exponent 𝜆 < 1, we always have 𝛼+𝛽+𝛾 ≤ 𝜆 < 1, and the methods of
Kane give no information in this regime. Indeed, we are not aware of any general estimates when 𝜆 < 1,
beyond Proposition 1.3. Nonetheless, there do exist specific Diophantine equations which are covered by
the 𝑎𝑏𝑐 conjecture and where bounds have been given for the number of solutions. For example, it follows
from work of Darmon and Granville [5] that there are only finitely many coprime integer solutions to the
Diophantine equation 𝑥𝑝 + 𝑦𝑞 = 𝑧𝑟, when 𝑝, 𝑞, 𝑟 ∈ ℕ are given and satisfy 1/𝑝 + 1/𝑞 + 1/𝑟 < 1.
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Proof outline
We now describe the main ideas behind the proof of Theorem 1.4. In terms of the counting function
𝑆𝛼,𝛽,𝛾(𝑋), our task is to show that whenever 𝛼, 𝛽, 𝛾 ∈ (0, 1] satisfy 𝛼 + 𝛽 + 𝛾 ≤ 𝜆, we have 𝑆𝛼,𝛽,𝛾(𝑋) ≪
𝑋2𝜆/3−𝜂, for some 𝜂 > 0. A simple factorisation lemma (Proposition 2.6) will reduce the problem of
bounding 𝑆𝛼,𝛽,𝛾(𝑋) to the problem of bounding the number of solutions to various Diophantine equations
of the shape

∏
𝑗≤𝑑

𝑥𝑗
𝑗 + ∏

𝑗≤𝑑
𝑦𝑗

𝑗 = ∏
𝑗≤𝑑

𝑧𝑗
𝑗,

with specific constraints 𝑥𝑖 ∼ 𝑋𝑎𝑖 , 𝑦𝑖 ∼ 𝑋𝑏𝑖 , 𝑧𝑖 ∼ 𝑋𝑐𝑖 on the size of the variables, for admissible
values of 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 (depending on 𝛼, 𝛽, 𝛾). We then bound the number of solutions to these Diophantine
equations using four different methods. The first of these (Proposition 3.1) uses Fourier analysis and
Cauchy-Schwarz to estimate the number of solutions, leading to a bound that works well if two of the
exponent vectors (𝑎𝑖)𝑖, (𝑏𝑖)𝑖, (𝑐𝑖)𝑖 are somewhat “correlated”. The second method (Proposition 3.2) uses
the geometry of numbers and gives good bounds when one of 𝑎1, 𝑏1, 𝑐1 is large. The remaining tools
come from the determinant method of Heath-Brown (Proposition 3.14) and uniform upper bounds for
the number of solutions to Thue equations (Proposition 3.15). For every choice of the exponents 𝑎𝑖, 𝑏𝑖, 𝑐𝑖
we shall need to take the minimum of these bounds, which leads to a rather intricate combinatorial
optimisation problem. This is solved by showing that at least one of the four methods always gives a
power-saving over Proposition 1.3 when 𝜆 is close to 1.

Notation
We shall use 𝑥 ∼ 𝑋 to denote 𝑥 ∈ [𝑋, 2𝑋] and we put [𝑑] = {1, … , 𝑑}. We denote by 𝜏(𝑛) = ∑𝑑∣𝑛 1 the
divisor function.
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Chapter 2

Reduction to Diophantine equations

We will work with a variant of 𝑆𝛼,𝛽,𝛾(𝑋)

Definition 2.1. Let 𝑆∗
𝛼,𝛽,𝛾(𝑋) to be the number of (𝑎, 𝑏, 𝑐) ∈ ℕ3 with gcd(𝑎, 𝑏, 𝑐) = 1 and

𝑐 ∈ [𝑋/2, 𝑋], 𝑎 + 𝑏 = 𝑐, rad(𝑎) ∼ 𝑋𝛼, rad(𝑏) ∼ 𝑋𝛽, rad(𝑐) ∼ 𝑋𝛾.

We begin by noting that by the pigeonhole principle,

Lemma 2.2. We have
𝑁𝜆(𝑋) ≪ (log 𝑋)4 max

𝛼,𝛽,𝛾>0
𝛼+𝛽+𝛾≤𝜆

𝑆∗
𝛼,𝛽,𝛾(𝑋). (2.0.1)

Proof.

Theorem 2.3. There exists 𝜀 > 0 such that for all c ∈ ℤ3 and X, Y, Z ∈ ℝ𝑑
>0. we have

𝐵𝑑(c, X, Y, Z) ≪ 𝑋0.66−𝜀. (2.0.2)

Proof.

Proof of Theorem 1.4.

The following result allows us to bound 𝑆∗
𝛼,𝛽,𝛾(𝑋) in terms of the number of solutions to certain

monomial Diophantine equations. In order to state it, we need to introduce the quantity 𝐵𝑑

Definition 2.4. For c ∈ ℤ3 and X, Y, Z ∈ ℝ𝑑
>0. we have

𝐵𝑑(c, X, Y, Z) ∶= #
⎧{
⎨{⎩

(x, y, z) ∈ ℕ3𝑑 ∶
𝑥𝑖 ∼ 𝑋𝑖, 𝑦𝑖 ∼ 𝑌𝑖, 𝑧𝑖 ∼ 𝑍𝑖
𝑐1 ∏𝑗≤𝑑 𝑥𝑗

𝑗 + 𝑐2 ∏𝑗≤𝑑 𝑦𝑗
𝑗 = 𝑐3 ∏𝑗≤𝑑 𝑧𝑗

𝑗
gcd(𝑐1 ∏𝑗≤𝑑 𝑥𝑗, 𝑐2 ∏𝑗≤𝑑 𝑦𝑗, 𝑐3 ∏𝑗≤𝑑 𝑧𝑗) = 1

⎫}
⎬}⎭

. (2.0.3)

Lemma 2.5. Let 𝜀 ∈ (0, 1/2), and let 2 ≤ 𝑛 ≤ 𝑋 be an integer. Then there exists a factorisation

𝑛 = 𝑐 ∏
𝑗≤ 5

2 𝜀−2

𝑥𝑗
𝑗,

for positive integers 𝑥𝑗, 𝑐 such that 𝑐 ≤ 𝑋𝜀/2, the 𝑥𝑗 are pairwise coprime, and

𝑋−𝜀 ∏
𝑗≤ 5

2 𝜀−2

𝑥𝑗 ≤ rad(𝑛) ≤ 𝑋𝜀 ∏
𝑗≤ 5

2 𝜀−2

𝑥𝑗.

Proof. Fix 2 ⩽ 𝑛 ⩽ 𝑋 and let 𝐾 = 2⌈𝜀−1⌉, 𝑀 = ⌊ 5
2 𝜀−2⌋. Define

𝑦𝑗 ∶= ∏
𝑝𝑗‖𝑛

𝑝.
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For 𝑗 ≤ 𝑀 , we set

𝑥𝑗 ∶= {𝑦𝑗 for 𝑗 ≠ 𝐾,
𝑦𝑗 ∏𝑚>𝑀 𝑦⌊𝑚/𝐾⌋

𝑚 for 𝑗 = 𝐾, and 𝑐 ∶= ∏
𝑚>𝑀

𝑦𝑚−𝐾⌊𝑚/𝐾⌋
𝑚 .

All the 𝑥𝑗 are pairwise coprime, since the 𝑦𝑗 are pairwise coprime.
Note that by definition 𝑐 ∏𝑗≤𝑀 𝑥𝑗

𝑗 = ∏𝑚≥1 𝑦𝑚
𝑚 = 𝑛 ≤ 𝑋. In particular,

∏
𝑚≥𝑀

𝑦𝑚 ≤ ( ∏
𝑚≥𝑀

𝑦𝑚
𝑚)

1/𝑀
≤ 𝑋1/𝑀 .

Then, since 𝑚 − 𝐾⌊𝑚/𝐾⌋ ⩽ 𝐾, it follows from the definition of 𝑐 that

𝑐 ≤ ∏
𝑚≥𝑀

𝑦𝐾
𝑚 ≤ 𝑋𝐾/𝑀 ≤ 𝑋𝜀/2.

Thus
rad(𝑛) ≤ rad(𝑐) ∏

𝑗≤𝑀
rad(𝑥𝑗) ≤ 𝑋𝜀/2 ∏

𝑗≤𝑀
𝑥𝑗.

On the other hand, we have

𝑥𝐾 = 𝑦𝐾 ∏
𝑚>𝑀

𝑦⌊𝑚/𝐾⌋
𝑚 ≤ (𝑦𝐾

𝐾 ⋅ ∏
𝑚>𝑀

𝑦𝑚
𝑚)

1/𝐾
≤ 𝑛1/𝐾 ≤ 𝑋𝜀/2.

Recalling that the 𝑦𝑗 are squarefree and pairwise coprime for 𝑗 ≠ 𝐾, gives the lower bound

rad(𝑛) = ∏
𝑚≥1

𝑦𝑚 ≥ ∏
𝑗≤𝑀
𝑗≠𝐾

𝑥𝑗 ≥ 𝑋−𝜀/2 ∏
𝑗≤𝑀

𝑥𝑗,

as claimed.

Proposition 2.6. Let 𝛼, 𝛽, 𝛾 ∈ (0, 1] be fixed and let 𝑋 ≥ 2. For any 𝜀 > 0 there exists an integer
𝑑 = 𝑑(𝜀) ≥ 1 such that the following holds. There exist 𝑋1, … , 𝑋𝑑, 𝑌1, … , 𝑌𝑑, 𝑍1, … , 𝑍𝑑 ≥ 1 satisfying

𝑋𝛼−𝜀 ≪𝜀
𝑑

∏
𝑗=1

𝑋𝑗 ≤ 2𝑋𝛼+𝜀, 𝑋𝛽−𝜀 ≪𝜀
𝑑

∏
𝑗=1

𝑌𝑗 ≤ 2𝑋𝛽+𝜀, 𝑋𝛾−𝜀 ≪𝜀
𝑑

∏
𝑗=1

𝑍𝑗 ≤ 2𝑋𝛾+𝜀 (2.0.4)

and
𝑑

∏
𝑗=1

𝑋𝑗
𝑗 ≤ 𝑋,

𝑑
∏
𝑗=1

𝑌 𝑗
𝑗 ≤ 𝑋, 𝑋1−𝜀2 ≪𝜀

𝑑
∏
𝑗=1

𝑍𝑗
𝑗 ≤ 𝑋 (2.0.5)

and pairwise coprime integers 1 ≤ 𝑐1, 𝑐2, 𝑐3 ≤ 𝑋𝜀, such that

𝑆∗
𝛼,𝛽,𝛾(𝑋) ≪𝜀 𝑋𝜀𝐵𝑑(c, X, Y, Z).

