Understanding the Gaps between

Two-stage and Direct Preference-based Policy Learning

Ruizhe Shi

University of Washington

January 30, 2026

= = = E nae
Ruizhe Shi (UW) Gaps in Preference Learning



A quick overview of preference-based policy learning

Reward-based policy learning

o State set (prompt): X.

o Trajectory set (response): ).

o Reference policy (base model): 7 : X — A(Y).
@ Reward oracle: r*: X x Y — R.
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A quick overview of preference-based policy learning

Reward-based policy learning

o State set (prompt): X.

o Trajectory set (response): ).

o Reference policy (base model): 7 : X — A(Y).
@ Reward oracle: r*: X x Y — R.

Maximize the objective function below:

Viyi= E r'(x,y)  —=BKL(m(-|x) e (%))
X~p,y~7T9("X) N——— ~— -
maximize reward deviation penalty
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A quick overview of preference-based policy learning

Reward-based policy learning

State set (prompt): X.
Trajectory set (response): ).

Reference policy (base model): m.f : X — A(Y).

Reward oracle: r* : X x Y — R.

Maximize the objective function below:

Vo= E rxy)  —BKL(mo(plmer(-1x))
X~p,y~ﬂ'9("X) = ~—
maximize reward deviation penalty

W
Closed-form solution

Set optimal policy 7* := argmax V", then 7*(y|x) o¢ Tef(y|x) exp(r*(x,y)/B).
™

- = = = Sake
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Preference-based policy learning
Preference annotation: Given x, yg, y1, Bradley-Terry model determines a preference signal b:
b 0 w.p.o(r*(x,y) — r*(x,y1)) (vo is preferred) ,
1 w.p.o(r*(x,y1) — r*(x,y0)) (y1 is preferred) .
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Preference-based policy learning
I%e‘”al‘d BI‘EIE|E F* . g ¢ )2 2

Preference annotation: Given x, yg, y1, Bradley-Terry model determines a preference signal b:

b 0 w.p.o(r*(x,y) — r*(x,y1)) (vo is preferred) ,
1 w.p.o(r*(x,y1) — r*(x,y0)) (y1 is preferred) .

Empirically, we are given a human preference dataset D = {x ,yW Y D1n 71, where y.f.,i) is

preferred to y,(i) given x() following BT model.
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Preference-based policy learning
I%e‘”al‘d BI‘aE'E F* . g ¢ )2 2

Preference annotation: Given x, yg, y1, Bradley-Terry model determines a preference signal b:

b 0 w.p.o(r*(x,y) — r*(x,y1)) (vo is preferred) ,
1 w.p.o(r*(x,y1) — r*(x,y0)) (y1 is preferred) .

Empirically, we are given a human preference dataset D = {x{) ,yW Y D1n 71, where y.f.,i) i

preferred to y,() given x() following BT model.Still maximize the objective function below:

Vip = E [r"(x,y) = BKL (m(-[x) |mrer (-x))] -

x~p,y~g(-|x)
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Two-stage approach: Reinforcement learning from human feedback (RLHF)

Step 1: Train a reward model rg yF by optimizing a cross-entropy loss:
BN (i 0 (i, (M _ 0 o (D) DN (i) ()
ﬁRm(¢)=—;Zlog0(r¢(x ') = rg(x7, y7)) (note Py > y[7) = o(r* (<D, 1) — (D, )
i=1
Step 2: Train a policy model wr yF by RL:

Tre(0) = Ve = B [rrene(x, y) — BKL (g (+[x) | mref (+1x))] -

x~p,y~7q(-|x)
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Two-stage approach: Reinforcement learning from human feedback (RLHF)

Step 1: Train a reward model rg yF by optimizing a cross-entropy loss:

1 ¢ N PN N L o
Lru(9) = = Y log o (rs(x D, y) = ro(xD, yi)) (rote P = 17) = (" (60 2 = 1+ (x0 )
i=1

