

Data Reconstruction Attacks and Defenses: From Theory to Practice

Qi Lei, Courant Math and CDS

With Zihan Wang, Sheng Liu, Yuxiao Chen, Jianwei Li, Jason Lee

<https://arxiv.org/abs/2212.03714>

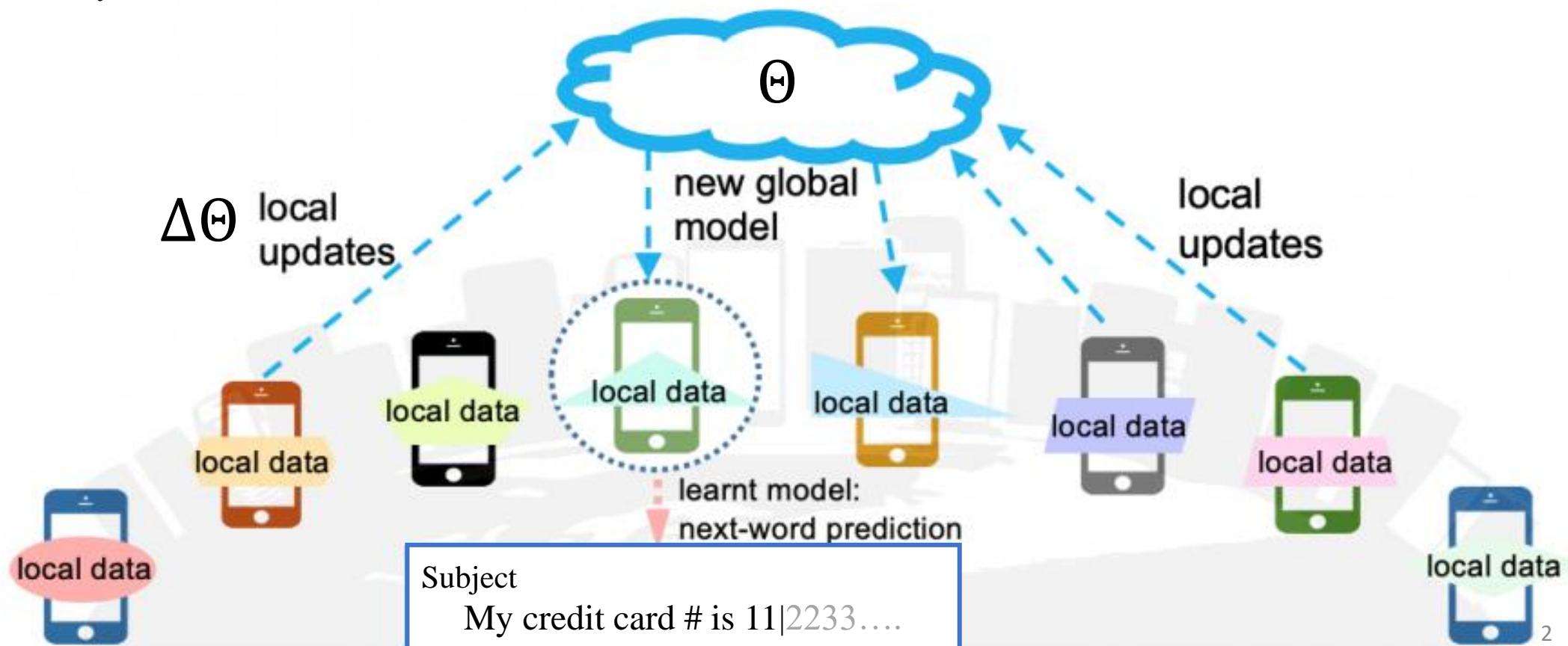
<https://arxiv.org/abs/2402.09478>

<https://arxiv.org/abs/2312.05720>

Privacy leakage

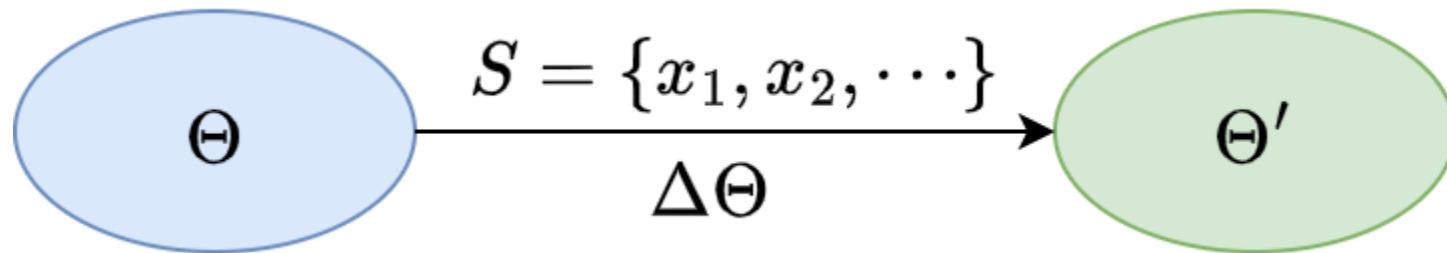
