1. Show that for all integers a > 1, |a++va+ 14++va+ 2] = [v/9a + 8].
SOLUTION: We will prove the following inequality

VIa+8<va+Va+1++vVa+2<+v9 +09.

Consider the following:

(Va++va+2)? = a+a+2+2Va®>+2a
< 2a+2+2vVa?+2a+1
= 4a+14
= (2Va+1)?

Thus
Va+vVa+2<2Va+1
and so

Va+va+tl+va+2<3va+1l=+v9%+0.
By the AM-GM inequality,

Va+va+1++va+2
> 3¢ala+1)(a+2)
= \/{/729(a¥ + 3a® 1 20)
= \/{/729a% 1 2187a? + 1458a)
— \/{/729a% 1 19440 + 1728 + 512 + (24342 — 2700 — 512)
= \/{/(0a T8 + (243a2 — 270a — 512)
> 4/ +/(9a+ 8)3 when a >3
= 49+ 8

And when a = 1,2 we can verify numerically that

V9a+8<+va++va+1++Va+2

This shows that for all positive integers

V9a+8<+va+vVa+1l++vVa+2<+v9a+09.
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Taking the floor of the above inequality yields:

[V9a+8] < [Va++vVa+1++va+2] <[V9a+9)].

Notice that +/9a + 8 and v/9a + 9 are the square roots of consecutive
integers. Thus, the floors of these will differ only when 9a + 9 is a
perfect square.

When 9a-+9 is not a perfect square, the outer sides of the inequality are
equal, so the middle is also the same. When 9a + 9 is a perfect square,
we had v/a++v/a + 14++v/a + 2 < v/9a + 9 and so the left hand inequality
holds with equality. Thus |va+va+1++va+2]| = [v9a +38].

. Given a set S, of integers, an optimal partition of S into sets T,U is a
partition which minimizes the value |t — u|, where ¢ and w are the sum
of the elements of T" and U respectively.

Let P be a set of distinct positive integers such that the sum of the
elements of P is 2k for a positive integer k, and no subset of P sums
to k.

Either show that there exists such a P with at least 2020 different
optimal partitions, or show that such a P does not exist.

SOLUTION: Consider the set
P ={1,3}u{10, 20,30} U{100, 200,300} U---U{10" 2-10" 3-10"}.

We claim P has the desired properties. The sum of elements of P is
666666666664 = 2k for k = 333333333332. Note that k is 2 more than
a multiple of 10. Since the only elements of P which are not multiples
of 10 are 1 and 3, it is not possible for a subset of P to sum to k.

The set T = {3,30,300,...,3-10'1} sums to k + 1 which means T
and P — T are an optimal partition. For each 3-10* k > 1in T, we
could instead put 10¥ and 2-10* and get another optial partition. Since
there are 11 values of k for which we could make this change, there are
211 > 2020 different optimal partitions of P.

. Let N be a positive integer and A = aq,as,...,ay be a sequence of
real numbers. Define the sequence f(A) to be

f(A) =

ay + az as + as an—1tany any+ ay
2 2 7 ’ 2 ’ 2



and for k a positive integer define f*(A) to be f applied to A consec-
utively k times (i.e. f(f(---f(A))))

Find all sequences A = (ay,as,...,ay) of integers such that f*(A)
contains only integers for all k.

SOLUTION: Let M(A) = (a1+as+---an)/N and let S(A) = |M(A)—
a| + |M(A) = ag| + - -+ + |M(A) — ay|.

Then

S(A) = (GIM(A) = ai| + 3|M(A) — aa]) + (5IM(A) — as| + 3| M(A) — ag]) + -
> J[M(A) - o] 4 LM (4) - 3
= S(f(A))

And equality holds only when A is a constant sequence.

If f%(A) has only integer values for all k, then N - S(A) must always
be an integer. Since this is non-increasing positive integer value, it
must eventually be constant. Thus, the sequence A must eventually be
constant. If A is a constant sequence, then f~1(A) must either equal A,
or be a sequence of the form z,y, z, vy, ..., where N is even and z, y have
the same parity. When z # y, there is no sequence f~'(z,y,z,y,---).

Thus A must be a constant integer seequence, or a sequence of the form
x?y?'x?y""?y'

. Determine all graphs G with the following two properties:

e (G contains at least one Hamilton path.

e For any pair of vertices, u,v € G, if there is a Hamilton path from
u to v then the edge uv is in the graph G.

