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Abstract

The lack of reasoning capabilities in Vision-
Language Models (VLMs) has remained at
the forefront of research discourse. We posit
that this behavior stems from a reporting
bias in their training data. That is, how peo-
ple communicate about visual content by
default omits tacit information needed to su-
pervise some types of reasoning; e.g., “at
the game today!” is a more likely caption
than “a photo of 37 people standing behind
a field”. We investigate the data underly-
ing the popular VLMs OpenCLIP, LLaVA-
1.5 and Molmo through the lens of theo-
ries from pragmatics, and find that report-
ing bias results in insufficient representa-
tion of four reasoning skills (spatial, tem-
poral, negation, and counting), despite the
corpora being of web-scale, and/or syntheti-
cally generated. With a set of curated bench-
marks, we demonstrate that: (i) VLMs per-
form poorly on the aforementioned types of
reasoning suppressed in the training data by
reporting bias; (ii) contrary to popular be-
lief, scaling data size, model size, and to
multiple languages does not result in emer-
gence of these skills by default; but, promis-
ingly, (iii) incorporating annotations specif-
ically collected to obtain tacit information
is effective. Our findings highlight the need
for more intentional training data curation
methods, rather than counting on scale for
emergence of reasoning capabilities.

1 Introduction

Research in Vision-Language Models (VLMs)
grapples with a paradox: despite impressive per-
formance on standardized benchmarks (Liu et al.,
2024a; Deitke et al., 2024; OpenAl, 2024), mod-
els often falter on tasks requiring counting (Paiss
et al., 2023), spatial reasoning (Liu et al., 2023;
Kamath et al., 2023b) and compositional reason-
ing (Zhao et al., 2022; Ma et al., 2023; Yuksek-
gonul et al., 2023). We hypothesize that these gaps

stem from a reporting bias in vision-language
data. Put simply: when discussing images on-
line, people systematically omit certain types of
information, e.g., spatial prepositions. We lever-
age long-standing bodies of work in linguistics,
pragmatics', and cognitive science to identify four
types of tacit reasoning systematically omitted by
people: spatial, temporal, counting and negations.
We analyze popular training corpora LAION
(Schuhmann et al., 2022), LLaVA-1.5 (Liu et al.,
2024a) and PixMo (Deitke et al., 2024), and vali-
date that reporting bias occurs when people write
alt-text (as in LAION), when they annotate im-
ages with captions (as in PixMo), and when cap-
tions are synthesized by LLMs (as in LLaVA-1.5).
Despite the scale of these datasets, ranging from
hundreds of thousands to billions of data points,
instances that operationalize important reasoning
remain rare: e.g., we estimate that LAION con-
tains only 0.1% occurrence of spatial reasoning.
To investigate potential correlations between
training data and (a lack of) image-text reasoning
skills, we curate evaluation questions that require
each of these four types of reasoning. We evaluate
a wide variety of contrastive and generative VLMSs
on these benchmarks and show that, in line with
our hypothesis, existing models perform poorly
(on average, open-source models fall 54 points be-
hind human performance) unless they are explic-
itly trained with datasets that require such skills.
Crucially, we find that data+model scaling
alone is unlikely to lead to emergent reasoning—
as the human behaviors underlying the reporting
bias do not change with scale. Extrapolating scal-
ing performance on our evaluations suggests, e.g.,
that CLIP (Radford et al., 2021) would need to

!Specifically, the Gricean maxims of conversational im-
plicatures (Grice, 1975).

2Unlike the success it has shown in perception and recog-
nition tasks (Cherti et al., 2023), which are better represented
naturally in training corpora (Udandarao et al., 2025).
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be trained with an intractable amount of data or
number of model parameters to meet human per-
formance on our benchmarks. Adding multilin-
gual diversity to CLIP’s training data by translat-
ing non-English captions in web-scale corpora to
English, as in Nguyen et al. (2024), also does not
improve model performance, showing that the re-
porting bias is not specific to the English language.

Finally, we study whether annotator instruc-
tions can be leveraged to mitigate reporting bias.
We find that for the same underlying images
sourced from COCO, instructions from LLaVA
and PixMo data collection elicit 2-3 times more
instances of counting and spatial reasoning than
instructions from COCO. Further, with carefully-
written instructions we present, negation and tem-
poral reasoning can also be successfully elicited.
The prevalence of reasoning-related information
in training data corresponds with improved rea-
soning capabilities of the corresponding models
on our evaluations; however, we further verify that
our instructions surface sufficient representation
of reasoning concepts to improve VLM reasoning
in a finetuning setting. These results show promise
to improve model reasoning via intentional data
collection, rather than simply scaling.

Our contributions are: (1) revealing the re-
porting bias in vision-language at even web-
scale, validated with three open-source image-
text corpora; (2) re-purposing benchmarks for
VLM reasoning and evaluating top-performing
contrastive and generative VLMs; (3) revealing
that scaling up data, parameters and multilin-
gual diversity do not result in emergent reason-
ing; and (4) showing that reasoning-aware data
collection is possible, and shows promise to im-
prove model reasoning capabilities. We release
our code and data at https://github.com/
amitakamath/reporting bias/.

2 Related Work

Reporting bias is a well-studied phenomenon in
the area of NLP, having presented itself as the
“common sense problem”, e.g., “people murder”
is a more likely bigram than “people breathe” in
text’, leading models trained on this text to incor-
rectly believe that the former action is more likely
to occur than the latter (Gordon and Van Durme,
2013; Sap et al., 2019b; Shwartz et al., 2020). This

>That people breathe is too obvious of a fact to be ex-
pressed in writing.

was overcome with the introduction of large-scale
commonsense corpora (Bosselut et al., 2019; Sap
et al., 2019a) to provide models the lacking in-
formation. We study this phenomenon in vision-
language data, tackling types of reasoning beyond
common sense.

