
A Real-to-Sim-to-Real Approach to Robotic Manipulation
with VLM-Generated Iterative Keypoint Rewards

Shivansh Patel1∗, Xinchen Yin1∗, Wenlong Huang2, Shubham Garg3, Hooshang Nayyeri3,
Li Fei-Fei2, Svetlana Lazebnik1, Yunzhu Li4

Abstract— Task specification for robotic manipulation in
open-world environments is challenging, requiring flexible and
adaptive objectives that align with human intentions and
can evolve through iterative feedback. We introduce Iterative
Keypoint Reward (IKER), a visually grounded, Python-based
reward function that serves as a dynamic task specification.
Our framework leverages VLMs to generate and refine these
reward functions for multi-step manipulation tasks. Given
RGB-D observations and free-form language instructions, we
sample keypoints in the scene and generate a reward function
conditioned on these keypoints. IKER operates on the spatial
relationships between keypoints, leveraging commonsense pri-
ors about the desired behaviors, and enabling precise SE(3)
control. We reconstruct real-world scenes in simulation and
use the generated rewards to train reinforcement learning (RL)
policies, which are then deployed into the real world—forming
a real-to-sim-to-real loop. Our approach demonstrates notable
capabilities across diverse scenarios, including both prehensile
and non-prehensile tasks, showcasing multi-step task execution,
spontaneous error recovery, and on-the-fly strategy adjust-
ments. The results highlight IKER’s effectiveness in enabling
robots to perform multi-step tasks in dynamic environments
through iterative reward shaping. Project Page: https://
iker-robot.github.io/

I. INTRODUCTION

Suppose that a robot is tasked with placing a pair of shoes
on a rack, but a shoe box is occupying the rack, leaving
insufficient space for both shoes (Figure 1, top right). The
robot must first push the box aside to create space and then
proceed to place the shoes. This example highlights the im-
portance of task specification for robots in unstructured, real-
world environments, where tasks can often involve multiple
implicit steps. In such cases, rigid predefined instructions
fail to capture the complexities of interaction required to
accomplish the goal. To be effective, task specifications must
incorporate commonsense priors—expectations about how
the robot should behave. For instance, rather than attempting
to squeeze the shoes in awkwardly, the robot should realize
that it must first clear space.

Recent vision-language models (VLMs) show promise
for freeform robotic task specification due to their rapidly
advancing ability to encode rich world knowledge by pre-
training on vast and diverse datasets [1–8]. VLMs excel
in interpreting natural language descriptions and complex
instructions. Their broad knowledge bridges human expecta-
tions and robot behavior, capturing human-like priors and
problem-solving strategies. However, previous works that

*indicates equal contribution. 1University of Illinois at Urbana-
Champaign, 2Stanford University, 3Amazon, 4Columbia University

Multi-Step Skill Chaining

Diverse Task
Specification

Multi-Step With
Environment Feedback

Regrasp

Book Place

Book Push Disturbance RecoveryShoe Push

Shoe Place

Book ReorientShoe Reorient

Fig. 1: Capabilities of Our Framework. IKER is designed to han-
dle a wide range of real-world tasks. It can be seamlessly chained
to execute multi-step tasks. It exhibits robustness to disturbances
and demonstrates the ability to solve problems flexibly.

leverage VLMs in robotics face two major limitations: (1)
they lack the capability to specify precise target locations in
3D, and (2) they are often unable to adapt to the environment
changes as the task progresses.

In this work, we introduce Iterative Keypoint Re-
ward (IKER), a visually grounded reward function for
robotic manipulation that addresses these limitations. In-
spired by recent work [9], we draw the observation that
both object positions and orientations can be encoded using
keypoints. Hence, IKER allows for fine-grained manipulation
in 3D, facilitating complex tasks that require accurate loca-
tion and orientation control. Additionally, IKER incorporates
an iterative refinement mechanism, where the VLM updates
the task specification based on feedback from the robot’s
interactions with the environment. This mechanism enables
dynamically-adjusting strategies and intermediate steps, such
as repositioning objects for a better grasp.

While VLMs excel in processing real-world visual data,
training policies directly in the real world is often infea-
sible due to safety, scalability, and efficiency constraints.
To address this, we first generate IKER using real-world
observations, then transfer the scene and the reward to
simulation for training, and finally, deploy the optimized
policy back into the real world. Thus, our system operates
in a real-to-sim-to-real loop.

We demonstrate the efficacy of our real-to-sim-to-real
framework with IKER across diverse scenarios involving

https://iker-robot.github.io/
https://iker-robot.github.io/

everyday objects like shoes and books. These include prehen-
sile tasks, such as placing shoes on racks, and non-prehensile
tasks, like sliding books to target locations. We conduct
both quantitative and qualitative evaluations to assess the
system’s ability to perform complex, long-horizon tasks
autonomously. The results showcase human-like capabilities,
including multi-step action sequencing, spontaneous error
recovery, and the ability to update strategies in response to
changes in the environment.

II. RELATED WORK

VLMs in Robotics. VLMs have become a prominent tool in
robotics [10–38]. Existing works utilizing VLMs in robotics
primarily focus on two areas: task specification [10–12,
15, 16, 21] and low-level control [11, 13, 14, 39]. Our work
aligns with the former, with an emphasis on flexibility and
adaptability in complex, real-world environments.

For task specification, many works employ VLMs to break
down complex tasks into manageable subtasks, demonstrat-
ing their utility in bridging high-level instructions and robotic
actions. Huang et al. [40] demonstrate the use of LLMs
as zero-shot planners, enabling task decomposition into ac-
tionable steps. Similarly, Ahn et al. [10] leverage VLMs to
parse long-horizon tasks and sequence them into executable
steps for robots. Belkhale et al. [41] introduce “language
motions” that serve as intermediaries between high-level
instructions and specific robotic actions, allowing policies to
capture reusable, low-level behaviors. Unlike these works,
our approach focuses on flexible interpretation of tasks in
the context of a dynamically changing environment.

Beyond task decomposition, VLMs have been used to gen-
erate affordances and value maps that guide robotic actions.
Huang et al. [12] employs VLMs to generate 3D affordance
maps, providing robots with spatial knowledge of which parts
of the environment are suitable for interaction. Liu et al. [15]
use VLMs to predict point-based affordances, enabling zero-
shot manipulation tasks. Zhao et al. [42] incorporate VLMs
into model predictive control, where the models predict the
outcomes of candidate actions to guide optimal decision-
making. These works demonstrate the potential of VLMs
to bridge high-level task understanding with spatial and
functional knowledge needed for robotic control. Similar to
our work, Huang et al. [9] use keypoints and define relations
and constraints between them to execute manipulation tasks,
but their approach follows an open-loop strategy. In contrast,
we employ a closed-loop approach, enabling dynamic plan
adjustments. Additionally, our approach also supports non-
prehensile manipulations, such as pushing.

Some works have also explored VLMs for reward function
generation [43–46]. However, most of these approaches
have limited real-world applicability. Some lack demonstra-
tions on real robots [44], are restricted to a single real-
world scenario [46], or focus on highly constrained tasks
like a robot dog walking on a ball [45]. In contrast, our
work demonstrates the versatility and robustness of VLM-
generated rewards on multiple real-world manipulation tasks.

Algorithm 1 IKER Execution Framework
1: Given: Language instruction I
2: Initialize: done ← false, execution history ← [], i← 1
3: Generate 3D models of objects
4: while true do
5: ({k(i)

j }
Ki
j=1, Oi)← GetKeypoints(3D models)

6: code ← QueryVLM(Oi, execution history)
7: (done, {ktarget(i)

j }Ki
j=1)← Execute(code)

8: if done is true then
9: break

10: end if
11: si ← TransferSceneToSimulation(3D models)
12: πi ← LearnPolicy(si, {ktarget(i)

j }Ki
j=1)

13: ExecutePolicyInRealWorld(πi)
14: Append (Oi, code) to execution history
15: i← i + 1
16: end while

Real-to-Sim and Sim-to-Real. Real-to-sim has gained sig-
nificant attention for its ability to facilitate agent training.
Once a scene is transferred to simulation, it can be used for a
wide range of tasks, including RL. Several approaches focus
on reconstructing rigid bodies for use in simulation [47–
53]. For instance, Kappler et al. [47] introduce a method
for reconstructing rigid objects to facilitate grasping. Some
works rather focus on reconstructing articulated objects [54–
61]. Huang et al. [62] present methods for reconstructing
the occluded shapes of articulated objects. Jiang et al. [55]
introduce a framework, DITTO, to generate digital twins of
articulated objects from real-world interactions. In our work,
we utilize the fast state-of-the-art BundleSDF method [63] to
generate object meshes that are transferred to the simulation.