Step 2: Train a policy model wr yF by RL:

jRL(H) = Vﬂf';LHF = E [rRLHF(Xay) - /BKL (779('|X)H7Tref("x))] .

x~p,y~mg (-|x)

Direct approach: Direct preference optimization (DPO)

Train a policy model mppo by optimizaing a cross-entropy loss:

n 0) ()
1 |15 7r X
Lppo(f) = —= Z log & <ﬁ IOgL(i)l) — Blog (’(y/—(l)|)> )
n i=1 7rref(yw ‘X) Wref()’/ ‘X)
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Direct approach: Direct preference optimization (DPO)

Train a policy model mppo by optimizing a cross-entropy loss:

() (v D15
EDPO(G):__Zloga<m°g&—ﬁlog 9()’/ ’))

71'ref(_yw |X) 7Tref(.y/ |X)
=——Zlog0 yi) = Fa(x?, y)
Key idea:
@ Set fy(x,y) := Blog — f({y‘f;)) as a surrogate reward model.
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Direct approach: Direct preference optimization (DPO)

Train a policy model mppo by optimizing a cross-entropy loss:

mo(y “| ) sien we<y,<’>rx>>

71'ref()/w |X) 7rl‘ef()// |X)

Lopo(8) = —— Z log o <5 log
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Key idea:

@ Set fy(x,y) := Blog rref((yy‘l);)) as a surrogate reward model.

e fopo(x,y) := Blog ?Pfogl}")‘:;) is learned in the same way as rr_HF.
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Direct approach: Direct preference optimization (DPO)

Train a policy model mppo by optimizing a cross-entropy loss:

() (v D15
EDPO(G):__Zloga<m°g&—ﬁlog 9()’/ ’))

71'ref(_yw |X) 7Tref(.y/ |X)
=——Zlog0 yi) = Fa(x?, y)
Key idea:
@ Set fy(x,y) := Blog — f({y‘f;)) as a surrogate reward model.

e fopo(x,y) := Blog ?Pfogl}")‘:;) is learned in the same way as rr_HF.

@ We have mppo (y|x)ocmes(v|x) exp(fopo(y|x)/8) = mppo = argmaxV,oro.
s
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Direct approach: Direct preference optimization (DPO)

Train a policy model mppo by optimizing a cross-entropy loss:

() (v D15
EDPO(G):__Zloga<m°g&—ﬁlog 9()’/ ’))

71'ref(_yw |X) 7Tref(.y/ |X)
=——Zlog0 yi) = Fa(x?, y)
Key idea:
@ Set fy(x,y) := Blog — f({y‘f;)) as a surrogate reward model.

e fopo(x,y) := Blog ?Pfogl}")‘:;) is learned in the same way as rr_HF.

@ We have mppo (y|x)ocmes(v|x) exp(fopo(y|x)/8) = mppo = argmaxV,oro.
s

DPO can also be online, covered later.
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Central Question

Which approach is better?
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Starting point: Infinite data and computation

@ With no restriction on representation power, solutions of RLHF and DPO are equivalent:
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Starting point: Infinite data and computation

@ With no restriction on representation power, solutions of RLHF and DPO are equivalent:

IRLHF = ", DPO foro =r",
TRLHF = argmaxVi = 7" ; mppo = argmaxVi =7
™ ™

*

Trivially, RLHF {
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Starting point: Infinite data and computation

@ With no restriction on representation power, solutions of RLHF and DPO are equivalent:

IRLHF = '™, DPO foro = ",
TRLHF = argmaxVi = 7" ; mppo = argmaxVi =7
™ ™

*

Trivially, RLHF {

What's the benefit of Online DPO (data are iteratively generated by my and then
annotated with preference) compared with Offline DPO?
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Starting point: Infinite data and computation

@ With no restriction on representation power, solutions of RLHF and DPO are equivalent:

IRLHF = '™, DPO foro = ",
TRLHF = argmaxVi = 1" ; mppo = argmaxVi =7
s ™

*

Trivially, RLHF {

What's the benefit of Online DPO (data are iteratively generated by my and then
annotated with preference) compared with Offline DPO?

e can enhance the convergence rate of gradient descent in tabular setting. [Theorem 1-4, Shi
et al. 2024]

o has the same gradient as RL up to a second-order deviation. [Theorem 4.1, Feng et al. 2025;
Theorem 2]
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@ To reveal a separation in their solutions, we need to look into the model class:

Model class

o Reward model class: F = {r, : ¢ € R%}, dg € Z is the parameter size;

o Policy model class: M = {my : 0 € R%}, dp € Z, is the parameter size.
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@ To reveal a separation in their solutions, we need to look into the model class:

Model class

o Reward model class: F = {r, : ¢ € R%}, dg € Z is the parameter size;

o Policy model class: M = {my : 0 € R%}, dp € Z, is the parameter size.

o

TRLHF = argmax V!
A unification of RLHF and DPO: o€l o
mppo = argmax V;
DPO
el

We are comparing their reward model qualities, and what’s the difference?

Ruizhe Shi (UW) Gaps in Preference Learning January 30, 2026 8/22



@ To reveal a separation in their solutions, we need to look into the model class:

Model class

o Reward model class: F = {r, : ¢ € R%}, dg € Z is the parameter size;

o Policy model class: M = {my : 0 € R%}, dp € Z, is the parameter size.

TRLHF = a"gmrél‘x rrLnF<lie in F
A unification of RLHF and DPO: T e
TDPO = argmax Vi o '« mapped from M
el

A simple observation:
The reward models rg HF and fppo are from different model classes.
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Applications of the simple observation

— o
TRUHF = argmax V' e in 7

A unification of RLHF and DPO: el
TDPO = argr:r?x fopo<—mapped from 1
o

o r* ¢ F,m* €, ie., the reward model is mis-specified— V/ RHF < V/PPO
e 3 a bandit environment, s.t. VR < V7PPO [Prop. 5]
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Applications of the simple observation

— o
TRUHF = argmax V' e in 7
7T9€|_|

— o
TppO = argmax vapoemapped from I
el

A unification of RLHF and DPO:

o r* ¢ F,m* €, ie., the reward model is mis-specified— V/ RHF < V/PPO
e 3 a bandit environment, s.t. VR < V7PPO [Prop. 5]

o r*e F,m* ¢, ie., the policy model is mis-specified— V// RHF > \/7bPO
o 3 a bandit environment, s.t. VI*H > V7P [Prop. 3]
e Online DPO cannot close the gap. [Prop. 4]
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Applications of the simple observation

— VT"G
TRLHF = argmax V. ' . jie in F

A unification of RLHF and DPO: el
TDPO = argr:r?x fopo<—mapped from 1
)

o r* ¢ F,m* €, ie., the reward model is mis-specified— V/ RHF < V/PPO
e 3 a bandit environment, s.t. VR < V7PPO [Prop. 5]
o r*e F,m* ¢, ie., the policy model is mis-specified— V// RHF > \/7bPO
o 3 a bandit environment, s.t. VIR > V7PPO [Prop. 3]
e Online DPO cannot close the gap. [Prop. 4]
o r'¢ For* ¢, FxI— VRH = y7bro
e 3 a bandit environment, s.t. Online DPO outperforms RLHF. [Prop. 7]
o Online data (carrying the information of the current policy) benefits reward learning.
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Following Question

Then which approach is better?
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In practice, the access to finite data induces estimation error.



Following Question

In practice, the access to finite data induces estimation error.
Then which approach is better?