In the vision-language domain, Ye et al. (2024)
show that people from different cultures describe
different features of the same image when pro-
vided the same instructions. Nguyen et al. (2024)
further show that by translating non-English cap-
tions to English, VLMs’ zero-shot classification
performance increases. We acknowledge the in-
creased coverage of information by speakers from
different languages, and ask the question: are there
types of information omitted by everyone?

Several recent works have studied various fail-
ure cases of VLM reasoning (Ma et al., 2023;
Zhao et al., 2022; Kamath et al., 2023b; Hao et al.,
2025; Yan et al., 2025). In response, other work
focuses on improving the quality of the training
data by re-captioning images (Nguyen et al., 2023;
Lai et al., 2024; Betker et al., 2020) and collecting
proprietary data (OpenAl, 2024). We investigate
a possible cause behind these failure cases, and
study open-source datasets to determine whether
annotators require specific instructions to include
data otherwise omitted due to reporting bias.

Cherti et al. (2023) show that the performance
of contrastive VLMs improves across several tasks
with an increase in scale of model and training
data size. However, this has shown to not be the
case for reasoning tasks (Al-Tahan et al., 2024).
In contrast, we investigate a reason why this be-
havior occurs. Further, our benchmarks target
specific types of reasoning, and contain primar-
ily real-world images. Additionally, we study both
contrastive and generative VLMs.

Explanatory hypotheses. The aforementioned
works revealing poor VLM reasoning take differ-
ent stances on the cause of the issue, and thus,
its solution. Some (Yuksekgonul et al., 2023;
Hsieh et al., 2023; Doveh et al., 2023a,b) hypoth-
esize that failures arise from commonly-used con-
trastive objectives being too easy, and introduce
hard negatives to each batch. Others hypothesize
that image-level losses are insufficient, e.g., Zeng
et al. (2021) introduces a hierarchical loss based
on regions. We complement these works by focus-
ing on the relatively under-studied training data.
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3 Reporting Bias in Vision-Language
Reasoning

No matter how large corpora become, if they are
sourced from captions written largely by humans,
they will exhibit the natural patterns and idiosyn-
cracies of how humans understand and describe
images. We leverage long-standing theories from
linguistics, pragmatics and cognitive science to ar-
rive at hypotheses of reporting bias, identifying
types of reasoning under-represented in web-scale
corpora. We then test our accuracy by investigat-
ing the training datasets of open-source contrastive
and generative VLMs.

3.1 Theory-based Hypotheses of Omitted
Types of Reasoning

When people communicate, they do not do so in
a vacuum. Cognitive semantics points out that a
variety of sources such as intent, perspective, and
topic shape the words they use (Langacker, 2015;
Talmy, 1972). People use contextual cues to be as
expressive as required by the context of the discus-
sion. Moreover, theories in pragmatics tell us that
we are organized in how we achieve this: we abide
by a tacit set of co-operative principles that is ex-
pected in communication (Grice, 1975; Goodman
and Frank, 2016). These topics have been investi-
gated extensively by various efforts in linguistics,
cognitive science, and child language acquisition,
inter alia.

We posit that such principles of communication
can help explain the reporting bias we observe in
multimodal data. In writing captions, we produce
text that best communicates what we observe.
Thus, we expect captions to be subject to the same
communicative principles that guide much of our
utterances. At the same time, however, caption
data is produced in a restricted setting that lacks
communicative context that would produce the de-
sired expressiveness. Without knowledge like the
topic of discussion and limited understanding of
who the caption consumers will be, the caption
writers have only basic principles and common
knowledge to guide their writing.

Our investigation focuses on whether or not
the pragmatic contexts underlying the annotation
process of popular image-+text pretraining corpora
manifests captions that operationalize the expres-
sive cues necessary to train vision-language mod-
els to count, to use negations, and to do spatial and
temporal reasoning.

People tend to omit spatial and temporal
language. Spatial language such as “left of”,
“above” or “below” and temporal prepositions
such as “before” or “after” are central to enabling
spatial and temporal reasoning respectively. How-
ever, unless explicitly directed, people may not
naturally produce such language in captioning.

Pragmatics studies in conversational maxims,
known as Gricean Maxims (Grice, 1975), suggest
that what information is revealed and how much
is revealed is counter-weighed by the expectation
to be direct, to be concise and not to misdirect
in communication. For example, maxims suggest
that even if “a cat left of a dog” is a logically
accurate description of an image, a person might
opt for “a cat and a dog” because “left of” as-
signs undue importance to one over the other. Ex-
pressive as it may be, choosing the former cap-
tion when there is no explicit reason to do so
would be misleading (Maxim of Quality), more
information than required (Maxim of Quantity),
or would impose a perspective that cannot be jus-
tified: whether it is the left of the viewer of the
image, or of the subject in the image (Maxim of
Manner) (Zhang et al., 2025).

In the same way, given an image of a boy throw-
ing a ball, writing “and after, the ball will fall”
would allow for temporal reasoning for a model,
but such captions are likely to be avoided because
they are too obvious (Maxim of Quantity) or due
to insufficient knowledge or evidence about the
described event (Maxim of Quality).

Even when spatial preposition use may be mer-
ited, studies in cognitive linguistics suggest that
captioning may be limited by the existence of de-
fault relationships, which we only overlook when
the situation calls for it (Talmy, 1972). For ex-
ample, when grounding one object (a Figure) with
respect to another (a Ground), humans will natu-
rally choose the smaller and easier to move entity
as the Figure (e.g., “a poster above a bed” is more
likely than “a bed under a poster”). If they are
equally sized and movable, we will disprefer the
use of spatial language without ulterior reasons.