Proof of Proposition 2.6. We may assume that 𝑋 is large enough in terms of 𝜀, since otherwise the claim
is trivial. Let (𝑎, 𝑏, 𝑐) be a triple counted by 𝑆∗

𝛼,𝛽,𝛾(𝑋). Apply Lemma 2.5 (with 𝜀2/2 in place of 𝜀) to
each of 𝑎, 𝑏, 𝑐 to obtain factorisations of the form

𝑎 = 𝑐1 ∏
𝑗≤𝑑

𝑥𝑗
𝑗, 𝑏 = 𝑐2 ∏

𝑗≤𝑑
𝑦𝑗

𝑗, 𝑐 = 𝑐3 ∏
𝑗≤𝑑

𝑧𝑗
𝑗,

where 𝑑 = ⌊10𝜀−4⌋ and 1 ≤ 𝑐1, 𝑐2, 𝑐3 ≤ 𝑋𝜀2/4. Since (𝑎, 𝑏, 𝑐) is counted by 𝑆∗
𝛼,𝛽,𝛾(𝑋), we have gcd(𝑎, 𝑏, 𝑐) =

1 and 𝑎+𝑏 = 𝑐, so 𝑎, 𝑏, 𝑐 are pairwise coprime. Hence, all the 3𝑑+3 numbers 𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑐1, 𝑐2, 𝑐3 are pairwise
coprime. Note also that by the properties of the factorisation given by Lemma 2.5, we have

𝑋−𝜀/2 ∏
𝑗≤𝑑

𝑥𝑗 ≤ rad(𝑎) ≤ 𝑋𝜀/2 ∏
𝑗≤𝑑

𝑥𝑗, 𝑋−𝜀/2 ∏
𝑗≤𝑑

𝑦𝑗 ≤ rad(𝑏) ≤ 𝑋𝜀/2 ∏
𝑗≤𝑑

𝑦𝑗,

𝑋−𝜀/2 ∏
𝑗≤𝑑

𝑧𝑗 ≤ rad(𝑐) ≤ 𝑋𝜀/2 ∏
𝑗≤𝑑

𝑧𝑗.
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Since rad(𝑎) ∼ 𝑋𝛼, rad(𝑏) ∼ 𝑋𝛽, rad(𝑐) ∼ 𝑋𝛾 for all triples under consideration, this implies

𝑋𝛼−𝜀 ≤ ∏
𝑗≤𝑑

𝑥𝑗 ≤ 𝑋𝛼+𝜀, 𝑋𝛽−𝜀 ≤ ∏
𝑗≤𝑑

𝑦𝑗 ≤ 𝑋𝛽+𝜀, 𝑋𝛾−𝜀 ≤ ∏
𝑗≤𝑑

𝑧𝑗 ≤ 𝑋𝛾+𝜀.

By dyadic decomposition, we can now find some 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 such that (2.0.4) and (2.0.5) hold, and such
that

𝑆∗
𝛼,𝛽,𝛾(𝑋) ≪𝜀 (log 𝑋)3𝑑 ∑

c∈ℕ3
𝑐1,𝑐2,𝑐3≤𝑋𝜀/4

𝐵𝑑(c, X, Y, Z).

Now the claim follows from the pigeonhole principle.
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Chapter 3

Upper bounds for integer points

3.1 Fourier analysis
The following result uses basic Fourier analysis to bound the quantity defined in (2.0.3).

Proposition 3.1 (Fourier analysis bound). Let 𝑑 ≥ 1, 𝜀 > 0 and 𝐴 ≥ 1 be fixed. Let

𝑋1, … , 𝑋𝑑, 𝑌1, … , 𝑌𝑑, 𝑍1, … , 𝑍𝑑 ≥ 1

and put
Δ = max

1≤𝑖≤𝑑
(𝑋𝑖𝑌𝑖𝑍𝑖). (3.1.1)

Let c = (𝑐1, 𝑐2, 𝑐3) ∈ ℤ3 satisfy 0 < |𝑐1|, |𝑐2|, |𝑐3| ≤ Δ𝐴. Then

𝐵𝑑(c, X, Y, Z) ≪ Δ𝜀 ∏𝑗≤𝑑 (𝑋𝑗𝑌𝑗𝑍𝑗(𝑌𝑗 + 𝑍𝑗))
1
2

max𝑖>1 ∏𝑗≡0 mod 𝑖 𝑍
1
2
𝑗

.

Proof. By the orthogonality of characters, we have

𝐵𝑑(c, X, Y, Z) ≤ ∫
1

0
∑

𝑥𝑗∼𝑋𝑗

∑
𝑦𝑗∼𝑌𝑖

∑
𝑧𝑗∼𝑍𝑗

𝑒(𝛼(𝑐1 ∏
𝑗≤𝑑

𝑥𝑗
𝑗 + 𝑐2 ∏

𝑗≤𝑑
𝑦𝑗

𝑗 − 𝑐3 ∏
𝑗≤𝑑

𝑧𝑗
𝑗))d𝛼

= ∫
1

0
𝑆1(𝛼)𝑆2(𝛼)𝑆3(−𝛼) d𝛼,

where

𝑆1(𝛼) = ∑
𝑥1∼𝑋1,…,𝑥𝑑∼𝑋𝑑

𝑒(𝛼𝑐1𝑥1𝑥2
2 ⋯ 𝑥𝑑

𝑑), 𝑆2(𝛼) = ∑
𝑦1∼𝑌1,…,𝑦𝑑∼𝑌𝑑

𝑒(𝛼𝑐2𝑦1𝑦2
2 ⋯ 𝑦𝑑

𝑑),

𝑆3(𝛼) = ∑
𝑧1∼𝑍1,…,𝑧𝑑∼𝑍𝑑

𝑒(𝛼𝑐3𝑧1𝑧2
2 ⋯ 𝑧𝑑

𝑑).

Then Cauchy-Schwarz gives

𝐵𝑑(c, X, Y, Z) ≤ (∫
1

0
|𝑆1(𝛼)|2 d𝛼)

1
2

(∫
1

0
|𝑆2(𝛼)|2|𝑆3(𝛼)|2 d𝛼)

1
2

=∶ √𝐼1 𝐼2. (3.1.2)

By Parseval’s identity and the divisor bound, we have

𝐼1 = ∫
1

0
|𝑆1(𝛼)|2 d𝛼 = ∑

𝑥𝑗∼𝑋𝑗∀𝑗
#{(𝑥′

1, … , 𝑥′
𝑑) ∶ 𝑥′

𝑗 ∼ 𝑋𝑗 ∀𝑗, 𝑥1𝑥2
2 ⋯ 𝑥𝑑

𝑑 = 𝑥′
1𝑥′2

2 ⋯ 𝑥′𝑑
𝑑 }

≪ ∏
𝑗≤𝑑

𝑋1+𝜀
𝑗 ,

(3.1.3)
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for any 𝜀 > 0. Using Cauchy-Schwarz again, for any 𝑖 ⩽ 𝑑 we have

|𝑆3(𝛼)|2 = ∣ ∑
𝑧𝑗∼𝑍𝑗 ∀𝑗≤𝑑

𝑒(𝛼𝑐3𝑧1 ⋯ 𝑧𝑑
𝑑)∣

2
≤ 𝑇 (𝛼) ∏

𝑗≢0 mod 𝑖
𝑍𝑗,

where

𝑇 (𝛼) = ∑
𝑧𝑗∼𝑍𝑗 ∀𝑗≢0 mod 𝑖

∣ ∑
𝑧𝑗∼𝑍𝑗 ∀𝑗≡0 mod 𝑖

𝑒(𝛼𝑐3𝑧1 ⋯ 𝑧𝑑
𝑑)∣

2
.

Let 𝑖𝑟 be the largest multiple of 𝑖 in [1, 𝑑]. Then

𝐼2 = ∫
1

0
|𝑆2(𝛼)|2|𝑆3(𝛼)|2 d𝛼

⩽ ∏
𝑗≢0 mod 𝑖

𝑍𝑗 ⋅ ∫
1

0
|𝑆2(𝛼)|2 𝑇 (𝛼) d𝛼

= ∏
𝑗≢0 mod 𝑖

𝑍𝑗 ⋅ ̃𝑁,

(3.1.4)

where ̃𝑁 is the number of

(𝑧1, … , 𝑧𝑑, 𝑧′
𝑖, … , 𝑧′

𝑖𝑟) ∈ ℕ𝑑+𝑟, (𝑦1, … , 𝑦𝑑) ∈ ℕ𝑑, (𝑦′
1, … , 𝑦′

𝑑) ∈ ℕ𝑑

such that
𝑦𝑗, 𝑦′

𝑗 ∼ 𝑌𝑗, 𝑧𝑗 ∼ 𝑍𝑗, 𝑧′
𝑗 ∼ 𝑍𝑗

for all 𝑗 ≤ 𝑑, and

𝑐3 ( ∏
𝑗≡0 mod 𝑖

𝑧𝑗
𝑗 − ∏

𝑗≡0 mod 𝑖
𝑧′𝑗

𝑗 ) ∏
𝑗≢0 mod 𝑖

𝑧𝑗
𝑗 + 𝑐2 ∏

𝑗≤𝑑
𝑦𝑗

𝑗 − 𝑐2 ∏
𝑗≤𝑑

𝑦′𝑗
𝑗 = 0.

Let us write

̃𝑁 = ̃𝑁1 + ̃𝑁2, (3.1.5)

where ̃𝑁1 is the contribution to ̃𝑁 from tuples with ∏𝑗≡0 mod 𝑖 𝑧𝑗
𝑗 = ∏𝑗≡0 mod 𝑖 𝑧′𝑗

𝑗 , and ̃𝑁2 is the contri-
bution of the complementary tuples.

Then by the divisor bound we have

̃𝑁1 = #{𝑦𝑗, 𝑦′
𝑗 ∼ 𝑌𝑗, 𝑧𝑗 ∼ 𝑍𝑗 ∀𝑗 ≤ 𝑑 ∶ ∏

𝑗
𝑦𝑗

𝑗 = ∏
𝑗

𝑦′𝑗
𝑗 } ≪ ∏

𝑗
𝑍𝑗𝑌 1+𝜀

𝑗 , (3.1.6)

for any 𝜀 > 0. In order to bound ̃𝑁2, we first note that 𝑎 − 𝑏 ∣ 𝑎𝑖 − 𝑏𝑖 for any integers 𝑎 ≠ 𝑏 and 𝑖 ≥ 1.
Thus for any integers 𝑛 ≠ 0 and 𝑖 ≥ 2,

#{(𝑎, 𝑏) ∈ ℤ2 ∶ 𝑎𝑖 − 𝑏𝑖 = 𝑛}| ≤ 𝜏(|𝑛|) max
𝑑∣𝑛

#{𝑏 ∈ ℤ ∶ (𝑏 + 𝑑)𝑖 − 𝑏𝑖 = 𝑛} ≪𝜀 |𝑛|𝜀.

This follows from the divisor bound and the fact that (𝑥 + 𝑑)𝑖 − 𝑥𝑖 − 𝑛 is a polynomial of degree 𝑖 − 1.
(Importantly, this argument fails when 𝑖 = 1, since then the polynomial (𝑥 + 𝑛)𝑖 − 𝑥𝑖 − 𝑛 is identically
0.) Hence, on appealing to the divisor bound, we obtain

̃𝑁2 ≪ ∏
𝑗≤𝑑

𝑌 2
𝑗 ⋅ max

0<|𝑛|≤Δ𝐴+𝑘2
# { (𝑧1, … , 𝑧𝑑, 𝑧′

𝑖, … , 𝑧′
𝑖𝑟) ∈ ℕ𝑑+𝑟 ∶ 𝑧𝑗 ∼ 𝑍𝑗 𝑧′

𝑗 ∼ 𝑍′
𝑗 ∀𝑗

𝑐3(∏𝑗≡0 mod 𝑖 𝑧𝑗
𝑗 − ∏𝑗≡0 mod 𝑖 𝑧′𝑗

𝑗 ) ∏𝑗≢0 mod 𝑖 𝑧𝑗
𝑗 = 𝑛 }

≪ ∏
𝑗≤𝑑

𝑌 2
𝑗 𝑍𝜀/2

𝑗 ⋅ max
0<|𝑛|≤Δ𝐴+𝑘2

#{(𝑎, 𝑏, 𝑐) ∈ ℕ3 ∶ 𝑐(𝑎𝑖 − 𝑏𝑖) = 𝑛}

≪ Δ𝜀 ∏
𝑗≤𝑑

𝑌 2
𝑗 .