Two-stage approach: RLHF

e Reward learning. (restricted by finite data)

e Policy optimization. (no information bottleneck)

v

Direct approach: DPO

@ Surrogate reward learning. (restricted by finite data)

@ Policy transformation: mppo(y|x)ocmes(y|x) exp(fopo(x, y)/B). (directly optimal)
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Optimal solution under token-level parameterization
e Optimal reward:

e Optimal policy:

rr(x,y) .
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Optimal solution under token-level parameterization

e Optimal reward:

rr(x,y) .

e Optimal policy:

* q* X, Y0...t—1
T (_Vt‘xay0...t—1)OC7Tref(Yt‘X’y0...t—1)eXp( el 3}/ : )> ,

where g* is the soft Q function:

q" (velx, yo..e-1) = Blog Xy mref (s|X, yo...t) exp(q*(s[x, yo...t)/B)  ye is not terminal toke
t1X, Y0...t— (X, yo..c) yt is terminal token.
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Optimal solution under token-level parameterization

o Optimal reward:

rr(x,y) .

e Optimal policy:

¥ q* Ye|X, Y0...t—1

where g* is the soft Q function:

q (velx, yo..e-1) = Blog Y ieey mref (s|X, yo...t) exp(a™(s]x, y0..t)/B)  ye is not terminal toke
t1X, Y0...t— (X, yo..c) yt is terminal token.

@ Observation: g* is harder to estimate than r* (the intrinsic structure of the reward
function, e.g. linearity and sparsity, is distorted).
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Target (prompt omitted): 3g*, s.t.

" q* Ye|X, Y0...t—1
™ (yt|x’yO-“t_l)ocﬂref(Yt’X,y0,,.t_1)exp( (vl ; t )) 7

and

Q*(y |X Yo 1) — /BlongeV 7Tref(S|X7y0...t‘) exP(q*(5|X7}/0...t)/ﬁ) Yt is not terminal tOken;
t1X, Y0...t— (. yo..t) yt is terminal token.

Proof. Set the g* function as

W*(Yt’}/O..‘t—l)
Wref(Yt‘yo‘..tfl)

™ (¥0)

Tref ()/O

q*(yo) = Blog Z + flog ik q*(Velyo..t-1) = ¢ (Ve-1|y0...c—2) + Blog
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Target (prompt omitted): 3g*, s.t.

" q* Ye|X, Y0...t—1
™ (yt|x’yO-“t_l)ocﬂref(Yt’X,y0,,.t_1)exp( (vl ; t )) 7

and

4 (el vo_e 1) = Blog > ey Tref (5%, Yo...t) exp(q*(s|x, yo..t)/B) ¥t is not terminal token;
Bt r*(x,yo..t) yt is terminal token.
Proof. Set the g* function as

W*(Yt’}/O..‘t—l)
Wref(Yt‘yo‘..tfl)

* r 7T* yO * *
q*(yo) = Blog Z + flog o) y @ (velyo..e-1) = " (Ye-1|y0..t—2) + Blog
7rref()/O)

<q*()’t|}’04.4t71)—g*(%71 lvo...t—2) )

Then we have 7ef (e |yo. +—1) exp =71 (yelyo..t-1)
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Target (prompt omitted): 3g*, s.t.

) q* Yt|X; Yo...t—1
™ (yt|x’yo-“t_l)ocﬂref()’t’X,y0,,.t_1)exp( (el ; t )) 7

and

4 (el vo_e 1) = Blog > ey Tref (5%, Yo...t) exp(q*(s|x, yo..t)/B) ¥t is not terminal token;
Bt r*(x,yo..t) yt is terminal token.
Proof. Set the g* function as

7T*(yt’yo.“t—l)
Wref(Yt‘yo‘..tfl)

* Va ﬂ-* y * *
q*(yo) = Blog Z + (log bo) » 4 (Velyo..t-1) = " (Ve-1|y0..c—2) + Blog
7rref()/O)

<q*()’t|}’0..‘:71)—§*(yt71 lvo...t-2) )

Then we have 7ef(y:|yo..t-1) exp = 7*(yt|yo..+—1), and thus

(velyo...e—1)

ZS Tref (S|Y0..t—1) exp (q —g (Yt71|YO.‘.t72)> — 1 (just sum up)
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Target (prompt omitted): 3g*, s.t

) q* Yt|X; Yo...t—1
™ (yt|x’yo-“t_l)ocﬂref()’t’X,y0,,.t_1)exp( (el ; t )) 7

and

“(velx, v0..0-1) = Blog > lsey mref (S|X, o...¢) exp(q*(s[x, ¥0...t)/B)  y¢ is not terminal token;
' ' r*(x,yo..t) ¥t is terminal token.