Such ulterior reasons or perspectives, as theo-
ries in linguistics suggest, are provided by dis-
course mechanisms like the Question under Dis-
cussion (QUD)—the implicit or explicitly stated
question being addressed in a discourse (Von Stut-
terheim and Klein, 1989). Something as simple as
knowing that the image being captioned is a shot



Spatial Counting Negation Temporal
Data Oceurr. Est. True Oceurr Est. True Oceurr. Est. True Oceurr Est. True
Occurr. Occurr. Occurr. Occurr.
LAION-2B 0.3 0.1 8.8 1.7 0.8 0.1 0.9 0.2
COCO 3.7 3.7 10.8 10.4 0.2 0.1 0.2 0.1
LLAVA-1.5 (train) 5.8 4.7 12.4 6.0 5.2 1.4 1.7 0.6
Molmo (train) 33 2.2 28.8 16.8 6.0 3.2 2.9 0.3

Table 1: Percentage Occurrences and Estimated True Occurrences of reasoning-related keywords in popular open-
source image-text corpora and training datasets of open-source VLMs.
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Figure 1: Examples from LAION-2B of data points that contain reasoning-related keywords that do and do not

operationalize the reasoning capability itself.

of someone’s newly adopted cat (given the picture
of a dog and a cat) would provide perspectives on
how to frame a caption: what to (de)emphasize,
what to focus on, or simply, what to talk about
(Maxim of Relevance). This is not a natural ar-
tifact of a restricted annotation setting. Specific
prompting (c.f. Section 6) such as “focus on the
cat” or “the cat was just adopted” would be neces-
sary to provide an actionable QUD to trigger the
temporal or spatial language we want represented
in the data.

People tend to omit counting. Why people may
omit object counts in image captions is explained
by the expectation that a speaker should maximize
the information conveyed while keeping the state-
ment brief (Maxim of Quantity; Rational Speech
Act (Frank and Goodman, 2012; Goodman and
Frank, 2016)). The informational value added by
“six cats” compared to “a group of cats” is negligi-
ble without further context, while requiring more

effort on the speaker’s part (counting the objects).
Moreover, since there are very few contexts in
which the listener cares whether there were ex-
actly “six cats” compared to “a group of cats”, i.e.,
it is rarely the QUD, there is no need for the writer
to assume it (Maxim of Relevance).

People tend to omit negations. Intuitively,
there is no rational reason for a person to write
“there are no parrots” given a picture of a dog and
a cat without further context. Much like counting,
it would provide more information than necessary
to describe the image (Maxim of Quantity; Ratio-
nal Speech Act) and assign importance when none
is merited (Maxim of Quality). Additionally, con-
cepts of sentence processing related to psycholin-
guistics and child language acquisition (Tian and
Breheny, 2016; Pea, 1978) suggest that negations
are more costly and slower to process than positive
statements, and are thus not preferred.



3.2 Testing Hypotheses in Open-Source
Image-Text Corpora

In this section, we estimate the frequency of
the aforementioned types of reasoning in popu-
lar open-source image-text corpora, to test our
hypothesis that they occur rarely. We study the
training data for OpenCLIP (Cherti et al., 2023),
LLaVA-1.5 (Liu et al., 2024a) and Molmo (Deitke
et al., 2024). Where OpenCLIP is only trained on
LAION (Schuhmann et al., 2022), LLaVA-1.5 and
Molmo are additionally trained on open-source
academic datasets. We combine the text from all
constituent datasets to run this study, taking sam-
pling rates into account as well.

To perform this study, we list keywords corre-
sponding to each type of reasoning, e.g., to study
the prevalence of spatial language, we search for
the keyword “right of” (among other prepositions,
c.f. Appendix). While this includes false posi-
tives (“right of way”), it loosely upper bounds the
prevalence of the spatial relation in the dataset.
For each keyword, we perform a string search in
the listed corpora and show the percentage occur-
rence of the strings in Table 1 (Occurrence).

We then sample 100 data points corresponding
to each type of reasoning in each corpus and man-
ually calculate the number of data points in which
the reasoning is truly represented and visible in the
image, i.e., the true positive rate. We calculate a
rough estimate of the true number of occurrences
of that type of reasoning in the corpus (Estimated
True Occurrence in Table 1). Examples of data
points that contain keywords and do or do not op-
erationalize reasoning are shown in Figure 1.

As seen in Table 1, the types of reasoning we
study are indeed infrequent even in large-scale
corpora, verifying our hypotheses from Section
3.1; e.g., all spatial prepositions we study form a
combined estimate of only 0.1% of LAION.

Comparison to higher-frequency concepts.
While some of the aforementioned frequencies
may sound sufficient to learn a concept, they
fall far behind when compared to the frequency
of more high-occurrence words; e.g., the word
“black” alone occurs in 3.2% of LAION captions,
and “white” in 3%. These concepts are also easier
to learn, as they tend to be directly visible in the
image (e.g., “a pair of black shoes”). This puts the
small size of the earlier counts into context.

Comparison to concepts that compose simi-
larly. Concepts such as colors are also easier
to learn as they compose similarly (“a pair of
black shoes” is approximately the same color as
“a black horse”) (Saini et al., 2022). As such,
even if some object-attribute pairs are unlikely to
occur due to reporting bias in text (e.g., “yellow
banana” is a less likely bigram than “green ba-
nana”), vision-language models are able to decom-
pose them into their high-frequency components
and perform well (Paik et al., 2021). We thus
disregard such cases in our work, and focus on
reasoning concepts omitted due to reporting bias,
which are substantially more difficult to learn as
they do not compose similarly (“before a game”
looks very different from “before an exam”™). It is
thus unsurprisingly challenging to learn, e.g., tem-
poral reasoning, from only 0.2% of the data.

4 Benchmarks

Although we have shown that web-scale corpora
do not contain significant representation of lan-
guage related to the types of reasoning we study,
models trained on such data could still perform
well: they may not require a significant amount of
data to learn a skill; or our keyword-based corpus
exploration could have missed relevant data.

We evaluate using four benchmarks across con-
trastive and generative VLMs, modified from ex-
isting benchmarks to suit our needs. All bench-
marks require models to undertake a multiple-
choice caption task given an image, as shown in
Figure 2. In the case of contrastive VLMs, e.g.,
CLIP, we take the highest scoring match directly;
in the case of generative VLMs, e.g., Molmo, we
provide all options at once in a QA-style prompt
(except for counting, as we discuss below).