(3.1.7)
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Combining (3.1.4), (3.1.5), (3.1.6) and (3.1.7), we deduce that

𝐼2 ≪ Δ𝜀 ∏
𝑗≢0 mod 𝑖

𝑍𝑗 ⋅ ( ∏
𝑗

𝑌𝑗𝑍𝑗 + ∏
𝑗

𝑌 2
𝑗 )

≪ Δ𝜀 ∏
𝑗≡0 mod 𝑖

𝑍−1
𝑗 ⋅ ∏

𝑗
(𝑌𝑗𝑍2

𝑗 + 𝑌 2
𝑗 𝑍𝑗).

(3.1.8)

Plugging (3.1.3) and (3.1.8) back into (3.1.2), we conclude that

𝐵𝑑(c, X, Y, Z) ≤ √𝐼1 𝐼2 ≪ Δ𝜀 ∏
𝑗≡0 mod 𝑖

𝑍− 1
2

𝑗 ⋅ ∏
𝑗

(𝑋𝑗𝑌𝑗𝑍𝑗(𝑌𝑗 + 𝑍𝑗))
1
2 ,

which is the desired bound.

3.2 Geometry of numbers
We can supplement Proposition 3.1 with the following bound, where 𝐵𝑑(c, X, Y, Z) is defined in (2.0.3).

Proposition 3.2 (Geometry of numbers bound). Let 𝑑 ≥ 1 and 𝜀 > 0 be fixed, and let

𝑋1, … , 𝑋𝑑, 𝑌1, … , 𝑌𝑑, 𝑍1, … , 𝑍𝑑 ≥ 1.

Let c ∈ (𝑐1, 𝑐2, 𝑐3) ∈ ℤ3 have non-zero and pairwise coprime coordinates. Then for Δ as in (3.1.1),

𝐵𝑑(c, X, Y, Z) ≪Δ𝜀 min
𝐼,𝐼′,𝐼″⊂[𝑑]

( ∏
𝑖∈𝐼

𝑋𝑖 ∏
𝑖∈𝐼′

𝑌𝑖 ∏
𝑖∈𝐼″

𝑍𝑖)(1 +
∏𝑖∉𝐼 𝑋𝑖

𝑖 ∏𝑖∉𝐼′ 𝑌 𝑖
𝑖 ∏𝑖∉𝐼″ 𝑍𝑖

𝑖
max{|𝑐1| ∏𝑖 𝑋𝑖

𝑖 , |𝑐2| ∏𝑖 𝑌 𝑖
𝑖 , |𝑐3| ∏𝑖 𝑍𝑖

𝑖}).

Proof. Take any sets 𝐼, 𝐼 ′, 𝐼″ ⊂ [𝑑]. Let (𝑥1, … , 𝑥𝑑, 𝑦1, … , 𝑦𝑑, 𝑧1, … , 𝑧𝑑) be a tuple counted by 𝐵𝑑(c, X, Y, Z).
We fix a choice of 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ∈ ℤ for all indices 𝑖 in 𝐼, 𝐼 ′, 𝐼″, respectively, and define

𝑎1 = 𝑐1 ∏
𝑖∈𝐼

𝑥𝑖
𝑖, 𝑎2 = 𝑐2 ∏

𝑖∈𝐼′
𝑦𝑖

𝑖, 𝑎3 = 𝑐3 ∏
𝑖∈𝐼″

𝑧𝑖
𝑖,

𝑥 = ∏
𝑖∉𝐼

𝑥𝑖
𝑖, 𝑦 = ∏

𝑖∉𝐼′
𝑦𝑖

𝑖, 𝑧 = ∏
𝑖∉𝐼″

𝑧𝑖
𝑖,

𝑋 = ∏
𝑖∉𝐼

𝑋𝑖
𝑖 , 𝑌 = ∏

𝑖∉𝐼′
𝑌 𝑖

𝑖 , 𝑍 = ∏
𝑖∉𝐼″

𝑍𝑖
𝑖 .

Then gcd(𝑎1, 𝑎2, 𝑎3) = 1 and gcd(𝑥, 𝑦, 𝑧) = 1. According to Heath-Brown [6, Lemma 3], the number of
triples (𝑥, 𝑦, 𝑧) that contribute to 𝐵𝑑(c, X, Y, Z) is

≪ 1 + 𝑋𝑌 𝑍
max {|𝑎1|𝑋, |𝑎2|𝑌 , |𝑎3|𝑍} .

Moreover, by the divisor bound, any triple (𝑥, 𝑦, 𝑧) corresponds to 𝑂𝜀(Δ𝜀) choices of 𝑥𝑖, 𝑦𝑗, 𝑧𝑟 with
𝑖 ∉ 𝐼, 𝑗 ∉ 𝐼 ′, 𝑟 ∉ 𝐼″. We arrive at the desired upper bound by summing over the choices 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ∈ ℤ,
with 𝑖 in 𝐼, 𝐼 ′, 𝐼″.

Theorem 3.3. Let gcd(𝑎1, 𝑎2, 𝑎3) = 1. Then for 𝑋1, 𝑋2, 𝑋3 > 1, we have

# ((𝑥1, 𝑥2, 𝑥3) ∈ ℤ3 ∶ gcd(𝑥1, 𝑥2, 𝑥3) = 1, |𝑥𝑖| ⩽ 𝑋𝑖, 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0) ≪ 1 + 𝑋1𝑋2𝑋3
max𝑖{|𝑎𝑖|𝑋𝑖}

.

Proof.

3.3 Determinant method
In this section we will record a bound for 𝐵𝑑(c, X, Y, Z) in (2.0.3) that proceeds via the determinant
method of Bombieri-Pila [2] and Heath-Brown [8]. See [1] for a gentle introduction to the determinant
method. We first record a basic fact about the irreducibility of certain polynomials.
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Lemma 3.4. Let 𝑟 ≥ 1 and let 𝑔 ∈ ℂ[𝑥] be a polynomial which has at least one root of multiplicity 1.
Then the polynomial 𝑔(𝑥) − 𝑦𝑟 is absolutely irreducible.

Proof. We may assume a factorisation 𝑔(𝑥) = 𝑙1(𝑥)𝑒1 … 𝑙𝑡(𝑥)𝑒𝑡 , with pairwise non-proportional linear
polynomials 𝑙1, … , 𝑙𝑡 ∈ ℂ[𝑥] and exponents 𝑒1, … , 𝑒𝑡 ∈ ℕ such that 𝑒1 = 1. But ℂ[𝑥] is a unique
factorisation domain and so we can apply Eisenstein’s criterion with the prime 𝑙1 in order to deduce
that 𝑔(𝑥) − 𝑦𝑟 is irreducible over ℂ[𝑦]. It then follows that 𝑔(𝑥) − 𝑦𝑟 is irreducible over ℂ, as claimed in
the lemma.

Let 𝑝, 𝑞, 𝑟 be positive integers and let 𝑎1, 𝑎2, 𝑎3 ∈ ℤ≠0. We shall require a good upper bound for the
counting function

𝑁(𝑋, 𝑌 , 𝑍) = #
⎧{
⎨{⎩

(𝑥, 𝑦, 𝑧) ∈ ℤ3
≠0 ∶

|𝑥| ≤ 𝑋, |𝑦| ≤ 𝑌 , |𝑧| ≤ 𝑍
gcd(𝑥, 𝑦) = gcd(𝑥, 𝑧) = gcd(𝑦, 𝑧) = 1
𝑎1𝑥𝑝 + 𝑎2𝑦𝑞 + 𝑎3𝑧𝑟 = 0

⎫}
⎬}⎭

,

for given 𝑋, 𝑌 , 𝑍 ≥ 1. This is achieved in the following result.
Bombieri–Pila [2, Theorem 4]

Theorem 3.5. Let 𝑓(𝑥) be a 𝐶∞ function on a closed subinterval of [0, 𝑁], and suppose that𝐹(𝑥, 𝑓) = 0,
where 𝐹(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦] is absolutely irreducible of degree 𝑑 ⩾ 2. Suppose that |𝑓 ′(𝑥)| ⩽ 1. Then

#{(𝑥, 𝑓(𝑥)) ∈ {1, … , 𝑁}2} ≪𝑑 (log 𝑁)𝑂(𝑁)𝑁1/𝑑

Proof.

Heath-Brown Theorem 15

Theorem 3.6. Let 𝐹 ∈ ℤ[𝑥1, … , 𝑥𝑛] be an absolutely irreducible polynomial of degree 𝑑, and let 𝜀 > 0
and 𝐵1, … , 𝐵𝑛 ⩾ 1 be given. Define

𝐵 = max
(𝑒1,…,𝑒𝑛)

( ∏
𝑖⩽𝑛

𝐵𝑒𝑖
𝑖 )

where the maximum is taken over all integer 𝑛-tuples (𝑒1, … , 𝑒𝑛) for which the corresponding monomial
𝑥𝑒1

1 ⋯ 𝑥𝑒𝑛𝑛 occurs in 𝐹 with non-zero coefficient.
Then there exists 𝐷 = 𝐷(𝑛, 𝑑, 𝜀) and an integer 𝑘 with

𝑘 ≪𝑛,𝑑,𝜀 𝑇 𝜀(log ‖𝐹‖)2𝑛−3 exp ((𝑛 − 1)(
∏𝑖⩽𝑛 log 𝐵𝑖

log 𝐵 )
1/(𝑛−1)

)

satisfying the following: There are 𝑘 polynomials 𝐹1, … , 𝐹𝑘 ∈ ℤ[𝑥1, … , 𝑥𝑛] coprime to 𝐹 , with deg 𝐹𝑖 ⩽ 𝐷,
such that every root of 𝐹(𝑥1, … , 𝑥𝑛) = 0 with 𝑥𝑖 ⩽ 𝐵𝑖 is also a root of 𝐹𝑗(𝑥1, … , 𝑥𝑛) = 0, for some 𝑗 ⩽ 𝑘.

Proof.

Theorem 3.7. Given integers 𝑛, 𝑎1, 𝑎2 ≠ 0, there are at most 𝑂𝜀,𝐷(|𝑛𝑎1𝑎2𝑋1𝑋2|𝜀) many solutions
(𝑥1, 𝑥2) ∈ ℤ2 such that |𝑥𝑖| ⩽ 𝑋𝑖 and

𝑛 = 𝑎1𝑥2
1 + 𝑎2𝑥2

2.

Proof. Suppose 𝑛 = 𝑎1𝑥2
1 + 𝑎2𝑥2

2. Then 𝑎1𝑛 = 𝑎2
1𝑥2

1 + 𝑎1𝑎2𝑥2
2. Let 𝐷 be the squarefree part of 𝑎1𝑎2.

Then the number of solutions (𝑥1, 𝑥2) with |𝑥𝑖| ≤ 𝑋𝑖 to this equations is at most the number of solutions
(𝑚1, 𝑚2) to 𝑎1𝑛 = 𝑚2

1 + 𝐷𝑚2
2 with |𝑚𝑖| ≤ 𝑋𝑖𝑎1𝑎2. For any such solution, we have 𝑚1 +

√
−𝐷𝑚2 ∣ 𝑎1𝑛

in ℚ(
√

−𝐷). The claim follows from the divisor bound in quadratic fields, in Lemma 3.8.