Proof. Set the g* function as

Wref(Yt‘yo‘..tfl)

q"(vo) = Blog Z + Blog f%?o)) » @ (Yelyo..t-1) = " (ye-1ly0..t-2) + Blog

= 7" (y¢|y0..t—1), and thus

Then we have et (ve|yo. e 1) exp( (velyo...e-1) (thl‘yo.“th))

Zsﬂref(s\)/o...tq)exp( 9" (elyo. .ez1) 5 "1l 2)> = 1 (just sum up), which yields:
(

q" (ye-1ly0..t-2) = 5|OgZ7Tref slyo.t—1)exp(q*(s|yo..t—1)/3) . (non-terminal token)
S
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Target (prompt omitted): 3g*, s.t.

q*(yt|Xay0..,t—1))

7T*()’t|XaYO...t—l)OCWref()’t|XaYO...t—l)eXP ( 3

and

g (velx, yo..t-1) = Blog sy Tref (S|X, yo...t) exp(q*(s[x, ¥0...t)/B)  ye is not terminal token;
t1X; Y0...t— (X, Yo..1) yt is terminal token.

Proof. (con'd) Recall the g* function as

7™ (¥0)
Tref (}/O

(el yo..t—1)
Tref (VelYo..t—1)

q*(yo) = Blog Z + flog R q*(velyo..t—1) = ¢ (Ve—1|y0...t—2) + Blog
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Target (prompt omitted): 3g*, s.t.

q*(yt|Xay0..,t—1))

7T*()’t|XaYO...t—l)OCWref()’t|XaYO...t—l)eXP ( 3

and

g (velx, yo..t-1) = Blog sy Tref (S|X, yo...t) exp(q*(s[x, ¥0...t)/B)  ye is not terminal token;
t1X; Y0...t— (X, Yo..1) yt is terminal token.

Proof. (con'd) Recall the g* function as

7™ (¥0)
Tref (}/O

T (velyo..e-1)
Tref (YelYo..t-1)
And for a y with yy as the terminal token, note that 7*(y) = Sm.r(y) exp(r*(y)/5)

q*(yo) = Blog Z + Blog R q*(velyo..t—1) = ¢ (Ve—1|y0...t—2) + Blog
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Target (prompt omitted): 3g*, s.t

q*(yt|Xay0..,t—1))

7T*()’t|XaYO...t—l)OCWref()’t|XaYO...t—l)eXP ( 3

and

. Blog D oy Tref (51X, Yo...t) exp(q* (5|, yo...t)/B) ¥t is not terminal token;
(velx; yo..t-1) = . . .
r*(x, ¥o...t) yt is terminal token.

Proof. (con'd) Recall the g* function as

™ (¥0)

* * (. Ye|Yo...t—1
» @ (velyo..e-1) = " (Ve-1|y0..t—2) + Blog Uelso..c-1)
ref(}/O)

Tref (YelYo..t-1)
And for a y with yy as the terminal token, note that 7*(y) = Sm.er(y) exp(r*(y)/3), we have:

q*(v0) = Blog Z + Blog —

7 (y)= Blog Z + Blog =) — Blog Z + Blog +Z g T Uelyo.tm1)
Fref(y) ref 7Tref _Vt‘yo e 1)
N
=q"(yo) + Z g (velyo..e-1) — q"(vei-1ly0..t2) = " (yn|yo..n—1) - (terminal token) [
t=1
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A representative token-level parameterization (prompt omitted)

