learnbyexample

Ruby One-Liners
Guide

@ 200+ examples
@ 50+ exercises

Sundeep Agarwal

Table of contents

Preface
Prerequisites e e e e e e e
Conventions e e e e e e e e e e e
Acknowledgements L e e e e
Feedback and Errata e
Authorinfo e e e e
License e e e e e e e e e
Book version L e e e e e e e e e e e e e

One-liner introduction

Command line options e e e e
Executing Rubycode e
Filtering e e e e e e e e e
Substitution
Field processing e e e e e e
BEGIN and END e e e e e e
ENVhash e e e e e
Executing external commands Lo e
Summary e e e e e e e e e e e e e e e e e e e
Exercises e e e e e e e e

Line processing
Regexp based filtering e e
Extracting matched portions o
match? method e
Transliteration L L e e
Conditional substitution e
Multiple conditions L
next . .o L e e e e e e e e e e e e e
eXit . . . e e e e e e e e e e e e
Line number based processingo e e e
Flip-Flop operator e e e e e e e
Working with fixed strings e
In-place file editing e e
SUMMATy e e e e e e e e e e e e e e e e e e e
Exercises L e e e e e e e e e e e e e

Field separators
Default field separation L. e
Input field separator L e e e
Character-wise separation
Newline characterin thelastfield
Using the -1 option for field splitting
Output field separator e e
scanmethod L e e
Fixed width processing e e

(S22 RIS, RENT-NET NIRRT SNy

(eI I«) I e) B«) I =)

e S S
WNNRFR OO ©

15
15
16
17
17
17
18
18
19
19
21
22
24
25
25

Assorted field processing methods L.

Summary
Exercises

Preface

As per ruby-lang.org, Ruby is based on programming languages like Perl, Smalltalk, Eiffel, Ada,
and Lisp. This book focuses on using Ruby from the command line, similar to Perl one-liners
usage.

You'll learn about various command line options and Ruby features that make it possible to
write compact CLI scripts. Learning to use Ruby from the command line will also allow you to
construct solutions where Ruby is just another tool in the shell ecosystem.

You should be comfortable with programming basics and have prior experience working with
Ruby. You should know concepts like blocks, be familiar with string/array/hash/enumerable
methods, regular expressions etc. You can check out my free ebook Understanding Ruby
Regexp if you wish to learn regular expressions in depth.

You should also be familiar with command line usage in a Unix-like environment. You should
be comfortable with concepts like file redirection and command pipelines. Knowing the basics
of the grep , sed and awk commands will come in handy as well.

e The examples presented here have been tested with Ruby version 3.3.0 and includes
features not available in earlier versions.

e Code snippets are copy pasted from the GNU bash shell and modified for presentation
purposes. Some commands are preceded by comments to provide context and explana-
tions. Blank lines to improve readability, only real time shown for speed comparisons,
output skipped/modified for certain commands and so on.

e External links are provided throughout the book for you to explore certain topics in more
depth.

e The learn ruby oneliners repo has all the code snippets and files used in examples, ex-
ercises and other details related to the book. If you are not familiar with the git
command, click the Code button on the webpage to get the files.

e ruby-lang documentation — manuals and tutorials

e stackoverflow — for getting answers to pertinent questions on Ruby and related com-
mands

tex.stackexchange — for help on pandoc and tex related questions

/r/ruby/ — helpful forum

canva — cover image

oxipng, pngquant and svgcleaner — optimizing images

Warning and Info icons by Amada44 under public domain

KOTP for spotting grammatical mistakes

A heartfelt thanks to all my readers. Your valuable support has significantly eased my financial
concerns and allows me to continue working on programming ebooks.

https://www.ruby-lang.org/en/about/
https://github.com/learnbyexample/Ruby_Regexp
https://github.com/learnbyexample/Ruby_Regexp
https://github.com/learnbyexample/learn_ruby_oneliners
https://www.ruby-lang.org/en/documentation/
https://stackoverflow.com/
https://tex.stackexchange.com/
https://github.com/jgm/pandoc/
https://old.reddit.com/r/ruby/
https://www.canva.com/
https://github.com/shssoichiro/oxipng
https://pngquant.org/
https://github.com/RazrFalcon/svgcleaner
https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44

I would highly appreciate it if you’d let me know how you felt about this book. It could be
anything from a simple thank you, pointing out a typo, mistakes in code snippets, which aspects
of the book worked for you (or didn’t!) and so on. Reader feedback is essential and especially
so for self-published authors.

You can reach me via:

e Issue Manager: https://github.com/learnbyexample/learn ruby oneliners/issues
e E-mail: learnbyexample.net@gmail.com
e Twitter: https://twitter.com/learn byexample

Sundeep Agarwal is a lazy being who prefers to work just enough to support his modest
lifestyle. He accumulated vast wealth working as a Design Engineer at Analog Devices and re-
tired from the corporate world at the ripe age of twenty-eight. Unfortunately, he squandered
his savings within a few years and had to scramble trying to earn a living. Against all odds,
selling programming ebooks saved his lazy self from having to look for a job again. He can now
afford all the fantasy ebooks he wants to read and spends unhealthy amount of time browsing
the internet.

When the creative muse strikes, he can be found working on yet another programming ebook
(which invariably ends up having at least one example with regular expressions). Research-
ing materials for his ebooks and everyday social media usage drowned his bookmarks, so he
maintains curated resource lists for sanity sake. He is thankful for free learning resources and
open source tools. His own contributions can be found at https://github.com/learnbyexample.

List of books: https://learnbyexample.github.io/books/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

Code snippets are available under MIT License.

Resources mentioned in Acknowledgements section above are available under original
licenses.

2.0

See Version changes.md to track changes across book versions.

https://github.com/learnbyexample/learn_ruby_oneliners/issues
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/learn_ruby_oneliners/blob/master/LICENSE
https://github.com/learnbyexample/learn_ruby_oneliners/blob/master/Version_changes.md

One-liner introduction

This chapter will give an overview of Ruby syntax for command line usage. You’'ll see examples
to understand what kind of problems are typically suited for one-liners.

I'll assume that you are already familiar with use cases where the command line is more pro-
ductive compared to GUI. See also this series of articles titled Unix as IDE.

A shell utility like Bash provides built-in commands and scripting features to easily solve and
automate various tasks. External commands like grep , sed , awk , sort , find ,
parallel , etc help to solve a wide variety of text processing tasks. These tools are often
combined to work together along with shell features like pipelines, wildcards and loops. You
can use Ruby as an alternative to such external tools and also complement them for some use
cases.

Here are some sample text processing tasks that you can solve using Ruby one-liners. Options
and related details will be explained later.

ruby -e 'puts readlines.uniq' *.txt

ruby -e 'puts readlines.uniq { 1.split[1]}' *.txt

ruby -rcommonregex -ne ‘puts CommonRegex.get links($)' *.md

Here are some questions that I’ve answered with simpler Ruby solution compared to other CLI
tools:

e stackoverflow: merge duplicate key values while preserving order
e unix.stackexchange: pair each line of file

The selling point of Ruby over tools like grep , sed and awk includes feature rich regular
expression engine and standard/third-party modules. Another advantage is that Ruby is more
portable, given the many differences between GNU, BSD and other such implementations.
The main disadvantage is that Ruby is likely to be verbose and slower for features that are
supported out of the box by those tools.

