I have a 2x2 complex matrix
> M = {
{
(16 k^2 w + gc^2 (I gm + 2 (w + wm)) +
4 (u - w) (u + w) (I gm + 2 (w + wm)) +
4 gc (2 I k^2 + w (gm - 2 I (w + wm)))) /
(8 k^2 + 2 (gc - 2 I (u + w)) (gm - 2 I (w + wm))),
(-8 k^3 + k (I gc + 2 (u + w)) (I gm + 2 (w + wm))) /
(4 k^2 + (gc - 2 I (u + w)) (gm - 2 I (w + wm)))
},
{
(-8 k^3 + k (I gc + 2 (u + w)) (I gm + 2 (w + wm))) /
(4 k^2 + (gc - 2 I (u + w)) (gm - 2 I (w + wm))),
((gm - 2 I w) (8 I k^2 + (gm - 2 I w) (I gc + 2 (u + w))) +
4 (I gc + 2 (u + w)) wm^2) /
(8 k^2 + 2 (gc - 2 I (u + w)) (gm - 2 I (w + wm)))
}
}
I want to determine the real values of w for which this matrix is singular. I tried Solve[Det[M]=0] but it runs indefinitely on my machine.
$\textbf{Question}:$ Is there a more efficient way in Mathematica to solve for the real root of $Det[M]=0$ for $w$?
Any guidance would be appreciated.






det = Det[M] // FullSimplify;This reduces theLeafCountfrom6839to141$\endgroup$