Reward Model: The common reward model shares the same architecture with LM but
replaces the last layer with a linear head (here 6;,v(yo. .+ € Rd):

N

ra(y) =B 0] ¢(yo..t) -

t=0

Policy Model: One needs to go through the softmax results of all tokens and multiply them:

Tref (Velyo...-1) exp(07 ¢ (y0...¢))
s Tref(S]yo...e~1) exp(0] ¥(y0..t-1,5))

||':]2

To(yelyo...e-1) HZ

@ (7. the optimal solution for reward learning;

e 07: the optimal solution for policy learning.

Ruizhe Shi (UW) Gaps in Preference Learning January 30, 2026 15/22



Difference in solution structure

Dual-token Sparse Prediction (DTSP)

The policy is required to sequentially output two tokens y,w, and the ground-truth reward is:
r*(y,w) = Bripaset(y) + Ber (v, w)

where w()/), ¢(y7w) € Rdr Fsparse; Fdense € Rd: ”rsparseHO = k, k«d.
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Difference in solution structure

Dual-token Sparse Prediction (DTSP)

The policy is required to sequentially output two tokens y,w, and the ground-truth reward is:
r*(y,w) = Bripaset(y) + Ber (v, w)

where w()/), ¢(y7w) € Rdr Fsparse; Fdense € Rd: ”rsparseHO = k, k«d.

For the second token, 0} and 0, share the same optimal solution:

(0:,1)T¢(y)w) = elTw(%W) + G, (9;,1)T"¢(%W) = elTT/f(,Vaw) + G
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Difference in solution structure

Dual-token Sparse Prediction (DTSP)

The policy is required to sequentially output two tokens y,w, and the ground-truth reward is:
r*(y,w) = Bripaset(y) + Ber (v, w)

where w()/), ¢(y7w) € Rdr Fsparse; Fdense € Rd: ”rsparseHO = k, k«d.

For the second token, 0} and 0, share the same optimal solution:

( :,1)T¢(y,w) = elTw(%W) + G, (9;,1)T"¢(%W) = elTT/f(,Vaw) + G

While for the first token y, there is a distinction:

(070) " (y) = Fharse® () + Ga, (050)'90(y) = rharset?(y) +log B exp((y,w)1) + G,

W""/Tref("y

log partition function
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Difference in solution structure

(07 0)T0(Y) = omrse?(¥) + G, (050) T9(Y) = Fparee®h(y) +log B exp(t(y.w)1) + Ca,

W"/ﬂ—ref("y)

log partition function

The log partition function can be

@ non-linear function of ¢(y) — DPO is prone to model mis-specification, and thus requires
a large parameter size;
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Difference in solution structure

(07 0)T0(Y) = omrse?(¥) + G, (050) T9(Y) = Fparee®h(y) +log B exp(t(y.w)1) + Ca,

W\/Trref("y)

log partition function

The log partition function can be

@ non-linear function of ¢(y) — DPO is prone to model mis-specification, and thus requires
a large parameter size;

e dense linear function of 1/(y) — DPO can not efficiently leverage sparsity.
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Difference in solution structure

(07 0)T0(Y) = omrse?(¥) + G, (050) T9(Y) = Fparee®h(y) +log B exp(t(y.w)1) + Ca,

W\ﬂ—ref("y)

log partition function

The log partition function can be

@ non-linear function of ¢(y) — DPO is prone to model mis-specification, and thus requires
a large parameter size;

e dense linear function of 1/(y) — DPO can not efficiently leverage sparsity.