Sim-to-real transfer has shown great performance in a vari-
ety of skills, including tabletop manipulation [64, 65], mobile
manipulation [66, 67], dynamic manipulation [68], dexterous
manipulation [69–72], and locomotion [73, 74]. However,
directly deploying learned policies to physical robots cannot
guarantee successful performance due to the sim-to-real gap.
To bridge this gap, researchers have developed many tech-
niques, such as system identification [75–77], domain adapta-
tion [78–82], and domain randomization [73, 83, 84, 84–88].
In our work, we use domain randomization as it does not re-
quire any interaction data from the real world during training.
It relies entirely on simulation and makes policies robust by
exposing them to a wide variety of randomized conditions.
Recently, Torne et al. [89] proposed RialTo, a complete
real-to-sim-to-real loop system that focuses on leveraging
simulation to robustify imitation learning policies trained
using real-world collected demonstrations. In contrast, we
focus on executing long-horizon tasks by training only in
simulation, bypassing the need for demonstrations.

III. METHOD

In this section we formally define Iterative Keypoint
Reward (IKER) and discuss how it is automatically syn-
thesized and refined by VLMs by continuously taking in
environmental feedback. Then, we discuss our overall frame-
work, which uses IKER in a real-to-sim-to-real loop. Our
method overview is illustrated in Figure 2, with detailed steps
provided in Algorithm 1.

Iterative Keypoint Reward
Generation Real2Sim Reconstruction Sim2Real DeploymentRL Training

Fig. 2: Framework Overview. Iterative Keypoint Reward (IKER) is a visually grounded reward generated by Vision-Language Models
(VLMs) as task specification. The framework reconstructs the real-world scene in simulation, and the generated reward is used to train
RL policies, which are subsequently deployed in the real-world.

𝑡

Place the shoes on the
rack.

Vision
Language
Model
(VLM)

def interaction_data(keypoints):
object_to_interact = ...
grasp_mode = ...
final_keypoint_coordinates =
...
...

Keypoints & execution history

VLM Generated
Reward Function

Fig. 3: Iterative Keypoint Reward Generation. This corresponds
to the first step in Figure 2. We first obtain keypoints in the
scene. These keypoints, combined with a human command and
execution history, are processed by a VLM to generate code that
maps keypoints to the reward function. A more detailed illustration
of the keypoints and generated code is provided in Figure 7.

A. Iterative Keypoint Reward (IKER)

Given an RGB-D observation of the environment and
an open-vocabulary language instruction I for a multi-step
task, our goal is to obtain a sequence of policies, πN

i=1,
that complete the task. Crucially, the number of policies N
is not predefined, allowing for flexibility in how the robot
approaches the task. For example, in the scenario of Fig. 3,
the first policy, π1, moves the shoe box to create space, while
subsequent policies handle the placement of each shoe.

For each step i, we denote the RGB observation as Oi. We
assume a set of Ki keypoints {k(i)j }Ki

j=1 is given (discussed
later in Sec. III-B), each specifying a 3D position in the task
space. Using these keypoints, our objective is to automati-
cally generate a reward function, termed IKER, that maps
the keypoint positions to a scalar reward f (i) : RKi×3 → R.

To generate the reward function f (i), we use a VLM
(GPT-4o [1] in our case), which is provided with the context
comprising (1) the human instruction I describing the task,
(2) the current RGB observation Oi with keypoints overlaid
with numerical markers, and (3) the sequence of previous
observations and reward functions up to step i − 1, i.e.
{O1, f

(1), . . . , Oi−1, f
(i−1)}.

Additionally, the VLM is guided by a prompt that instructs
it to generate a Python function for the reward f (i). The
prompt directs the VLM to break down the task into exe-
cutable steps, predict which object to interact with, specify
the movement of objects by indicating where their keypoints
should be placed relative to other keypoints, and perform
arithmetic calculations on these keypoints to predict their
final locations. We do not explicitly specify which keypoint

belongs to which object, allowing the VLM to infer this
information. The prompt also instructs the VLM to present
all outputs in a prescribed code format and set the flag
done = True if the task is completed. By predicting code,
the VLM can perform arbitrary and precise calculations
using the current keypoint locations, which would not be
possible if limited to raw text. Please refer to Appendix C
for the complete prompt, and Figure 7 for a step-by-step
walkthrough of RGB observations and generated reward
functions for the example of Figure 3.

Upon receiving the final keypoint locations by executing
the generated code, we compute a scalar reward to evaluate
the policy’s performance. The reward function, f (i), facili-
tates learning by combining the following terms:
• Gripper-to-object Distance Reward (rdist): Encourages

the robot to approach the object of interest by penalizing
large distances between them.

• Direction Reward (rdir): Guides the robot to move the
keypoints in the direction of the target locations.

• Alignment Reward (ralign): Drives the robot to position
the keypoints close to their target locations.

• Success Bonus (rbonus): Provides an additional reward
when the average distance between the keypoints and
their target positions remains within a specified thresh-
old for a certain number of timesteps, indicating suc-
cessful task completion.

• Penalty Term (rpenalty): Applies penalties for undesirable
actions such as excessive movements, dropping the
object, or applying excessive force.

f (i) = αdistrdist + αdirrdir + αalignralign + αbonusrbonus + αpenaltyrpenalty

B. Transferring real-world scene to simulation

To transfer the real-world scene within the workspace
boundary to simulation, we first generate 3D meshes of
manipulable objects, such as the shoe box and shoes shown
in Figure 3, by capturing video footage of each object as
it is moved to ensure the camera captures all sides. These
videos allow for accurate 3D mesh reconstruction using
BundleSDF [63], and multiple objects can be processed in
parallel to speed up the scanning phase. Once a mesh is
created for an object, it can be reused in different settings,
eliminating the need to recreate it for each new scenario.
With the meshes prepared, we use FoundationPose [90] to

estimate the objects’ poses, enabling precise placement of
the corresponding meshes in the simulated environment. For
static elements, like the workspace table and shoe rack in
Figure 3, we capture a point cloud to create their meshes for
use in the simulation.

The generated meshes are further used to identify candi-
date keypoints. For manipulable objects like shoes or books,
keypoints are placed at the object’s extremities along its axes,
defined with respect to the object’s center, independent of
the human instruction. For static objects like shoe racks,
which are part of the environment, keypoints are uniformly
distributed across their surfaces. Numerical labels assigned
to keypoints are grouped by objects. For example, as shown
in Figure 7, keypoints 1–4 correspond to the box, 5–8 to
the left shoe, 9–12 to the right shoe, and the remaining
keypoints to the rack. Keypoints that are too close together in
the image projection are removed. Specifically, background
keypoints (e.g., like rack) near object keypoints are removed
first. Among overlapping object keypoints, only the one with
the lower numerical label is retained. Note, however, that the
VLM is not explicitly told this information but has to infer
the association between the keypoints and the objects based
on the input image.

C. Policy Training in Simulation

We control the robot in the end-effector space, which has
six degrees of freedom: three prismatic joints for movement
along the x, y, and z axes, and three revolute joints for
rotation. The gripper fingers remain closed by default, open-
ing only when grasping objects. Refer to Appendix A for a
detailed discussion on grasping.