See ruby-lang.org for instructions on installing Ruby.

Visit ruby-doc.org for documentation.

Use ruby -h to get a list of command line options, along with a brief description.

https://blog.sanctum.geek.nz/series/unix-as-ide/
https://stackoverflow.com/q/63954081/4082052
https://unix.stackexchange.com/q/506815/109046
https://www.ruby-lang.org/en/downloads/
https://ruby-doc.org/3.3.0/

Option Description

-0[octall specify record separator (\0 , if no argument)
-a autosplit mode with -n or -p (splits $ into $F)
-C check syntax only
-Cdirectory cd to directory before executing your script
-d set debugging flags (set $DEBUG to true)
-e 'command’ one line of script. Several -e ’s allowed. Omit [programfile]
-Eex[:in] specify the default external and internal character encodings
-Fpattern split() pattern for autosplit (-a)
-i[extension] edit ARGV files in place (make backup if extension supplied)
-Idirectory specify $LOAD PATH directory (may be used more than once)
-1 enable line ending processing
-n assume 'while gets(); ... end' loop around your script
-p assume loop like -n but print line also like sed
-rlibrary require the library before executing your script
-S enable some switch parsing for switches after script name
-S look for the script using PATH environment variable
Y print the version number, then turn on verbose mode
-w turn warnings on for your script
-W[level=2]|:category] set warning level; O=silence, 1=medium, 2=verbose
-x[directory] strip off text before #!ruby line and perhaps cd to directory
--jit enable JIT for the platform, same as --rjit (experimental)
--rjit enable pure-Ruby JIT compiler (experimental)
-h show this message, --help for more info

This chapter will show examples with -e , -n, -p and -a options. Some more options

will be covered in later chapters, but not all of them are discussed in this book.

If you want to execute a Ruby program file, one way is to pass the filename as argument to the
ruby command.

$ echo 'puts "Hello Ruby"' > hello.rb
$ ruby hello.rb
Hello Ruby

For short programs, you can also directly pass the code as an argument to the -e option.

$ ruby -e 'puts "Hello Ruby"'
Hello Ruby

$ ruby -e 'x=25; y=12; puts x**y'
59604644775390625

$ ruby -e 'x=25' -e 'y=12' -e 'puts x**y'
59604644775390625

Ruby one-liners can be used for filtering lines matched by a regular expression (regexp), sim-
ilar to the grep , sed and awk commands. And similar to many command line utilities,
Ruby can accept input from both stdin and file arguments.

$ printf 'gate\napple\nwhat\nkite\n'
gate
apple
what
kite

$ printf 'gate\napple\nwhat\nkite\n' | ruby -ne 'print if /at/'
gate
what

$ printf 'gate\napple\nwhat\nkite\n' | ruby -ne 'print if !/e/'
what

By default, grep , sed and awk automatically loop over the input content line by line (with
newline character as the default line separator). To do so with Ruby, you can use the -n and

-p options. As seen before, the -e option accepts code as a command line argument. Many
shortcuts are available to reduce the amount of typing needed.

In the above examples, a regular expression (defined by the pattern between a pair of forward
slashes) has been used to filter the input. When the input string isn’t specified in a conditional
context (for example: if), the test is performed against the global variable $, which has
the contents of the current input line (the correct term would be input record, as discussed
in the Record separators chapter). To summarize, in a conditional context:

e /regexp/ is a shortcutfor $ =~ /regexp/
e !/regexp/ is ashortcutfor $!~ /regexp/

$ isalso the default argument for the print method, which is why it is generally preferred

in one-liners over the puts method. More such defaults that apply to the print method
will be discussed later.

[@ See ruby-doc: Pre-Defined Global Variables for documentationon $, $& , etc.

Here’s an example with file input instead of stdin.

$ cat table.txt

brown bread mat hair 42

blue cake mug shirt -7

yellow banana window shoes 3.14

https://ruby-doc.org/3.3.0/globals_rdoc.html

$ ruby -ne 'puts $& if /\d+$/' table.txt
42
7
14

$ ruby -ne ‘puts $& if /(?<!-)\d+$/' table.txt
42
14

@ The example files directory has all the files used in the examples (like table.txt
in the above illustration).

Use the sub and gsub methods for search and replace requirements. By default, these
methods operate on $ when the input string isn’t provided. For these examples, the -p

option is used instead of -n , sothatthe valueof $ isautomatically printed after processing
each input line.

$ printf '1:2:3:4\na:b:c:d\n' | ruby -pe 'sub(/:/, "-")'
1-2:3:4
a-b:c:d

$ printf '1:2:3:4\na:b:c:d\n' | ruby -pe 'gsub(/:/, "-")'
1-2-3-4
a-b-c-d

You might wonder how $ is modified without the use of ! methods. The reason is that
these methods are part of Kernel (see ruby-doc: Kernel for details) and are available only when
the -n and -p options are used.

e sub(/regexp/, repl) is a shortcut for $.sub(/regexp/, repl) and $ will be
updated if the substitution succeeds

e gsub(/regexp/, repl) is a shortcut for $.gsub(/regexp/, repl) and $ gets
updated if the substitution succeeds

@ This book assumes that you are already familiar with regular expressions. If not,
you can check out my free ebook Understanding Ruby Regexp.

https://github.com/learnbyexample/learn_ruby_oneliners/tree/master/example_files
https://ruby-doc.org/3.3.0/Kernel.html
https://github.com/learnbyexample/Ruby_Regexp

Consider the sample input file shown below with fields separated by a single space character.

$ cat table.txt

brown bread mat hair 42

blue cake mug shirt -7

yellow banana window shoes 3.14

Here are some examples that are based on specific fields rather than the entire line. The -a

option will cause the input line to be split based on whitespaces and the array contents can be
accessed using the $F global variable. Leading and trailing whitespaces will be suppressed,
so there’s no possibility of empty fields. More details will be discussed in the Default field
separation section.

$ ruby -ane 'puts $F[1]' table.txt
bread

cake

banana

$ ruby -ane 'print if $F[-1].to f < 0' table.txt
blue cake mug shirt -7

$ ruby -ane '$F[O].gsub!(/b/, "B"); puts $F * " "' table.txt
Brown bread mat hair 42

Blue cake mug shirt -7

yellow banana window shoes 3.14

You can use a BEGIN{} block when you need to execute something before the input is read
and an END{} block to execute something after all of the input has been processed.
BEGIN END
BEGIN
$ seq 4 | ruby -pe 'BEGIN{puts "---"}; END{puts "%%%"}'

~ W N =

o°
o°
o°

10

When it comes to automation and scripting, you’d often need to construct commands that can
accept input from users, use data from files and the output of a shell command and so on.
As mentioned before, this book assumes bash as the shell being used. To access environ-
ment variables of the shell, you can use the special hash variable ENV with the name of the
environment variable as a string key.

$ ruby -e 'puts ENV["HOME"]"

/home/learnbyexample
$ ruby -e 'puts ENV["SHELL"]'
/bin/bash

$ word='hello' ruby -e 'puts ENV["word"]'
hello

$ ip='hi\nbye' ruby -e 'puts ENV["ip"]'
hi\nbye

Here’s another example when a regexp is passed as an environment variable content.