Lemma 3.8. Let 𝜀 > 0. Let 𝐷 ⩾ 1 be a squarefree integer, and set 𝐾 = ℚ(
√

−𝐷). Then for all 𝛼 ∈ 𝐾,
the number of ideals dividing (𝛼) in 𝐾 is 𝑂(𝑁𝜀

𝛼).
Proof. Mimics the proof over the integers using the fundamental theorem of arithmetic, but with ideals
[See link in comment]

Theorem 3.9. Given integers 𝑛, 𝑎1, 𝑎2 ≠ 0 and 𝑝 ⩾ 3, there are at most 𝑂(𝑝1+𝜔(|𝑛|)) many solutions
(𝑥1, 𝑥2) ∈ ℤ2 such that |𝑥𝑖| ⩽ 𝑋𝑖 and

𝑛 = 𝑎1𝑥𝑝
1 + 𝑎2𝑥𝑝

2.
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Proof.

Definition 3.10. Let 𝜔(𝑛) denote the number of distinct prime factors of an integer 𝑛.

Lemma 3.11. For any 𝑛 ⩾ 2, we have 𝜔(𝑛) ≪ log(3𝑛)/ log log(3𝑛).
Proof.

Lemma 3.12. Let 𝜀 > 0 and 𝐷 ≥ 1 and assume that 𝑝, 𝑞, 𝑟 ∈ [1, 𝐷] are integers. Then

𝑁(𝑋, 𝑌 , 𝑍) ≪𝜀,𝐷 𝑍 min (𝑋 1
𝑞 , 𝑌 1

𝑝 ) (𝑋𝑌 )𝜀,

where the implied constant only depends on 𝜀 and 𝐷. Furthermore, if 𝑝 = 𝑞 ≥ 2, then we have

𝑁(𝑋, 𝑌 , 𝑍) ≪𝜀,𝐷 𝑍(|𝑎1𝑎2𝑎3|𝑋𝑌 𝑍)𝜀.

Proof. We fix a choice of non-zero integer 𝑧 ∈ [−𝑍, 𝑍], of which there are 𝑂(𝑍). When 𝑧 is fixed, the
resulting equation defines a curve in 𝔸2 and we can hope to apply work of Bombieri-Pila [2, Theorem 4],
which would show that the equation has 𝑂𝜀,𝐷(max(𝑋, 𝑌 ) 1

max(𝑝,𝑞) +𝜀) integer solutions in the region |𝑥| ≤ 𝑋
and |𝑦| ≤ 𝑌 , where the implied constant only depends on 𝜀 and 𝐷. This is valid only when the curve
is absolutely irreducible, which we claim is true when 𝑧 ≠ 0. But, for fixed 𝑧 ∈ ℤ≠0 the polynomial
𝑎2𝑦𝑞 + 𝑎3𝑧𝑟 has non-zero discriminant as a polynomial in 𝑦. Hence the claim follows from Lemma ??.
Rather than appealing to Bombieri-Pila, however, we can get a sharper bound by using work of Heath-
Brown [8, Theorem 15]. For fixed 𝑧 ∈ ℤ≠0 this gives the bound 𝑂𝜀,𝐷(min(𝑋 1

𝑞 , 𝑌 1
𝑝 )(𝑋𝑌 )𝜀) for the number

of available 𝑥, 𝑦.

Lemma 3.13. Let 𝜀 > 0 and 𝐷 ≥ 1 and assume that 𝑝 = 𝑞, 𝑟 ∈ [1, 𝐷] are integers. Then

𝑁(𝑋, 𝑌 , 𝑍) ≪𝜀,𝐷 𝑍(|𝑎1𝑎2𝑎3|𝑋𝑌 𝑍)𝜀.

where the implied constant only depends on 𝜀 and 𝐷.

Proof. Suppose now that 𝑝 = 𝑞 ≥ 2. Then, for given 𝑧 ∈ ℤ≠0, we are left with counting the number of
integer solutions to the equation 𝑁 = 𝑎1𝑥𝑝 + 𝑎2𝑦𝑝, with |𝑥|, |𝑦| ≤ max(𝑋, 𝑌 ), and where 𝑁 = −𝑎3𝑧𝑟.
For 𝑝 = 2 this is a classical problem in quadratic forms. The bound 𝑂𝜀,𝐷((|𝑎1𝑎2𝑁|𝑋𝑌 )𝜀) follows from
Heath-Brown [7, Theorem 3], for example. For 𝑝 ≥ 3 we obtain a Thue equation. According to work
of Bombieri and Schmidt [3], there are at most 𝑂(𝑝1+𝜔(|𝑁|)) solutions, for an absolute implied constant.
Using the bound 𝜔(|𝑁|) ≪ log(3|𝑁|)/(log log(3|𝑁|)), this is 𝑂𝜀,𝐷((|𝑎3|𝑍)𝜀), which thereby completes the
proof of the lemma.

Using these lemmas we can now supplement Propositions 3.1 and 3.2 with further bounds for 𝐵𝑑(c, X, Y, Z),
as defined in (2.0.3).

Proposition 3.14. Let 𝑑 ≥ 1, and let

𝑋1, … , 𝑋𝑑, 𝑌1, … , 𝑌𝑑, 𝑍1, … , 𝑍𝑑 ≥ 1.

Let c ∈ (𝑐1, 𝑐2, 𝑐3) ∈ ℤ3
≠0. Then for Δ as in (3.1.1), we have

𝐵𝑑(c, X, Y, Z) ≪ Δ𝜀 ∏
𝑗≤𝑑

𝑋𝑗𝑌𝑗𝑍𝑗 ⋅ min
𝑝,𝑞≥1

((𝑋𝑝𝑌𝑞)−1 min (𝑋
1
𝑞
𝑝 , 𝑌

1
𝑝

𝑞 )) .

Proof. Let (𝑥1, … , 𝑥𝑑, 𝑦1, … , 𝑦𝑑, 𝑧1, … , 𝑧𝑑) be a tuple counted by 𝐵𝑑(c, X, Y, Z). For any integers 𝑝, 𝑞 ≥ 1,
we fix all but 𝑥𝑝 and 𝑦𝑞 and apply the first part of Lemma 3.12. This gives

𝐵𝑑(c, X, Y, Z) ≪ Δ𝜀 ∏
𝑗≤𝑑
𝑗≠𝑝

𝑋𝑗 ∏
𝑗≤𝑑
𝑗≠𝑞

𝑌𝑗 ∏
𝑗≤𝑑

𝑍𝑗 ⋅ min (𝑋
1
𝑞
𝑝 , 𝑌

1
𝑝

𝑞 ) ,

from which the statement of the lemma easily follows.
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Proposition 3.15. Let 𝑑 ≥ 1, and let

𝑋1, … , 𝑋𝑑, 𝑌1, … , 𝑌𝑑, 𝑍1, … , 𝑍𝑑 ≥ 1.

Let c ∈ (𝑐1, 𝑐2, 𝑐3) ∈ ℤ3
≠0. Then

𝐵𝑑(c, X, Y, Z) ≪ Δ𝜀 ∏
𝑗≤𝑑

𝑋𝑗𝑌𝑗𝑍𝑗 ⋅ min
𝑝≥2

∏
𝑗≤𝑑
𝑝∣𝑗

(𝑋𝑗𝑌𝑗)−1,

where Δ is given by (3.1.1).

Proof. Let (𝑥1, … , 𝑥𝑑, 𝑦1, … , 𝑦𝑑, 𝑧1, … , 𝑧𝑑) be a tuple counted by 𝐵𝑑(c, X, Y, Z). We collect together all
indices which are multiples of 𝑝 for any integer 𝑝 ≥ 2. Applying the second part of Lemma 3.13 now gives

𝐵𝑑(c, X, Y, Z) ≪ Δ𝜀 ∏
𝑗≤𝑑

𝑗≢0 mod 𝑝

𝑋𝑗𝑌𝑗𝑍𝑗 ∏
𝑗≤𝑑

𝑗≡0 mod 𝑝

𝑍𝑗,

from which the statement easily follows.
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Chapter 4

Combining the upper bounds

4.1 Preliminaries
Throughout this section, let 𝜀 > 0 be small but fixed. We now have everything in place to prove
Theorem 1.4 for any

𝜆 ∈ (0, 1 + 𝛿 − 𝜀).
and

𝛿 ⩽ 0.001 − 𝜀.
We shall write 𝛿 as a symbol rather than its numerical value in order to clarify the argument. As will be
clear from the proof, a somewhat larger value of 𝛿 would also work.

Our goal is to prove that the upper bound in (??) holds for 𝑆∗
𝛼,𝛽,𝛾(𝑋), for any 𝛼, 𝛽, 𝛾 such that

𝛼 + 𝛽 + 𝛾 ⩽ 𝜆 < 1 + 𝛿 − 𝜀. (4.1.1)

The following result allows us to limit the range of 𝛼, 𝛽, 𝛾 under consideration.

Proposition 4.1. Let 𝛼, 𝛽, 𝛾 > 0, and let 𝜀 > 0 be fixed. Then

𝑆∗
𝛼,𝛽,𝛾(𝑋) ≪ 𝑋0.66−𝜀2/2,

unless min{𝛼 + 𝛽, 𝛽 + 𝛾, 𝛾 + 𝛼} ≥ 0.66 − 𝜀2.

Proof. This is an immediate consequence of (1.0.3) (with 𝜀2/2 in place of 𝜀).

In the light of Proposition 2.6 (with 𝜀2 in place of 𝜀), we wish to bound 𝐵𝑑(c, X, Y, Z) for any pairwise
coprime integers 1 ≤ |𝑐1|, |𝑐2|, |𝑐3| ≤ 𝑋𝜀2 , any fixed 𝑑 ≥ 1, and any choice of 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥ 1, for 1 ≤ 𝑖 ≤ 𝑑
that satisfies (2.0.4) and (2.0.5). Moreover, 𝛼, 𝛽, 𝛾 satisfy (4.1.1).

It will be convenient to define

Definition 4.2. Define 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ ℝ≥0 via

𝑋𝑖 = 𝑋𝑎𝑖 , 𝑌𝑖 = 𝑋𝑏𝑖 , 𝑍𝑖 = 𝑋𝑐𝑖 ,
for 1 ≤ 𝑖 ≤ 𝑑, and 𝑎𝑖 = 𝑏𝑖 = 𝑐𝑖 = 0 for 𝑖 > 𝑑.

Lemma 4.3.
∑
𝑖≤𝑑

𝑖𝑎𝑖 ≤ 1, ∑
𝑖≤𝑑

𝑖𝑏𝑖 ≤ 1, 1 − 𝜀2 ≤ ∑
𝑖≤𝑑

𝑖𝑐𝑖 ≤ 1. (4.1.2)

Proof. Follows from 2.6

In particular, in the light of (4.1.1) and Proposition 4.1, we may henceforth assume that

Lemma 4.4. We have

∑
𝑖≤𝑑

(𝑎𝑖 + 𝑏𝑖) ≥ 0.66 − 𝜀2, ∑
𝑖≤𝑑

(𝑎𝑖 + 𝑐𝑖) ≥ 0.66 − 𝜀2, ∑
𝑖≤𝑑

(𝑏𝑖 + 𝑐𝑖) ≥ 0.66 − 𝜀2 (4.1.3)

and
∑
𝑖≤𝑑

(𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖) ≤ 1 + 𝛿 − 𝜀. (4.1.4)
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Proof. Follows from (4.1.1) and Proposition 4.1.