State Space: The state space for our policy captures
the essential information to execute the task. The input is
a vector st consisting of the gripper’s end-effector pose
(pe,qe) ∈ R7, the pose of object currently being manip-
ulated (po,qo) ∈ R7, a set of object keypoints Ko =

{k(i)j }Ki
j=1 ∈ RKi×3, and their corresponding target positions

Kt = {k(i)tj }
Ki
j=1 ∈ RKi×3. Ko is calculated by applying rigid

body transformations to keypoints defined in the object’s
local coordinate frame, mapping them to their correspond-
ing positions in the world frame. Kt is derived from the
reward function f (i) generated by the VLM. Rotations qe

and qo are represented as quaternions. This state space
st = (pe,qe,po,qo,Ko,Kt) captures essential information
on objects of interest as well as the goal of the policy. Instead
of incorporating raw RGBD data directly into the state space,
object poses and keypoints are extracted from RGBD inputs
using a vision-based pose estimation method, as detailed in
Section III-D. This preprocessing step removes the necessity
of including raw RGBD data in the policy.

Action Space: The action space is defined relative to the
gripper’s current position and orientation. The policy outputs
actions at = (∆pe,∆re), where ∆pe ∈ R3 and ∆re ∈ R3

specifies the changes in translation and rotation respectively.
Training Algorithm & Architecture: We train our poli-

cies using IsaacGym [91] simulator with the PPO [92] algo-
rithm. We use an actor-critic architecture [93] with a shared

backbone. The network is a multi-layer perceptron (MLP)
consisting of hidden layers with 256, 128, and 64 units, each
followed by ELU [94] activation. Currently, it takes about 5
minutes to train per task, which can be prohibitive for certain
applications. However, this training time can be reduced by
increasing the number of parallel environments and utilizing
more powerful GPUs.

Domain Randomization (DR): Recognizing the chal-
lenges inherent in transferring policies between the simula-
tion and the real world, we employ DR to bridge the real-to-
sim-to-real gaps. DR is applied to object properties like fric-
tion, mass, restitution, compliance, and geometry. We further
randomize the object position, the gripper location, and the
grasp within a range. We found these to be especially crucial
for non-prehensile tasks like pushing. The specific parameter
ranges are detailed in Appendix B, and the effectiveness of
DR is evaluated in Section IV-E.

D. Deployment of Trained Policy

The trained RL policy πi is deployed directly in the real
world. Since the policy outputs the end-effector pose, we
employ inverse kinematics to compute the joint angles at
each timestep. The RL policy operates at 10Hz, producing
action commands that are then clipped to ensure the end
effector remains within the workspace limits. For keypoint
tracking, we utilize FoundationPose [90] to estimate the
object’s pose. These pose estimates are subsequently used
to compute the keypoint locations that are defined relative
to the objects. When VLM predicts to grasp objects, we use
AnyGrasp [95] to detect grasps in the real-world.

IV. EXPERIMENTS AND ANALYSIS

We aim to investigate whether Iterative Keypoint Re-
ward can effectively represent reward functions for diverse
manipulation skills within our IKER for real-to-sim-to-real
pipeline. We also want to see whether our pipeline can per-
form multi-step tasks in dynamic environments by leveraging
Iterative Keypoint Reward as feedback for replanning.

A. Experimental Setup, Metrics and Baselines

Fig. 4: Setup and experiment objects. We use XArm7 to conduct
all our experiments. Our setup includes 4 stationary and 1 wrist-
mounted camera. We experiment with 5 shoe pairs and 2 shoe racks
for tasks involving shoe scenarios. Additionally, we experiment with
9 different books for stowing tasks.

Task Annotated (Human labeled reward) Automatic (VLM-generated reward)

Simulation Real-World Simulation Real-World

IKER (Ours) Pose IKER (Ours) Pose IKER (Ours) Pose IKER (Ours) Pose

Shoe Place 0.945 0.938 0.8 0.9 0.778 0.353 0.7 0.3
Shoe Push 0.871 0.850 0.7 0.7 0.716 0.289 0.6 0.2
Stowing Push 0.901 0.914 0.8 0.7 0.679 0.374 0.6 0.3
Stowing Reorient 0.848 0.859 0.8 0.7 0.858 0.265 0.7 0.2

TABLE I: Performance of IKER in simulation and real-world. IKER, which makes use of visual keypoints, significantly outperforms
the conventional pose-based approach, especially when using VLMs to automatically generate reward functions.

We conduct experiments on XArm7 with four stationary
RealSense cameras. Figure 4 shows the setup, along with
the objects used. These cameras capture the point clouds,
which are used to construct the simulation environment and
to provide data for AnyGrasp to predict grasp. Additionally,
a wrist-mounted camera is used to capture images that are
used to query the VLM.

As a baseline, we use an annotated variant of IKER
with human-labeled reward functions, allowing evaluation
without VLM influence. We also compare our keypoint-
based method with another baseline that uses object pose
to construct reward function, which is more conventional
in RL training [71, 96–99]. In this pose-based method, the
VLM generates a function f that maps the initial object
poses (represented by xyz coordinates for position and RPY
angles for orientation) to their final poses. The prompt for
this baseline is discussed in Sec. C.

We evaluate our approach across four scenarios, illustrated
in Figure 1 (left): Shoe Place, Shoe Push, Book Push, and
Book Reorient. In Shoe Place, the robot picks up a shoe
from the ground and places it on a rack. In Shoe Push, it
pushes a shoe towards other shoe to form a matching pair.
In Book Push, it pushes a book to align with other book, or
push the book towards table edge, and in Book Reorient, it
repositions a book on a shelf. Each scenario has 10 start/end
configurations. In simulation, success rates are averaged over
128 randomized environments generated for 10 start/end
configuration, making a total of 1280 trials per scenario.
In the real-world, success is evaluated directly on the 10
start/end configurations. A trial is considered successful in
both cases if the average keypoint distance to the target is
within 5 cm.

B. Policy Training with IKER for Single-Step Tasks

We conduct experiments comparing RL training with key-
points and object pose in reward functions. Our experiments
span four representative tasks, and are summarized in Table I.

In the annotated method, success rates for shoe placement
using IKER and object pose are 0.945 and 0.938, respec-
tively. A similar trend is observed in the shoe push, stowing
push, and reorient tasks, where performance differences are
minimal. These results demonstrate that, when targets are
specified through human annotations, both keypoints and
object poses effectively capture the target locations and serve
as viable approaches for RL policy training.

In the automatic method, IKER significantly outperforms
object pose representations. For example, in shoe placement,

IKER achieves a 0.7 success rate, while object poses reach
only 0.3. Similar results are seen across other tasks. Object
pose success is limited to simpler scenarios with no orien-
tation changes, as VLMs struggle with rotations in SO(3)
space. In contrast, keypoints simplify the challenge by re-
quiring VLMs to reason only in Cartesian space, eliminating
the need to handle object poses in SE(3) space.

As shown in Table I, there is a slight reduction in success
rate from simulation to the real world. For shoe placement,
IKER achieves success of 0.945 in simulation and 0.8 in the
real world. For shoe push, the success rate drops from 0.871
to 0.850. These results suggest that domain randomization
described in Section III-C helps the model generalize to real-
world conditions, but factors like inaccuracies in environment
reconstruction, real-world perception errors, and the inability
to simulate extreme object dynamics still affect performance.

Most of the failures in our framework stem from dis-
crepancies between the heuristic grasps used in simulation
and the grasps generated by AnyGrasp in the real world, as
well as incorrect VLM predictions. For incorrect VLM pre-
dictions, the model sometimes selects the wrong keypoints
or fails to use all available keypoints on an object when
determining its relationship to another object. For instance,
if an object has four keypoints, the VLM may only use one
of them, leading to suboptimal alignment and placement.
These issues can be mitigated by providing more in-context
examples while querying the VLMs. These challenges may
become less pronounced with the incorporation of advance-
ments such as [100], which enhance the spatial reasoning
capabilities of VLMs. Additionally, some failures are caused
by physical dynamics when pushing objects. These issues
can be partially mitigated by explicitly estimating dynamic
parameters during real-to-sim transfer.

C. Iterative Replanning for Multi-Step Tasks

We demonstrate the robot’s iterative chaining ability with
a task of three sequential actions: first pushing a shoe box
to create space, then placing a pair of shoes on a rack.
Failure in one task leads to failure in the next. We evaluate
this process using 10 different start and end configurations,
iterating through each to assess overall performance.