Is there a sample complexity separation between reward learning and DPO?
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Task construction

@ Recall

(9:,0)T¢(Y) = r;l;)arse
(0,

)+ G,
O)T¢(y) = r;arse¢(y) + log

E  exp((y,w)) + Cy;
W“’ﬂ'ref("y)

= = = E nae
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Task construction

@ Recall

o)T¢(Y) =,
(050

sparse

T
Fdense

(y)+ G,
)T¢(Y) = r;arse¢(y) + log
@ Set ¢(y,w) = Y(w) + (

E

exp(t(y,w)1) + G ;
W Tt (+]y)
¥(y)) e1, and mef(+|y) as uniform;

= = = E nae
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Task construction

@ Recall

( :,o)Tl/J(Y) = r;l;)arse (y) + G,

(9;70)T¢(Y) = r;l;)arsew(y) + |Og E exp(w(%wh) + C4 ,

W~ (|y)

o Set Y(y,w) = Y(w) + (Flanse?(y)) €1, and mref(-]y) as uniform;
@ Then we have

( :7O)T¢(Y) = r;l;)arsew()/) + G,

(9;,0)T¢(Y) = (Fsparse + Fdense )Tw(Y) + G
—_—

sparsity is distorted
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Technical tools: estimation for single token

Definition (Reward quality measure: Data-induced semi-norm)

Under single-token setting, the empirical error of an estimate @ is defined as
~ n I i o i * i 2

16— 612, == 23y [(ra?) = ™) = (A = (™))] " where

¥p = 200 () — e ") () = (y”))T is the Gram matrix.
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Technical tools: estimation for single token

Definition (Reward quality measure: Data-induced semi-norm)

Under single-token setting, the empirical error of an estimate @ is defined as
A j i vy (i N ONNE

16— 612, == 23y [(ra?) = ™) = (A = (™))] " where
pi= 13 (0)) — ()W) — ¢(y”)T is the Gram matrix.

Lemma (Lower bound, Theorem 1.a, Shah et al. 2015)

For a sample size n = ¢; tr(ZD) any estimate 0 based ong samples has a lower bound as:
sup E [HO G*HZD] =Q <>

0*c© B n
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Technical tools: estimation for single token

Definition (Reward quality measure: Data-induced semi-norm)

Under single-token setting, the empirical error of an estimate @ is defined as
4 i e (i N ONNE

16— 612, == 23y [(ra?) = ™) = (A = (™))] " where
pi= 13 (0)) — ()W) — ¢(y”)T is the Gram matrix.

Lemma (Lower bound, Theorem 1.a, Shah et al. 2015)

For a sample size n = ¢; tr(ZD) any estimate 0 based on n samples has a lower bound as:

sup E[10-"13,] = (%)

0*cO B n

Lemma (Upper bound, Lemma 3.1, Zhu et al. 2023)
A N d + log(1/d
[OmLe — 6 H2zD =0 (#) ,wp. 1—6.

v

- =
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Technical tools: sparse recovery

Lemma (Theorem 3.3, Yao et al. 2025)

Consider |6*[o = k, k « d, the {1-regularized estimate 8, :

égl € argmin Lyie(0) + )01 -

963

with an appropriate v = © ( M) has an upper bound as:

A N klog(d) + klog(1/6
ueel—eu%fow - g”)),w.p.l—a.

n
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Theorem (Separation of RLHF and DPO in sample complexity)

Under token-level linear parameterization and mild assumptions, there exists an environment
for DTSP task, s.t. by estimating from a preference dataset D with n samples under 61 = e;
constraint, the estimation error of the reward model §, can be reduced to O(+/klogd/n)
using a (computationally efficient) {1-regularized estimator, i.e., w.p. 1 — ¢,

% 2, [(’*(yv(vi)) = (7)) = (5, () - fé,(y/(i)))]z -¢ <\/k e '0g(1/5)> :
i=1

n

while the estimation error of the DPO model HAP is lower bounded by Q(d/n):

[0 = 0 - 3,08 - 1, 6] =2 (£)

n
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Experimental Verification

064

Eval Accuracy
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Figure: Experimental Results on Statistical Efficiency. We experiment on two preference types, and
pure reward learning is shown to be more data-efficient than surrogate reward learning.
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