tidyFlowCore is an R package that bridges the gap between flow
cytometry analysis using the flowCore Bioconductor package and the
tidy data principles advocated by the tidyverse. It provides a suite
of dplyr-, ggplot2-, and tidyr-like verbs specifically designed
for working with flowFrame and flowSet objects as if they were
tibbles; however, your data remain flowCore flowFrames and
flowSets under this layer of abstraction.
Using this approach, tidyFlowCore enables intuitive and streamlined
analysis workflows that can leverage both the Bioconductor and tidyverse
ecosystems for cytometry data.
Get the latest stable R release from
CRAN. Then install tidyFlowCore from
Bioconductor using the following code:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("tidyFlowCore")And the development version from GitHub with:
BiocManager::install("keyes-timothy/tidyFlowCore")tidyFlowCore allows you to treat flowCore data structures like tidy
data.frames or tibbles It does so by implementing dplyr, tidyr,
and ggplot2 verbs that can be deployed directly on the flowFrame and
flowSet S4 classes.
In this section, we give a brief example of how tidyFlowCore can
enable a data analysis pipeline to use all the useful functions of the
flowCore package and many of the functions of the dplyr, tidyr,
and ggplot2 packages.
library(tidyFlowCore)
library(flowCore)# read data from the HDCytoData package
bcr_flowset <- HDCytoData::Bodenmiller_BCR_XL_flowSet()
#> see ?HDCytoData and browseVignettes('HDCytoData') for documentation
#> loading from cacheThe flowCore package natively supports multiple types of data
preprocessing and transformations for cytometry data through the use of
its tranform class.
For example, if we want to apply the standard arcsinh transformation often used for CyTOF data to our current dataset, we could use the following code:
asinh_transformation <- flowCore::arcsinhTransform(a = 0, b = 1/5, c = 0)
transformation_list <-
flowCore::transformList(
colnames(bcr_flowset),
asinh_transformation
)
transformed_bcr_flowset <- flowCore::transform(bcr_flowset, transformation_list)Alternatively, we can also use the tidyverse’s functional programming
paradigm to perform the same transformation. For this, we use the
mutate-across framework via tidyFlowCore:
transformed_bcr_flowset <-
bcr_flowset |>
dplyr::mutate(across(-ends_with("_id"), \(.x) asinh(.x / 5)))Suppose we’re interested in counting the number of cells that belong to
each cell type (encoded in the population_id column of bcr_flowset)
in our dataset. Using standard flowCore functions, we could perform
this calculation in a few steps:
# extract all expression matrices from our flowSet
combined_matrix <- flowCore::fsApply(bcr_flowset, exprs)
# take out the concatenated population_id column
combined_population_id <- combined_matrix[, 'population_id']
# perform the calculation
table(combined_population_id)
#> combined_population_id
#> 1 2 3 4 5 6 7 8
#> 3265 6651 62890 51150 1980 18436 24518 3901tidyFlowCore allows us to perform the same operation simply using the
dplyr package’s count function:
bcr_flowset |>
dplyr::count(population_id)
#> # A tibble: 8 × 2
#> population_id n
#> <dbl> <int>
#> 1 1 3265
#> 2 2 6651
#> 3 3 62890
#> 4 4 51150
#> 5 5 1980
#> 6 6 18436
#> 7 7 24518
#> 8 8 3901And tidyFlowCore also makes it easy to perform the counting broken
down by other variables in our metadata:
bcr_flowset |>
# use the .tidyFlowCore_identifier pronoun to access the name of
# each experiment in the flowSet
dplyr::count(.tidyFlowCore_identifier, population_id)
#> # A tibble: 128 × 3
#> .tidyFlowCore_identifier population_id n
#> <chr> <dbl> <int>
#> 1 PBMC8_30min_patient1_BCR-XL.fcs 1 31
#> 2 PBMC8_30min_patient1_BCR-XL.fcs 2 112
#> 3 PBMC8_30min_patient1_BCR-XL.fcs 3 761
#> 4 PBMC8_30min_patient1_BCR-XL.fcs 4 1307
#> 5 PBMC8_30min_patient1_BCR-XL.fcs 5 5
#> 6 PBMC8_30min_patient1_BCR-XL.fcs 6 127
#> 7 PBMC8_30min_patient1_BCR-XL.fcs 7 444
#> 8 PBMC8_30min_patient1_BCR-XL.fcs 8 51
#> 9 PBMC8_30min_patient1_Reference.fcs 1 52
#> 10 PBMC8_30min_patient1_Reference.fcs 2 132
#> # ℹ 118 more rowsflowFrame and flowSet data objects have a clear relationship with
one another in the flowCore API - essentially nested flowFrames. In
other words, flowSets are made up of multiple flowFrames!
tidyFlowCore provides a useful API for converting between flowSet
and flowFrame data structures at various degrees of nesting using the
group/nest and ungroup/unnest verbs. Note that in the dplyr and
tidyr APIs, group/nest and ungroup/unnest are not synonyms
(grouped data.frames are different from nested data.frames).
However, because of how flowFrames and flowSets are structured,
tidyFlowCore’s group/nest and ungroup/unnest functions have
identical behavior, respectively.
