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Emotion recognition is the process of identifying human
T emotion using one or a combination of input signals such as
speech, facial expressions, body movement and gestures.

Call centers - monitoring, automatic answering etc.

Personal Home Assistants - Google Home, Amazon Echo

e Music, movie and media streaming & recommendation

Social robots incorporating face analysis

Several other consumer facing HCI applications

Social anxiety therapy and other behavioral disorders
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eductin e Holistic speaker modeling and similar downstream tasks

Motivation

¢ Indispensable for imparting a 'chatty’ aspect to
human-machine conversations

e Foundational for adding other modalities

Results Paper Objective

e Explore the effect of spontaneity on emotion recognition
from speech

e Look into suitable speech features for spontaneity
detection in an interpretable manner

Conclusion
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Previous Work

Introduction

EP e Two step approach!

Past Work e Frame by frame extraction low and mid level acoustic
Our work and prosodic features from raw speech
e Use ML classifiers for pattern recognition

e Detection of Fluency & spontaneity is well studied?
e But relation with emotion recognition is not explored

e Recent use of CNN and LSTM network with attention
for detection emotion in speech with self-learnt features.

Conclusion

Note: In the entirety of this work, we use Support Vector
Machines as classifiers for pattern recognition.

1Jin 2015, Abdelwahab & Busso 2017, Zong 2016, Nwe 2003,
Schuller 2003

*Dufour 2009, 2014
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University of Southern California

The Interactive Emotional Dyadic USC Viterbi
Motion Capture (IEMOCAP) Database SO

Dataset Description

We use USC-IEMOCAP database® for evaluation.
12 hours of audiovisual data with MOCAP recordings

5 different sessions

151 dyadic conversations
Over 10,000 labeled sentences

Well balanced in spontaneity labels

Very skewed (long-tailed) in emotion labels.

3JEMOCAP: Interactive emotional dyadic motion capture database,
Busso et al 2008
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Table 1: Data distribution of different classes in IEMOCAP database

Emotion #Examples %age Data Emotion Group
Frustration 2901 29.3 Negative
Anger 1199 12,11 Negative
Excited 1934 19.54 Positive
Fear 101 1.02 Negative
Happiness 652 6.58 Positive
Sadness 1249 12.62 Negative
Neutral State 1720 17.38 Neutral
Surprise 0100 1.02 Positive
Others 26 0.20 Positive

Few classes have most of the examples.
— Either cluster or re-balance dataset by pruning

o Clustered Data distribution - Negative (~ 4550),
Positive (~ 2750), Neutral (~2900) examples
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e Speech features used in the Interspeech 2009 emotion
challenge [Schuller 2009]
e Four low level descriptors (LLDs)

Mel-Frequency Cepstral Coefficients (MFCC)
Zero-Crossing Rate (ZCR)

Voice Probability (VP)

Fundamental Frequency (FO)
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Our work Feature extraction

Key idea
Multitask learning to detect
emotion and spontaneity
simultaneously
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the same conversation
e Use context for improving spontaneity detection
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Intermediate Conclusions

Around ~ 93% accuracy on spontaneity detection!

o Good enough to use as an auxiliary task.
Deten:licnl

But which features actually contribute?

Are there some superfluous features confusing the
classifier?
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Intermediate Conclusions

Around ~ 93% accuracy on spontaneity detection!

. Good enough to use as an auxiliary task.
Detection

But which features actually contribute?

Are there some superfluous features confusing the
classifier?

—> Feature Ablation Experiments.
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Table: Effect of features on spontaneity classification accuracy (in
%) for different sequence lengths

Feature(s) removed | /=5 (=10
None 914  93.0

ZCR 91.0 92.4

VP 90.6 92.6

FO 90.5 92.6
MFCC 83.4 85.5

VP, MFCC 80.7 83.8
FO, MFCC 83.2 84.9
ZCR, MFCC 78.8 82.3
VP, FO 90.6 91.5
VP, ZCR 90.2 92.1
FO, ZCR 90.6 92.2
VP, ZCR, FO 83.7 91.9
Any two, MFCC <76 <80
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Classifier Design : Multitask-Multilabel learning

e Based on above, we propose two different emotion
recognition models

Emation Recognition e Multi-label Hierarchical Emotion Recognition
e Joint Emotion and Spontaneity Recognition
o Both utilize spontaneity info but take different
assumptions on data
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SVM 1

Spontaneity
Detection

Interspeech 2018

IF

I sPoNTANEOUS

[ELLSIY
SPONTANEOUS

Figure: Multi-label Hierarchical Model

SVM 2

v

Emotion
Recog.

3

SVM 3

September 6, 2018 13 /20



(ONITACI{E Schematic Models

Interspeech
2018

e weight matrix W e RIY!*9 containing a set of weight
Vectors Wyys ey
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Figure: Joint Model for Emotion and Spontaneity Recognition
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Results

Results
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Table: Emotion recognition results for all classes together in terms
of weighted accuracy (in %) for pure 4-class classification.

Scripted Spontaneous | Overall

SVM baseline 56.8 73.0 65.4
RF baseline 62.1 66.0 64.1
CNN-based [10] 53.2 62.1 56.1
Rep. learning [11] - 52.8 50.4

Spontaneity-aware methods

LSTM [12] - - 56.7
Hierarchical 64.2 74.0 69.1
Joint 63.2 69.8 66.1
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SIS 4-emotion classification

Table: Emotion recognition results for individual classes in terms of
weighted accuracy (in %) for pure 4-class classification.

Anger Joy Neutral Sadness
SVM baseline 69.2  37.0 62.9 76.9
RF baseline 73.1 6.1 78.8 64.6
CNN-based [10] 58.2 519 52.8 66.5
Rep. learning [11] | 53.5  36.9 52.6 64.3

Spontaneity-aware methods

Hierarchical 80.2 375 65.9 73.3
Joint 712 131 75.9 76.3
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Figure: Emotion recognition results for individual clusters in terms
of weighted accuracy (in %) for clustered classification.

Positive Neutral Negative | Spontaneous Scripted | Overall
Bascline (SVM) 54.9 12.8 73.1 60.7 64.2 62.6
Baseline (RF) 53.6 18.3 67.3 58.6 61.6 60.1
Hierarchical 66.9 48.9 73.7 63.9 67.5 65.7
Joint 57.8 16.7 74.3 64.1 66.9 65.5

e Significantly poorer performance!
e Supplements training data

e Possible Reason: Confuses classifier with heteroskedastic
feature vectors
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e Detecting spontaneity in a multi-task approach helps
emotion detection

Conclusion
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the joint model.
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e Detecting spontaneity in a multi-task approach helps
emotion detection

e Hierarchical model for detection performs better than
the joint model.

e Grouping labels in Positive/Negative/Neutral clusters
harms classification performance.

Conclusion
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e Detecting spontaneity in a multi-task approach helps
emotion detection

e Hierarchical model for detection performs better than
the joint model.

e Grouping labels in Positive/Negative/Neutral clusters
harms classification performance.

e Spontaneity detection as a standalone task is solvable to
Conclusion high accuracies (~ 93%) with the use of context and also
boosts the performance for emotion recognition systems.
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Thank you for your attention!

Questions?

Conclusion
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