$ cat word anchors.txt
sub par

spar

apparent effort

two spare computers
cart part tart mart

$ r='"\Bpar\B'

$ rgx="$r" ruby -ne 'print if /#{ENV["rgx"1}/' word anchors.txt
apparent effort

two spare computers

You can also make use of the -s option to assign a global variable.
$ r="\Bpar\B'

$ ruby -sne ‘print if /#{$rgx}/' -- -rgx="$r" word anchors.txt
apparent effort

two spare computers

@ As an example, see my repo ch: command help for a practical shell script, where
commands are constructed dynamically.

11

https://github.com/learnbyexample/command_help/blob/master/ch

You can call external commands using the system Kernel method. See ruby-doc: system for
documentation.

$ ruby -e 'system("echo Hello World")'
Hello World

$ ruby -e 'system("wc -w <word anchors.txt")'
12

$ ruby -e 'system("seq -s, 10 > out.txt")'
$ cat out.txt
1,2,3,4,5,6,7,8,9,10

Return value of system or the global variable $? can be used to act upon the exit status
of the command issued.

$ ruby -e 'es=system("ls word anchors.txt"); puts es'
word anchors.txt
true

$ ruby -e 'system("ls word anchors.txt"); puts $?'
word _anchors. txt
pid 6087 exit 0O

$ ruby -e 'system("ls xyz.txt"); puts $?'
1s: cannot access 'xyz.txt': No such file or directory
pid 6164 exit 2

To save the result of an external command, use backticks or %x .

$ ruby -e 'words = “wc -w <word anchors.txt’; puts words'
12

$ ruby -e 'nums = %x/seq 3/; print nums'

w N =

@ See also stackoverflow: difference between exec, system and %x() or backticks.

This chapter introduced some of the common options for Ruby CLI usage, along with some of
the typical text processing examples. While specific purpose CLI tools like grep , sed and
awk are usually faster, Ruby has a much more extensive standard library and ecosystem. And
you do not have to learn a lot if you are already comfortable with Ruby but not familiar with
those CLI tools. The next section has a few exercises for you to practice the CLI options and
text processing use cases.

12

https://ruby-doc.org/3.3.0/Kernel.html#method-i-system
https://stackoverflow.com/q/6338908/4082052

@ All the exercises are also collated together in one place at Exercises.md. For solu-
tions, see Exercise solutions.md.

@ The exercises directory has all the files used in this section.

1) For the input file ip.txt , display all lines containing is .

$ cat ip.txt
Hello World

How are you

This game is good
Today is sunny
12345

You are funny

This game is good
Today is sunny

2) For the input file ip.txt , display the first field of lines not containing y . Consider space
as the field separator for this file.

Hello
This
12345

3) For the input file ip.txt , display all lines containing no more than 2 fields.

Hello World
12345

4) For the input file ip.txt , display all lines containing is in the second field.

Today is sunny

5) For each line of the input file ip.txt , replace the first occurrence of o with 0 .

HellO® World

HOw are you

This game is g0Ood
TOday is sunny
12345

YOu are funny

6) For the input file table.txt , calculate and display the product of numbers in the last field
of each line. Consider space as the field separator for this file.

13

https://github.com/learnbyexample/learn_ruby_oneliners/blob/master/exercises/Exercises.md
https://github.com/learnbyexample/learn_ruby_oneliners/blob/master/exercises/Exercise_solutions.md
https://github.com/learnbyexample/learn_ruby_oneliners/tree/master/exercises

$ cat table.txt

brown bread mat hair 42

blue cake mug shirt -7

yellow banana window shoes 3.14

-923.1600000000001

7) Append . to all the input lines for the given stdin data.

$ printf 'last\nappend\nstop\ntail\n' |
last.

append.

stop.

tail.

8) Use contents of the s variable to display matching lines from the input file ip.txt .
Assume that s doesn’t have any regexp metacharacters. Construct the solution such that
there’s at least one word character immediately preceding the contents of the s wvariable.

$ s="is'

This game is good

9) Use system to display the contents of the filename present in the second field of the given
input line. Consider space as the field separator.

$ s='report.log ip.txt sorted.txt'
$ echo "$s" |

Hello World

How are you

This game is good

Today is sunny

12345

You are funny

$ s='power.txt table.txt'

$ echo "$s" |

brown bread mat hair 42

blue cake mug shirt -7

yellow banana window shoes 3.14

14

Line processing

Now that you are familiar with basic Ruby CLI usage, this chapter will dive deeper into line pro-
cessing examples. You'll learn various ways for matching lines based on regular expressions,
fixed string matching, line numbers, etc. You'll also see how to group multiple statements and
learn about the control flow keywords next and exit .

@ The example files directory has all the files used in the examples.

As mentioned before, in a conditional context:

® /regexp/ is ashortcutfor $ =~ /regexp/
e !/regexp/ is ashortcutfor $!~ /regexp/

Here are some examples:

$ cat table.txt

brown bread mat hair 42

blue cake mug shirt -7

yellow banana window shoes 3.14

$ ruby -ne 'print if /-|ow\b/' table.txt
blue cake mug shirt -7
yellow banana window shoes 3.14

$ ruby -ne 'print if !/[ksy]/' table.txt
brown bread mat hair 42

& But, this is not applicable for all types of expressions. For example:

$ printf 'gate\napple\nwhat\n' | ruby -ne '/at$/ && print'
gate
apple
what

$ printf 'gate\napple\nwhat\n' | ruby -ne '$ =~ /at$/ && print'
what

J

If required, you can also use different delimiters with %r . See ruby-doc: %r Regexp Literals
for details.

$ cat paths.txt
/home/joe/report.log
/home/ram/power.log
/home/rambo/errors. log

15

https://github.com/learnbyexample/learn_ruby_oneliners/tree/master/example_files
https://ruby-doc.org/3.3.0/syntax/literals_rdoc.html#label-25r-3A+Regexp+Literals

$ ruby -ne 'print if /\/home\/ram\//' paths.txt
/home/ram/power. log

$ ruby -ne 'print if %r{/home/ram/}' paths.txt
/home/ram/power.log

$ ruby -ne 'print if !%r#/home/ram/#' paths.txt
/home/joe/report.log
/home/rambo/errors.log

You can use regexp related global variables to extract only the matching portions. Consider
this input file.

$ cat ip.txt

it is a warm and cozy day

listen to what I say

go play in the park

come back before the sky turns dark

There are so many delights to cherish
Apple, Banana and Cherry

Bread, Butter and Jelly

Try them all before you perish

Here are some examples of extracting only the matched portions.

$ ruby -ne 'puts $& if /\b[a-z]\w*[ty]l\b/' ip.txt
it

what

play

sky

many

$ ruby -ne 'puts "#{$1}::#{$2}" if /(\b[bdpl\w+).*(\b[a-f]\w+)/i"' ip.txt
back: :dark

delights::cherish

Banana: :Cherry

Bread: :and

@ See the Working with matched portions chapter from my ebook for examples that
use the match method and regexp global variables.

16

https://learnbyexample.github.io/Ruby_Regexp/working-with-matched-portions.html

As seen in the previous section, using $ =~ /regexp/ also sets global variables. If you just

need a true or false result, using the match? method is better suited for performance
reasons. The difference would be more visible for large input files.