# unnesting a flowSet results in a flowFrame with an additional column,
# 'tidyFlowCore_name` that identifies cells based on which experiment in the
# original flowSet they come from
bcr_flowset |>
dplyr::ungroup()
#> flowFrame object 'file8c8539ae19b6'
#> with 172791 cells and 40 observables:
#> name desc range minRange maxRange
#> $P1 Time Time 2399633 0.0000 2399632
#> $P2 Cell_length Cell_length 69 0.0000 68
#> $P3 CD3(110:114)Dd CD3(110:114)Dd 9383 -61.6796 9382
#> $P4 CD45(In115)Dd CD45(In115)Dd 5035 0.0000 5034
#> $P5 BC1(La139)Dd BC1(La139)Dd 14306 -100.8797 14305
#> ... ... ... ... ... ...
#> $P36 group_id group_id 3 0 2
#> $P37 patient_id patient_id 9 0 8
#> $P38 sample_id sample_id 17 0 16
#> $P39 population_id population_id 9 0 8
#> $P40 .tidyFlowCore_name .tidyFlowCore_name 17 0 16
#> 297 keywords are stored in the 'description' slot# flowSets can be unnested and renested for various analyses
bcr_flowset |>
dplyr::ungroup() |>
# group_by cell type
dplyr::group_by(population_id) |>
# calculate the mean HLA-DR expression of each cell population
dplyr::summarize(mean_expression = mean(`HLA-DR(Yb174)Dd`)) |>
dplyr::select(population_id, mean_expression)
#> # A tibble: 8 × 2
#> population_id mean_expression
#> <dbl> <dbl>
#> 1 3 3.67
#> 2 7 3.33
#> 3 4 4.33
#> 4 2 87.1
#> 5 6 88.2
#> 6 8 3.12
#> 7 1 51.4
#> 8 5 18.0tidyFlowCore also provides a direct interface between ggplot2 and
flowFrame or flowSet data objects. For example…
# cell population names, from the HDCytoData documentation
population_names <-
c(
"B-cells IgM-",
"B-cells IgM+",
"CD4 T-cells",
"CD8 T-cells",
"DC",
"monocytes",
"NK cells",
"surface-"
)
# calculate mean CD20 expression across all cells
mean_cd20_expression <-
bcr_flowset |>
dplyr::ungroup() |>
dplyr::summarize(mean_expression = mean(asinh(`CD20(Sm147)Dd` / 5))) |>
dplyr::pull(mean_expression)
# calculate mean CD4 expression across all cells
mean_cd4_expression <-
bcr_flowset |>
dplyr::ungroup() |>
dplyr::summarize(mean_expression = mean(asinh(`CD4(Nd145)Dd` / 5))) |>
dplyr::pull(mean_expression)
bcr_flowset |>
# preprocess all columns that represent protein measurements
dplyr::mutate(dplyr::across(-ends_with("_id"), \(.x) asinh(.x / 5))) |>
# plot a CD4 vs. CD45 scatterplot
ggplot2::ggplot(ggplot2::aes(x = `CD20(Sm147)Dd`, y = `CD4(Nd145)Dd`)) +
# add some reference lines
ggplot2::geom_hline(
yintercept = mean_cd4_expression,
color = "red",
linetype = "dashed"
) +
ggplot2::geom_vline(
xintercept = mean_cd20_expression,
color = "red",
linetype = "dashed"
) +
ggplot2::geom_point(size = 0.1, alpha = 0.1) +
# facet by cell population
ggplot2::facet_wrap(
facets = ggplot2::vars(population_id),
labeller =
ggplot2::as_labeller(
\(population_id) population_names[as.numeric(population_id)]
)
) +
# axis labels
ggplot2::labs(
x = "CD20 expression (arcsinh)",
y = "CD4 expression (arcsinh)"
)Using some standard functions from the ggplot2 library, we can create
a scatterplot of CD4 vs. CD20 expression in the different cell
populations included in the bcr_flowset flowSet. We can see,
unsurprisingly, that both B-cell populations are highest for CD20
expression, whereas CD4+ T-helper cells are highest for CD4 expression.
Below is the citation output from running citation('tidyFlowCore') in
R. Please run this yourself to check for any updates on how to cite
tidyFlowCore.
print(citation('tidyFlowCore'), bibtex = TRUE)
#> To cite package 'tidyFlowCore' in publications use:
#>
#> Keyes TJ (2024). _tidyFlowCore: Bringing flowCore to the tidyverse_.
#> doi:10.18129/B9.bioc.tidyFlowCore
#> <https://doi.org/10.18129/B9.bioc.tidyFlowCore>,
#> https://github.com/keyes-timothy/tidyflowCore/tidyFlowCore - R
#> package version 0.99.1,
#> <http://www.bioconductor.org/packages/tidyFlowCore>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {tidyFlowCore: Bringing flowCore to the tidyverse},
#> author = {Timothy J Keyes},
#> year = {2024},
#> url = {http://www.bioconductor.org/packages/tidyFlowCore},
#> note = {https://github.com/keyes-timothy/tidyflowCore/tidyFlowCore - R package version 0.99.1},
#> doi = {10.18129/B9.bioc.tidyFlowCore},
#> }Please note that the tidyFlowCore was only made possible thanks to
many other R and bioinformatics software authors, which are cited either
in the vignettes and/or the paper(s) describing this package.
Please note that the tidyFlowCore project is released with a
Contributor Code of
Conduct. By
contributing to this project, you agree to abide by its terms.
- Continuous code testing is possible thanks to GitHub actions through usethis, remotes, and rcmdcheck customized to use Bioconductor’s docker containers and BiocCheck.
- Code coverage assessment is possible thanks to codecov and covr.
- The documentation website is automatically updated thanks to pkgdown.
- The code is styled automatically thanks to styler.
- The documentation is formatted thanks to devtools and roxygen2.
For more details, check the dev directory.
This package was developed using biocthis.