We compare our method with VoxPoser [12], which
employs LLMs to generate code that produces potential
fields for motion planning. VoxPoser serves as an ideal
baseline because it synthesizes motion plans for diverse
manipulation tasks from free-form language instructions.
Notably, VoxPoser plans are open-loop and lack feedback to

Ro
bu

st
ne

ss
 T

o
Di

st
ur

ba
nc

es
Ad

ju
st

m
en

ts

To
 P

la
n

Pr
op

os
e

N
ew

Pl

an

Human: Place shoes on rack Places right shoe on rack Places left shoe on rack, little far Adjusts left shoe Task done!

Task done!Pushes book to the sideHuman: Stow book to shelf Grasps and stows book to shelfFails grasp! Replan!

Human: Place shoes on rack Places right shoe on rack Task done!Places right then left shoe on rackHuman disturbance

Fig. 5: Scenarios demonstrating capabilities of our framework. The framework is robust to disturbances and can adapt in response
to unexpected events. Additionally, it can propose new plans when the original ones become infeasible.

Fig. 6: Multi-Step Task Chaining Comparison with VoxPoser.
Our proposed framework consistently demonstrates superior perfor-
mance compared to VoxPoser at every step of the task sequence.

refine specifications at each step. To adapt it to our tasks, we
enhanced VoxPoser with two major modifications: (1) Vox-
Poser used OWL-ViT [101] to find object bounding boxes,
but it struggled to distinguish between left and right shoes,
so we provided ground-truth object locations. (2) We gave
VoxPoser the entire plan, as the original planner struggled
with multi-step tasks. This gave VoxPoser an advantage over
our method due to access to privileged information.

Figure 6 shows the iterative chaining results. Across the
three tasks, our method consistently outperformed VoxPoser.
In the first task, we succeeded 8 out of 10 times compared
to VoxPoser’s 5 successes. For the second task, we had 5
successes while VoxPoser had 1. In the final task, our method
succeeded 4 times, whereas VoxPoser failed in all attempts.
VoxPoser’s failures can be attributed to several factors, such
as pushing the shoe box either too far or not far enough.
Additionally, its grasping strategy relies on a simple heuristic
that positions the robot’s end effector around the object cen-
ter before closing the gripper, often resulting in failed grasps.
It also struggles with collisions during object manipulation,

as it does not account for the environment to avoid obstacles.
Furthermore, improper placement of shoes—such as stacking
both shoes on top of each other, causing them to fall—further
highlights its limitations.

D. Robustness, Adjusting Plans, and Re-Planning

Unlike previous works that rely on open-loop plans, our
approach leverages closed-loop plans, enabling adjustments
during execution. This feature gives rise to several capabili-
ties, as demonstrated in Figure 5.

In the first scenario, a human interrupts the robot while
it is in the process of placing shoes on the ground. The
framework demonstrates resilience by recovering from the
interruption. The robot re-grasps the shoe and successfully
completes the task by placing both shoes on the rack.

In the second scenario, when the robot attempts to place
the left shoe, it detects that the shoe is not positioned close
enough to the right shoe. To address this, the VLM predicts
a corrective action, suggesting that the robot push the left
shoe closer to the right shoe to form a proper pair.

In the third scenario, the robot is tasked with stowing
a book on a shelf. However, the initial grasp attempt fails
because the book is too large to be grasped. In response, the
VLM predicts an alternative strategy to complete the task,
adjusting the approach to ensure successful placement.

E. Effect of Domain Randomization

We present the results of our framework with and without
DR for shoe place and push. The performance is averaged
over 10 runs. In the simulation, the performance without
DR is 0.964, while with DR, it is slightly lower at 0.945,
suggesting that without DR, the policy performs better in
a single, controlled setting. However, in the real world, the
performance without DR drops to 0.6, whereas with DR, it is

Task Without DR With DR

Simulation Real-World Simulation Real-World

Place 0.964 0.5 0.945 0.8
Push 0.923 0.2 0.871 0.7

TABLE II: Performance of Shoe Place and Push with and with-
out Domain Randomization (DR). DR slightly reduces simulation
performance but significantly improves real-world task performance
across different scenarios.

0.8, highlighting the effectiveness of DR. For the place task
without DR, we observe that the policy is less robust to sim-
to-real gap, frequently colliding with the shoe rack during
transport. Additionally, immediately after picking up the
object, the policy sometimes fails, likely due to discrepancies
in the pose estimation.

For push, these issues are more pronounced: success is
0.2 without DR but improves to 0.7 with DR. Without DR,
the policy often crushes the shoe or causes it to slip out of
alignment during pushing. These findings demonstrate the
importance of DR for reliable real-world performance.

V. CONCLUSION AND LIMITATIONS

In this work, we introduced Iterative Keypoint Reward
(IKER), a framework that leverages VLMs to generate vi-
sually grounded reward functions for robotic manipulation
in open-world environments. By using keypoints from RGB-
D observations, our approach enables precise SE(3) control
and integrates priors from VLMs without relying on rigid
instructions. IKER bridges simulation and real-world exe-
cution through a real-to-sim-to-real loop, training policies in
simulation and deploying them in physical environments. Ex-
periments across diverse tasks demonstrate the framework’s
ability to handle complex, long-horizon challenges with
adaptive strategies and error recovery. This work represents
a step toward more intelligent and flexible robots capable of
operating effectively in dynamic, real-world settings.

Despite these advancements, our approach has certain
limitations. We need to capture objects from all views to
obtain object meshes. In the future, this may be simplified
by using methods [52] that can generate meshes from a
single image. Additionally, our real-to-sim transfer does not
account for dynamics parameters, which could be modeled
more accurately through system identification techniques.
Also, while our framework reconstructs multiple objects in
the environment, we do not account for tasks involving
complicated multi-object interactions, limiting our evaluation
primarily to single-object manipulation at each stage.

VI. ACKNOWLEDGEMENTS

We thank Aditya Prakash, Arjun Gupta, Binghao Huang,
Hanxiao Jiang, Kaifeng Zhang, and Unnat Jain for fruitful
discussions. This work is partially supported by the Amazon
AICE Award and the Sony Group Corporation. This work
does not relate to the positions of Shubham Garg and
Hooshang Nayyeri at Amazon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

REFERENCES

[1] OpenAI, “Gpt-4 technical report,” arXiv, 2023.
[2] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Puro-

hit, M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke et al., “Socratic
models: Composing zero-shot multimodal reasoning with language,”
arXiv preprint arXiv:2204.00598, 2022.

[3] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger,
and I. Sutskever, “Learning transferable visual models from
natural language supervision,” 2021. [Online]. Available: https:
//arxiv.org/abs/2103.00020

[4] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V.
Le, Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and
vision-language representation learning with noisy text supervision,”
2021. [Online]. Available: https://arxiv.org/abs/2102.05918

[5] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and
generation,” in International conference on machine learning.
PMLR, 2022, pp. 12 888–12 900.

[6] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” 2023. [Online]. Available: https://arxiv.org/abs/2301.12597

[7] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson,
K. Lenc, A. Mensch, K. Millican, M. Reynolds, R. Ring,
E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei,
M. Monteiro, J. Menick, S. Borgeaud, A. Brock, A. Nematzadeh,
S. Sharifzadeh, M. Binkowski, R. Barreira, O. Vinyals, A. Zisserman,
and K. Simonyan, “Flamingo: a visual language model for few-shot
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2204.14198

[8] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and
Y. Wu, “Coca: Contrastive captioners are image-text foundation
models,” 2022. [Online]. Available: https://arxiv.org/abs/2205.01917

[9] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei, “Rekep: Spatio-
temporal reasoning of relational keypoint constraints for robotic
manipulation,” arXiv preprint arXiv:2409.01652, 2024.

[10] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[11] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” in arXiv preprint arXiv:2209.07753, 2022.

[12] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei,
“Voxposer: Composable 3d value maps for robotic manipulation with
language models,” arXiv preprint arXiv:2307.05973, 2023.

[13] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[14] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[15] F. Liu, K. Fang, P. Abbeel, and S. Levine, “Moka: Open-vocabulary
robotic manipulation through mark-based visual prompting,” arXiv
preprint arXiv:2403.03174, 2024.

[16] H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao, “Copa: General
robotic manipulation through spatial constraints of parts with foun-
dation models,” arXiv preprint arXiv:2403.08248, 2024.