$ ruby -ne 'print if $.match?(/[AB]|the\b/)"' ip.txt
go play in the park

come back before the sky turns dark

Apple, Banana and Cherry

Bread, Butter and Jelly

The transliteration method tr helps you perform transformations character-wise. See ruby-
doc: tr for documentation.

$ echo 'Uryyb Jbeyq' | ruby -pe '$.tr!("a-zA-Z", "n-za-mN-ZA-M")'
Hello World

$ echo 'apple:123:banana' | ruby -pe '$.tr!("70-9\n", "-")'
------ 123-------

$ echo 'apple:123:banana' | ruby -pe '$.tr!("70-9\n", "")'
123

$ s='orange apple appleseed cab'
$ echo "$s" | ruby -pe 'gsub(/\b(?!apple\b)\w++/) {$&.tr("a-z", "1-9")}'
991975 apple 199959554 312

You can use the tr s method to squeeze repeated characters.

$ echo 'APPLESEED gobbledygook' | ruby -pe '$.tr s!("a-zA-Z", "a-zA-Z")'
APLESED gobledygok

$ echo 'APPLESEED gobbledygook' | ruby -pe '$.tr s!("A-z", "a-z")'
aplesed gobbledygook

These examples combine line filtering and substitution in different ways. As noted before, the
sub and gsub Kernel methods update $ if the substitution succeeds and always return

the value of $.

17

https://ruby-doc.org/3.3.0/String.html#method-i-tr
https://ruby-doc.org/3.3.0/String.html#method-i-tr

$ printf '1,2,3,4\na,b,c,d\n' | ruby -pe 'gsub(/,/, "-") if 1/2/'
1,2,3,4
a-b-c-d

$ ruby -ne ‘'print gsub(/ark/, "[\\0]") if /the/' ip.txt
go play in the p[ark]

come back before the sky turns d[ark]

Try them all before you perish

$ ruby -ne 'print if $.gsub!(/\bw\w*t\b/, "{\\0}")' ip.txt
listen to {what} I say

It is good to remember that Ruby is a programming language. You can make use of con-
trol structures and combine multiple conditions using logical operators, methods like all? ,
any? , etc. You don’t have to create a single complex regexp.

$ ruby -ne ‘'print if /ark/ && !/sky/' ip.txt
go play in the park

$ ruby -ane 'print if /\bthe\b/ || $F.size == 5' ip.txt
listen to what I say

go play in the park

come back before the sky turns dark

When the next statement is executed, rest of the code will be skipped and the next input
line will be fetched for processing. It doesn’t affect the BEGIN and END blocks as they are
outside the file content loop.

$ ruby -ne '(puts "%% #{$ }"; next) if /\bpar/;
puts /s/ 7 "X" : "Y"' word _anchors.txt
%% sub par

< < X

%% cart part tart mart

@ () is used in the above example to group multiple statements to be executed for
a single if condition. You’ll see more such examples in the coming chapters.

18

The exit method will cause the Ruby script to terminate immediately. This is useful to avoid
processing unnecessary input content after a termination condition is reached.

$ ruby -ne 'print; exit if /say/' ip.txt
it is a warm and cozy day
listen to what I say

$ ruby -pe 'exit if /say/' ip.txt
it is a warm and cozy day

Use tac to get all lines starting from the last occurrence of the search string in the entire
file.

$ tac ip.txt | ruby -ne 'print; exit if /an/' | tac
Bread, Butter and Jelly
Try them all before you perish

You can optionally provide a status code as an argument to the exit method.

$ printf 'sea\neat\ndrop\n' | ruby -ne 'print; exit(2) if /at/'
sea

eat

$ echo $7?

2

Any code in the END block will still be executed before exiting. This doesn’t apply if exit
was called from the BEGIN block.

$ ruby -pe 'exit if /cake/' table.txt
brown bread mat hair 42

$ ruby -pe 'exit if /cake/; END{puts "bye"}' table.txt
brown bread mat hair 42
bye

$ ruby -pe 'BEGIN{puts "hi"; exit; puts "hello"}; END{puts "bye"}' table.txt
hi

48 Be careful if you want to use exit with multiple input files, as Ruby will stop even
if there are other files remaining to be processed.

Line numbers can also be specified as a matching criteria by using the $. global variable.

$ ruby -ne 'print if $. == 3' ip.txt
go play in the park

19

$ ruby -ne 'print if $. == || $. == 6' ip.txt
listen to what I say
There are so many delights to cherish

$ printf 'gates\nnot\nused\n' | ruby -pe '$.tr!("a-z", "*") if $. == 2'
gates
kK%

used

$ seq 14 25 | ruby -ne ‘'print if $. >= 10'
23
24
25

The global variable $< contains the file handle for the current file input being processed.
Use the eof method to check for the end of the file condition. See ruby-doc: eof for docu-
mentation. You can also use ARGF instead of $< here, see the ARGV and ARGF section for
details.

$ ruby -ne 'print if $<.eof' ip.txt
Try them all before you perish

$ ruby -ne 'puts "#{$.}:#{$ }" if $<.eof' ip.txt
9:Try them all before you perish

$ ruby -ne 'print if $<.eof' ip.txt table.txt
Try them all before you perish
yellow banana window shoes 3.14

For large input files, use the exit method to avoid processing unnecessary input lines.

$ seq 3542 4623452 | ruby -ne '(print; exit) if $. == 2452'

5993

$ seq 3542 4623452 | ruby -ne 'print if $. == 250; (print; exit) if $. == 2452’
3791

5993

$ time seq 3542 4623452 | ruby -ne '(print; exit) if $. == 2452' > fl

real 0m0.055s

$ time seq 3542 4623452 | ruby -ne 'print if $. == 2452' > f2

real Oml.130s

$ rm f1 f2

20

https://ruby-doc.org/3.3.0/IO.html#method-i-eof

You can use the Flip-Flop operator to select between a pair of matching conditions like line
numbers and regexp. See ruby-doc: Flip-Flop for documentation.

$ seq 14 25 | ruby -ne 'print if 3..5'
16
17
18

$ seq 14 25 | ruby -ne ‘'print if (3...5).include?($.)"
16
17

$ ruby -ne ‘print if /to/../pl/' ip.txt
listen to what I say

go play in the park

There are so many delights to cherish
Apple, Banana and Cherry

@ See the Records bounded by distinct markers section for an alternate solution.

Line numbers and regexp filtering can be mixed.

$ ruby -ne 'print if 6../utter/' ip.txt
There are so many delights to cherish
Apple, Banana and Cherry

Bread, Butter and Jelly

$ ruby -ne 'print if !(/\bba/..$<.eof)' ip.txt table.txt
it is a warm and cozy day

listen to what I say

go play in the park

brown bread mat hair 42

blue cake mug shirt -7

Both conditions can match the same line too! Also, if the second condition doesn’t match, lines
starting from the first condition to the last line of the input will be matched.

$ ruby -ne 'print if 7../and/' ip.txt
Apple, Banana and Cherry

$ ruby -ne 'print if 7.../and/' ip.txt

21

https://ruby-doc.org/3.3.0/syntax/control_expressions_rdoc.html#label-Flip-Flop

Apple, Banana and Cherry
Bread, Butter and Jelly

$ ruby -ne 'print if /Banana/../XYZ/' ip.txt
Apple, Banana and Cherry

Bread, Butter and Jelly

Try them all before you perish

To match strings literally, use the include? method for line filtering. Use string argument
instead of regexp for fixed string matching with substitution methods.