- Privacy leakage in distributed learning - data and model not co-located

[Konečný et al. 2016, McMahan et al. 2017]

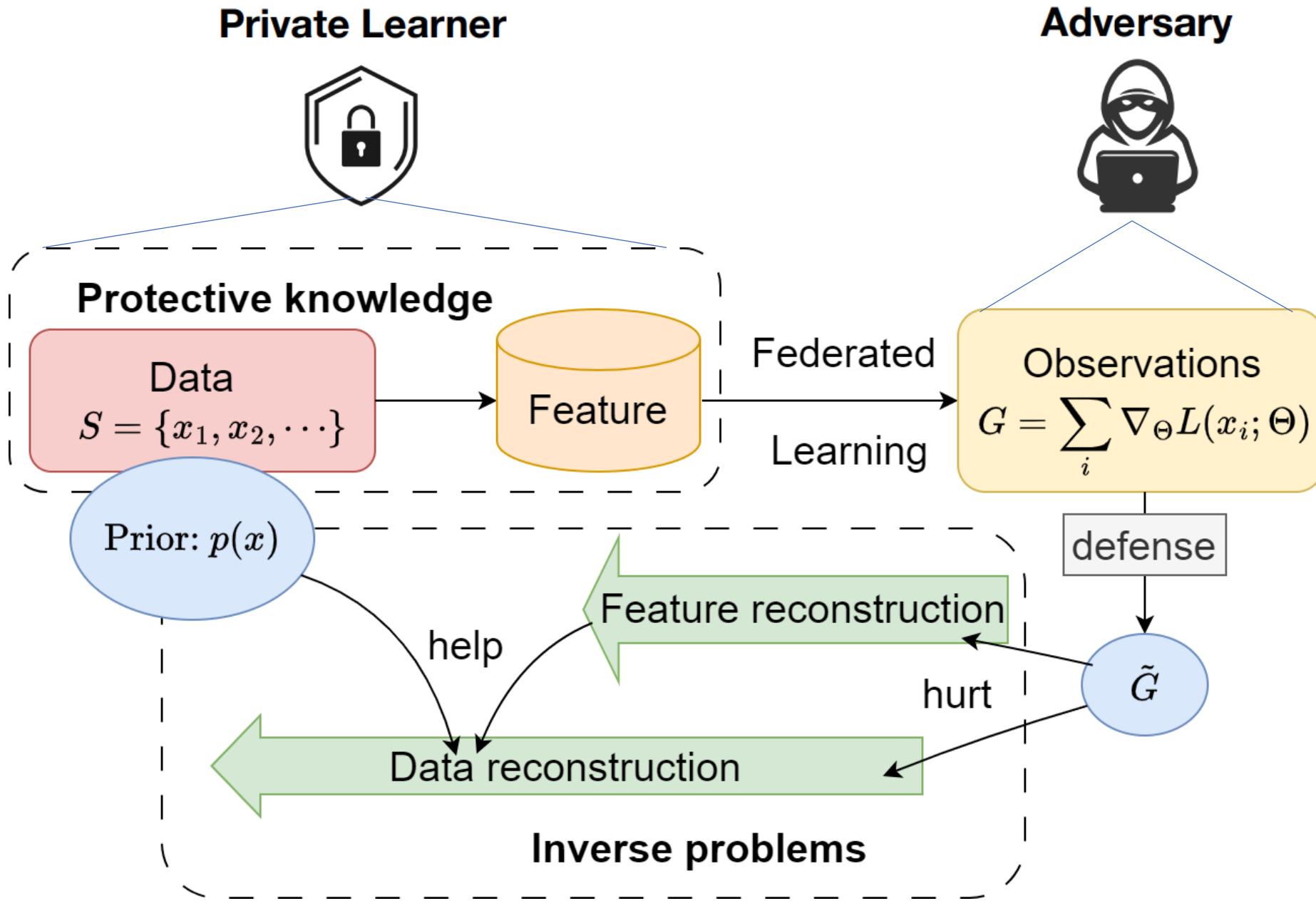


Privacy leakage

- Privacy leakage in fine-tuned model – trained with licensed/private data



- Question: When and how does our observation reveal the training data?