Spatial reasoning. We use Subset A of the
What’sUp benchmark (Kamath et al., 2023b), tar-
geting four spatial relations: on, under, left of and
right of. The images consist of two basic house-
hold objects in a spatial relation to each other, with
no distractors. The dataset has 412 data points,
perfectly balanced between the four prepositions.

Counting. We use a simplified version of Count-
Bench (Paiss et al., 2023): originally consisting of
captions from LAION that operationalize count-
ing (e.g., “background photo of three light bulbs™),
we convert to a simplified format by manually
reducing each caption to {count}{objects} (e.g.,



Negation

Spatial

A mug on a table A bear that is not flying

A mug under a table A bear that is not white

A mug to the left of a table A bear that is not tan

Contrastive
Evaluation

A mug to the right of a table A bear that is not furry

(A) amug on a table

(B) amug under a table (l

(C) amug to the left of a table (C) abear that is not tan
(D) amug to the right of a table (D)

Generative
Evaluation

Pick the best caption for this from the below options. Answer in one word, the option letter only.

(A) abear that is not flying
B) a bear that is not white

a bear that is not furry

Counting

Temporal

2 zebras

A dog before catching a
frisbee

3 zebras

A dog after catching a

frisbee 10 zebras

How many {zebras} are there
in this picture? Answer with

(A) a dog before catching a the number only, from 2-10.

frisbee
(B) a dog after catching a 2
frisbee

Figure 2: Examples from our four benchmarks for contrastive and generative evaluations. The generative evalua-
tion is in MCQ format but for counting, for which a free form output with a given range yielded higher scores.

“3 light bulbs”) and adding alternate captions for
each other count within 2-10. We conduct this
modification to ensure the benchmark only eval-
uates the skill of counting, as well as to avoid data
contamination for models that have seen the exact
image-text pairs from CountBench in LAION dur-
ing training. For generative VLMs, we find that all
models we evaluate perform better when answer-
ing the question directly with a number within a
given range, compared to our multiple-choice QA
format, and thus report results from the former for-
mat for this task alone, as shown in Figure 2. The
dataset contains 507 instances, approximately bal-
anced across counts.*

Negations. We re-purpose the VAW benchmark
(Pham et al., 2021), which contains both positive
and negative attributes for an object within a given
bounding box. We crop the bounding box (dis-
carding those of insufficient size), then write the
templated caption “a photo of a [object name] that
is not [attribute]” with three positive attributes and
one true negative attribute, resulting in one cor-
rect caption per image. We generate 800 such data
points, going through them manually to remove
ambiguous attributes such as “large”.

Temporal reasoning. We use the temporal rela-
tions subset of ControlledImCaps (Kamath et al.,

“Several images from LAION are no longer available as
of 07/2025, thus resulting in the slight imbalance.

2023a), which contains pairs of images with corre-
sponding captions: one “before” an event, and one
“after”—defining temporal reasoning based on
the dynamic context reasoning in VisualCOMET
(Park et al., 2020). We reformat the data to pose
a task in which each instance contains one im-
age with two caption options, obtaining 200 data
points balanced between “before” and “after”.

S Experiments and Results

We evaluate popular contrastive and generative
VLMs at various scales of model+data size on our
benchmarks to ascertain their reasoning capabili-
ties on types of reasoning less-represented in cor-
pora due to reporting bias. We then study the
effect on contrastive model performance of scal-
ing both the model parameter size and the training
data size, as well as the effect of adding multilin-
gual diversity to the training data. Finally, we dis-
cuss the performance of popular closed-data and
closed-source VLMs on our benchmarks.

5.1 Models

Contrastive VLMs. We consider OpenCLIP
(Cherti et al., 2023) models of different sizes:
ViT-B/32, ViT-B/16, ViT-L/14, ViT-g/14, and ViT-
H/14, as well as OpenCLIP ViT-B/32 trained
with multilingual diversity, i.e, with non-English
captions translated to English added to the data
(Nguyen et al., 2024).



Model Spatial Negation Counting Temporal
CLIP ViT-B/32 30.6 11.5 43.4 58.5
+ ML Div. 27.4 15.5 233 51.5
CLIP ViT-B/16 27.7 12.7 48.1 55.0
(a) CLIP ViT-L/14 28.4 12.3 64.1 52.0
CLIP ViT-g/14 28.4 12.7 59.0 52.0
CLIP ViT-H/14 26.0 13.2 60.0 59.0
LLAVA-1.5-7B 37.6 334 473 72.5
LLAVA-1.5-13B 61.7 28.4 48.9 74.5
(b) Molmo 7B-O 75.5 38.4 77.5 78.0
Molmo 7B-D 87.6 413 83.8 80.5
LLAVA-1.6-m7B 60.0 40.6 52.9 70.0
QwenVL 7B-Chat  47.1 242 84.6 67.5
Qwen2VL 7B-Inst.  98.3 56.1 85.8 84.0
GPT4o0 91.5 222 90.9 95.0
GPT ol 97.6 64.7 88.2 97.0
(¢) Gemini 1.5-Flash 98.5 46.4 84.6 81.5
Gemini 1.5-Pro 92.0 49.0 87.8 85.0
Claude-3 Haiku 65.5 28.9 83.4 70.0
Claude-3.5 Sonnet ~ 95.4 42.0 92.3 83.5
Random Chance 25.0 25.0 11.1 50.0
Human Estimate 100 100 100 100

Table 2: Results on our benchmarks of: (a) Contrastive
VLMs, (b) Open-Source Generative VLMs, (c¢) Closed-
Data Generative VLMs. All models fall far behind hu-
man performance on multiple types of reasoning.