Definition 4.5. It will be convenient to henceforth define

𝜈 = 2𝜀2 + log 𝐵𝑑(c, X, Y, Z)
log 𝑋 .

Our goal is now to show that 𝜈 ⩽ 0.66, since then (??) is a direct consequence of Proposition 2.6.
This will then imply Theorem 1.4, via (2.0.1) and (??).

Before proceeding to the main tools that we shall use to estimate 𝜈, we first show that we may assume
that

0.32 − 𝛿 ≤ ∑
𝑖≤𝑑

𝑎𝑖, ∑
𝑖≤𝑑

𝑏𝑖, ∑
𝑖≤𝑑

𝑐𝑖 ≤ 0.34 + 𝛿 − 1
2𝜀,

using the argument of Proposition 4.1.

Proposition 4.6.
0.32 − 𝛿 ≤ ∑

𝑖≤𝑑
𝑎𝑖, ∑

𝑖≤𝑑
𝑏𝑖, ∑

𝑖≤𝑑
𝑐𝑖 ≤ 0.34 + 𝛿 − 1

2𝜀, (4.1.5)

Proof. Indeed, suppose that ∑𝑖≤𝑑 𝑐𝑖 > 0.34 + 𝛿 − 𝜀/2. Then (4.1.4) implies that

∑
𝑖≤𝑑

(𝑎𝑖 + 𝑏𝑖) < 0.66 − 1
2𝜀,

whence (1.0.3) yields 𝜈 < 0.66. This shows that we may suppose that the upper bound in (4.1.5) holds.
Suppose next that ∑𝑖≤𝑑 𝑐𝑖 < 0.32 − 𝛿. Then, by the upper bound in (4.1.5), we have

∑
𝑖≤𝑑

(𝑏𝑖 + 𝑐𝑖) < 0.66 − 1
2𝜀,

which is again found to be satisfactory, via (1.0.3).

Thus we may proceed under the assumption that the parameters 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 satisfy (4.1.4)-(4.1.5).

4.2 Summary of the main bounds
We now recast our bounds in Sections 3.1–3.3 in terms of an upper bound for 𝜈, using the parameters
𝑎𝑖, 𝑏𝑖, 𝑐𝑖. In all of the following bounds, we may freely permute the exponent vectors (𝑎𝑖), (𝑏𝑖), (𝑐𝑖).
Proposition 4.7 (Fourier bound).

𝜈 < 1
2(1 + 𝛿 + ∑

𝑖≤𝑑
max(𝑎𝑖, 𝑏𝑖) − max

𝑚>1
(𝑎𝑚, 𝑏𝑚)).

Proof. It follows from Proposition 3.1 that

𝜈 ≤ 3𝜀2 + 1
2 ∑

𝑖≤𝑑
(𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + max(𝑎𝑖, 𝑏𝑖) − max

𝑚>1
𝑏𝑚).

Permuting variables, the claim now follows from (4.1.4).

Proposition 4.8 (Geometry bound).

𝜈 < 𝛿 + min
𝐼,𝐼′,𝐼″⊂[𝑑]

(max (1 , ∑
𝑖∈𝐼

𝑖𝑎𝑖 + ∑
𝑖∈𝐼′

𝑖𝑏𝑖 + ∑
𝑖∈𝐼″

𝑖𝑐𝑖) − ∑
𝑖∈𝐼

𝑎𝑖 − ∑
𝑖∈𝐼′

𝑏𝑖 − ∑
𝑖∈𝐼″

𝑐𝑖) .

Proof. Applying Proposition 3.2, we obtain

𝜈 ≤ 3𝜀2 + min
𝐼,𝐼′,𝐼″

⎛⎜
⎝

∑
𝑖∉𝐼

𝑎𝑖 + ∑
𝑖∉𝐼′

𝑏𝑖 + ∑
𝑖∉𝐼″

𝑐𝑖 + max ⎛⎜
⎝

0 , ∑
𝑖∈𝐼

𝑖𝑎𝑖 + ∑
𝑖∈𝐼′

𝑖𝑏𝑖 + ∑
𝑖∈𝐼″

𝑖𝑐𝑖 − ∑
𝑖∈[𝑑]

𝑖𝑐𝑖⎞⎟
⎠

⎞⎟
⎠

,
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where the minimum runs over subsets 𝐼, 𝐼 ′, 𝐼″ ⊂ [𝑑]. Taking the lower bound ∑𝑖∈[𝑑] 𝑖𝑐𝑖 ⩾ 1 − 𝜀2,
from (4.1.2), it follows that

𝜈 ≤ 4𝜀2 + min
𝐼,𝐼′,𝐼″

⎛⎜
⎝

∑
𝑖∉𝐼

𝑎𝑖 + ∑
𝑖∉𝐼′

𝑏𝑖 + ∑
𝑖∉𝐼″

𝑐𝑖 + max (0 , ∑
𝑖∈𝐼

𝑖𝑎𝑖 + ∑
𝑖∈𝐼′

𝑖𝑏𝑖 + ∑
𝑖∈𝐼″

𝑖𝑐𝑖 − 1)⎞⎟
⎠

. (4.2.1)

The proof now follows from (4.1.4).

Proposition 4.9 (Determinant Bound).

𝜈 < min
𝑝,𝑞⩾1

(1 + 𝛿 − 𝑎𝑝 − 𝑏𝑞 + min (𝑎𝑝
𝑞 , 𝑏𝑞

𝑝 )) .

Proof. Proposition 3.14 implies that

𝜈 ≤ 3𝜀2 + ∑
𝑖≤𝑑

(𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖) − max
𝑝,𝑞≥1

(min (𝑎𝑝
𝑞 , 𝑏𝑞

𝑝 ) − 𝑎𝑝 − 𝑏𝑞) .

The claimed bound now follows from (4.1.4).

Proposition 4.10 (Thue bound).

𝜈 < 1 + 𝛿 − max
𝑝⩾2

∑
𝑝∣𝑖

(𝑎𝑖 + 𝑏𝑖).

Proof. This easily follows from Proposition 3.15 and (4.1.4).

4.3 Completion of the upper bound for 𝜈
Assuming that 𝛿 ≤ 0.001 and 𝜀 > 0 is sufficiently small, the remainder of this paper is devoted to a proof
of the upper bound

𝜈 ⩽ 0.66,
for any choice of parameters 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 satisfying the properties recorded in (4.1.2)- (4.1.5). From this point
onward, we will tacitly assume those properties hold.

Definition 4.11. It will be convenient to define constants 𝛿𝑎, 𝛿𝑏, 𝛿𝑐 via

∑
𝑖≤𝑑

𝑎𝑖 = 1
3 − 𝛿𝑎, ∑

𝑖≤𝑑
𝑏𝑖 = 1

3 − 𝛿𝑏, ∑
𝑖≤𝑑

𝑐𝑖 = 1
3 − 𝛿𝑐, (4.3.1)

together with
𝛿𝑎𝑏 ∶= 𝛿𝑎 + 𝛿𝑏, 𝛿𝑎𝑐 ∶= 𝛿𝑎 + 𝛿𝑐, 𝛿𝑏𝑐 ∶= 𝛿𝑏 + 𝛿𝑐,

and 𝛿𝑠 ∶= 𝛿𝑎 + 𝛿𝑏 + 𝛿𝑐.

Lemma 4.12. We have
𝛿𝑎𝑏, 𝛿𝑎𝑐, 𝛿𝑏𝑐 ≤ 0.006 + 𝜀2, (4.3.2)

−0.00 ̄6 − 𝛿 ≤ 𝛿𝑎, 𝛿𝑏, 𝛿𝑐 ≤ 0.01 ̄3 + 𝛿 + 𝜀, (4.3.3)
and

−𝛿 < 𝛿𝑠 ≤ 0.01 + 𝜀. (4.3.4)

Proof. It follows from (4.1.3) that
𝛿𝑎𝑏, 𝛿𝑎𝑐, 𝛿𝑏𝑐 ≤ 0.006 + 𝜀2,

and from (4.1.5) that
−0.00 ̄6 − 𝛿 ≤ 𝛿𝑎, 𝛿𝑏, 𝛿𝑐 ≤ 0.01 ̄3 + 𝛿 + 𝜀,

and from (4.1.4) that 1 − 𝛿𝑠 ≤ 1 + 𝛿. Moreover, (4.3.2) implies 2𝛿𝑠 = 𝛿𝑎𝑏 + 𝛿𝑎𝑐 + 𝛿𝑏𝑐 ≤ 0.02 + 3𝜀2, so we
must have

−𝛿 < 𝛿𝑠 ≤ 0.01 + 𝜀.
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Definition 4.13. Define 𝑠𝑖 ∶= 𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖.

Referring to (4.1.2), it will be convenient to record the inequalities

∑
𝑖⩾2

(𝑖 − 1)𝑎𝑖 ⩽ 2
3 + 𝛿𝑎, ∑

𝑖⩾3
(𝑖 − 2)𝑎𝑖 ⩽ 1

3 + 𝑎1 + 2𝛿𝑎, ∑
𝑖⩾4

(𝑖 − 3)𝑎𝑖 ⩽ 2𝑎1 + 𝑎2 + 3𝛿𝑎, (4.3.5)

that follow by subtracting. Similar relations hold for 𝑏𝑖 and 𝑐𝑖, and thus for 𝑠𝑖.

Proposition 4.14. To show 𝜈 ≤ 0.66, it suffices to assume

𝑎𝑗 + 𝑏𝑗, 𝑎𝑗 + 𝑐𝑗, 𝑏𝑗 + 𝑐𝑗 < 0.34 + 𝛿, (4.3.6)

for each 𝑗 ≥ 2, and moreover,

𝑎2 + 𝑎4 + 𝑏2 + 𝑏4, 𝑎2 + 𝑎4 + 𝑐2 + 𝑐4, 𝑏2 + 𝑏4 + 𝑐2 + 𝑐4 < 0.34 + 𝛿. (4.3.7)

Hence
𝑠5, 𝑠3, 𝑠2 + 𝑠4 < 0.51 + 3

2𝛿. (4.3.8)

Proof. By the Thue bound, we have

𝜈 < 1 + 𝛿 − max
𝑝⩾2

∑
𝑝∣𝑖

(𝑎𝑖 + 𝑏𝑖),

and similarly for 𝑎𝑖 + 𝑐𝑖 and 𝑏𝑖 + 𝑐𝑖. Now (4.3.6) follows by taking 𝑝 = 𝑗 and restricting the sum to 𝑖 = 𝑗,
while (4.3.7) follows by taking 𝑝 = 2 and restricting 𝑖 ≤ 4.

Finally, (4.3.6) and (4.3.7) imply

𝑠5, 𝑠3, 𝑠2 + 𝑠4 < 3
2(0.34 + 𝛿) ⩽ 0.51 + 3

2𝛿. (4.3.9)

Lemma 4.15. We may assume
𝑠1 + 𝑠2 ≤ 0.34 + 𝛿. (4.3.10)

Proof. If 𝑠1 + 𝑠2 > 0.34 + 𝛿 then the Geometry bound and (4.3.8) imply that

𝜈 ⩽ max (1, 𝑠1 + 2𝑠2) − 𝑠1 − 𝑠2 + 𝛿
= max(1 − 𝑠1 − 𝑠2, 𝑠2) + 𝛿
< max (0.66, 0.51 + 3𝛿) = 0.66.