$ printf 'int a[5]\nfig\nl+4=5\n' | ruby -ne 'print if /a[5]/'
$ printf 'int a[5]\nfig\nl+4=5\n' | ruby -ne ‘'print if $.include?("a[5]1")'
int a[5]

$ printf 'int a[5]\nfig\nl+4=5\n' | ruby -pe 'sub(/a[5]/, "b")'
int a[5]

fig

1+4=5

$ printf 'int a[5]\nfig\nl+4=5\n' | ruby -pe 'sub("a[5]", "b")'
int b

fig

1+4=5

The above examples use double quotes for the string argument, which allows escape sequences
like \t , \n ,etc and interpolation with #{} . This isn’t the case with single quoted string
values. Using single quotes within the script from the command line requires messing with
shell metacharacters. So, use %q instead or pass the fixed string to be matched as an
environment variable.

$ ruby -e 'a=5; puts "value of a:\t#{a}"'
value of a: 5

$ echo 'int #{a}' | ruby -ne 'print if $.include?(%q/#{a}/)'
int

$ echo 'int #{a}' | ruby -pe 'sub(%q/#{a}/, "b")'

int b

$ echo 'int #{a}' | s='#{a}' ruby -ne 'print if $.include?(ENV["s"])'
int

$ echo 'int #{a\\}' | s='#{a\\}' ruby -pe 'sub(ENV["s"], "b")'

int b

22

To provide a fixed string in the replacement section, environment variables comes in handy
again. Need to use block form, since \ is special in the replacement section.

$ echo 'int a' | s='x\\y\0z' ruby -pe 'sub(/a/, ENV["s"])
int x\yaz

$ echo 'int a' | s='x\\y\0z' ruby -pe 'sub(/a/) {ENV["s"]}'
int x\\y\0z

Use the start with? and end with? methods to restrict the matching to the start or end
of the input line. The line content in the $ variable contains the \n line ending character
as well. You can either use the chomp method explicitly or use the -1 command line option
(which will be discussed in detail in the Record separators chapter). For now, it is enough to
know that -1 will remove the line separator and add it back when print is used.

$ cat egns.txt
a=b,a-b=c, c*d
a+b,pi=3.14,5el2
i*(t+9-9)/8,4-a+b

$ s='a+b' ruby -ne 'print if $.start with?(ENV["s"])' egns.txt
a+b,pi=3.14,5el2

$ s='a+b' ruby -lne 'print if $.end with?(ENV["s"])' egns.txt
i*(t+9-9)/8,4-a+b

Use the index method if you need more control over the location of the matching strings.
You can use either the return value (which gives you the index of the matching string) or use
the optional second argument to specify an offset to start searching. See ruby-doc: index for
details.

$ ruby -ne 'print if $.index("a+b")' egns.txt
a+b,pi=3.14,5el2
i*(t+9-9)/8,4-a+b

$ ruby -ne 'print if $.index("a+b")==0' eqns.txt
a+b,pi=3.14,5el2

$ ruby -ne '$i = $.index("="); print if $i && $i < 6' eqns.txt
a=b,a-b=c, c*d

23

https://ruby-doc.org/3.3.0/String.html#method-i-index

$ s='a+b' ruby -ne 'print if $.index(ENV["s"], 1)' eqns.txt
i*(t+9-9)/8,4-a+b

If you need to match the entire input line or a particular field, you can use the comparison
operators.

$ printf 'a.b\na+b\n' | ruby -lne 'print if /"a.b$/'

a.b

a+b

$ printf 'a.b\na+b\n' | ruby -lne 'print if $§ == %q/a.b/'
a.b

$ printf 'l a.b\n2 a+b\n' | ruby -lane 'print if $F[1] != %q/a.b/'
2 a+b

You can use the -i option to write back the changes to the input file instead of displaying
the output on terminal. When an extension is provided as an argument to -i , the original
contents of the input file gets preserved as per the extension given. For example, if the input
fileis ip.txt and -i.orig is used, the backup file will be named as ip.txt.orig .

$ cat colors.txt
deep blue

light orange
blue delight

$ ruby -i.bkp -pe 'sub(/blue/, "-green-")' colors.txt

$ cat colors.txt
deep -green-
light orange
-green- delight

$ cat colors.txt.bkp
deep blue

light orange

blue delight

Multiple input files are treated individually and the changes are written back to respective
files.

$ cat tl.txt

have a nice day

bad morning

what a pleasant evening
$ cat t2.txt

worse than ever

24

too bad

$ ruby -i.bkp -pe ‘sub(/bad/, "good")' tl.txt t2.txt
$ ls t?2.*
tl.txt tl.txt.bkp t2.txt t2.txt.bkp

$ cat tl.txt

have a nice day

good morning

what a pleasant evening
$ cat t2.txt

worse than ever

too good

Sometimes backups are not desirable. In such cases, you can use the -i option without an
argument. Be careful though, as changes made cannot be undone. It is recommended to test
the command with sample inputs before applying the -i option on the actual file. You could
also use the option with backup, compare the differences with a diff program and then
delete the backup.

$ cat fruits.txt
banana
papaya
mango

$ ruby -i -pe 'gsub(/(..)\1/) {$&.upcase}' fruits.txt
$ cat fruits.txt

bANANa

PAPAya

mango

This chapter showed various examples of processing only the lines of interest instead of the
entire input file. Filtering can be specified using a regexp, fixed string, line number or a
combination of them. You also saw how to combine multiple statements inside () for compact
CLI usage. The next and exit methods are useful to control the flow of code. The -i
option is handy for in-place editing.

@ The exercises directory has all the files used in this section.

1) For the given input, display except the third line.
$ seq 34 37 |
34

35
37

25

https://github.com/learnbyexample/learn_ruby_oneliners/tree/master/exercises

2) Display only the fourth, fifth, sixth and seventh lines for the given input.

$ seq 65 78 |
68
69
70
71

3) For the input file ip.txt , replace all occurrences of are with are not and is with
is not only from line number 4 till the end of file. Also, only the lines that were changed
should be displayed in the output.

$ cat ip.txt
Hello World

How are you

This game is good
Today is sunny
12345

You are funny

Today is not sunny
You are not funny

4) For the given stdin, display only the first three lines. Avoid processing lines that are not
relevant.

$ seq 14 25 |
14
15
16

5) For the input file ip.txt , display all lines from the start of the file till the first occurrence
of game .

Hello World
How are you
This game is good

6) For the input file ip.txt , display all lines that contain is butnot good .

Today is sunny

7) For the input file ip.txt , extract the word before the whole word is as well as the word

after it. If such a match is found, display the two words around is in reversed order. For
example, hi;1 is--234 bye should be converted to 234:1 . Assume that the whole word

is will not be present more than once in a single line.

good:game
sunny:Today

26

8) For the input file hex.txt , replace all occurrences of 0xA0® with 0x50 and OxFF with
OX7F .

$ cat hex.txt

start: OxAQ, funcl: OxAQ
end: OxFF, func2: OxBO
restart: 0xA010, func3: Ox7F

start: 0x50, funcl: 0x50
end: Ox7F, func2: 0xBO
restart: 0x5010, func3: Ox7F

9) For the input file text.txt , replace all occurrences of in with an and write back the
changes to text.txt itself. The original contents should get saved to text.txt.orig .