Generative VLMs. We consider two generative
VLMs trained on the open-source data examined
in Section 3.2: LLaVA-1.5 (Liu et al., 2024a)
and Molmo (Deitke et al., 2024). We further
evaluate several generative VLMs with mixed- or
closed-source training data: Qwen-VL (Bai et al.,
2023), Qwen2-VL (Wang et al., 2024), LLaVA-
1.6-Mistral (Liu et al., 2024b), GPT40 and ol
(OpenAl, 2024), Gemini-1.5 Flash and -1.5 Pro
(Team et al., 2024), and Claude-3 Haiku and -3.5
Sonnet (Anthropic, 2024).

5.2 Results

Contrastive VLMs. Table 2(a) shows the per-
formance of OpenCLIP models on our bench-
marks. The contrastive VLMs score slightly above
random chance on spatial reasoning and temporal
reasoning, but score far less than random chance
on negations. We find that CLIP tends to ignore
negations, scoring the inverse of their attribute de-
tection performance (c.f. Appendix). The mod-
els perform fairly well on counting, although it is
worth noting that the counting benchmark was ini-
tially sourced from OpenCLIP training data. Per-
forming poorly on spatial, negation and temporal
aligns with the extremely low occurrence of key-
words corresponding to those types of reasoning
in LAION, as shown in Table 1, as does the higher

performance of CLIP on counting and the higher
occurrence of counting keywords in LAION.

Generative VLMs. Table 2(b) shows the perfor-
mance of open-source generative VLMs. The gen-
erative models outperform the contrastive models
on average, but fall far behind human performance
across all tasks, especially negation. Scaling up
LLaVA-1.5 significantly improves spatial reason-
ing performance, but no other type of reasoning.
In the context of keyword occurrences, improve-
ments in reasoning over contrastive models align
with increases in corresponding keywords in re-
spective training data in Table 1.

Human Performance. All models, particularly
those trained on open-source data, fall far behind
human performance across tasks. The human per-
formance results, estimated by collecting annota-
tions from pairs of expert annotators, emphasize
that these types of reasoning are trivial to humans.

5.3 Scaling Laws

In this section, we evaluate the aforementioned
OpenCLIP models with different training data
sizes (LAION-80M, LAION-400M, LAION-2B)
and number of data points seen during training
(3B, 13B, 34B), obtaining 32 models in total.
Each of these is evaluated on our benchmarks to
obtain scaling laws, as in Cherti et al. (2023). The
resulting graphs are shown in Figure 3. In contrast
to CLIP behavior on pure perception tasks such
as ImageNet (Deng et al., 2009), where the loss
drops steeply with an increase in data and/or pa-
rameter scale (Cherti et al., 2023), on our bench-
marks we see different patterns: on spatial rea-
soning, the scaling law struggles to fit the data
points, but it is clear that the loss does not drop
with an increase in compute; on counting, increas-
ing compute does seem to help, but noting the log
scale, the amount of compute would need to be
several orders of magnitude higher to reach human
performance (at 0% loss); on negation, increasing
compute helps very slightly, but the loss remains
very high (~87%), and an intractable amount of
compute would be needed to reach human perfor-
mance (at 0% loss); and on temporal reasoning, in-
creasing compute does not improve performance.

Note that the prevalence of counting data far
surpasses that of negations, temporal or spatial re-
lations (c.f. Section 3.2), explaining its relatively
high performance—although the frequency is still
low on average compared to popular attributes,
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Figure 3: Scaling laws for OpenCLIP models on ImageNet (top left) compared to our benchmarks on spatial,
counting, negation and temporal tasks respectively. Note the log-log plots and differing y axes across graphs.

and the model performance is far behind human
performance, which is 100%.

When we disentangle model scale from data
scale, we see equivalent trends. From this, we in-
fer that neither scaling up the model size, the train-
ing data size, nor both, improves model perfor-
mance beyond what is seen in Figure 3—proving
that the underlying problem of reporting bias can-
not be mitigated with scale alone, as an intractable
amount of compute in the form of training data
and/or model parameters would be needed to reach
human performance on these benchmarks.

5.4 Adding Captions from Other Languages

Nguyen et al. (2024) showed that adding multi-
lingual diversity to the training data of contrastive
VLMs by translating non-English web-scraped
alt-text to English can significantly improve their
performance on classification tasks; this work was
rooted in Ye et al. (2024), which highlighted the
difference in semantic content in images discussed
when people using different languages captioned
the same image. We ask: is leveraging this mul-
tilingual diversity sufficient to circumvent the re-
porting bias seen in image-text corpora? To study
this, we evaluate the OpenCLIP ViT-B/32 model
from Nguyen et al. (2024) on our benchmarks. As
seen in Table 2, this model actually underperforms
the OpenCLIP ViT-B/32 model trained on LAION
English captions alone—showing that these types

of reasoning are omitted by all speakers.

5.5 Closed-Data Generative Models

Top-performing closed-data and closed-source
models perform well on our benchmarks, although
they still fall behind human performance, espe-
cially on negation and temporal reasoning. As
the details behind the data collection and train-
ing are not public, it is difficult to draw infer-
ences from these results; however, the importance
of data quality in addition to scale is clear from ef-
forts invested in data collection (OpenAl, 2024).

6 Leveraging Annotator Instructions
Can Mitigate Reporting Bias

Annotator instructions have a significant impact
on reporting bias. While people may default to
certain behaviors while communicating about im-
ages, they can be specifically instructed to discuss
certain concepts that they would otherwise tend
to omit. We study the correlation between an-
notator instructions and reporting bias in existing
datasets, then leverage annotator instructions in a
user study to mitigate reporting bias. We verify
that our mitigation method surfaces sufficient rep-
resentation of reasoning-related concepts to im-
prove VLM reasoning in a finetuning setting, and
close with broader implications for data collection
methods for vision-language corpora.