Thus we may proceed under the premise that

𝑠1 + 𝑠2 ≤ 0.34 + 𝛿.

Lemma 4.16. For any 𝑗 ⩾ 3, allow 𝜏𝑗 to be an element

𝜏𝑗 ∈ {𝑎𝑗, 𝑏𝑗, 𝑐𝑗, 𝑠𝑗, 𝑎𝑗 + 𝑏𝑗, 𝑎𝑗 + 𝑐𝑗, 𝑏𝑗 + 𝑐𝑗}. (4.3.11)

Then
𝜏𝑗 ∈ (0.34 − 𝑠1 − 𝑠2 + 𝛿, 0.66 − 𝑠2 − 𝛿

𝑗 − 1 ) ⟹ 𝜈 < 0.66 (4.3.12)

and
𝜏3 ∈ (0.34 − 𝑠1 + 𝛿, 0.33 − 1

2𝛿) ⟹ 𝜈 < 0.66. (4.3.13)
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Proof. The Geometry bound gives

𝜈 ⩽ max (1, 𝑠1 + 2𝑠2 + 𝑗𝜏𝑗) − 𝑠1 − 𝑠2 − 𝜏𝑗 + 𝛿
= max (1 − 𝑠1 − 𝑠2 − 𝜏𝑗, 𝑠2 + (𝑗 − 1)𝜏𝑗) + 𝛿.

Thus we have 𝜈 < 0.66 if 𝜏𝑗 ∈ (0.34 − 𝑠1 − 𝑠2 + 𝛿, 0.66−𝑠2−𝛿
𝑗−1 ). In particular when 𝑗 = 3, we have 𝜈 < 0.66

if 𝜏3 ∈ (0.34 − 𝑠1 − 𝑠2 + 𝛿, 0.33 − 1
2 𝑠2 − 𝛿

2 ). Similarly, by the Geometry bound, we have

𝜈 ⩽ max (1, 𝑠1 + 3𝜏3) − 𝑠1 − 𝜏3 + 𝛿
= max (1 − 𝑠1 − 𝜏3, 2𝜏3) + 𝛿.

Thus 𝜈 < 0.66 if 𝜏3 ∈ (0.34 − 𝑠1 + 𝛿, 0.33 − 𝛿
2 ).

Lemma 4.17. We have
𝑎3 ⩾ 1

3 − 4𝛿𝑎 − 3𝑎1 − 2𝑎2, (4.3.14)

𝑎3 ⩾ 1
3 − 5

2𝛿𝑎 − 2𝑎1 − 3
2𝑎2 − 1

2𝑎4.

Therefore
𝑠3 ⩾ 1 − 4𝛿𝑠 − 3𝑠1 − 2𝑠2, (4.3.15)

and
𝑠3 ⩾ 1 − 5

2𝛿𝑠 − 2𝑠1 − 3
2𝑠2 − 1

2𝑠4. (4.3.16)

Proof. Note that (4.3.5) gives ∑𝑖⩾4 𝑎𝑖 ⩽ ∑𝑖⩾4(𝑖 − 3)𝑎𝑖 ⩽ 2𝑎1 + 𝑎2 + 3𝛿𝑎. Similarly, we have ∑𝑖⩾5 𝑎𝑖 ⩽
1
2 ∑𝑖⩾5(𝑖 − 3)𝑎𝑖 ⩽ 1

2 (2𝑎1 + 𝑎2 − 𝑎4 + 3𝛿𝑎). These imply that

𝑎3 = 1
3 − 𝛿𝑎 − 𝑎1 − 𝑎2 − ∑

𝑖⩾4
𝑎𝑖 ⩾ 1

3 − 4𝛿𝑎 − 3𝑎1 − 2𝑎2,

and
𝑎3 = 1

3 − 𝛿𝑎 − 𝑎1 − 𝑎2 − 𝑎4 − ∑
𝑖⩾5

𝑎𝑖 ⩾ 1
3 − 5

2𝛿𝑎 − 2𝑎1 − 3
2𝑎2 − 1

2𝑎4.

Analogous bounds hold for 𝑏3 and 𝑐3, and so we obtain

𝑠3 ⩾ 1 − 4𝛿𝑠 − 3𝑠1 − 2𝑠2,

𝑠3 ⩾ 1 − 5
2𝛿𝑠 − 2𝑠1 − 3

2𝑠2 − 1
2𝑠4.

We shall need to split the argument according to whether 𝑠2 < 0.3 or 𝑠2 ≥ 0.3. Without loss of
generality, we shall assume that 𝑎3 ⩾ 𝑏3 ⩾ 𝑐3 in all that follows.

Case 1: Assume 𝑠2 ⩾ 0.3.
Lemma 4.18. If 𝑠2 ≥ 0.3,

𝑠1 ≤ 0.04 + 𝛿 (4.3.17)

and 𝑠4 < 0.21 + 3
2 𝛿.

Proof. Note that (4.3.10) gives
𝑠1 ≤ 0.34 − 𝑠2 + 𝛿 ⩽ 0.04 + 𝛿, (4.3.18)

and (4.3.8) gives
𝑠4 < 0.51 − 𝑠2 + 3

2𝛿 ⩽ 0.21 + 3
2𝛿.

We further split into subcases.
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Subcase 1.1: Assume 𝑏3 ⩽ 0.34 − 𝑠1 − 𝑠2 + 𝛿.
Lemma 4.19. 𝜈 ≤ 0.66 in the case 𝑠2 ≥ 0.3 and 𝑏3 ⩽ 0.34 − 𝑠1 − 𝑠2 + 𝛿.

Proof. Then

𝑏3 + 𝑐3 ⩽ 2𝑏3 ⩽ 2(0.34 − 𝑠1 − 𝑠2 + 𝛿)
⩽ 0.68 − 2𝑠2 + 2𝛿

≤ 0.33 − 1
2𝑠2 − 1

2𝛿,

for 𝑠2 ⩾ 0.3 and 𝛿 ≤ 0.001. Hence, in view of (4.3.13), we may assume 𝑏3 + 𝑐3 ⩽ 0.34 − 𝑠1 − 𝑠2 + 𝛿. But
then it follows from (4.3.16), (4.3.8) and (4.3.17) that

𝑎3 = 𝑠3 − (𝑏3 + 𝑐3) ⩾ 1 − 5
2𝛿𝑎 − 2𝑠1 − 3

2𝑠2 − 1
2𝑠4 − (0.34 − 𝑠1 − 𝑠2 + 𝛿)

= 0.66 − 5
2𝛿𝑎 − 𝑠1 − 1

2(𝑠2 + 𝑠4) − 𝛿

≥ 0.66 − 5
2𝛿𝑎 − (0.04 + 𝛿) − 1

2(0.51 + 3
2𝛿) − 𝛿

⩾ 0.365 − 5
2𝛿𝑎 − 3𝛿.

But (4.3.1) implies that 1
3 − 𝛿𝑎 ⩾ 𝑎3 ≥ 0.365 − 5

2 𝛿𝑎 − 3𝛿. Thus (4.3.3) implies that

0.031 ̄6 < 3
2𝛿𝑎 + 3𝛿 ≤ 3

2(0.01 ̄3 + 𝛿 + 𝜀) + 3𝛿 ⩽ 0.02 + 5𝛿.

This contradicts our assumption 𝛿 ≤ 0.001.

Subcase 1.2: Assume 𝑏3 > 0.34 − 𝑠1 − 𝑠2 + 𝛿.
Lemma 4.20. 𝜈 ≤ 0.66 in the case 𝑠2 ≥ 0.3 and 𝑏3 > 0.34 − 𝑠1 − 𝑠2 + 𝛿.

Proof. By (4.3.13) we may assume
𝑏3 ≥ 0.33 − 1

2𝑠2 − 1
2𝛿. (4.3.19)

By permuting the variables in (4.3.5), we have

∑
𝑖⩾4

(𝑖 − 2)𝑏𝑖 ⩽ 1
3 − 𝑏3 + 𝑏1 + 2𝛿𝑏.

We also have 𝑏1 ≤ 𝑠1 ≤ 0.34 − 𝑠2 + 𝛿 by (4.3.10). Thus

∑
𝑖≥4

𝑏𝑖 ⩽ 1
2 (1

3 + 𝑏1 − 𝑏3 + 2𝛿𝑏) ⩽ 1
2(1

3 + 0.34 − 𝑠2 + 𝛿 − (0.33 − 𝑠2
2 − 𝛿

2) + 2𝛿𝑏)

< 0.33 − 1
2𝑠2 − 𝛿

2,

since (4.3.3) ensures that 𝛿𝑏 ≤ 0.01 ̄3 + 𝛿 + 𝜀 (and we have 𝛿 ≤ 0.001). A fortiori the same bound holds
for ∑𝑖≥4 𝑎𝑖. Thus, in the light of (4.3.13), taking 𝜀 > 0 small we may assume that

𝑎4, 𝑏4, 𝑎5, 𝑏5, 𝑎6, 𝑏6 ≤ 0.34 − 𝑠1 − 𝑠2 + 𝛿.

Now write 𝑀𝑖 = max(𝑎𝑖, 𝑏𝑖) and 𝑚𝑖 = min(𝑎𝑖, 𝑏𝑖), so that 𝑚𝑖 + 𝑀𝑖 = 𝑎𝑖 + 𝑏𝑖. By the Fourier bound
we have

𝜈 < 1
2(1 + 𝛿 + ∑

𝑖≤𝑑
max(𝑎𝑖, 𝑏𝑖) − max(𝑎2, 𝑏2)) = 1

2(1 + 𝛿 + ∑
𝑖≠2

𝑀𝑖).
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On using (4.3.1), this implies that

2𝜈 − 1 − 𝛿 < ∑
𝑖≠2

𝑀𝑖 ⩽ ∑
2≠𝑖⩽6

𝑀𝑖 + ∑
𝑖⩾7

(𝑎𝑖 + 𝑏𝑖)

= ∑
2≠𝑖⩽6

𝑀𝑖 + 2
3 − 𝛿𝑎𝑏 − ∑

𝑖⩽6
(𝑎𝑖 + 𝑏𝑖)

= 2
3 − 𝛿𝑎𝑏 − ∑

2≠𝑖⩽6
𝑚𝑖 − (𝑎2 + 𝑏2).

Next we lower bound 𝑎2 + 𝑏2. To do this, we observe that by (4.3.5) we have

4 ∑
𝑖⩾7

𝑎𝑖 ⩽ ∑
𝑖⩾7

(𝑖 − 3)𝑎𝑖 = 2𝑎1 + 𝑎2 + 3𝛿𝑎 − 𝑎4 − 2𝑎5 − 3𝑎6,

whence
1
3 − 𝛿𝑎 = ∑

𝑖
𝑎𝑖 ⩽ ∑

𝑖⩽6
𝑎𝑖 + 1

4(2𝑎1 + 𝑎2 + 3𝛿𝑎 − 𝑎4 − 2𝑎5 − 3𝑎6) = 1
4 ∑

𝑖⩽6
(7 − 𝑖)𝑎𝑖 + 3

4𝛿𝑎.