[17] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu et al., “Octo: An open-source
generalist robot policy,” arXiv preprint arXiv:2405.12213, 2024.

[18] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, and H. Li, “In-
struct2act: Mapping multi-modality instructions to robotic actions
with large language model,” arXiv preprint arXiv:2305.11176, 2023.

[19] M. Xu, P. Huang, W. Yu, S. Liu, X. Zhang, Y. Niu, T. Zhang, F. Xia,
J. Tan, and D. Zhao, “Creative robot tool use with large language
models,” arXiv preprint arXiv:2310.13065, 2023.

[20] H. Zhou, M. Ding, W. Peng, M. Tomizuka, L. Shao, and C. Gan,
“Generalizable long-horizon manipulations with large language mod-
els,” arXiv preprint arXiv:2310.02264, 2023.

[21] S. Nasiriany, F. Xia, W. Yu, T. Xiao, J. Liang, I. Dasgupta,
A. Xie, D. Driess, A. Wahid, Z. Xu et al., “Pivot: Iterative visual
prompting elicits actionable knowledge for vlms,” arXiv preprint
arXiv:2402.07872, 2024.

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2205.01917

[22] N. Di Palo and E. Johns, “Keypoint action tokens enable in-context
imitation learning in robotics,” arXiv preprint arXiv:2403.19578,
2024.

[23] F. Zeng, W. Gan, Y. Wang, N. Liu, and P. S. Yu, “Large language
models for robotics: A survey,” arXiv preprint arXiv:2311.07226,
2023.

[24] L. Zha, Y. Cui, L.-H. Lin, M. Kwon, M. G. Arenas, A. Zeng, F. Xia,
and D. Sadigh, “Distilling and retrieving generalizable knowledge
for robot manipulation via language corrections,” in 2024 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 15 172–15 179.

[25] M. G. Arenas, T. Xiao, S. Singh, V. Jain, A. Ren, Q. Vuong, J. Varley,
A. Herzog, I. Leal, S. Kirmani et al., “How to prompt your robot: A
promptbook for manipulation skills with code as policies,” in 2024
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2024, pp. 4340–4348.

[26] K. Mahadevan, J. Chien, N. Brown, Z. Xu, C. Parada, F. Xia,
A. Zeng, L. Takayama, and D. Sadigh, “Generative expressive robot
behaviors using large language models,” in Proceedings of the 2024
ACM/IEEE International Conference on Human-Robot Interaction,
2024, pp. 482–491.

[27] J. Liang, F. Xia, W. Yu, A. Zeng, M. G. Arenas, M. Attarian,
M. Bauza, M. Bennice, A. Bewley, A. Dostmohamed et al., “Learning
to learn faster from human feedback with language model predictive
control,” arXiv preprint arXiv:2402.11450, 2024.

[28] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu, P. Florence,
I. Mordatch, S. Levine, K. Hausman et al., “Grounded decoding:
Guiding text generation with grounded models for embodied agents,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[29] A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu,
L. Takayama, F. Xia, J. Varley et al., “Robots that ask for help:
Uncertainty alignment for large language model planners,” arXiv
preprint arXiv:2307.01928, 2023.

[30] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei,
A. Anandkumar, Y. Zhu, and L. Fan, “Vima: General robot manipu-
lation with multimodal prompts,” arXiv preprint arXiv:2210.03094,
vol. 2, no. 3, p. 6, 2022.

[31] Z. Yang, C. Garrett, D. Fox, T. Lozano-Pérez, and L. P. Kaelbling,
“Guiding long-horizon task and motion planning with vision lan-
guage models,” arXiv preprint arXiv:2410.02193, 2024.

[32] J. Duan, W. Pumacay, N. Kumar, Y. R. Wang, S. Tian, W. Yuan,
R. Krishna, D. Fox, A. Mandlekar, and Y. Guo, “Aha: A vision-
language-model for detecting and reasoning over failures in robotic
manipulation,” arXiv preprint arXiv:2410.00371, 2024.

[33] J. Duan, W. Yuan, W. Pumacay, Y. R. Wang, K. Ehsani, D. Fox,
and R. Krishna, “Manipulate-anything: Automating real-world robots
using vision-language models,” arXiv preprint arXiv:2406.18915,
2024.

[34] W. Yuan, J. Duan, V. Blukis, W. Pumacay, R. Krishna, A. Mu-
rali, A. Mousavian, and D. Fox, “Robopoint: A vision-language
model for spatial affordance prediction for robotics,” arXiv preprint
arXiv:2406.10721, 2024.

[35] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: program genera-
tion for situated robot task planning using large language models,”
Autonomous Robots, vol. 47, no. 8, pp. 999–1012, 2023.

[36] G. Tang, S. Rajkumar, Y. Zhou, H. R. Walke, S. Levine, and
K. Fang, “Kalie: Fine-tuning vision-language models for open-world
manipulation without robot data,” arXiv preprint arXiv:2409.14066,
2024.

[37] W. Liang, S. Wang, H.-J. Wang, O. Bastani, D. Jayaraman, and
Y. J. Ma, “Eurekaverse: Environment curriculum generation via large
language models,” arXiv preprint arXiv:2411.01775, 2024.

[38] M. Zawalski, W. Chen, K. Pertsch, O. Mees, C. Finn, and S. Levine,
“Robotic control via embodied chain-of-thought reasoning,” arXiv
preprint arXiv:2407.08693, 2024.

[39] A. O’Neill, A. Rehman, A. Gupta, A. Maddukuri, A. Gupta,
A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar et al.,
“Open x-embodiment: Robotic learning datasets and rt-x models,”
arXiv preprint arXiv:2310.08864, 2023.

[40] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning. PMLR,
2022.

[41] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson,
Y. Chebotar, D. Dwibedi, and D. Sadigh, “Rt-h: Action hierarchies
using language,” in https://arxiv.org/abs/2403.01823, 2024.

[42] W. Zhao, J. Chen, Z. Meng, D. Mao, R. Song, and W. Zhang, “Vlmpc:
Vision-language model predictive control for robotic manipulation,”
in Robotics: Science and Systems, 2024.

[43] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[44] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayara-
man, Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-level
reward design via coding large language models,” arXiv preprint
arXiv: Arxiv-2310.12931, 2023.

[45] Y. J. Ma, W. Liang, H.-J. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani,
and D. Jayaraman, “Dreureka: Language model guided sim-to-real
transfer,” 2024. [Online]. Available: https://arxiv.org/abs/2406.01967

[46] T. Xie, S. Zhao, C. H. Wu, Y. Liu, Q. Luo, V. Zhong, Y. Yang, and
T. Yu, “Text2reward: Automated dense reward function generation
for reinforcement learning,” arXiv preprint arXiv:2309.11489, 2023.

[47] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes,
M. Wüthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-
time perception meets reactive motion generation,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1864–1871, 2018.

[48] B. Wen, W. Lian, K. Bekris, and S. Schaal, “You only demonstrate
once: Category-level manipulation from single visual demonstration,”
arXiv preprint arXiv:2201.12716, 2022.

[49] M. Liu, R. Shi, L. Chen, Z. Zhang, C. Xu, X. Wei, H. Chen,
C. Zeng, J. Gu, and H. Su, “One-2-3-45++: Fast single image to
3d objects with consistent multi-view generation and 3d diffusion,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 10 072–10 083.

[50] C. Xu, A. Li, L. Chen, Y. Liu, R. Shi, H. Su, and M. Liu, “Sparp:
Fast 3d object reconstruction and pose estimation from sparse views,”
in European Conference on Computer Vision. Springer, 2025, pp.
143–163.

[51] R. Shi, H. Chen, Z. Zhang, M. Liu, C. Xu, X. Wei, L. Chen, C. Zeng,
and H. Su, “Zero123++: a single image to consistent multi-view
diffusion base model,” arXiv preprint arXiv:2310.15110, 2023.

[52] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and
C. Vondrick, “Zero-1-to-3: Zero-shot one image to 3d object,” in
Proceedings of the IEEE/CVF international conference on computer
vision, 2023, pp. 9298–9309.

