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A quick overview of preference-based policy learning

Reward-based policy learning

State set (prompt): X .

Trajectory set (response): Y.

Reference policy (base model): πref : X Ñ ∆pYq.

Reward oracle: r‹ : X ˆ Y Ñ R.

Maximize the objective function below:

V r‹

πθ
:“ E

x„ρ,y„πθp¨|xq

»

—

–

r‹px , yq
loomoon

maximize reward

´β KL pπθp¨|xq}πrefp¨|xqq
loooooooooooomoooooooooooon

deviation penalty

fi

ffi

fl

.

Closed-form solution

Set optimal policy π‹ :“ argmax
π

V r‹

π , then π‹py |xq 9 πrefpy |xq exppr‹px , yq{βq.
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Preference-based policy learning

Reward oracle: r‹ : X ˆ Y Ñ R.
Preference annotation: Given x , y0, y1, Bradley-Terry model determines a preference signal b:

b “

#

0 w.p. σpr‹px , y0q ´ r‹px , y1qq (y0 is preferred) ,

1 w.p. σpr‹px , y1q ´ r‹px , y0qq py1 is preferred) .

Empirically, we are given a human preference dataset D “ tx piq, y
piq
w , y

piq
l uni“1, where y

piq
w is

preferred to y
piq
l given x piq following BT model.Still maximize the objective function below:

V r‹

πθ
:“ E

x„ρ,y„πθp¨|xq
rr‹px , yq ´ βKL pπθp¨|xq}πrefp¨|xqqs .
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Two-stage approach: Reinforcement learning from human feedback (RLHF)

Step 1: Train a reward model rRLHF by optimizing a cross-entropy loss:

LRMpϕq “ ´
1

n

n
ÿ

i“1

log σprϕpx piq, y
piq
w q ´ rϕpx piq, y

piq
l qq (note Ppy

piq
w ą y

piq
l q “ σpr‹pxpiq, y

piq
w q ´ r‹pxpiq, y

piq
l qq)

Step 2: Train a policy model πRLHF by RL:

JRLpθq “ V rRLHF
πθ

“ E
x„ρ,y„πθp¨|xq

rrRLHFpx , yq ´ βKL pπθp¨|xq}πrefp¨|xqqs .

Direct approach: Direct preference optimization (DPO)

Train a policy model πDPO by optimizaing a cross-entropy loss:

LDPOpθq “ ´
1

n

n
ÿ

i“1

log σ

˜

β log
πθpy

piq
w |xq

πrefpy
piq
w |xq

´ β log
πθpy

piq
l |xq

πrefpy
piq
l |xq

¸

.
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Direct approach: Direct preference optimization (DPO)

Train a policy model πDPO by optimizing a cross-entropy loss:

LDPOpθq “ ´
1

n

n
ÿ

i“1

log σ

˜

β log
πθpy

piq
w |xq

πrefpy
piq
w |xq

´ β log
πθpy

piq
l |xq

πrefpy
piq
l |xq

¸

“ ´
1

n

n
ÿ

i“1

log σpr̂θpx piq, y
piq
w q ´ r̂θpx piq, y

piq
l qq

Key idea:

Set r̂θpx , yq :“ β log πθpy |xq

πrefpy |xq
as a surrogate reward model.

r̂DPOpx , yq :“ β log πDPOpy |xq

πrefpy |xq
is learned in the same way as rRLHF.

We have πDPOpy |xq9πrefpy |xq exppr̂DPOpy |xq{βq ùñ πDPO “ argmax
π

V r̂DPO
π .

DPO can also be online, covered later.
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Central Question

Which approach is better?
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Starting point: Infinite data and computation

With no restriction on representation power, solutions of RLHF and DPO are equivalent:

Trivially, RLHF

#

rRLHF “ r‹ ,
πRLHF “ argmax

π
V π
r‹ “ π‹ ; DPO

#

r̂DPO “ r‹ ,
πDPO “ argmax

π
V π
r‹ “ π‹ .

What’s the benefit of Online DPO (data are iteratively generated by πθ and then
annotated with preference) compared with Offline DPO?

can enhance the convergence rate of gradient descent in tabular setting. [Theorem 1-4, Shi
et al. 2024]
has the same gradient as RL up to a second-order deviation. [Theorem 4.1, Feng et al. 2025;
Theorem 2]
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To reveal a separation in their solutions, we need to look into the model class:

Model class

Reward model class: F “ trϕ : ϕ P RdR u, dR P Z` is the parameter size;

Policy model class: Π “ tπθ : θ P RdP u, dP P Z` is the parameter size.