$ cat text.txt
can ran want plant
tin fin fit mine line

$ cat text.txt

can ran want plant
tan fan fit mane lane
$ cat text.txt.orig
can ran want plant
tin fin fit mine line

10) For the input file text.txt , replace all occurrences of an with in and write back the
changes to text.txt itself. Do not create backups for this exercise. Note that you should
have solved the previous exercise before starting this one.

$ cat text.txt
can ran want plant
tan fan fit mane lane

$ cat text.txt

cin rin wint plint

tin fin fit mine line

$ diff text.txt text.txt.orig
1cl

< cin rin wint plint

> can ran want plant

11) Find the starting index of first occurrence of is or the or was or to foreach input
line of the file idx.txt . Assume that every input line will match at least one of these terms.

27

$ cat idx.txt

match after the last newline character
and then you want to test

this is good bye then

you were there to see?

12
4
2
9

12) Display all lines containing [4]* for the given stdin data.
$ printf '2.3/[4]1*6\n2[4]5\n5.3-[4]1*9\n" |

2.3/[4]1*6

5.3-[4]*9

13) For the given input string, change all lowercase alphabets to x only for words starting
with m .

$ s='ma2T3a a2p kite e2e3m meet'

$ echo "$s" |
xX2T3x a2p kite e2e3m xxxx

14) For the input file ip.txt , delete all characters other than lowercase vowels and the
newline character. Perform this transformation only between a line containing you up to

line number 4 (inclusive).

Hello World
oaeou

iaeioo

oaiu

12345

You are funny

15) For the input file sample.txt , display from the start of the file till the first occurrence
of are , excluding the matching line.

$ cat sample.txt
Hello World

Good day
How are you

Just do-it
Believe it

Today is sunny
Not a bit funny

28

No doubt you like it too

Much ado about nothing
He he he

Hello World

Good day

16) For the input file sample.txt , display from the last occurrence of do till the end of the
file.

Much ado about nothing
He he he

17) For the input file sample.txt , display from the 9th line till a line containing you .

Today is sunny
Not a bit funny
No doubt you like it too

18) Display only the odd numbered lines from ip.txt .

Hello World

This game is good

12345

19) For the table.txt file, print only the line number for lines containing air or win .

$ cat table.txt

brown bread mat hair 42

blue cake mug shirt -7

yellow banana window shoes 3.14

20) For the input file table.txt , calculate the sum of numbers in the last column, excluding
the second line.

45.14

21) Print the second and fourth line for every block of five lines.

$ seq 15 |
2

4
7
9

29

12
14

22) For the input file ip.txt , display all lines containing e or u but not both.

Hello World
This game is good
Today is sunny

30

Field separators

This chapter will dive deep into field processing. You’ll learn how to set input and output field
separators, how to use regexps for defining fields and how to work with fixed length fields.

@ The example files directory has all the files used in the examples.

The -a option splits the input based on one or more sequence of whitespace characters. In
addition, whitespaces at the start or end of input gets trimmed and won’t be part of the field
contents. Using -a is equivalentto $F = $.split . From ruby-doc: split:

If $; is nil (its default value), the split occurs just as if field sep were given as

a space character. When field sep is ' ' and 1limit is nil , the split occurs at
each sequence of whitespace.

$ echo ' a b c " | ruby -ane 'puts $F.size'

3

$ echo ' a b C " | ruby -ane 'puts "(#{$F[O]})"'

(a)

$ echo ' a b ¢ " | ruby -ane 'puts "(#{$F[-1]1})""'

(c)

$ printf ' one \t\f\v two\t\r\tthree \t\r ' | ruby -ane 'puts $F.size'

3

$ printf ' one \t\f\v two\t\r\tthree \t\r ' | ruby -ane 'puts $F[1] + "."'
two.

You can use the -F command line option to specify a custom field separator. The value passed
to this option will be treated as a regexp. Note that the -a option is also necessary for -F
to work.

$ echo 'goal:amazing:whistle:kwality' | ruby -F: -ane 'puts $F[0], $F[-11, $F[1]'
goal

kwality

amazing

$ echo 'one;two;three;four' | ruby -F';' -ane 'puts $F[2]'
three

31

https://github.com/learnbyexample/learn_ruby_oneliners/tree/master/example_files
https://ruby-doc.org/3.3.0/String.html#method-i-split

$ echo 'load;err msg--\ant,r2..not' | ruby -F'\W+' -ane 'puts $F[2]'
ant

$ echo 'hi.bye.hello' | ruby -F'\.' -ane 'puts $F[1]"'
bye

count the number of vowels for each input line

$ printf 'COOL\nnice car\n' | ruby -F'(?i)[aeiou]' -ane 'puts $F.size - 1'
2

3

No need to use field separation to access individual characters. See ruby-doc: Encoding for
details on handling different string encodings.

$ echo 'apple' | ruby -ne 'puts $ [0]'
a

$ ruby -e 'puts Encoding.default external'

UTF-8

$ LC ALL=C ruby -e 'puts Encoding.default external'
US-ASCII

$ echo 'fox:aAemov' | ruby -ne 'puts $ [4..5]'

oA

use the -E option to explicitly specify external/internal encodings
$ echo 'fox:aAemov' | ruby -E UTF-8:UTF-8 -ne 'puts $ [4..5]'
oA

If the custom field separator doesn’t affect the newline character, then the last element can
contain the newline character.

last element will not have the newline character with the -a option
as leading/trailing whitespaces are trimmed with default split

$ echo 'cat dog' | ruby -ane 'puts "[#{$F[-1]}I1"'

[dog]

last element will have the newline character since the field separator is
$ echo 'cat:dog' | ruby -F: -ane 'puts "[#{$F[-1]1}]"'

[dog

]

unless the input itself doesn't have newline characters
$ printf 'cat:dog' | ruby -F: -ane 'puts "[#{$F[-11}]"'
[dog]

The newline character can also show up as the entire content of the last field.

32

https://ruby-doc.org/3.3.0/Encoding.html

$echo' ab c " | ruby -ane 'puts $F.size'

echo ':a:b:c:' | ruby -F: -ane 'puts $F.size; puts "[#{$F[-11}1""'

As mentioned before, the -1 option is helpful if you wish to remove the newline character
(more details will be discussed in the Record separators chapter). A side effect of removing
the newline character before applying split is that the trailing empty fields will also get

removed (you can explicitly call the split method with -1 as limit to prevent this).

$ echo 'cat:dog' | ruby -F: -lane 'puts "[#{$F[-1]}]""
[dog]

$ echo 'cat:dog' | ruby -F: -lane 'print "[#{$F[-11}1""

[dog]

$ echo ':a:b:c:' | ruby -F: -lane 'puts $F.size'

4

$ echo ':a:b:c:' | ruby -lane 'puts $.split(/:/, -1).size'
5

There are a few ways to affect the separator to be used while displaying multiple values. The
value of the $, global variable is used as the separator when multiple arguments are passed
to the print method. This is usually used in combination with the -1 option so that a
newline character is appended automatically as well. The join method also uses $, as
the default value.