Threat model more formally:

Adversary {

- Batch of data:
 - $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_B, y_B)\}$
- Prediction function:
 - $x \rightarrow f(x; \Theta)$
- Model update:
 - $G := \frac{1}{B} \nabla_{\Theta} \sum_{i=1}^B \ell(f(x_i, \Theta), y_i)$

Private learner }

- Inverse problem:
 - Recover S from G , Θ is known

Prior work

- Attacking methods
 - Gradient matching (gradient inversion):

$$\min_{S=\{(x_i, y_i)\}} \left\| G - \sum_{i=1}^B \nabla \ell(f(x_i; \Theta), y_i) \right\|^2$$

Prior work

- Attacking methods

- Gradient matching (gradient inversion):

$$\min_{S=\{(x_i, y_i)\}} \left\| G - \sum_{i=1}^B \nabla \ell(f(x_i; \Theta), y_i) \right\|^2$$

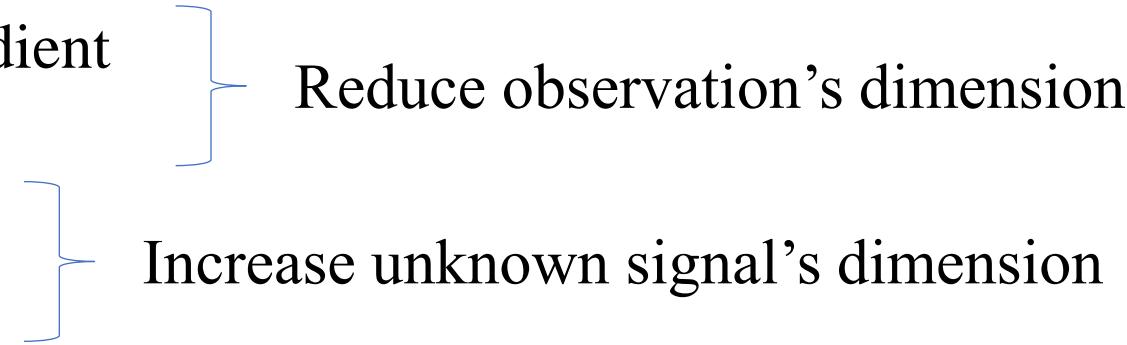
- Feature reconstruction through linear algebra techniques

Prior work

- Attacking methods
 - Gradient matching (gradient inversion):
$$\min_{S=\{(x_i, y_i)\}} \left\| G - \sum_{i=1}^B \nabla \ell(f(x_i; \Theta), y_i) \right\|^2$$
 - Feature reconstruction through linear algebra techniques
 - Partial data reconstruction through fishing parameters

Prior work

- Defending methods
 - Quantizing/pruning the gradient
 - Dropout
 - Secure aggregation
 - Multiple local aggregation

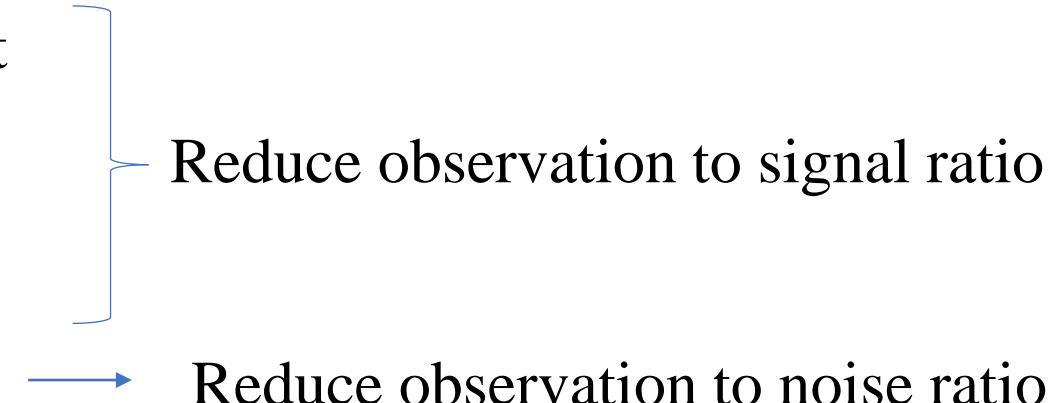


Reduce observation's dimension

Increase unknown signal's dimension

Prior work

- Defending methods
 - Quantizing/pruning the gradient
 - Dropout
 - Secure aggregation
 - Multiple local aggregation
 - Add noise