A unification of RLHF and DPO:

$

&

%

πRLHF “ argmax
πθPΠ

V πθ
rRLHF

πDPO “ argmax
πθPΠ

V πθ
r̂DPO

We are comparing their reward model qualities, and what’s the difference?
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Policy model class: Π “ tπθ : θ P RdP u, dP P Z` is the parameter size.

A unification of RLHF and DPO:

$

&

%

πRLHF “ argmax
πθPΠ

V πθ
rRLHFÐlie in F

πDPO “ argmax
πθPΠ

V πθ
r̂DPOÐmapped from Π

A simple observation:
The reward models rRLHF and r̂DPO are from different model classes.
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Applications of the simple observation

A unification of RLHF and DPO:

$

&

%

πRLHF “ argmax
πθPΠ

V πθ
rRLHFÐlie in F

πDPO “ argmax
πθPΠ

V πθ
r̂DPOÐmapped from Π

r‹ R F , π‹ P Π, i.e., the reward model is mis-specifiedÑ V πRLHF
r‹ ď V πDPO

r‹

D a bandit environment, s.t. V πRLHF
r‹ ă V πDPO

r‹ . [Prop. 5]

r‹ P F , π‹ R Π, i.e., the policy model is mis-specifiedÑ V πRLHF
r‹ ě V πDPO

r‹

D a bandit environment, s.t. V πRLHF
r‹ ą V πDPO

r‹ . [Prop. 3]
Online DPO cannot close the gap. [Prop. 4]

r‹ R F , π‹ R Π, F – Π Ñ V πRLHF
r‹ “ V πDPO

r‹

D a bandit environment, s.t. Online DPO outperforms RLHF. [Prop. 7]
Online data (carrying the information of the current policy) benefits reward learning.

Ruizhe Shi (UW) Gaps in Preference Learning January 30, 2026 10 / 22



Applications of the simple observation

A unification of RLHF and DPO:

$

&

%

πRLHF “ argmax
πθPΠ

V πθ
rRLHFÐlie in F

πDPO “ argmax
πθPΠ

V πθ
r̂DPOÐmapped from Π

r‹ R F , π‹ P Π, i.e., the reward model is mis-specifiedÑ V πRLHF
r‹ ď V πDPO

r‹

D a bandit environment, s.t. V πRLHF
r‹ ă V πDPO

r‹ . [Prop. 5]

r‹ P F , π‹ R Π, i.e., the policy model is mis-specifiedÑ V πRLHF
r‹ ě V πDPO

r‹

D a bandit environment, s.t. V πRLHF
r‹ ą V πDPO

r‹ . [Prop. 3]
Online DPO cannot close the gap. [Prop. 4]

r‹ R F , π‹ R Π, F – Π Ñ V πRLHF
r‹ “ V πDPO

r‹

D a bandit environment, s.t. Online DPO outperforms RLHF. [Prop. 7]
Online data (carrying the information of the current policy) benefits reward learning.

Ruizhe Shi (UW) Gaps in Preference Learning January 30, 2026 10 / 22



Applications of the simple observation

A unification of RLHF and DPO:

$

&

%

πRLHF “ argmax
πθPΠ

V πθ
rRLHFÐlie in F

πDPO “ argmax
πθPΠ

V πθ
r̂DPOÐmapped from Π

r‹ R F , π‹ P Π, i.e., the reward model is mis-specifiedÑ V πRLHF
r‹ ď V πDPO

r‹

D a bandit environment, s.t. V πRLHF
r‹ ă V πDPO

r‹ . [Prop. 5]

r‹ P F , π‹ R Π, i.e., the policy model is mis-specifiedÑ V πRLHF
r‹ ě V πDPO

r‹

D a bandit environment, s.t. V πRLHF
r‹ ą V πDPO

r‹ . [Prop. 3]
Online DPO cannot close the gap. [Prop. 4]

r‹ R F , π‹ R Π, F – Π Ñ V πRLHF
r‹ “ V πDPO

r‹

D a bandit environment, s.t. Online DPO outperforms RLHF. [Prop. 7]
Online data (carrying the information of the current policy) benefits reward learning.