Thus 𝑎2 ⩾ 4
15 − 1

5 ∑2≠𝑖⩽6(7 − 𝑖)𝑎𝑖 − 7
5 𝛿𝑎, and similarly 𝑏2 ⩾ 4

15 − 1
5 ∑2≠𝑖⩽6(7 − 𝑖)𝑏𝑖 − 7

5 𝛿𝑏. Since 𝑚3 = 𝑏3,
it now follows that

2𝜈 − 1 − 𝛿 < 2
3 − 𝛿𝑎𝑏 − ∑

2≠𝑖⩽6
𝑚𝑖 − ( 8

15 − 1
5 ∑

2≠𝑖⩽6
(7 − 𝑖)(𝑎𝑖 + 𝑏𝑖) − 7

5𝛿𝑎𝑏)

⩽ 2
15 + 2

5𝛿𝑎𝑏 + 1
5(6𝑀1 + 𝑚1 + 4𝑎3 − 𝑏3 + 3𝑀4 + 2𝑀5 + 𝑀6). (4.3.20)

Thus, using (4.3.19) and the bound 𝑎3 + 𝑏3 ≤ 0.34 + 𝛿 coming from (4.3.6), we have

4𝑎3 − 𝑏3 ⩽ 4(0.34 − 𝑏3 + 𝛿) − 𝑏3

< 4(0.01 + 𝑠2
2 + 3𝛿

2 ) − (0.33 − 𝑠2
2 − 𝛿

2)

= 5
2𝑠2 − 0.29 + 13𝛿

2 .

Also 6𝑀1 + 𝑚1 ⩽ 6𝑠1 and recall 𝑀4, 𝑀5, 𝑀6 ⩽ 0.34 − 𝑠1 − 𝑠2 + 𝛿. Hence plugging back into (4.3.20), we
conclude

2𝜈 − 1 − 𝛿 < 2
15 + 2

5𝛿𝑎𝑏 + 1
5(6𝑠1 + (5

2𝑠2 − 0.29 + 13𝛿
2 ) + 6(0.34 − 𝑠1 − 𝑠2 + 𝛿))

< 2
15 + 2

5𝛿𝑎𝑏 + 1
5(1.75 − 7

2𝑠2 + 13𝛿)

⩽ 0.483 − 7
10𝑠2 + 2

5𝛿𝑎𝑏 + 13
5 𝛿

⩽ 0.483 − 7
10(0.3) + 2

5(0.00 ̄6 + 𝜀2) + 13
5 𝛿 < 0.279,

since 𝑠2 ≥ 0.3, 𝛿 ⩽ 0.001, and (4.3.2) implies that 𝛿𝑎𝑏 ≤ 0.00 ̄6 + 𝜀2. Hence 𝜈 ⩽ 1.3
2 = 0.65, which is more

than satisfactory.

Lemma 4.21. 𝜈 ≤ 0.66 in the case 𝑠2 ≥ 0.3.

Proof. Immediate from Lemmas 4.19 and 4.20.

Case 2: Assume 𝑠2 < 0.3.
Lemma 4.22.

𝑏3 < 0.17 + 𝛿
2 . (4.3.21)

Proof. It follows from (4.3.6) that
2𝑏3 ⩽ 𝑎3 + 𝑏3 < 0.34 + 𝛿, (4.3.22)

whence 𝑏3 < 0.17 + 𝛿
2 .
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Lemma 4.23.
𝑎3 ≥ 0.32 − 4𝛿𝑠 − 𝑠1 − 2𝛿. (4.3.23)

Proof. We have 0.17 + 𝛿
2 ≤ 0.33 − 𝑠2

2 − 𝛿
2 since 𝑠2 < 0.3 and 𝛿 ≤ 0.001. Thus, in view of (4.3.13), we may

assume that 𝑏3, 𝑐3 ≤ 0.34 − 𝑠1 − 𝑠2 + 𝛿. Then (4.3.15) gives

𝑎3 = 𝑠3 − (𝑏3 + 𝑐3) ⩾ 1 − 4𝛿𝑠 − 3𝑠1 − 2𝑠2 − 2(0.34 − 𝑠1 − 𝑠2 + 𝛿)
= 0.32 − 4𝛿𝑠 − 𝑠1 − 2𝛿.

We shall proceed by separately handing the subcases

2.1 ∶ 𝑎3 ≥ 0.32 2.2 ∶ 𝑏3 + 𝑐3 < 0.33 − 𝑠2
2 − 𝛿

2 .

These will be instrumental to proving the following subcases

2.3 ∶ 4𝑠1 + 3𝑠2 > 0.71, 2.5 ∶ 0.066 ≤ 𝑠2 ≤ 0.204,
2.4 ∶ 4𝑠1 + 𝑠2 < 0.4, 2.6 ∶ 2𝑠1 − 𝑠2 > 0.025.

Handling these subcases will complete the proof.

Lemma 4.24. Assuming 4.27, 4.28, 4.29, 4.30, 𝜈 ≤ 0.66 in the case 𝑠2 < 0.3.

Proof. Indeed 2.3, 2.4, 2.6 each define half-planes that cover [0, 1]2 ∖ 𝑇 , for the closed triangle 𝑇 with
vertices

(𝑠1, 𝑠2) ∈ {(0.06125, 0.155), (0.0785, 0.132), (0.0708 ̄3, 0.11 ̄6)}.
But then 2.5 covers 𝑇 . Hence subcases 2.3–2.6 will complete the proof of Case 2.

Subcase 2.1: Assume 𝑎3 ≥ 0.32
Lemma 4.25. 𝜈 ≤ 0.66 in the case 𝑠2 < 0.3 and 𝑎3 ≥ 0.32.

Proof.
By (4.3.6) we have 𝑏3, 𝑐3 ⩽ 0.34 + 𝛿 − 𝑎3 ⩽ 0.02 + 𝛿. Let 𝑚𝑖 = min(𝑏𝑖, 𝑐𝑖), 𝑀𝑖 = max(𝑏𝑖, 𝑐𝑖), and

𝑡𝑖 = 𝑏𝑖 + 𝑐𝑖 = 𝑚𝑖 + 𝑀𝑖. If 𝑀 ∶= max𝑖⩾4 𝑀𝑖 > 3
4 (0.09), then using 𝛿 ≤ 0.001 and the Determinant bound

(with variables permuted) yields

𝜈 ⩽ 1 + 𝛿 − 𝑎3 − 𝑀 + min (𝑀
3 , 𝑎3

4 ) ⩽ 1 + 𝛿 − 𝑎3 − 2
3𝑀 ⩽ 1 + 𝛿 − 0.32 − 1

2(0.09) ⩽ 0.636.

This is satisfactory. We may therefore assume that 𝑀𝑖 ⩽ 3
4 (0.09) for 𝑖 ⩾ 4. Then 𝑡𝑖 ⩽ 2𝑀𝑖 ⩽ 0.135 for

𝑖 ⩾ 4. Moreover, ∑𝑖(𝑖 − 1)𝑡𝑖 ⩽ 4
3 + 𝛿𝑏𝑐, by (4.1.2) and (4.3.1). Appealing to the Geometry bound in the

form (4.2.1), we deduce that

𝜈 ⩽ 𝜀 + 𝑎3 + 𝑏3 + 𝑚4 + ∑
𝑖⩾5

𝑡𝑖 + max (0, ∑
𝑖

𝑖𝑠𝑖 − 3(𝑎3 + 𝑏3) − 4𝑚4 − ∑
𝑖⩾5

𝑖𝑡𝑖 − 1).

Thus we have 𝜈 ⩽ max(𝜈1, 𝜈2) + 𝜀, where

𝜈1 ∶= 𝑎3 + 𝑏3 + 𝑚4 + ∑
𝑖⩾5

𝑡𝑖 and 𝜈2 ∶= ∑
𝑖

𝑖𝑠𝑖 − 2(𝑎3 + 𝑏3) − 3𝑚4 − ∑
𝑖⩾5

(𝑖 − 1)𝑡𝑖 − 1.

Using (4.3.5), we see that

𝜈1 ⩽ 𝑎3 + 𝑏3 + 𝑚4 + 𝑡5 + 1
5 ∑

𝑖⩾6
(𝑖 − 1)𝑡𝑖

⩽ 𝑎3 + 𝑏3 + 1
2𝑡4 + 𝑡5 + 1

5(4
3 + 𝛿𝑏𝑐 − 𝑡2 − 2𝑡3 − 3𝑡4 − 4𝑡5).

Using 𝑎3 + 𝑏3 ⩽ 0.34 + 𝛿 (which follows from (4.3.21)), 𝛿𝑏𝑐 < 0.006 + 𝜀2, and 𝑡5 ⩽ 0.135, we conclude that

𝜈1 ⩽ 𝑎3 + 𝑏3 + 1
5(4

3 + 𝛿𝑏𝑐 + 𝑡5) ⩽ 0.34 + 𝛿 + 1
5(4

3 + 0.006 + 𝜀2 + 0.135) < 0.637.
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Similarly, on recalling ∑𝑖 𝑖𝑎𝑖 ⩽ 1, we have ∑𝑖 𝑖𝑠𝑖 − 1 ⩽ ∑𝑖 𝑖𝑡𝑖, whence

𝜈2 ⩽ ∑
𝑖

𝑖𝑡𝑖 − ∑
𝑖⩾5

(𝑖 − 1)𝑡𝑖 − 2(𝑎3 + 𝑏3) − 3𝑚4

= ∑
𝑖

𝑡𝑖 + ∑
𝑖⩽4

(𝑖 − 1)𝑡𝑖 − 2(𝑎3 + 𝑏3) − 3𝑚4

= 2
3 − 𝛿𝑏𝑐 + 𝑡2 − 2(𝑎3 − 𝑐3) + 3𝑀4,

by (4.3.1). Using 𝑡2 ⩽ 𝑠2 < 0.3, 𝑐3 ⩽ 0.02 + 𝛿, and 𝑎3 ⩾ 0.32 by assumption, we conclude that

𝜈2 < 2
3 − 𝛿𝑏𝑐 + 0.3 − 2(0.3 − 𝛿) + 3 ⋅ 3

4(0.09) < 0.57 − 𝛿𝑏𝑐 + 2𝛿.

Thus 𝜈2 < 0.6, since (4.3.3) implies that 𝛿𝑏𝑐 ≥ −0.01 ̄3 − 2𝛿, and 𝛿 ≤ 0.001. Combining the bounds for
𝜈1 and 𝜈2, we conclude that 𝜈 ⩽ max(𝜈1, 𝜈2) + 𝜀 < 0.64, which suffices.

Subcase 2.2: Assume 𝑏3 + 𝑐3 < 0.33 − 𝑠2
2 − 𝛿

2 .
Lemma 4.26. 𝜈 ≤ 0.66 in the case 𝑠.2 < 0.3 and 𝑏3 + 𝑐3 < 0.33 − 𝑠2

2 − 𝛿
2 .

Proof. Then by (4.3.13) we may assume 𝜏3 = 𝑏3 + 𝑐3 < 0.34 − 𝑠1 − 𝑠2 + 𝛿. By (4.3.16) we have

𝑎3 = 𝑠3 − (𝑏3 + 𝑐3) > 1 − 5
2𝛿𝑠 − 2𝑠1 − 3

2𝑠2 − 1
2𝑠4 − (0.34 − 𝑠1 − 𝑠2 + 𝛿)

= 0.66 − 5
2𝛿𝑠 − 𝑠1 − 1

2(𝑠2 + 𝑠4) − 𝛿.

It follows from (4.3.4) that 𝛿𝑠 ≤ 0.01 + 𝜀 and from (4.3.8) that 𝑠2 + 𝑠4 < 0.51 + 3𝛿/2. Hence

𝑎3 > 0.66 − 5
2(0.01 + 𝜀) − 𝑠1 − 1

2(0.51 + 3𝛿
2 ) − 𝛿 ⩾ 0.38 − 𝑠1 − 3𝛿.