Reduce observation to signal ratio

Reduce observation to noise ratio

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Definition of (ϵ) -DP: can not distinguish any two neighboring datasets well (not much better than random guessing)
 - Renyi-DP: reconstructing last sample with other samples known
 - Distance measured in max divergence (DP) => in more relaxed choice of divergence
 - However: they only have constant conversion rate

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

Problems:

1. Not practical: For a model f with S_f sensitivity, adding Gaussian noise with variance $\frac{S_f^2}{\epsilon^2}$ will satisfy (ϵ) -DP
 - But in a 2-layer m -width neural network, $S_f \propto m$
2. Too strong: Not necessary in some scenarios:
 - $S = \{x_1, x_2, \dots, x_B\}$, $G = x_1 + x_2 + \dots + x_B$
 - No DP guarantee, but not possible to reconstruct (unless with prior information)

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known
- Instead, we want to achieve:
 - A more common trajectory in security:
→ stronger attack → stronger defense → ...
 - algorithmic upper bound for the reconstruction error

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known
- Instead, we want to achieve:
 - A more common trajectory in security:
 \rightarrow stronger attack \rightarrow stronger defense $\rightarrow \dots$
 - **algorithmic upper bound for the reconstruction error**

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known
- Instead, we want to achieve:
 - A more common trajectory in security:
→ stronger attack → stronger defense → ...
 - algorithmic upper bound for the reconstruction error

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known
- Instead, we want to achieve:
 - A more common trajectory in security:
 → stronger attack → stronger defense → ...
 - algorithmic upper bound for the reconstruction error
 - (hopefully matching) information theoretic lower bound

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known
- Instead, we want to achieve:
 - A more common trajectory in security:
 → stronger attack → **stronger defense** → ...
 - algorithmic upper bound for the reconstruction error
 - (hopefully matching) information theoretic lower bound

Part I: Theoretical analysis under two-layer neural networks

Warm-up:

- Two-layer neural network

$$f(x; \{W, a\}) = \sum_{j=1}^m a_j \sigma(w_j^\top x) = a^\top \sigma(W^\top x)$$

- Observations G:

$$\nabla_{a_j} L = \sum_{i=1}^B l'_i \sigma'(w_j^\top x_i), \nabla_{w_j} L = \sum_{i=1}^B l'_i \sigma'(w_j^\top x_i) x_i$$

(Bad) Examples:

- Linear activation:
 - $\nabla_a L = W \left(\sum_{i=1}^B l'_i x_i \right); \nabla_W L = a \left(\sum_{i=1}^B l'_i x_i \right)^\top$
 - Can only identify a linear combination of X
- Quadratic activation:
 - $\nabla_{a_j} L = w_j^\top \bar{\Sigma} w_j; \nabla_{w_j} L = 2\bar{\Sigma} w_j$, here $\bar{\Sigma} = \sum_{i=1}^B l'_i x_i x_i^\top$
 - Can only identify the span of X

Our goal:

- Upper bound:
 - $R_U(A) := \max_S d(S, A(O))$,
 - Distance metric: $d(S, \hat{S}) := \min_{\pi} \sqrt{\frac{1}{B} \sum_i ||S_i - \widehat{S_{\pi(i)}}||^2}$ (up to permutation)
 - No defense: $O=G$, with defense: $O=D(G)$
- Lower bound:
 - $R_L = \min_{\hat{S}=A(O)} \max_S d(S, \hat{S})$
 - No defense: $O=G+\epsilon, \epsilon \sim N(0, \sigma^2)$, with defense: $O=D(G) + \epsilon$
- Remark: our focus is on properties of model architecture/weight + defense method (not on data)