6.1 Impact of Annotator Instructions on
Reporting Bias in Existing Datasets

We study the effect of annotator instructions pro-
vided during collection of existing datasets on re-
porting bias, i.e., on the occurrence of reasoning-
related keywords in captions, shown in Table 1.
Annotator instructions are provided in Appendix.

We first study a dataset where no annotator in-
structions are provided at all: LAION (Schuh-
mann et al., 2022), which was scraped from alt-
text fields of images on the internet. We see from
Table 1 that LAION has low representation across
all four types of reasoning we study. This re-
flects the default behavior of people captioning
images: when not given any specific instructions,
people’s tendency to under-report available infor-
mation, i.e., reporting bias, is seen clearly.

We next look at COCQO’s (Chen et al., 2015)
crowdsourced captions, where annotators were
given instructions, but no specific prompting that
would engage them in reasoning. In fact, they
were explicitly instructed to “not describe things
that might have happened in the future or past”.
Accordingly, we observe in Table 1 that the in-
structions lead to an even lower occurrence of
temporal reasoning in COCO as compared to the
non-existent instructions of LAION. Interestingly,
however, we see that the prevalence of spatial lan-
guage and counting in COCO is higher than that
of LAION. Having temporal reasoning restricted,
annotators may have turned to focus more closely
on describing the objects in the image.

For LLaVA-1.5 (Liu et al., 2024a), the instruc-
tions required discussion of “object counts” and
“relative positions between objects”, among other
non-reasoning-related instructions. This leads to
higher occurrences of both counting and spatial
reasoning than in COCO. However, it is worth
pointing out that their estimated true occurrences
are not higher than that of COCO. This may be ex-
plained by LLaVA’s use of GPT-4 as annotator for
instruction tuning data. Our analysis shows that
many of the false positives are in fact spurious de-
scriptions that incorrectly use counts and spatial
language (e.g., a “left of” that is actually a “right
of”’), which is consistent with GPT-4’s weaknesses
in reasoning. Had human annotators been em-
ployed, we expect to have observed higher true oc-
currences of counting and spatial language.

Finally, for Molmo’s (Deitke et al., 2024) pre-
training data, the annotators were instructed to

Instructions  Spatial Counting Negation Temporal
COCO 8 23 2 2
LLAVA-1.5 17 38 3 0
PixMo 21 43 12 1
Ours 14 39 52 44

Table 3: Percentage True Occurrences (manually cal-
culated) of reasoning-related keywords in each set of
100 captions collected with different instructions for
the controlled study.

discuss “objects and their counts” and ‘“posi-
tions of the objects”, among other non-reasoning-
related instructions. Molmo’s training data in-
cludes PixMo as well as other academic datasets,
e.g. TallyQA (Acharya et al., 2019) and VQAv2
(Goyal et al., 2017). As seen in Table 1, specific
instructions for counting and spatial leads to in-
creased prevalence of spatial and counting reason-
ing. Without specific instructions, negations and
temporal remaining remain low, as in LLaVA and
LAION. It is important to note that there is ad-
ditional data in PixMo to assist models with spa-
tial reasoning and counting that is in the form of
bounding box coordinates, and as such is not in-
cluded in the above occurrence estimates.

6.2 User Study to Mitigate Reporting Bias
with Annotator Instructions

From these observations, it is clear that instructing
annotators to include a certain type of reasoning
does result in representation of the same. How-
ever, these observations are drawn from datasets
with different image distributions, in addition to
having different annotator instructions.

To further test our hypothesis, we disentangle
the two by carrying out a controlled study where
annotators are given a fixed set of 100 images ran-
domly sampled from COCO and requested to cap-
tion them. We provide them with one of four sets
of annotator instructions: the original COCO cap-
tioning instruction, the LLaVA-1.5 captioning in-
struction, the PixMo captioning instruction, and
instructions we write. We re-format the instruc-
tions slightly (e.g., PixMo captions were collected
via audio, not text), but we retain the exact word-
ing of what annotators were requested to include
and not include in the captions. In our own in-
structions, we ask specifically for all four types of
reasoning we study. All sets of instructions are
provided in the Appendix.



We use Prolific’ to collect participants for the
study. They were asked to write a caption of
at least 8 words (the minimum caption length in
COCO), but were encouraged to make the captions
as long as needed to include the requested infor-
mation (which varied based on the instruction set).
By not constraining the caption length, we mirror
the tendency of people to communicate concisely
(Maxim of Quantity). Annotators were paid $15
per hour of estimated work, with a post-task bonus
if they spent longer on the task. This allowed us
to simulate the concise nature of communication
(the annotators did not know they would be paid
additionally) while paying annotators fairly.

We then check the 100 written captions for per-
centage occurrences as in Section 3.2, manually
calculating the true positive rate. The results are
shown in Table 3. When annotators are not asked
to include anything specific, as in COCO, they do
use some spatial- and counting-related words, but
no negation- or temporal-related words. Adding
requests for spatial and counting, as in LLaVA-1.5
and PixMo, significantly increases the occurrence
of words related to those types of reasoning, but
not to temporal relations or negations. By specifi-
cally instructing all four phenomena, as in our in-
structions, we see that the prevalence of all four
types of reasoning increases compared to COCO.

These results show that our findings from Sec-
tion 6.1 hold regardless of image distribution.
Additionally, if the cause of the initial under-
representation of reasoning-related keywords were
for a different reason than simply people’s ten-
dency to under-report available information (i.e.,
reporting bias), e.g., if these concepts were ob-
jectively difficult to capture in text, then modify-
ing the annotator instructions would not have in-
creased representation of the same. As such, our
findings further cement reporting bias as a cause
for under-representation of reasoning-related key-
words in image-text corpora.