Ruizhe Shi (UW) Gaps in Preference Learning January 30, 2026 10 / 22



Following Question

In practice, the access to finite data induces estimation error.
Then which approach is better?

Two-stage approach: RLHF

Reward learning. (restricted by finite data)

Policy optimization. (no information bottleneck)

Direct approach: DPO

Surrogate reward learning. (restricted by finite data)

Policy transformation: πDPOpy |xq9πrefpy |xq exppr̂DPOpx , yq{βq. (directly optimal)
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Optimal solution under token-level parameterization

Optimal reward:

r‹px , yq .

Optimal policy:

π‹pyt |x , y0...t´1q9πrefpyt |x , y0...t´1q exp

ˆ

q‹pyt |x , y0...t´1q

β

˙

,

where q‹ is the soft Q function:

q‹pyt |x , y0...t´1q “

#

β log
ř

sPV πrefps|x , y0...tq exppq‹ps|x , y0...tq{βq yt is not terminal token;

r‹px , y0...tq yt is terminal token.

Observation: q‹ is harder to estimate than r‹ (the intrinsic structure of the reward
function, e.g. linearity and sparsity, is distorted).
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Target (prompt omitted): Dq‹, s.t.

π‹pyt |x , y0...t´1q9πrefpyt |x , y0...t´1q exp

ˆ

q‹pyt |x , y0...t´1q

β

˙

,

and

q‹pyt |x , y0...t´1q “

#

β log
ř

sPV πrefps|x , y0...tq exppq‹ps|x , y0...tq{βq yt is not terminal token;

r‹px , y0...tq yt is terminal token.

Proof. Set the q‹ function as

q‹py0q “ β logZ ` β log
π‹py0q

πrefpy0q
, q‹pyt |y0...t´1q “ q‹pyt´1|y0...t´2q ` β log

π‹pyt |y0...t´1q

πrefpyt |y0...t´1q
.

Then we have πrefpyt |y0...t´1q exp
´

q‹pyt |y0...t´1q´q‹pyt´1|y0...t´2q

β

¯

“ π‹pyt |y0...t´1q, and thus
ř

s πrefps|y0...t´1q exp
´

q‹pyt |y0...t´1q´q‹pyt´1|y0...t´2q

β

¯

“ 1 (just sum up), which yields:

q‹pyt´1|y0...t´2q “ β log
ÿ

s

πrefps|y0...t´1q exppq‹ps|y0...t´1q{βq . (non-terminal token)
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A representative token-level parameterization (prompt omitted)

Reward Model: The common reward model shares the same architecture with LM but
replaces the last layer with a linear head (here θt , ψpy0...t P Rd):

rθpyq “ β
N

ÿ

t“0

θJ
t ψpy0...tq .

Policy Model: One needs to go through the softmax results of all tokens and multiply them:

πθpyq “

N
ź

t“0

πθpyt |y0...t´1q “

N
ź

t“0

πrefpyt |y0...t´1q exppθJ
t ψpy0...tqq

ř

s πrefps|y0...t´1q exppθJ
t ψpy0...t´1, sqq

.

θ‹
r : the optimal solution for reward learning;

θ‹
p: the optimal solution for policy learning.
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Difference in solution structure

Dual-token Sparse Prediction (DTSP)

The policy is required to sequentially output two tokens y , ω, and the ground-truth reward is:

r‹py , ωq “ βrJ
sparseψpyq ` βe1

Jψpy , ωq ,

where ψpyq, ψpy , ωq P Rd , rsparse, rdense P Rd , }rsparse}0 “ k, k ! d .

For the second token, θ‹
r and θ‹

p share the same optimal solution:

pθ‹
r ,1qJψpy , ωq “ e1

Jψpy , ωq ` C1 , pθ‹
p,1qJψpy , ωq “ e1

Jψpy , ωq ` C2 .