Solution: Consider a graph G with the desired properties and a Hamil-
ton path (v, va, ..., v,). Then the edge v;v, must also be in G. If n = 2
then G is a graph with a single edge. If n > 3 then (v, vs,...v,) is a
Hamilton cycle. If G' contains no other edges, then it satisfies the given
properties, so all cycle graphs satisfy the desired properties.

Suppose G has more edges than just a cycle. We call an edge from v;
to vj in G a chord of length j — 4, where j — ¢ is calculated module n.
We prove the following two lemmas:
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e If G has a chord of length k£ then G has all chords of length k.

e If GG has a chord of length 2 < k < n — 2 then G has all chords of
length k + 2m for m an integer.

Suppose G has a chord of length k£ and let the edge vivi.1 be in G.
Then the path vo,vs, ..., Vg, Vki1, V1, Up, Un_1,..., Vo is a Hamilton
path, and so the edge voviy2 is in the graph. Repeating this process
proves the first lemma.

Next consider the path (vi, Vri1,Vkio, V2, V3, .o\ Upln, Up_1, - -+, Ugt3)-
By the first lemma, all of these edges are in G and so this is a Hamilton
path. This shows that the vyv, 3 is in the graph. A similar construction
show the edge vyv;_1 is also in the graph. Repeating these processes,
combined with the first lemma, proves the second lemma.

If n is odd, then an edge v;v; gives a chord of length j —i and i — j, one
of which is odd and one of which is even (modulo n), and so G would
be a complete graph.

If n is even and k£ is odd, this give a complete bipartite graph. If G
had another edge then this would be an even chord and G would have
all even chords and be a complete graph.

If n is even and k is even, then the edge vv3 is in G. If n = 4 then this
is a complete bipartite graph. If n > 4 We see that vy, vy, v3, 04, ..., 0,
is also a Hamilton path in G. On this path vyv, is a chord of length 3
and v3vs is a chord of length 2, both of which are in G. Thus the graph
is a complete graph.

Thus the graphs with the desired properties are all graphs which are
cycles, complete bipartite graphs, or complete graphs.

5. We define the following sequences:

Sequence A has a, = n.

Sequence B has b, = a,, when a,, Z 0 (mod 3) and b, = 0 other-
wise.

n

Sequence C has ¢, =Y., b;.

Sequence D has d,, = ¢, when ¢, # 0 (mod 3) and d,, = 0 other-
wise.



e Sequence E has e, =Y d;.

Prove that the terms of sequence E are exactly the perfect cubes.

SOLUTION:
Observe that the sequence {b,} is defined as:

n otherwise.

! _{O ifn=(0 mod 3)

Considering n modulo 3, we can compute ¢, as:

3k +3k+1=3k(k+1)+1 ifn=3k+1
cn =< 3(k+1)? ifn=3k~+2
3k? if n = 3k.

To determine {d, }, we replace all multiples of 3 with zeroes. This is
occurs when n = 3k or n =3k + 1, so {d,} is of the form

1,0,0,7,0,0,19,0,0,37,0, ...,
and e, is of the form

1,1,1,8,8,8,27,27,27, 64,64, ...

Noting that e, increases on every n = 3k + 1 index, we redefine n as
cycling between 3k + 1, 3k + 2, 3k + 3 for values of k, so that For



n=3k+i, ke {0}UN, and i = {1,2,3}

k
en = 2(37’2 +3r+1)

r=0

k k k
=3> 43> r+ >y 1
r=1 r=1 r=0

12k +1 1
:Sﬁk+ §k+_)+3Mk; »+k+1
2k + 3k +k  3k*+ 3k
= 5 + 5 +k+1
2k3 + 6k% + 4k
= 5 +k+1
=+ 3k +2k+k+1
= (k+1)°

6. In convex pentagon ABCDE, AC is parallel to DE, AB is perpendic-
ular to AE, and BC' is perpendicular to C'D. If H is the orthocentre of
triangle ABC and M is the midpoint of segment DFE, prove that AD,
CFE and HM are concurrent.