Algorithmic upper bound on defenses

Defense	Upper bound
No defense	$\tilde{O}\left(B\sqrt{d/m}\right)$
Local aggregation	$\tilde{O}\left(KB\sqrt{d/m}\right)$
σ^2 -gradient noise	$\tilde{O}\left((B + \sigma)\sqrt{d/m}\right)$
DP-SGD	$\tilde{O}\left((B + \sigma \max\{1, \ G\ /C\})\sqrt{d/m}\right)$
p-Dropout	$\tilde{O}\left(B\sqrt{d/(1-p)m}\right)$
Gradient pruning:	unknown

How: recover third moment of data

- We want to estimate $T_p := \sum_{i=1}^B E_w [\sigma^{(p)}(w^\top x_i)] x_i^{\otimes p}$
- Uniquely identify $\{x_1, x_2, \dots, x_B\}$ through tensor decomposition when data is linearly independent for $p \geq 3$. [Kuleshov et al. 2015]
- Our strategy: choose $a_j = \frac{1}{m}, w_j \sim N(0, I)$, estimate T by
$$\widehat{T}_3 := \frac{1}{m} \sum_{j=1}^m g(w_j) H_3(w_j), g(w_j) := \nabla_{a_j} L = \sum_{i=1}^B l'_i \sigma(w_j^\top x_i)$$

Tensor decomposition

- Stein's lemma: $E_{w \sim N(\emptyset, I)}[g(a^\top w) H_p(w)] = E[g^{(p)} a^{\otimes p}]$.
- Hermite function: $H_2(w) = ww^\top - I, H_3(w) = w^{\otimes 3} - w \otimes I$.
- $\widehat{T_p} := \frac{1}{m} \sum_{j=1}^m g(w_j) H_p(w_j) \approx E_{w \sim N(\emptyset, I)}[g(w) H_p(w)]$
 $\equiv \sum_{i=1}^B E \left[\sigma^{(p)}(w^\top x_i) x_i^{\otimes p} \right] =: T_p$
- $g(w_j) := \nabla_{a_j} L = \sum_{i=1}^B l'_i \sigma(w_j^\top x_i)$ is our observation from the model gradient

Algorithmic upper bound on attacks

- Applies when $E[\sigma^{(3)}(w)]$ or $E[\sigma^{(4)}(w)] \neq 0$. Applies to sigmoid, tanh, ReLU, leaky ReLU, GeLU, SELU, ELU etc.
- Reconstruction error $\leq \tilde{O}(\sqrt{d/m})$.

Our goal:

- Upper bound:
 - $R_U(A) := \max_S d(S, A(O))$,
 - Distance metric: $d(S, \hat{S}) := \min_{\pi} \frac{1}{B} \sqrt{\sum_i ||S_i - \widehat{S_{\pi(i)}}||^2}$ (up to permutation)
 - No defense: $O=G$, with defense: $O=D(G)$
- Lower bound:
 - $R_L = \min_{\hat{S}=A(O)} \max_S d(S, \hat{S})$
 - No defense: $O=G+\epsilon, \epsilon \sim N(0, \sigma^2)$, with defense: $O=D(G) + \epsilon$
- Remark: our focus is on properties of model architecture/weight + defense method (not on data)

Comparisons with information-theoretic lower bound on defenses

defense	Upper bound	Lower bound
No defense	$\tilde{O}\left(B\sqrt{d/m}\right)$	$\Omega\left(\sigma\sqrt{d/m}\right)$
Local aggregation	$\tilde{O}\left(KB\sqrt{d/m}\right)$	$\Omega\left(\sigma\sqrt{d/m}\right)$
σ^2 -gradient noise	$\tilde{O}\left((B + \sigma)\sqrt{d/m}\right)$	$\Omega\left(\sigma\sqrt{d/m}\right)$
DP-SGD	$\tilde{O}\left((B + \sigma\max\{1, \ G\ /C\})\sqrt{d/m}\right)$	$\Omega\left(\sigma\max\{1, \ G\ /C\}\sqrt{d/m}\right)$
p-Dropout	$\tilde{O}\left(B\sqrt{d/(1-p)m}\right)$	$\Omega\left(\sqrt{d/(1-p)m}\right)$
Gradient pruning:	unknown	$\Omega\left(\sqrt{d/(1-\hat{p})m}\right)$

Lower bound analysis

- (Bayesian) Cramer-rao: $R_L^2 \geq \sigma^2 \text{Tr}((JJ^T)^{-1})$
 - J is Jacobian of the forward function (after defense): $F: S \rightarrow D(\nabla L(S; \Theta))$
 - Key factor: how is J modified, ill-conditioned
- Connection to the linear and quadratic examples:
 - When Jacobian is singular, generally hard to reconstruct.