Since 𝛿 ⩽ 0.001, we see that 𝑎3 > 0.34 − 𝑠1 + 𝛿. Thus it follows from (4.3.13) that we may assume
𝜏3 = 𝑎3 > 0.33 − 𝛿

2 ≥ 0.32. Hence Subcase 2.1 completes the proof.

Subcase 2.3: Assume 4𝑠1 + 3𝑠2 > 0.71.
Lemma 4.27. 𝜈 ≤ 0.66 in the case 𝑠.2 < 0.3 and 4𝑠1 + 3𝑠2 > 0.71.

Proof. Then the inequalities 𝑏3, 𝑐3 ⩽ 0.34 − 𝑠1 − 𝑠2 + 𝛿 give

𝑏3 + 𝑐3 < 0.68 − 2(𝑠1 + 𝑠2) + 2𝛿 < 0.325 − 𝑠2
2 + 2𝛿.

Since 𝛿 ≤ 0.001, we see that 𝑏3 + 𝑐3 < 0.33 − 𝑠2
2 − 𝛿

2 . Hence Subcase 2.2 completes the proof.

Subcase 2.4: Assume 4𝑠1 + 𝑠2 < 0.4.
Lemma 4.28. 𝜈 ≤ 0.66 in the case 𝑠.2 < 0.3 and 4𝑠1 + 𝑠2 < 0.4.

Proof. In this case, (4.3.6) and (4.3.23) give

𝑏3, 𝑐3 ⩽ 0.34 − 𝑎3 + 𝛿 ⩽ 0.34 − (0.32 − 4𝛿𝑠 − 𝑠1 − 2𝛿) + 𝛿 = 0.02 + 4𝛿𝑠 + 𝑠1 + 3𝛿.

In view of (4.3.4) and our assumption 4𝑠1 + 𝑠2 < 0.4, we deduce that

𝑏3 + 𝑐3 ⩽ 0.12 + 8𝜀 + 2𝑠1 + 6𝛿 < 0.32 − 𝑠2
2 + 6𝛿 + 8𝜀.

Since 𝛿 ≤ 0.001, we have 𝑏3 + 𝑐3 ⩽ 0.33 − 𝑠2
2 − 𝛿

2 . Hence Subcase 2.2 completes the proof.
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Subcase 2.5: Assume 0.066 ≤ 𝑠2 ≤ 0.204.
Lemma 4.29. 𝜈 ≤ 0.66 in the case 𝑠.2 < 0.3 and 0.066 ≤ 𝑠2 ≤ 0.204.
Proof. It follows from (4.3.4) and (4.3.23) that

𝑎3 ≥ 0.32 − 4𝛿𝑠 − 𝑠1 − 2𝛿 ≥ 0.28 − 4𝜀 − 𝑠1 − 2𝛿.
Thus 𝑎3 > 0.34−𝑠1 −𝑠2 +𝛿, since 𝑠2 ≥ 0.066 ⩾ 0.062+4𝜀+3𝛿 and 𝛿 ≤ 0.001. It now follows from (4.3.13)
that we may assume 𝜏3 = 𝑎3 ≥ 0.33− 𝑠2

2 − 𝛿
2 . Thus (4.3.6) gives 𝑏3, 𝑐3 ⩽ 0.34−𝑎3+𝛿 < 0.01+ 𝑠2

2 + 3𝛿
2 , which

in turn gives 𝑏3+𝑐3 < 0.02+𝑠2+3𝛿. Since 𝑠2 ≤ 0.204 and 𝛿 ≤ 0.001, we deduce that 𝑏3+𝑐3 < 0.33− 𝑠2
2 − 𝛿

2 .
Hence Subcase 2.2 completes the proof.

Subcase 2.6: Assume 2𝑠1 − 𝑠2 > 0.025.
Lemma 4.30. 𝜈 ≤ 0.66 in the case 𝑠2 < 0.3 and 2𝑠1 − 𝑠2 > 0.025.
Proof.

In this case we note that the intervals in (4.3.13) overlap, since 𝛿 ≤ 0.001. Hence for any 𝜏3 belonging
to the set (4.3.11), we have

𝜏3 ∈ (0.34 − 𝑠1 − 𝑠2 + 𝛿, 0.33 − 𝛿
2) ⟹ 𝜈 < 0.66. (4.3.24)

Furthermore, in the light of Subcases S3 and S4, we may assume that 4𝑠1 +3𝑠2 ≤ 0.71 and 4𝑠1 +𝑠2 ≥ 0.4.
In particular, these imply that 𝑠1 ≤ 0.71

4 ≤ 0.1775 and 𝑠2 ≤ 1
3 (0.71 − 4𝑠1) ≤ 1

3 (0.71 − 0.4 + 𝑠2), so that
𝑠2 ≤ 0.155. Then, on appealing to Subcase S5, we may assume that 𝑠2 < 0.066. Similarly, it follows from
Subcase S1 that we may also assume 𝑎3 < 0.32. Thus (4.3.24) and the bound 𝛿 ≤ 0.001 imply that we
may assume 𝑎3 < 0.34 − 𝑠1 − 𝑠2 + 𝛿.

If we also had 𝑏3 +𝑐3 < 0.34−𝑠1 −𝑠2 +𝛿, then we would have 𝑠3 = 𝑎3 +𝑏3 +𝑐3 < 0.68−2𝑠1 −2𝑠2 +2𝛿.
Combining this with (4.3.15), we would then conclude that

0.68 − 2𝑠1 − 2𝑠2 + 2𝛿 > 𝑠3 ⩾ 1 − 4𝛿𝑠 − 3𝑠1 − 2𝑠2,
which implies that 𝑠1 > 0.32 − 4𝛿𝑠 − 2𝛿. Recalling (4.3.4) and the inequalities 𝑠1 ≤ 0.1775 and 𝛿 ≤ 0.001,
this is a contradiction. Hence we may assume that 𝑏3 + 𝑐3 ⩾ 0.34 − 𝑠1 − 𝑠2 + 𝛿, and by (4.3.24), we may
assume 𝜏3 = 𝑏3 + 𝑐3 ≥ 0.33 − 𝛿

2 , so 𝑏3 > 0.165 − 𝛿
4 > 0.164. Thus we have 𝑎3, 𝑏3 ∈ [0.164, 0.341 − 𝑠1 − 𝑠2],

since 𝛿 ≤ 0.001. In particular the interval is nontrivial, so 𝑠1 + 𝑠2 ⩽ 0.1775.
Letting 𝑀𝑖 = max(𝑎𝑖, 𝑏𝑖) and 𝑚𝑖 = min(𝑎𝑖, 𝑏𝑖), it follows from the Fourier bound that

𝜈 < 1
2(1 + 𝛿 + ∑

𝑖
max(𝑎𝑖, 𝑏𝑖) − max(𝑎3, 𝑏3)) = 1

2(1 + 𝛿 + ∑
𝑖≠3

𝑀𝑖).

It follows from (4.3.1) that ∑𝑖(𝑀𝑖 + 𝑚𝑖) = 2
3 − 𝛿𝑎𝑏, and so

2𝜈 − 1 − 𝛿 ⩽ ∑
𝑖≠3

𝑀𝑖 ⩽ 𝑀1 + 𝑀2 + ∑
𝑖⩾4

(𝑀𝑖 + 𝑚𝑖)

= 𝑀1 + 𝑀2 + (2
3 − 𝛿𝑎𝑏 − ∑

𝑖⩽3
(𝑀𝑖 + 𝑚𝑖))

⩽ 2
3 − 𝛿𝑎𝑏 − 𝑚1 − 𝑚2 − 𝑚3 − 𝑀3.

By (4.3.14) we have 3𝑎1 + 2𝑎2 + 𝑎3 ⩾ 1
3 − 4𝛿𝑎, and similarly, 3𝑏1 + 2𝑏2 + 𝑏3 ⩾ 1

3 − 4𝛿𝑏. Thus
𝑚1 ⩾ 1

3 ( 1
3 − 2𝑀2 − 𝑀3 − 4 max(𝛿𝑎, 𝛿𝑏)). This together with the bounds 𝛿 ≤ 0.001 and (4.3.3) lead to the

upper bound

2𝜈 − 1 − 𝛿 ⩽ 2
3 − 𝛿𝑎𝑏 + 1

3(2𝑀2 + 𝑀3 − 1
3 + 4 max(𝛿𝑎, 𝛿𝑏)) − 𝑚2 − 𝑚3 − 𝑀3

⩽ 5
9 + 2

3𝑀2 + 1
3 max(𝛿𝑎, 𝛿𝑏) − min(𝛿𝑎, 𝛿𝑏) − 𝑚3 − 2

3𝑀3

⩽ 5
9 + 2

3𝑀2 + 1
3(0.01 ̄3 + 𝛿 + 𝜀) + (0.00 ̄6 + 𝛿) − 𝑚3 − 2

3𝑀3

⩽ 0.568 + 2
3(𝑀2 − 𝑀3) − 𝑚3,
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using 𝛿𝑎, 𝛿𝑏 ∈ [−0.00 ̄6 − 𝛿, 0.01 ̄3 + 𝛿 + 𝜀] and 𝑏3 + 𝑐3 ⩾ 0.33 − 𝛿
2 . Thus we have

𝜈 ⩽ 0.784 + 1
3( max(𝑎2, 𝑏2) − max(𝑎3, 𝑏3)) − 1

2 min(𝑎3, 𝑏3)

⩽ 0.784 + 1
3( max(𝑎2, 𝑏2) − 𝑎3) − 1

2𝑏3 (4.3.25)

Next, if 𝑎2 < 𝑏2, let 𝑒𝑖 ∶= 𝑎𝑖 for all 𝑖 ⩾ 1, otherwise let 𝑒𝑖 ∶= 𝑏𝑖 for all 𝑖 ⩾ 1. In particular, note
𝑒2 = min(𝑎2, 𝑏2) and 𝑒3 ⩾ min(𝑎3, 𝑏3) ⩾ 𝑐3. By a similar argument with (𝑎𝑖, 𝑏𝑖)𝑖 replaced by (𝑒𝑖, 𝑐𝑖)𝑖, we
have

𝜈 ⩽ 0.784 + 1
3( max(𝑒2, 𝑐2) − max(𝑒3, 𝑐3)) − 1

2 min(𝑒3, 𝑐3)

⩽ 0.784 + 1
3( max(𝑒2, 𝑐2) − 𝑒3) − 1

2𝑐3.

Averaging the bound with (4.3.25), we obtain

𝜈 ⩽ 0.784 + 1
6( max(𝑎2, 𝑏2) + max(𝑒2, 𝑐2) − 𝑎3 − 𝑒3) − 1

4(𝑏3 + 𝑐3)

⩽ 0.784 + 1
6𝑠2 − 5

12(𝑏3 + 𝑐3)

⩽ 0.784 + 1
6(0.066) − 5

12(0.33 − 𝛿
2 ) ⩽ 0.658. (4.3.26)

Here we used max(𝑎2, 𝑏2) + max(𝑒2, 𝑐2) = max (𝑎2 + 𝑏2, max(𝑎2, 𝑏2) + 𝑐2) ⩽ 𝑠2 and 𝑎3 + 𝑒3 ⩾ 𝑏3 + 𝑐3 ⩾
0.33 − 𝛿

2 .
This completes the proof.

Theorem 4.31. 𝜈 ⩽ 0.66.

Proof. Immediate from Lemmas 4.21 and 4.24.

Proof of Theorem2.3.
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Bibliography
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