$ ruby -lane 'BEGIN{$, = " "}; print $F[0], $F[2]' table.txt
brown mat

blue mug

yellow window

The other options include manually building the output string within double quotes. Or, use
the join method. Note that the -1 optionisused in the examples below as a good practice
even when not needed.

33

$ ruby -lane 'puts "#{$F[0]} #{$F[2]}""' table.txt
brown mat

blue mug

yellow window

$ echo 'Samplel23string42with777numbers' | ruby -F'\d+' -lane 'puts $F.join(",")'
Sample,string,with,numbers

$ s='goal:amazing:whistle:kwality'
$ echo "$s" | ruby -F: -lane 'puts $F.values at(-1, 1, 0).join("-")'
kwality-amazing-goal

$ echo "$s" | ruby -F: -lane '$F.append(42); puts $F * "::"'
goal::amazing::whistle::kwality::42

The -F optionusesthe split method to generate the fields. In contrast, the scan method
allows you to define what should the fields be made up of. The scan method does not have
the concept of removing empty trailing fields nor does it have the 1limit argument.

$ s='Samplel23string42with777numbers’

$ echo "$s" | ruby -ne 'puts $.scan(/\d+/)[1]"
42

$ s='coat Bin food tarl2 best Apple fig 42'

$ echo "$s" | ruby -ne 'puts $.scan(/\b[a-z0-9]+\b/) * ", "'
coat, food, tarl2, best

$ s='items: "apple" and "mango

$ echo "$s" | ruby -ne 'puts $.scan(/"[""1+"/)[1]"'
Ilmangoll

$ echo "$s" | ruby -ne ‘puts $ [/"[""]+"/]"
Ilapp'Lell

A simple split fails for CSV input where fields can contain embedded delimiter characters.
For example, a field content "fox,42" when , is the delimiter.

$ s='eagle, "fox,42",bee, frog'

$ echo "$s" | ruby -F, -lane 'puts $F[1]'
"fox

While the ruby-doc: CSV library should be preferred for robust CSV parsing, regexp is enough
for simple formats.

34

https://ruby-doc.org/3.3.0/stdlibs/csv/CSV.html

$ echo "$s" | ruby -lne 'puts $.scan(/"[~"1*"|[~,]1+/)[1]"
"fox,42"

The unpack method is more than just a different way of using string slicing. It supports
various formats and pre-processing, see ruby-doc: Packed Data for details.

In the example below, a indicates arbitrary binary string. The optional number that follows
indicates length of the field.

$ cat items.txt
apple fig banana

50 10 200

$ ruby -ne 'puts $.unpack("a8ada6") * ","' items.txt
apple ,fig ,banana

50 ,10 ,200

$ ruby -ne 'puts $.unpack("a8a4a6")[1l]' items.txt
fig
10

You can specify characters to be ignored with x followed by an optional length.

$ ruby -ne 'puts $.unpack("a5x3a3xa6") * ","' items.txt
apple, fig, banana
50 ,10 ,200

Using * will cause remaining characters of that particular format to be consumed. Here Z
is used to process strings that are separated by the ASCII NUL character.

$ printf 'banana\x0050\x00' | ruby -ne 'puts $.unpack("z*z*") * ":"!
banana:50

$ ruby -ne 'puts $.unpack("a5x3a*") * ","' items.txt
apple,fig banana
50 ,10 200

Unpacking isn’t always needed, simple string slicing might suffice.

$ echo 'b 123 good' | ruby -ne 'puts $ [2,3]'
123
$ echo 'b 123 good' | ruby -ne 'puts $ [6,4]'
good

35

https://ruby-doc.org/3.3.0/packed_data_rdoc.html

$ echo 'b 123 good' | ruby -lpe '$ [2,3] = "gleam"'
b gleam good

Having seen command line options and features commonly used for field processing, this sec-
tion will highlight some of the built-in array and Enumerable methods. There are just too many
to meaningfully cover them all in detail, so consider this to be just a brief overview of features.

First up, regexp based field selection. grep(cond) and grep v(cond) are specialized filter

methods that perform cond === object testcheck. See stackoverflow: What does the ===
operator do in Ruby? for more details.

$ s='goal:amazing:42:whistle:kwality:3.14"'

$ echo "$s" | ruby -F: -lane 'puts $F.grep(/i[nts]/) * ":"'
amazing:whistle:kwality

$ echo "$s" | ruby -F: -lane 'puts $F.grep v(/\d/) * ":"!
goal:amazing:whistle:kwality

$ ruby -lane 'print if $F.grep(/r/).size <= 1' table.txt
blue cake mug shirt -7
yellow banana window shoes 3.14

The map method transforms each element according to the logic passed to it.

$ s='goal:amazing:42:whistle:kwality:3.14"'
$ echo "$s" | ruby -F: -lane 'puts $F.map(&:upcase) * ":"!
GOAL : AMAZING:42 :WHISTLE:KWALITY:3.14

$ echo '23 756 -983 5' | ruby -ane 'puts $F.map { 1.to i ** 2} * " ™
529 571536 966289 25

$ echo 'AaBbCc' | ruby -lne 'puts $_.chars.map(&:ord) * " "'
65 97 66 98 67 99

$ echo '3.14,17,6' | ruby -F, -ane 'puts $F.map(&:to f).sum'
26.14

The filter method (which has other aliases and opposites too) is handy to construct all
kinds of selection conditions. You can combine with map by using the filter map method.

$ s='hour hand band mat heated pineapple’
$ echo "$s" | ruby -ane 'puts $F.filter { 1[0]!="h" && 1l.size<6}'

band
mat

36

https://stackoverflow.com/q/4467538/4082052
https://stackoverflow.com/q/4467538/4082052

$ echo "$s" | ruby -ane 'puts $F.filter map {|w]|
w.gsub(/[ael/, "X") if w[O]=="h"}"

hour

hXnd

hXXtXd

The reduce method can be used to perform an action against all the elements of an array
and get a singular value as the result.

$ echo '3.14,17,6' | ruby -F, -lane 'puts $F.map(&:to f).reduce(100, :+)'
126.14

$ echo '3.14,17,6' | ruby -F, -lane 'puts $F.map(&:to f).reduce(:*)'
320.28000000000003

$ echo '3.14,17,6' | ruby -F, -lane 'puts $F.reduce(2) {|op,n| op*n.to f}'
640.5600000000001

Here are some examples with the sort , sort by and uniq methods for arrays and
strings.

$ s='floor bat to dubious four'

$ echo "$s" | ruby -ane 'puts $F.sort * ":"'
bat:dubious:floor:four:to

$ echo "$s" | ruby -ane 'puts $F.sort by(&:size) * ":"!
to:bat:four:floor:dubious

$ echo '23 756 -983 5' | ruby -lane 'puts $F.sort by(&:to i) * ":"'

-983:5:23:756
$ echo 'dragon' | ruby -lne 'puts $_.chars.sort.reverse * ""'
rongda

$ s='"try a bad to good i teal by nice how'

$ echo "$s" | ruby -ane 'puts $F.sort by {|w| [-w.size, w]} * ":"'
good:nice:teal:bad:how:try:by:to:a:i

$ s='3,b,a,3,c,d,1,d,c,2,2,2,3,1,b'

$ echo "$s" | ruby -F, -lane 'puts $F.unigq * ","'
3,b,a,c,d, 1,2
Here’s an example for sorting in descending order based on header column names.