While for the first token y , there is a distinction:

pθ‹
r ,0qJψpyq “ rJ

sparseψpyq ` C3 , pθ‹
p,0qJψpyq “ rJ

sparseψpyq ` log E
w„πrefp¨|yq

exppψpy , ωq1q

loooooooooooooooomoooooooooooooooon

log partition function

` C4 ,
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Difference in solution structure

pθ‹
r ,0qJψpyq “ rJ

sparseψpyq ` C3 , pθ‹
p,0qJψpyq “ rJ

sparseψpyq ` log E
w„πrefp¨|yq
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log partition function

` C4 ,

The log partition function can be

non-linear function of ψpyq Ñ DPO is prone to model mis-specification, and thus requires
a large parameter size;

dense linear function of ψpyq Ñ DPO can not efficiently leverage sparsity.

Is there a sample complexity separation between reward learning and DPO?
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Task construction

Recall

pθ‹
r ,0qJψpyq “ rJ

sparseψpyq ` C3 ,

pθ‹
p,0qJψpyq “ rJ

sparseψpyq ` log E
w„πrefp¨|yq

exppψpy , ωq1q ` C4 ;

Set ψpy , ωq “ ψpωq `
`

rJ
denseψpyq

˘

e1, and πrefp¨|yq as uniform;

Then we have

pθ‹
r ,0qJψpyq “ rJ

sparseψpyq ` C3 ,

pθ‹
p,0qJψpyq “ p rsparse ` rdense

looooooomooooooon

sparsity is distorted

qJψpyq ` C4 .
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Technical tools: estimation for single token

Definition (Reward quality measure: Data-induced semi-norm)

Under single-token setting, the empirical error of an estimate θ̂ is defined as

}θ̂ ´ θ‹}2ΣD
:“ 1

n

řn
i“1

”

prθ̂py
piq
w q ´ rθ̂py

piq
l qq ´ pr‹py

piq
w q ´ r‹py

piq
l qq

ı2
, where

ΣD :“ 1
n

řn
i“1pψpy

piq
w q ´ ψpy

piq
i qqpψpy

piq
w q ´ ψpy

piq
i qqJ is the Gram matrix.

Lemma (Lower bound, Theorem 1.a, Shah et al. 2015)

For a sample size n ě c1tr(Σ
:

D), any estimate θ̂ based on n samples has a lower bound as:

sup
θ‹PΘB

E
”

}θ̂ ´ θ‹}2ΣD

ı

“ Ω

ˆ

d

n

˙

.

Lemma (Upper bound, Lemma 3.1, Zhu et al. 2023)

}θ̂MLE ´ θ‹}2ΣD
“ O

ˆ

d ` logp1{δq

n

˙

, w.p. 1 ´ δ .
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Technical tools: sparse recovery

Lemma (Theorem 3.3, Yao et al. 2025)

Consider }θ‹}0 “ k, k ! d, the ℓ1-regularized estimate θ̂ℓ1 :

θ̂ℓ1 P argmin
θPΘB

LMLEpθq ` γ}θ}1 .

with an appropriate γ “ Θ

ˆ

b

logpdq`logp1{δq

n

˙

has an upper bound as:

}θ̂ℓ1 ´ θ‹}2ΣD
“ O

˜

c

k logpdq ` k logp1{δq

n

¸

, w.p. 1 ´ δ .
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Theorem (Separation of RLHF and DPO in sample complexity)

Under token-level linear parameterization and mild assumptions, there exists an environment
for DTSP task, s.t. by estimating from a preference dataset D with n samples under θ1 “ e1
constraint, the estimation error of the reward model θ̂r can be reduced to Õp

a

k log d{nq

using a (computationally efficient) ℓ1-regularized estimator, i.e., w.p. 1 ´ δ,

1

n

n
ÿ

i“1

”

pr‹py
piq
w q ´ r‹py

piq
l qq ´ prθ̂r py

piq
w q ´ rθ̂r py

piq
l qq

ı2
“ O

˜

c

k logpdq ` k logp1{δq

n

¸

,

while the estimation error of the DPO model θ̂p is lower bounded by Ωpd{nq:

1

n

n
ÿ

i“1

”

pr‹py
piq
w q ´ r‹py

piq
l qq ´ prθ̂ppy

piq
w q ´ rθ̂ppy

piq
l qq

ı2
“ Ω

ˆ

d

n

˙

.
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Experimental Verification
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Figure: Experimental Results on Statistical Efficiency. We experiment on two preference types, and
pure reward learning is shown to be more data-efficient than surrogate reward learning.

Ruizhe Shi (UW) Gaps in Preference Learning January 30, 2026 22 / 22