Solution. Let P denote the intersection of lines AE and C'D and let
@ denote the midpoint of AC. Since H is the orthocentre of triangle
ABC, it follows that CH 1 AB and AH | BC. Combining this
with the fact that AE L AB and BC' L CD yields that AH||C'D and
CH||AE. This implies that AHC'P is a parallelogram and consequently
that PH passes through the midpoint @ of AC. Since DE|AC, it
follows that triangle PED is similar to triangle PAC. This implies
that /PEM = /PED = /PAC = ZPAQ and that

AQ AC  ED EM
AP 2-AP 2-EP EP’
Hence triangles PAQ and PEM are similar and ZEPM = ZAPQ.
Therefore the point M lies on the line through P, () and H and it
suffices to show that PH, CE and AD are concurrent. Since DE|AC,
AH||CD and CH||AE, it follows that triangles PED and HCA are
similar with corresponding sides parallel. Therefore
CH AH
EP  DP’
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Let X and Y be the intersections of CE and AD with HP, respec-
tively. Because CH||EP and AH||DP, it follows that triangles EX P
and CX H are similar and that triangles PY D and HY A are similar.
Considering the ratios of similarity yields that

HX CH AH HY
XP EP DP YP’
Since points X and Y both lie on segment H P, it follows that X =Y.

Therefore CE, AD and HP are concurrent at the point X, as desired.
This implies that AD, CFE and HM are concurrent.

. Let a, b, ¢ be positive real numbers with ab+ bc + ac = abc. Prove that

be ac n ab
aa+1 + bb+1 CC+1

1
> —.
-3
Solution 1. Since the desired inequality is symmetric in a, b, ¢, it may
be assumed without the loss of generality that a > b > ¢. Further
0 < ab+ ac = (a — 1)bc implies that a > 1, and by a similar argument
it follows that b > 1 and ¢ > 1. Combining these results yields that
ab > ac > bc and a®t > P+ > ¢t Applying Chebyshev’s inequality
and the above inequality yields that

1 1 1
(bc + ac + ab) ( + + )

aetl bb+1 cctl

be ac ab

aetl + bb+1 + cctl

1 1 1
-abc<—~a_“+—-b_b+—-c_c>.
a b c

Rearranging the condition yields that %—1—%4—% = 1. Applying Weighted
AM-GM with weights %, % and % yields that

W= W

1 1 1 1 1 1 1
L a S bt e > (Y a (b (¢ ) = —
—a +b —l—c c > (@) (b")(c®) .

Applying this to the inequality derived above yields the desired result.
Solution 2. Rearranging the condition yields that é + % + % = 1.



Applying Weighted AM-GM with weights (lw % and % yields that

be ac ab b 1 1 1 1 1 1
prs o S e N L N U TS S s
1 \?#

1 1
1 \° 1 \¢
abe (anrl ) pb+1 (cc+1 )

It suffices to show that 3 > asbice. Since log x is a concave function,
applying Jensen’s inequality with weights le % and % yields that

v

1 1 1 1 1 1
—-loga+ —-logb+ —-logc<log|—-a+~--b+—-c) =log3.
a b c a b c

Since log x is increasing, this implies the desired inequality.

8. Find all pairs (a,b) of positive rational numbers such that /a = ab.

q q+1
mnswer 0.) = ((55)' 1) whereg <) = ((3)" 52
where ¢ € N; and (a,b) = (a, 1) where a € Q.

Solution. Let b = ¢/d where ¢,d € N and ged (¢, d) = 1. The equation
now rearranges to a? = (ab)¢ which implies that a? is the cth power
of a rational number and, since ged (¢,d) = 1, that there exists an
r € Q such that a = r°. Substituting this into the equation yields
that r9=¢ = ¢/d. Letting |c — d| = n yields that either ™ = c/d or
r~" = ¢/d which both imply, since ged (¢,d) = 1, that ¢ and d are each
the nth power of a positive integer. Letting ¢ = p™ and d = ¢" for some
p,q € N yields that [p" — ¢"| = n and, if n = 0 and p = ¢, then since
ged (¢, d) = 1, it must follows that p = ¢ = 1 which yields the solution
(a,b) = (a,1) where a € Q. If p # ¢, then n = |p" — ¢"| > 2" — 1.
If n > 2, then 2" — 1 > n, which is a contradiction. Considering the
case when n = 1 yields the solution sets (a,b) = ((#)q > and

+1
(a,b) = <(qqu)q ,%1) for each ¢ € N.

q
) g+1