Take-away on the theoretical results:

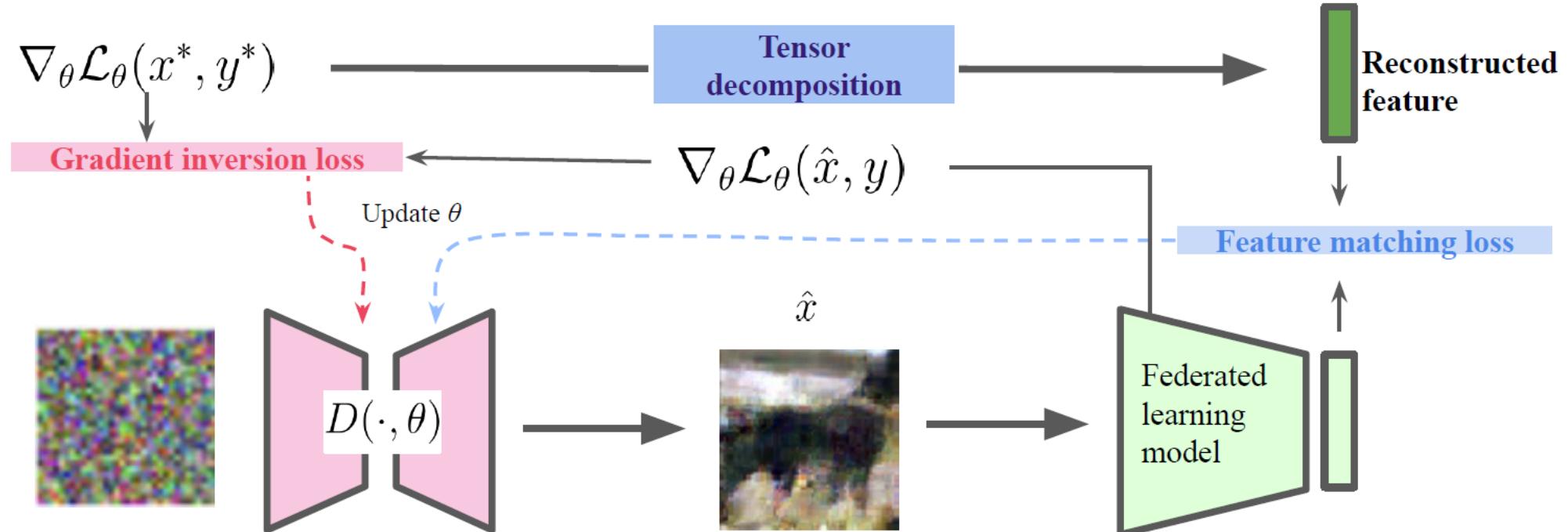
- This is a promising framework (with matched dependence on d, m, p, C)
- The analysis is focused on properties of model architectures/weights, defense strength, not data (worst case of data, no prior info).
- Lower bound analysis is general, upper bound is more restrictive. (Need new tools to go beyond two-layer networks)
- Did not analyze utility-privacy trade-off