$ cat marks.txt
Dept Name Marks
ECE Raj 53

37

ECE Joel 72

EEE Moi 68
CSE Surya 81
EEE Tia 59
ECE Om 92
CSE Amy 67

$ ruby -ane 'idx = $F.each index.sort {$F[2] <=> $F[1]} if $.==1;
puts $F.values at(*idx) * "\t"' marks.txt
Name Marks Dept

Raj 53 ECE
Joel 72 ECE
Moi 68 EEE
Surya 81 CSE
Tia 59 EEE
Om 92 ECE
Amy 67 CSE

The shuffle method randomizes the order of elements.

$ s='floor bat to dubious four'
$ echo "$s" | ruby -ane 'puts $F.shuffle * ":"'
bat:floor:dubious:to:four

$ echo 'foobar' | ruby -lne 'print $.chars.shuffle * ""'
bofrao

Use the sample method to get one or more elements of an array in random order.

$ s='hour hand band mat heated pineapple’

$ echo "$s" | ruby -ane 'puts $F.sample'

band

$ echo "$s" | ruby -ane 'puts $F.sample(2)'
pineapple

hand

This chapter discussed various ways in which you can split (or define) the input into fields and
manipulate them. Many more examples will be discussed in later chapters.

@ The exercises directory has all the files used in this section.

1) For the input file brackets.txt , extract only the contents between () or)(from
each input line. Assume that () characters will be present only once every line.

38

https://github.com/learnbyexample/learn_ruby_oneliners/tree/master/exercises

$ cat brackets.txt
foo blah blah(ice) 123 xyz$
(almond-pista) choco

yo)yoyo(yo

ice
almond-pista
yoyo

2) For the input file scores.csv , extract Name and Physics fields in the format shown
below.

$ cat scores.csv
Name,Maths,Physics,Chemistry
Blue,67,46,99

Lin,78,83,80

Er,56,79,92

Cy,97,98,95

0rt,68,72,66

Ith,100,100,100

Name:Physics
Blue: 46
Lin:83

Er:79

Cy:98

Ort:72
Ith:100

3) For the input file scores.csv , display names of those who’ve scored above 70 in Maths.
Lin
Cy

Ith

4) Display the number of word characters for the given inputs. Word definition here is same
as used in regular expressions. Can you construct a solution with gsub and one without the
substitution functions?

$ echo 'hi there' |
7

$ echo 'u-no;co%."(do 12:as'
12

5) For the input file quoted.txt , extract the sequence of characters surrounded by double
quotes and display them in the format shown below.

39

$ cat quoted.txt
1 "grape" and "mango" and "guava"
(IIC 1lllldlllla_2IIIIbll)

”gl"apE" , ||guava|| , ||mango||
||a_2|| , “b”, ||C 1||’ ||d||

6) Display only the third and fifth characters from each input line.

$ printf 'restore\ncat one\ncricket' |
o)
to
ik

7) Transform the given input file fw.txt to get the output as shown below. If the second
field is empty (i.e. contains only space characters), replace it with NA .

$ cat fw.txt

1.3 rs 90 0.134563
3.8 6

5.2 ye 8.2387

4

.2 kt 32 45.1

.3,rs,0.134563
.8,NA,6
.2,ye,8.2387
.2,kt,45.1

H 00 W=

8) For the input file scores.csv , display the header as well as any row which contains b
or t (irrespective of case) in the first field.

Name,Maths,Physics,Chemistry
Blue,67,46,99

Ort,68,72,66

Ith,100,100,100

9) Extract all whole words containing 42 but not at the edge of a word. Assume a word
cannot contain 42 more than once.

$ s='hid2bye niceld423 bad42 cool 42a 42fake'

$ echo "$s" |

hi42bye

nicel4?23

cool 42a

10) For the input file scores.csv , add another column named GP which is calculated out of
100 by giving 50% weightage to Maths and 25% each for Physics and Chemistry.

Name,Maths,Physics,Chemistry, GP

40

Blue,67,46,99,69.75
Lin,78,83,80,79.75
Er,56,79,92,70.75
Cy,97,98,95,96.75
Ort,68,72,66,68.5
Ith,100,100,100,100.0

11) For the input file mixed fs.txt , retain only the first two fields from each input line. The
input and output field separators should be space for first two lines and , for the rest of the
lines.

$ cat mixed fs.txt

rose lily jasmine tulip

pink blue white yellow
car,mat,ball, basket

light green,brown,black,purple
apple,banana, cherry

rose lily

pink blue

car,mat

light green,brown
apple, banana

12) For the given space separated numbers, filter only numbers in the range 20 to 1000
(inclusive).

$ s='20 -983 5 756 634223 1000’

$ echo "$s" |
20 756 1000

13) For the given space separated words, randomize the order of characters for each word.

$ s='this is a sample sentence'

$ echo "$s" |
shti si a salemp sneentce

14) For the given input file words.txt , filter all lines containing characters in ascending and
descending order.

$ cat words.txt
bot

art

are

boat

toe

flee

reed

41

bot
art

toe
reed

15) For the given space separated words, extract the three longest words.

$ s='I bought two bananas and three mangoes'

$ echo "$s" |
mangoes
bananas
bought

16) Convert the contents of split.txt as shown below.

$ cat split.txt
apple,1:2:5,mango
wry,4,look
pencil, 3:8,paper

apple,1,mango
apple,2,mango
apple,5,mango
wry,4,look
pencil, 3, paper
pencil, 8, paper

17) For the input file varying fields.txt , construct a solution to get the output shown
below.

$ cat varying fields.txt
hi,bye,there,was, here,to

1,2,3,4,5
hi:bye:to
1:2:5

18) The fields.txt file has fields separated by the : character. Delete : and the last
field if there is a digit character anywhere before the last field. Solution shouldn’t use the
substitution functions.

$ cat fields.txt
42:cat
twelve:a2b

42

we:be:he:0:a:b:bother
apple:banana-42:cherry:
dragon:unicorn:centaur

42

twelve:a2b
we:be:he:0:a:b
apple:banana-42:cherry
dragon:unicorn:centaur

19) The sample string shown below uses cat as the field separator (irrespective of case).
Use space as the output field separator and add 42 as the last field.

$ s='applecatfigCaTl2345cAtbanana’

$ echo "$s" |
apple fig 12345 banana 42

20) For the input file sample.txt , filter lines containing 5 or more lowercase vowels.

How are you

Believe it

No doubt you like it too
Much ado about nothing

43

	Preface
	Prerequisites
	Conventions
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	One-liner introduction
	Why use Ruby for one-liners?
	Installation and Documentation
	Command line options
	Executing Ruby code
	Filtering
	Substitution
	Field processing
	BEGIN and END
	ENV hash
	Executing external commands
	Summary
	Exercises

	Line processing
	Regexp based filtering
	Extracting matched portions
	match? method
	Transliteration
	Conditional substitution
	Multiple conditions
	next
	exit
	Line number based processing
	Flip-Flop operator
	Working with fixed strings
	In-place file editing
	Summary
	Exercises

	Field separators
	Default field separation
	Input field separator
	Character-wise separation
	Newline character in the last field
	Using the -l option for field splitting
	Output field separator
	scan method
	Fixed width processing
	Assorted field processing methods
	Summary
	Exercises