[53] J. Gao, T. Shen, Z. Wang, W. Chen, K. Yin, D. Li, O. Litany,
Z. Gojcic, and S. Fidler, “Get3d: A generative model of high
quality 3d textured shapes learned from images,” Advances In Neural
Information Processing Systems, vol. 35, pp. 31 841–31 854, 2022.

[54] J. Mu, W. Qiu, A. Kortylewski, A. Yuille, N. Vasconcelos, and
X. Wang, “A-sdf: Learning disentangled signed distance functions for
articulated shape representation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 13 001–
13 011.

[55] Z. Jiang, C.-C. Hsu, and Y. Zhu, “Ditto: Building digital twins of
articulated objects from interaction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
5616–5626.

[56] N. Nie, S. Y. Gadre, K. Ehsani, and S. Song, “Structure from action:
Learning interactions for articulated object 3d structure discovery,”
arXiv preprint arXiv:2207.08997, 2022.

[57] Z. Chen, A. Walsman, M. Memmel, K. Mo, A. Fang, K. Vemuri,
A. Wu, D. Fox, and A. Gupta, “Urdformer: A pipeline for construct-
ing articulated simulation environments from real-world images,”
arXiv preprint arXiv:2405.11656, 2024.

[58] Z. Mandi, Y. Weng, D. Bauer, and S. Song, “Real2code: Re-
construct articulated objects via code generation,” arXiv preprint
arXiv:2406.08474, 2024.

[59] J. Liu, A. Mahdavi-Amiri, and M. Savva, “Paris: Part-level recon-
struction and motion analysis for articulated objects,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision,
2023, pp. 352–363.

[60] J. Liu, H. I. I. Tam, A. Mahdavi-Amiri, and M. Savva, “Cage: Con-
trollable articulation generation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024, pp.
17 880–17 889.

https://arxiv.org/abs/2406.01967

[61] J. Liu, D. Iliash, A. X. Chang, M. Savva, and A. Mahdavi-Amiri,
“Singapo: Single image controlled generation of articulated parts in
object,” arXiv preprint arXiv:2410.16499, 2024.

[62] X. Huang, I. Walker, and S. Birchfield, “Occlusion-aware recon-
struction and manipulation of 3d articulated objects,” in 2012 IEEE
international conference on robotics and automation. IEEE, 2012,
pp. 1365–1371.

[63] B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Muller, A. Evans, D. Fox,
J. Kautz, and S. Birchfield, “Bundlesdf: Neural 6-dof tracking and
3d reconstruction of unknown objects,” CVPR, 2023.

[64] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” arXiv preprint arXiv: Arxiv-
2109.12098, 2021.

[65] Y. Jiang, C. Wang, R. Zhang, J. Wu, and L. Fei-Fei, “Transic:
Sim-to-real policy transfer by learning from online correction,”
2024. [Online]. Available: https://arxiv.org/abs/2405.10315

[66] J. Gu, D. S. Chaplot, H. Su, and J. Malik, “Multi-skill mobile
manipulation for object rearrangement,” arXiv preprint arXiv: Arxiv-
2209.02778, 2022.

[67] S. Yenamandra, A. Ramachandran, K. Yadav, A. Wang, M. Khanna,
T. Gervet, T.-Y. Yang, V. Jain, A. W. Clegg, J. Turner, Z. Kira,
M. Savva, A. Chang, D. S. Chaplot, D. Batra, R. Mottaghi, Y. Bisk,
and C. Paxton, “Homerobot: Open-vocabulary mobile manipulation,”
arXiv preprint arXiv: Arxiv-2306.11565, 2023.

[68] B. Huang, Y. Chen, T. Wang, Y. Qin, Y. Yang, N. Atanasov, and
X. Wang, “Dynamic handover: Throw and catch with bimanual
hands,” arXiv preprint arXiv:2309.05655, 2023.

[69] Y. Chen, C. Wang, L. Fei-Fei, and C. K. Liu, “Sequential dexterity:
Chaining dexterous policies for long-horizon manipulation,” arXiv
preprint arXiv:2309.00987, 2023.

[70] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Dexpoint:
Generalizable point cloud reinforcement learning for sim-to-
real dexterous manipulation,” 2022. [Online]. Available: https:
//arxiv.org/abs/2211.09423

[71] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik, “In-hand
object rotation via rapid motor adaptation,” in Conference on Robot
Learning. PMLR, 2023, pp. 1722–1732.

[72] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating
without seeing: Towards in-hand dexterity through touch,” arXiv
preprint arXiv:2303.10880, 2023.

[73] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: rapid
motor adaptation for legged robots,” in Robotics: Science and
Systems XVII, Virtual Event, July 12-16, 2021, D. A. Shell,
M. Toussaint, and M. A. Hsieh, Eds., 2021. [Online]. Available:
https://doi.org/10.15607/RSS.2021.XVII.011

[74] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi, “Agile but
safe: Learning collision-free high-speed legged locomotion,” 2024.
[Online]. Available: https://arxiv.org/abs/2401.17583

[75] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez,
and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv: Arxiv-1804.10332, 2018.

[76] P. Chang and T. Padir, “Sim2real2sim: Bridging the gap between
simulation and real-world in flexible object manipulation,” arXiv
preprint arXiv: Arxiv-2002.02538, 2020.

[77] V. Lim, H. Huang, L. Y. Chen, J. Wang, J. Ichnowski, D. Seita,
M. Laskey, and K. Goldberg, “Planar robot casting with real2sim2real
self-supervised learning,” arXiv preprint arXiv: Arxiv-2111.04814,
2021.

[78] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using
simulation and domain adaptation to improve efficiency of deep
robotic grasping,” in 2018 IEEE international conference on robotics
and automation (ICRA). IEEE, 2018, pp. 4243–4250.

[79] K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki, “Meta
reinforcement learning for sim-to-real domain adaptation,” 2019.
[Online]. Available: https://arxiv.org/abs/1909.12906

[80] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,
“Rl-cyclegan: Reinforcement learning aware simulation-to-real,”
2020. [Online]. Available: https://arxiv.org/abs/2006.09001

[81] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real
via sim-to-sim: Data-efficient robotic grasping via randomized-to-
canonical adaptation networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp.
12 627–12 637.

[82] Y. Du, D. Ho, A. Alemi, E. Jang, and M. Khansari, “Bayesian imi-
tation learning for end-to-end mobile manipulation,” in International
Conference on Machine Learning. PMLR, 2022, pp. 5531–5546.

[83] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
arXiv preprint arXiv: Arxiv-1910.07113, 2019.

[84] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[85] R. Antonova, F. Ramos, R. Possas, and D. Fox, “Bayessimig:
Scalable parameter inference for adaptive domain randomization with
isaacgym,” arXiv preprint arXiv:2107.04527, 2021.

[86] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[87] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[88] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,
N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting
simulation randomization with real world experience,” in 2019 In-
ternational Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 8973–8979.

[89] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta,
and P. Agrawal, “Reconciling reality through simulation: A real-
to-sim-to-real approach for robust manipulation,” arXiv preprint
arXiv:2403.03949, 2024.

[90] B. Wen, W. Yang, J. Kautz, and S. Birchfield, “Foundationpose:
Unified 6d pose estimation and tracking of novel objects,” arXiv
preprint arXiv:2312.08344, 2023.

[91] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey,
M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and
G. State, “Isaac gym: High performance gpu-based physics simu-
lation for robot learning,” 2021.

[92] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[93] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in
neural information processing systems, vol. 12, 1999.

[94] D.-A. Clevert, “Fast and accurate deep network learning by expo-
nential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[95] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu,
Y. Xie, and C. Lu, “Anygrasp: Robust and efficient grasp perception
in spatial and temporal domains,” IEEE Transactions on Robotics,
2023.

[96] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforce-
ment learning for robotic manipulation with asynchronous off-policy
updates,” in 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 2017, pp. 3389–3396.

[97] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Ve-
cerik, T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-
efficient deep reinforcement learning for dexterous manipulation,”
arXiv preprint arXiv:1704.03073, 2017.

[98] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv preprint arXiv:1707.08817, 2017.

[99] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipu-
lation with deep reinforcement learning and demonstrations,” arXiv
preprint arXiv:1709.10087, 2017.