Part II: To go beyond

To go beyond

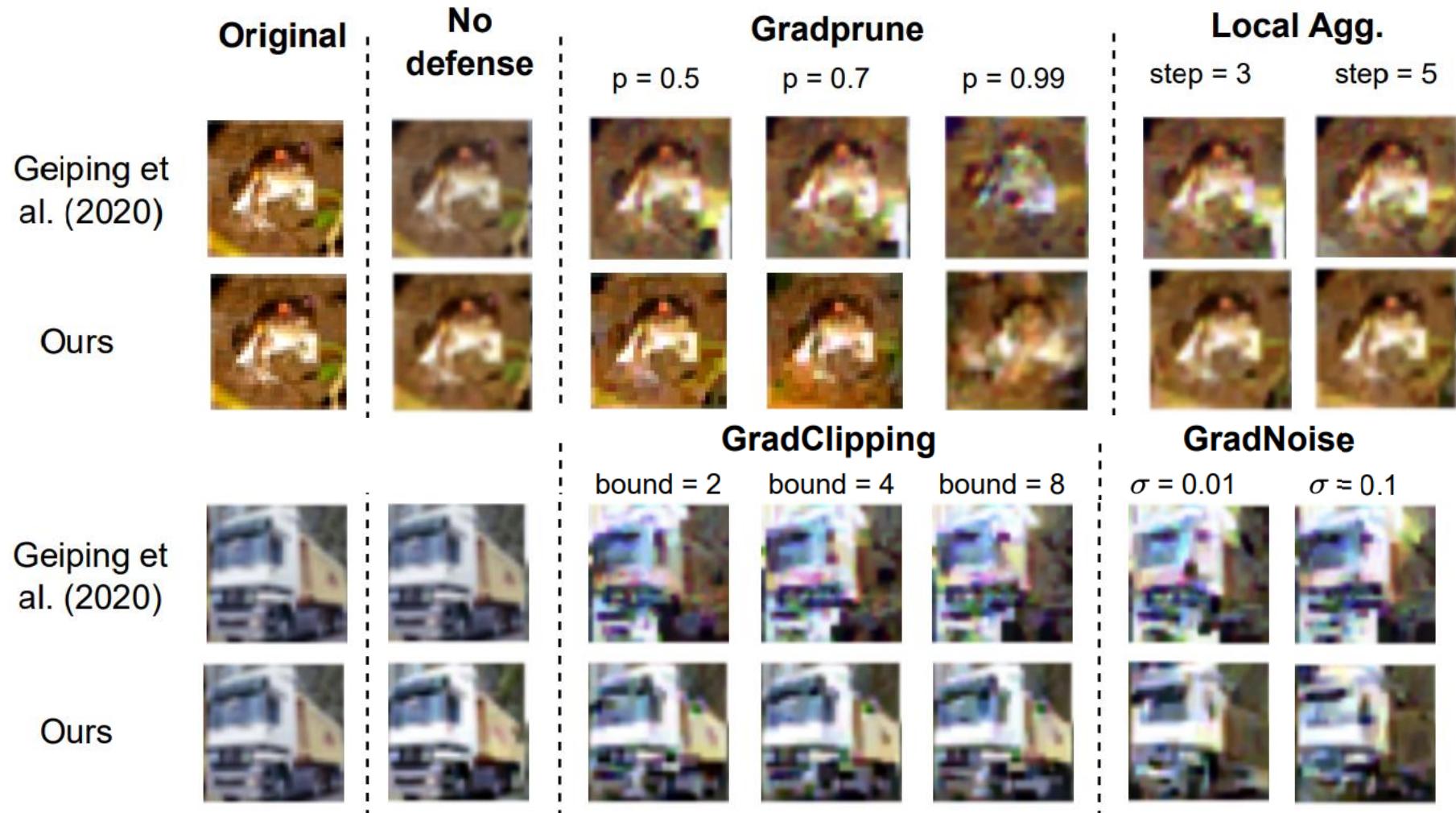
- Beyond two-layer networks
 - Empirical studies on general architectures
- Comparisons across various defense types
 - Exploit utility-privacy trade-off
 - $\text{Strength}(D) = \max_A d(S, A(D(G)))$. Compare D with similar utility loss
- Beyond images
 - Exploit discrete data like text, or time series

Beyond two-layer networks



- Previous findings: if last two layers are fully connected, can recover the features from the $(l - 2)$ -th layer
- Other structured data modalities: recover the embeddings first