6.3 Does Our Method Sufficiently Mitigate
Reporting Bias?

Our experiments show strong evidence that re-
porting bias causes low occurrence of reasoning-
related concepts in training data, which in turn
correlates with poor model performance on tasks
requiring the corresponding types of reasoning.
Having put forward a method to mitigate report-
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% Count. Counting
Model Data Perf.
LLaVA-1.5-13b 6.0 49.8
FT on LLaVA-IT (26K) 6.9 50.7
FT on LLaVA-IT + TallyQA (26K) 39.0 544

Table 4: Estimated amount of counting data and Count-
ing performance of LLaVA-1.5-13b and finetuned ver-
sions. Our instructions (Section 6.2) elicit 39% count-
ing data (Table 3), which is sufficient to improve model
counting over simply increasing the data.

ing bias, we now ask: is this sufficient to improve
the reasoning capabilities of VLMs?

Answering this question would require the cre-
ation of a large-scale vision-language pretraining
dataset collected with our recommended annota-
tor instructions (or via other methods that similarly
mitigate reporting bias). Unfortunately, this is be-
yond our resources. Instead, we run finetuning ex-
periments to obtain some signal about whether our
method increases the representation of reasoning-
related concepts in the collected data enough to
improve VLM reasoning in this setting.

We first curate a dataset with counting data
equivalent to the percentage occurrence of count-
ing data we surface with “our” annotation instruc-
tions in Section 6.2, i.e., 39%. To achieve this, we
sample a balanced subset of counting data from
TallyQA (1000 examples per count between 2—
10) and combine it with the corresponding propor-
tion of LLaVA-1.5 instruction tuning data (which
we estimate to have 6.9% counting data®). In to-
tal, we combine 9,000 data points from TallyQA
with 17,138 data points from LLaVA-1.5 instruc-
tion tuning data, to obtain a corpus of about 26K
examples with 39% occurrence of counting data.

We finetune LLaVA-1.5-13b on this data for 1
epoch on 2 L40S GPUs at a batch size of 4 and
learning rate of le-6, then evaluate the finetuned
model on our counting benchmark (Section 4). To
ensure the proportion of counting concepts in the
finetuning data is the cause of this gain, we com-
pare to finetuning LLaVA-1.5-13b on a corpus of
the same size with less occurrence of counting
data, i.e., only LLaVA instruction tuning data. Our
results are shown in Table 4: finetuning on data
with less reporting bias outperforms both the base
model, and finetuning on data with reporting bias.

®This is a subset of the LLaVA-1.5 training data studied in
Section 3.2, and thus has a slightly different occurrence rate
for counting than is reported in Table 1.
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While finetuning on a distribution of data with
less reporting bias, i.e., with higher representation
of reasoning-related concepts, unsurprisingly in-
creases model performance on those types of rea-
soning, this experiment shows that: (1) these types
of reasoning are not precluded by the architec-
ture of these models, which agrees with our re-
sults from Table 2 and findings from Paiss et al.
(2023), Chen et al. (2024), and Ogezi and Shi
(2025), which specifically collect data to improve
a certain type of reasoning; and (2) our annota-
tor instructions surface sufficient representation of
reasoning-heavy concepts (here, counting) for the
model to improve on the task, i.e., they success-
fully mitigate reporting bias.

While the latter finding has promising impli-
cations for data collection methods, the signifi-
cant gap remaining between the finetuned model
and human performance reported in Table 2
highlights room for improvement beyond simple
finetuning—underscoring the importance of miti-
gating reporting bias while collecting large-scale
pre-training corpora for VLMs.

6.4 Implications for Data Collection Methods

Our findings have strong implications for the use
of annotator instructions to prevent reporting bias
in future data collection efforts.

Reasoning can be elicited from annotators.
We show that all types of reasoning we study can
be elicited from annotators, if they are explicitly
asked for the same. In terms of our linguistics
study in Section 3.1, by making the Question Un-
der Discussion explicit, we are able to elicit the
desired information.

Instructions to prevent reporting bias do not
generalize across types of reasoning. We ob-
serve that instructing annotators to include a spe-
cific type of reasoning encourages them to discuss
that type of reasoning, but not any other. This em-
phasizes the need to be intentional with annotator
instructions for each type of reasoning, if repre-
sentation of various types of reasoning is desired.

Reporting bias can’t be circumvented with cap-
tion length alone. We perform a study to deter-
mine whether forcing increased caption length as
in dense annotation schema (e.g., PixMo (Deitke
et al., 2024) requiring annotators to speak about
the image for a full minute) yields reasoning-
related information without the need for specific

instructions. We find that it increases the occur-
rence of the types of reasoning people were al-
ready predisposed to in the original COCO study,
but not of the other types of reasoning. Details are
in the Appendix.

Reporting bias does impact model perfor-
mance. As discussed in Section 5.2, low occur-
rence of reasoning-related data in training corre-
sponds with poor model performance on that type
of reasoning, and the converse (that increased oc-
currence corresponds with increased performance)
is also true. As such, our findings shed light on a
promising method to improve VLM reasoning.

Reporting bias occurs in LLM-synthesized data
too! LLaVA-1.5 serves as an interesting case
study, because a significant amount of the data is
synthetically generated with GPT-4. With increas-
ing emphasis on scale during VLM training, data
synthesis methods are becoming correspondingly
more popular (Wang et al., 2024; Bai et al., 2025;
Liu et al., 2024b). Our study shows that language
models are not immune to reporting bias (they, too,
are trained on primarily human-written data), and
that instructions given to LLMs to synthesize data
are of the same importance as instructions given
to human annotators, in terms of their impact on
mitigating reporting bias from the generated data.
Further, a solution must be found for the chicken-
and-egg problem of VLMs being poor at reason-
ing due to reporting bias, and in turn, generating
low-quality synthetic data for model training.

Altogether, our study makes it clear that fu-
ture data collection methods must be intentional
about ensuring representation of various types of
reasoning in corpora despite reporting bias. In
other words, annotator instructions (or LLM in-
structions, in the case of synthetically-generated
data) are key to overcoming reporting bias and im-
proving model reasoning capabilities.