[100] B. Chen, Z. Xu, S. Kirmani, B. Ichter, D. Sadigh, L. Guibas, and
F. Xia, “Spatialvlm: Endowing vision-language models with spatial
reasoning capabilities,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 14 455–
14 465.

[101] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen
et al., “Simple open-vocabulary object detection with vision trans-
formers,” arXiv preprint arXiv:2205.06230, 2022.

https://arxiv.org/abs/2405.10315
https://arxiv.org/abs/2211.09423
https://arxiv.org/abs/2211.09423
https://doi.org/10.15607/RSS.2021.XVII.011
https://arxiv.org/abs/2401.17583
https://arxiv.org/abs/1909.12906
https://arxiv.org/abs/2006.09001

APPENDIX

A. Grasping Subroutine

During training, the gripper fingers open only in the grasp
mode, where the end-effector approaches the object with
open fingers and then closes them to grasp the object. We
employ a heuristic-based grasp for faster training. In real-
world, the gripper fingers remain closed until the grasp mode
is triggered. AnyGrasp predicts an appropriate grasp pose and
the fingers close at the predicted position. To address the sim-
to-real gap, we add randomization to the heuristic grasp pose
during simulation. This allows the policy to generalize more
effectively, resulting in more robust and reliable policies in
the real-world.

B. Domain Randomization Parameters

To enhance the robustness of our policies for effective
real-to-sim-to-real transfer, we apply domain randomization
to various object properties and initial conditions. Table III
details the key randomized parameters and their respective
ranges. These variations ensure that our learned policies
generalize effectively to real-world conditions, mitigating the
discrepancies between simulation and real-world.

Parameter Range

Object Scale [0.8, 1.2]
Mass [0.3, 2.0]
Friction [0.3, 1.8]
Restitution [0.0, 1.0]
Compliance [0.0, 1.0]
Center of Mass Perturbation [-0.05, 0.05]
Initial Position Perturbation [-0.02, 0.02]
Initial Orientation Perturbation [-0.05, 0.05]
Grasp Position Noise [-0.01, 0.01]
Grasp Orientation Noise [-0.2, 0.2]

TABLE III: Domain randomization ranges for key object proper-
ties and initial conditions in simulation.

C. VLM Prompts

The VLM receives the image overlaid with keypoints
1, . . . ,K, along with the task description as text. These are
given to the VLM, along with the prompt. We do not provide
any in-context examples with the prompt. Our prompt for
single-step tasks is as follows:
Instructions
Your job is to help with moving rigid objects in real-
world by writing code in python.
The task is given as an image of the environment,
overlayed with keypoints marked with their indices, along
with a text instruction.
These keypoints are in 3D space, and are projected onto
the 2D image. They are attached with the objects, and move
along with them.
So to determine where a specific point should go, you
should specify where its corresponding keypoint should go.
The coordinate system is marked at the bottom right in the
image, with a vertical arrow pointing forward in the
positive x direction and the horizontal arrow pointing to
the left in the positive y direction.
The code should predict the final keypoint locations
relative to their matching keypoints. Use all matching
keypoints to determine the final position of the moving
object, not just a single reference point.
Note:
- You should determine if you need to grasp or push the
object. You should output a boolean grasp_mode for that.

- Some objects should not be moved. Hence, the final
location of key points on them should be the same as the
initial locations.
- If you need to interact with an object, the final
location of only the keypoints marked on it should change.
Hence, you should first try to understand which object
should move.
- You should try to understand where the moving object
should go relative to other stationary objects and use all
the matching keypoints for alignment. Then you can give
the final locations of keypoints of moving objects
relative to keypoints on stationary objects.
- Positive x direction points towards up and positive y
direction points towards left.
- The input to the function is a dictionary of keypoint
coordinates. So keys will be strings like "1", "2", ...
and their values will be numpy arrays ([x, y, z])
representing the 3D location of the keypoint corresponding
to that index.
- To represent coordinates relative to other keypoints,
you can make predictions like:
keypoint_coordinates[’1’] = keypoint_coordinates[’2’] +
np.array([delta_x, delta_y, delta_z]).
For instance, if keypoint 1 needs to be placed to the
left of keypoint 2, then delta_x = 0, delta_y = 0.1, and
delta_z = 0.
So can predict keypoint_coordinates[’1’] =
keypoint_coordinates[’2’] + np.array([0, 0.1, 0]).
The units here are in meters and left direction
corresponds to + y-axis.

- Make use of semantics. Some objects should be placed in
a certain way, like a left shoe should be placed on the
left of the right shoe.

Structure your output in a single python code block as
follows:

def get_interaction_data(keypoint_coordinates):
""" Put your explanation here. """
object_to_interact = ?
keypoint_indices_to_interact = ?
grasp_mode = ?
final keypoint calculation for each keypoint in
keypoint_indices_to_interact
keypoint_coordinates[‘keypoint_indices_to_interact
[0]‘] = ? # Write calculation here. You may use
multiple lines
Repeat for other keypoints
return object_to_interact,
keypoint_indices_to_interact, grasp_mode,
keypoint_coordinates

Query
Query Task: ’[TASK]’
Query Image: [IMAGE_WITH_KEYPOINTS]

The prompt for multi-step tasks is as follows:
Instructions
Your job is to help with moving rigid objects in real-
world by writing code in python.
The task is given as an image of the environment,
overlayed with keypoints marked with their indices, along
with a text instruction.
These keypoints are in 3D space, and are projected onto
the 2D image. They are attached with the objects, and move
along with them.
So to determine where a specific point should go, you
should specify where its corresponding keypoint should go.
The coordinate system is marked at the bottom right in the
image, with a vertical arrow pointing forward in the
positive x direction and the horizontal arrow pointing to
the left in the positive y direction.
The code should predict the final keypoint locations
relative to their matching keypoints. Use all matching
keypoints to determine the final position of the moving
object, not just a single reference point.
Note:
- You should determine if you need to grasp or push the
object. You should output a boolean grasp_mode for that.
Generally, big objects can only be pushed as they are too
big to be grasped.
- Some objects should not be moved. Hence, the final
location of key points on them should be the same as the
initial locations.

VLM

def interaction_data(keypoint_coordinates):
""" Previous Plan Description: None"""
""" Current Plan Description: The task is to place the shoes onto the rack. This will
involve moving the shoes to the surface where the box is located. Since there is not enough
space for both the shoes, an appropriate plan is to first make space by pushing the box.
Then the shoes should be placed on the rack."""
""" Current stage description: Push the box (keypoints 1, 2, 3, 4) towards left."""
done = False
object_to_interact = "box"
keypoint_indices_to_interact = [1, 2, 3, 4]
grasp_mode = False
Calculating final positions of the keypoints on the box
keypoint_coordinates['1'] = keypoint_coordinates['1'] + np.array([0, 0.1, 0])
keypoint_coordinates['2'] = keypoint_coordinates['2'] + np.array([0, 0.1, 0])
keypoint_coordinates['3'] = keypoint_coordinates['3'] + np.array([0, 0.1, 0])
keypoint_coordinates['4'] = keypoint_coordinates['4'] + np.array([0, 0.1, 0])

return object_to_interact, keypoint_indices_to_interact, grasp_mode, keypoint_coordinates

VLM

def interaction_data(keypoint_coordinates):
""" Previous Plan Description: Place the right shoe on the rack."""
""" Current Plan Description: The task is to place the shoes onto the rack. Since both the
shoes are already on the rack, the task is done."""
""" Current stage description: Task is done."""
done = True
return

𝑡

VLM

def interaction_data(keypoint_coordinates):
""" Previous Plan Description: First push the box to make space. Then place the shoes on the
rack."""
""" Current Plan Description: The task is to place the shoes onto the rack. The box is
already pushed and there is enough space. An appropriate action would be to place the left
shoe."""
""" Current stage description: Place the left shoe (keypoints 5, 6, 7, 8) on the rack."""
done = False
object_to_interact = "left_shoe"
keypoint_indices_to_interact = [5, 6, 7, 8]
grasp_mode = True
Calculating final positions of the keypoints on the box
keypoint_coordinates['5'] = keypoint_coordinates['16']
keypoint_coordinates['6'] = keypoint_coordinates['15']
keypoint_coordinates['7'] = keypoint_coordinates['15'] + np.array([0.05, -0.05, 0])
keypoint_coordinates['8'] = keypoint_coordinates['15'] + np.array([0.05, 0.05, 0])

return object_to_interact, keypoint_indices_to_interact, grasp_mode, keypoint_coordinates