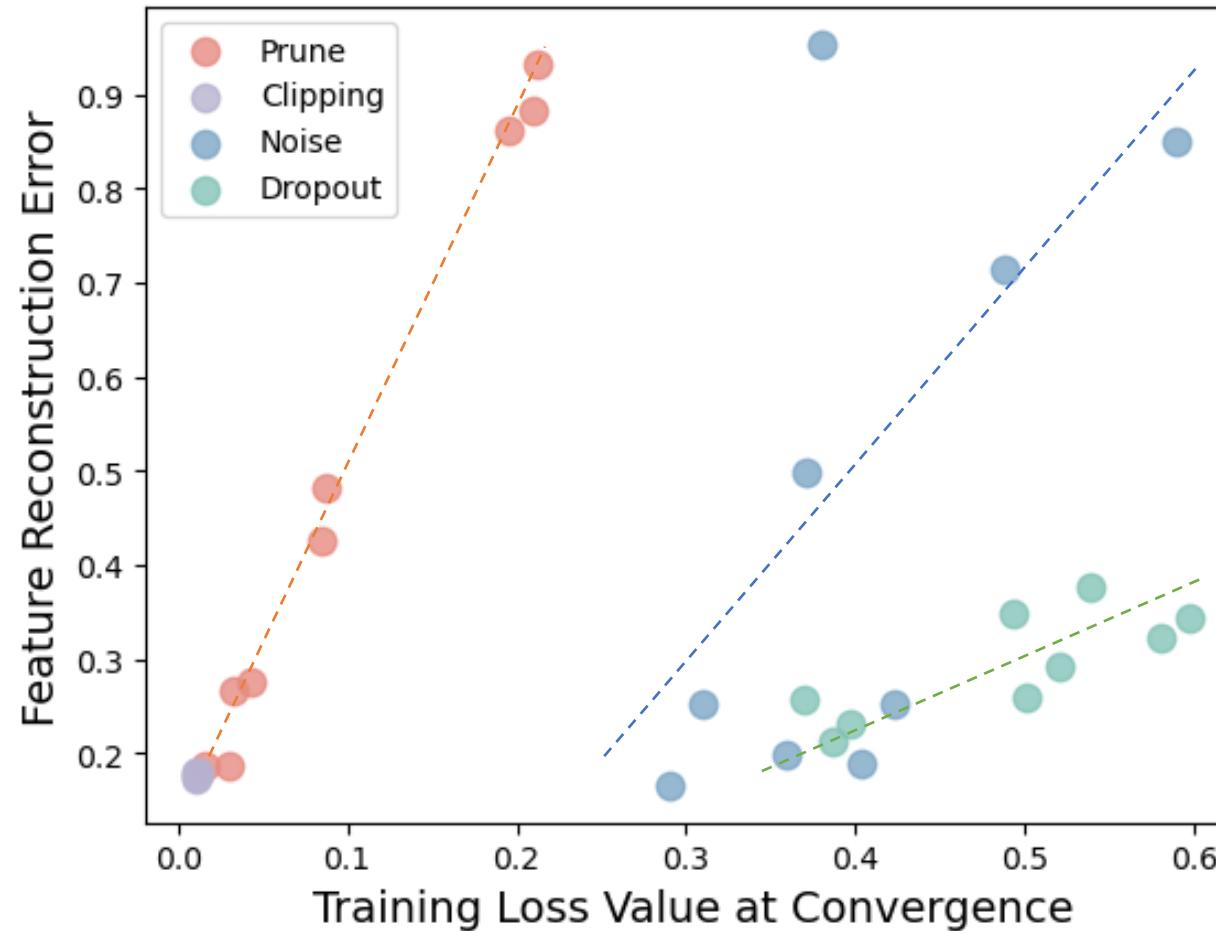
Empirical results:



To go beyond

- Beyond two-layer networks
 - Empirical studies on general architectures
- Comparisons across various defense types
 - Exploit utility-privacy trade-off
 - $\text{Strength}(D) = \max_A d(S, A(D(G)))$. Compare D with similar utility loss
- Beyond images
 - Exploit discrete data like text, or time series

Privacy-utility trade-offs



To go beyond

- Beyond two-layer networks
 - Empirical studies on general architectures
- Comparisons across various defense types
 - Exploit utility-privacy trade-off
 - $\text{Strength}(D) = \max_A d(S, A(D(G)))$. Compare D with similar utility loss
- Beyond images
 - Exploit discrete data like text, or time series

Beyond computer vision tasks...

Dataset	Method	R-1	R-2	R-L	Coss	Recovered Samples
CoLA	reference sample: The box contains the ball					
	LAMP	15.5	2.6	14.4	0.36	like THETw box contains divPORa
	Ours	17.4	3.8	15.9	0.41	like Mess box contains contains balls
SST2	reference sample: slightly disappointed					
	LAMP	20.1	2.2	15.9	0.56	likes slightly disappointed a
	Ours	19.7	2.1	16.8	0.59	like lightly disappointed a
Toma	reference sample: vaguely interesting, but it's just too too much					
	LAMP	19.9	1.6	15.1	0.48	vagueLY', interesting too Much but too just a
	Ours	21.5	1.8	16.0	0.51	vagueLY, interesting But seems Much Toolaugh

Discussions

- Call for more theoretical analysis under the inverse problem framework
 - Computational barrier for lower bound result
 - Need new tools to go beyond two-layer networks for upper bound
- Study how data properties (ill-conditioned, prior knowledge) affect the vulnerability to privacy attacks
- Based on $\text{Strength}(D) = \max_A d(S, A(D(G)))$, gradient pruning is the strongest. Call for more evaluations when stronger attacks are proposed.

Thank you