7 Conclusion and Future Work

We study the reporting bias in vision-language:
specifically, the systematic omission of types of
information by people captioning images, which
then form the image-text corpora popular VLMs
are trained on. By identifying human behaviors
rooted in linguistics, pragmatics, and cognitive
science, we predict the types of information omit-
ted, verify their lack in public image-text corpora,
and show that contrastive and generative VLMs



trained on this data perform poorly on the types of
reasoning corresponding to the missing informa-
tion. Further, we reveal the importance of the in-
structions provided to annotators during data col-
lection, showing that intentional collection shows
promise in improving representation of reasoning-
related data in training corpora, which could in
turn improve reasoning capabilities of VLMs.

Future research directions include: (1) automat-
ing identification of significant gaps in image-text
corpora; (2) synthesizing high-quality data to fill
those gaps; (3) finetuning models on augmented
data using different methods; and (4) eliciting cap-
tions that avoid the reporting bias in a more nat-
ural way than programmatic augmentation, e.g.,
with our annotation instructions, or by identifying
communicative intents that naturally call for these
types of reasoning-related information.

Limitations

Our work highlights reporting bias in image-text
corpora as a key factor behind why VLMs trained
on these corpora struggle with types of reason-
ing basic to humans. Our first major limitation
is that, while we suggest reasoning-aware annota-
tor instructions as a method to circumvent report-
ing bias, and show its promise in Sections 6.2 and
6.3, actually generating training data at scale using
our proposed method is beyond our resources. Our
second limitation is that we present scaling laws in
Section 5.3 as evidence suggesting that simply in-
creasing model or data scale does not improve rea-
soning capabilities. However, while well-studied
in the language, vision-language and vision fields
(Kaplan et al., 2020; Cherti et al., 2023; Al-Tahan
etal., 2024), scaling laws are technically a hypoth-
esis, and could fail to hold at much higher scales
(Nakkiran et al., 2021).
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A Appendix

A.1 Details about Occurrence of
Reasoning-Related Keywords

Keywords. The keywords we search for are: (1)
“on top of”, “under”, “left of” and “right of” for
spatial reasoning; (2) “before” and “after” for tem-
poral reasoning; (3) “two”—“ten” and “2”—*“10" for
counting; and (4) “not” and “n’t” for negations.

Estimating True Positive Rate. We discard
keyword occurrences that do not operationalize
the types of reasoning we study, e.g., “jeans un-
der $25” does not encourage spatial reasoning.

Discussion about choice of keywords. While
the set of keywords we use for our corpus search
is limited, it closely aligns with our evaluation of
each type of reasoning, as shown in Figure 2. We
sample the data to ensure we do not miss keywords
operationalizing each type of reasoning (includ-
ing synonyms of our keywords). Some keywords
are dropped due to their appearance primarily not
operationalizing the type of reasoning we study:
e.g., “on” could be a spatial preposition, but is
used overwhelmingly in non-spatial contexts (e.g.,
“on sale”, “on record”, “on demand”, “on January
28, etc.), and calculating “Estimated True Occur-
rence” as in Table 1 with a small sample showed
close-to-no spatial contexts.

A.2 Details about the Controlled Study

Instructions provided. The instructions pro-
vided to annotators are kept as close as possible
to the original papers, with the reasoning-related
words kept verbatim. Instructions are visible to
the crowdworkers as they scroll through the im-
ages they annotate, as shown in Figure 4.

Figure 4: Instructions provided for the COCO (top
left), LLaVA-1.5 (top right), PixMo (bottom left) and
our (bottom right) sets of instructions.

Length experiment. We study whether asking
annotators to write longer captions increases the
types of reasoning represented. We collect an
additional 50 captions of the first 50 COCO im-
ages from our study, with the same instructions as
COCO captions. However, we require here that
the captions are all at least 50 words. In these 50
captions, 10 have spatial reasoning, 25 have count-
ing, and none have negations/temporal reasoning.
The prevalence of spatial and counting is about
double that of the study with an §-word minimum.
It is clear that increasing the caption length does
encourage some types of reasoning, but it does not
serve as a solution to increasing representation of
all types of reasoning.

Counting. We see that the majority of object
counts are the number 2, which is easy for an-
notators to count. However, upon closer inspec-
tion of the data, we also see that there are simply
fewer images with >2 instances of any given ob-
ject. This highlights the need to study reporting
bias in the image space as well, rather than the text
space alone, as discussed in Section 7.

A.3 Qualitative Observations

CLIP ignores negations. When evaluating
negations, we observe that CLIP’s performance
on negated attributes = 100 — attribute recognition
performance. To investigate, we evaluate object
negation, and find that CLIP’s performance on
negated objects ~ 100 — object recognition per-
formance: the data points on which CLIP gets the
negated attribute/object correct are those on which
it gets the attribute/object incorrect; showing that
the model completely ignores the negation.

Models can count to smaller numbers better.
When evaluating counting, we observe that con-
trastive and generative VLMs both perform better
when counting small numbers than when count-
ing large ones; which also correlates with the
numbers’ appearance in the training data: anno-
tators are more likely to count smaller numbers of
objects—as the number increases, they default to
approximations such as “group of”” and “several”.

“Left” and “‘right” are the most difficult spa-
tial relations for VLMs. Both contrastive and
generative models struggle more with “left” and
“right” than with “on” and “under”. This also cor-
relates with the relations’ appearance in the train-
ing data, and validates our earlier hypotheses: due



to the inherent ambiguity in these two relations
(“left” from which perspective?), symmetric rela-
tions like “next to” are preferred over asymmetric
types of grounding by annotators.

Contrastive VLMs can ignore keywords even
when they do occur in the training data. We
show that the phenomena we study are included
rarely in captions. When they are included,
though, it tends to be after the most salient infor-
mation of the image is already captured by the cap-
tion, i.e., they are included as a “least significant
bit” of information. As such, the contrastive loss
allows the model to ignore these parts of the cap-
tion completely, as the salient image features are
sufficient to retrieve the image in the batch.