VLM

def interaction_data(keypoint_coordinates):
""" Previous Plan Description: Place the shoes on the rack"""
""" Current Plan Description: The task is to place the shoes onto the rack. The left shoe is
on the rack. An appropriate action would be to place the right shoe on the rack."""
""" Current stage description: Place the right shoe (keypoints 5, 6, 7, 8) on the rack."""
done = False
object_to_interact = "left_shoe"
keypoint_indices_to_interact = [9, 10, 11, 12]
grasp_mode = True
Calculating final positions of the keypoints on the box
keypoint_coordinates['9'] = keypoint_coordinates['5'] + np.array([0, -0.1, 0])
keypoint_coordinates['10'] = keypoint_coordinates['6'] + np.array([0, -0.1, 0])
keypoint_coordinates['11'] = keypoint_coordinates['7'] + np.array([0, -0.1, 0])
keypoint_coordinates['12'] = keypoint_coordinates['8'] + np.array([0, -0.1, 0])

return object_to_interact, keypoint_indices_to_interact, grasp_mode, keypoint_coordinates

Fig. 7: Examples of keypoint-marked images with corresponding predicted codes. The top row represents the starting point, with
subsequent rows illustrating the progression step by step. The VLM first predicts to push the box to create space, followed by sequential
placement of the shoes.

- If you need to interact with an object, the final
location of only the keypoints marked on it should change.
Hence, you should first try to understand which object
should move.

- You should try to understand where the moving object
should go relative to other stationary objects and use all
the matching keypoints for alignment.
Then you can give the final locations of keypoints of
moving objects relative to keypoints on stationary
objects.

- Positive x direction points towards up and positive y
direction points towards left.
- The input to the function is a dictionary of keypoint
coordinates. So keys will be strings like "1", "2", ...
and their values will be numpy arrays ([x, y, z])
representing the 3D location of the keypoint corresponding
to that index.
- To represent coordinates relative to other keypoints,
you can make predictions like:
keypoint_coordinates[’1’] = keypoint_coordinates[’2’] +
np.array([delta_x, delta_y, delta_z]).
For instance, if the keypoint 1 needs to be placed to
the left of keypoint 2, then delta_x = 0, delta_y = 0.1,
and delta_z = 0.

So can predict keypoint_coordinates[’1’] =
keypoint_coordinates[’2’] + np.array([0, 0.1, 0]).
The units here are in meters and left direction
corresponds to + y-axis.

- Make use of semantics. Some objects should be placed in
a certain way, like a left shoe should be placed on the
left of the right shoe.
- Some tasks involve multiple stages, so you will also
predict the overall plan. Then you will write the
description and code for the current stage. You will
interact with only one object in a stage. Placing or
pushing a single object will be considered a single stage.
Grasping is not considered as a separate stage.
- You are free to make minor changes to the plan, or
change the plan altogether if you think is necessary.
- We will keep adding the previous states of the
environment as images and the corresponding code to the
description. This will show how the task progressed. At
the start, you will only see the task description.
- You should predict done=True when the task is complete,
otherwise False. Only predict done=True when you see that
the task is completed.

Structure your output in a single python code block as

follows:

def get_interaction_data(keypoint_coordinates):
"""

Previous Plan Description
Current Plan Description
Current stage description

"""
done = ?
if done:

return
object_to_interact = ?
keypoint_indices_to_interact = ?
grasp_mode = ?
final keypoint calculation for each keypoint in
keypoint_indices_to_interact
keypoint_coordinates[’keypoint_indices_to_interact
[0]’] = ? # Write calculation here. You may use
multiple lines
Repeat for other keypoints
return object_to_interact,
keypoint_indices_to_interact, grasp_mode,
keypoint_coordinates

Query
Query Task: ’[TASK]’
Query Image: [IMAGE_WITH_KEYPOINTS]

The prompt for baseline that uses pose input for single-
step tasks is as follows:

Instructions
Your job is to help with moving rigid objects in a real-
world environment by writing code in Python.
The task is given as an image of the environment, along
with text instructions.
The coordinate system is marked at the bottom right in the
image, with a vertical arrow pointing forward in the
positive x direction and the horizontal arrow pointing to
the left in the positive y direction.
The objects are treated as rigid bodies and are labeled
with numbers. You need to predict the final pose of the
moving object relative to the pose of any object. It can
be its own pose or pose of other objects in the image.
Note:
- You should determine if you need to grasp or push the
object. You should output a boolean grasp_mode for that.
- Some objects should not be moved. Hence, the final pose
of those objects will be the same as the initial pose.
- If you need to interact with an object, the final pose
of that object should change.
- You should first try to understand which object should
move relative to its pose, or poses of the other objects.
Then you can give the final pose of the moving object
relative to the other object poses.
- Positive x direction points upwards, and positive y
direction points to the left.
- The input to the function is a dictionary of object
poses. So the keys will be strings representing object
labels like "1", "2", ..., and their values will be numpy
arrays [x, y, z, r, p, y], where x, y, z represent the
position in meters and r, p, y represent the orientation
in radians.
- To represent poses relative to other objects, you can
make predictions like: object_poses[’1’] = object_poses
[’2’] + np.array([delta_x, delta_y, delta_z, delta_r,
delta_p, delta_yaw]). For instance, if object 1 needs to
be placed to the left of object 2, then: delta_x = 0,
delta_y = 0.1, delta_z = 0, delta_r = 0, delta_p = 0,
delta_yaw = 0. So, you can predict: object_poses[’1’] =
object_poses[’2’] + np.array([0, 0.1, 0, 0, 0, 0]). The
units for positions are in meters, and for orientations,
they are in radians. The left direction corresponds to the
positive y-axis.
- Make use of semantics. Some objects should be placed in
a certain way, like a left shoe should be placed on the
left of the right shoe.
Structure your output in a single Python code block as
follows:

def get_final_poses(object_poses):
""" Put your explanation here. """
object_to_interact = ?
grasp_mode = ?

final pose calculation for each object
object_poses[‘object_to_interact‘] = ? # Write
calculation here. You may use multiple lines
return object_to_interact, grasp_mode, object_poses

Query
Query Task: ’[TASK]’
Query Image: [IMAGE]

D. Case study of a complex task

Human: Stow the book to shelf Place book on fixture for regrasp

Grasp longer side and stow book Human: Place it to other shelf

Fig. 8: Case study of a complex task with in-context examples.
The robot uses the environment to regrasp and stow the book. Then,
the human updates the instructions to place it on the other shelf.

We present results on a complex 3D understanding task.
The task involves stowing a book on a shelf, where the book
is initially positioned with only its shorter edge graspable.
The instruction is to place the book on the shelf. However,
the robot cannot place the book directly with the shorter edge
grasped, as this would result in a collision between the book
and the table due to the position of its arm. To complete this
task, the robot must perform multiple steps: first, it needs to
regrasp the book along its longer edge using some part of
the environment, and only then can it stow the book on the
shelf. After the robot places the book on the initial shelf, a
human intervenes by adding an instruction to move the book
to a different shelf.

Given the complexity of this long-horizon task, we employ
in-context examples to guide the VLM. With this change,
our system is able to successfully perform the task. Figure 8
illustrates the progression of the task.

	Introduction
	Related Work
	Method
	Iterative Keypoint Reward (IKER)
	Transferring real-world scene to simulation
	Policy Training in Simulation
	Deployment of Trained Policy

	Experiments and Analysis
	Experimental Setup, Metrics and Baselines
	Policy Training with IKER for Single-Step Tasks
	Iterative Replanning for Multi-Step Tasks
	Robustness, Adjusting Plans, and Re-Planning
	Effect of Domain Randomization

	Conclusion and Limitations
	Acknowledgements
	References
	Appendix
	Grasping Subroutine
	Domain Randomization Parameters
	VLM Prompts
	Case study of a complex task

