

1. Show that for all integers $a \geq 1$, $\lfloor \sqrt{a} + \sqrt{a+1} + \sqrt{a+2} \rfloor = \lfloor \sqrt{9a+8} \rfloor$.

SOLUTION: We will prove the following inequality

$$\sqrt{9a+8} < \sqrt{a} + \sqrt{a+1} + \sqrt{a+2} < \sqrt{9a+9}.$$

Consider the following:

$$\begin{aligned} (\sqrt{a} + \sqrt{a+2})^2 &= a + a + 2 + 2\sqrt{a^2 + 2a} \\ &< 2a + 2 + 2\sqrt{a^2 + 2a + 1} \\ &= 4a + 4 \\ &= (2\sqrt{a+1})^2 \end{aligned}$$

Thus

$$\sqrt{a} + \sqrt{a+2} < 2\sqrt{a+1}$$

and so

$$\sqrt{a} + \sqrt{a+1} + \sqrt{a+2} < 3\sqrt{a+1} = \sqrt{9a+9}.$$

By the AM-GM inequality,

$$\begin{aligned} &\sqrt{a} + \sqrt{a+1} + \sqrt{a+2} \\ &\geq 3\sqrt[6]{a(a+1)(a+2)} \\ &= \sqrt[3]{729(a^3 + 3a^2 + 2a)} \\ &= \sqrt[3]{729a^3 + 2187a^2 + 1458a} \\ &= \sqrt[3]{729a^3 + 1944a^2 + 1728a + 512 + (243a^2 - 270a - 512)} \\ &= \sqrt[3]{(9a+8)^3 + (243a^2 - 270a - 512)} \\ &> \sqrt[3]{(9a+8)^3} \text{ when } a \geq 3 \\ &= \sqrt{9a+8} \end{aligned}$$

And when $a = 1, 2$ we can verify numerically that

$$\sqrt{9a+8} < \sqrt{a} + \sqrt{a+1} + \sqrt{a+2}$$

This shows that for all positive integers

$$\sqrt{9a+8} < \sqrt{a} + \sqrt{a+1} + \sqrt{a+2} < \sqrt{9a+9}.$$

Taking the floor of the above inequality yields:

$$\lfloor \sqrt{9a+8} \rfloor \leq \lfloor \sqrt{a} + \sqrt{a+1} + \sqrt{a+2} \rfloor \leq \lfloor \sqrt{9a+9} \rfloor.$$

Notice that $\sqrt{9a+8}$ and $\sqrt{9a+9}$ are the square roots of consecutive integers. Thus, the floors of these will differ only when $9a+9$ is a perfect square.

When $9a+9$ is not a perfect square, the outer sides of the inequality are equal, so the middle is also the same. When $9a+9$ is a perfect square, we had $\sqrt{a} + \sqrt{a+1} + \sqrt{a+2} < \sqrt{9a+9}$ and so the left hand inequality holds with equality. Thus $\lfloor \sqrt{a} + \sqrt{a+1} + \sqrt{a+2} \rfloor = \lfloor \sqrt{9a+8} \rfloor$.

- Given a set S , of integers, an *optimal partition* of S into sets T, U is a partition which minimizes the value $|t - u|$, where t and u are the sum of the elements of T and U respectively.

Let P be a set of distinct positive integers such that the sum of the elements of P is $2k$ for a positive integer k , and no subset of P sums to k .

Either show that there exists such a P with at least 2020 different optimal partitions, or show that such a P does not exist.

SOLUTION: Consider the set

$$P = \{1, 3\} \cup \{10, 20, 30\} \cup \{100, 200, 300\} \cup \dots \cup \{10^{11}, 2 \cdot 10^{11}, 3 \cdot 10^{11}\}.$$

We claim P has the desired properties. The sum of elements of P is 666666666664 = $2k$ for $k = 333333333332$. Note that k is 2 more than a multiple of 10. Since the only elements of P which are not multiples of 10 are 1 and 3, it is not possible for a subset of P to sum to k .

The set $T = \{3, 30, 300, \dots, 3 \cdot 10^{11}\}$ sums to $k+1$ which means T and $P - T$ are an optimal partition. For each $3 \cdot 10^k$, $k \geq 1$ in T , we could instead put 10^k and $2 \cdot 10^k$ and get another optimal partition. Since there are 11 values of k for which we could make this change, there are $2^{11} > 2020$ different optimal partitions of P .

- Let N be a positive integer and $A = a_1, a_2, \dots, a_N$ be a sequence of real numbers. Define the sequence $f(A)$ to be

$$f(A) = \left(\frac{a_1 + a_2}{2}, \frac{a_2 + a_3}{2}, \dots, \frac{a_{N-1} + a_N}{2}, \frac{a_N + a_1}{2} \right)$$

and for k a positive integer define $f^k(A)$ to be f applied to A consecutively k times (i.e. $f(f(\cdots f(A)))$)

Find all sequences $A = (a_1, a_2, \dots, a_N)$ of integers such that $f^k(A)$ contains only integers for all k .

SOLUTION: Let $M(A) = (a_1 + a_2 + \cdots + a_N)/N$ and let $S(A) = |M(A) - a_1| + |M(A) - a_2| + \cdots + |M(A) - a_N|$.

Then

$$\begin{aligned} S(A) &= \left(\frac{1}{2}|M(A) - a_1| + \frac{1}{2}|M(A) - a_2|\right) + \left(\frac{1}{2}|M(A) - a_2| + \frac{1}{2}|M(A) - a_3|\right) + \cdots \\ &\geq \frac{1}{2}|M(A) - \frac{a_1 + a_2}{2}| + \frac{1}{2}|M(A) - \frac{a_2 + a_3}{2}| + \cdots \\ &= S(f(A)) \end{aligned}$$

And equality holds only when A is a constant sequence.

If $f^k(A)$ has only integer values for all k , then $N \cdot S(A)$ must always be an integer. Since this is non-increasing positive integer value, it must eventually be constant. Thus, the sequence A must eventually be constant. If A is a constant sequence, then $f^{-1}(A)$ must either equal A , or be a sequence of the form x, y, x, y, \dots , where N is even and x, y have the same parity. When $x \neq y$, there is no sequence $f^{-1}(x, y, x, y, \dots)$.

Thus A must be a constant integer sequence, or a sequence of the form x, y, x, y, \dots, y .

4. Determine all graphs G with the following two properties:

- G contains at least one Hamilton path.
- For any pair of vertices, $u, v \in G$, if there is a Hamilton path from u to v then the edge uv is in the graph G .

Solution: Consider a graph G with the desired properties and a Hamilton path (v_1, v_2, \dots, v_n) . Then the edge $v_1 v_n$ must also be in G . If $n = 2$ then G is a graph with a single edge. If $n \geq 3$ then (v_1, v_2, \dots, v_n) is a Hamilton cycle. If G contains no other edges, then it satisfies the given properties, so all cycle graphs satisfy the desired properties.

Suppose G has more edges than just a cycle. We call an edge from v_i to v_j in G a chord of length $j - i$, where $j - i$ is calculated module n . We prove the following two lemmas:

- If G has a chord of length k then G has all chords of length k .
- If G has a chord of length $2 \leq k \leq n - 2$ then G has all chords of length $k + 2m$ for m an integer.

Suppose G has a chord of length k and let the edge v_1v_{k+1} be in G . Then the path $v_2, v_3, \dots, v_k, v_{k+1}, v_1, v_n, v_{n-1}, \dots, v_{k+2}$ is a Hamilton path, and so the edge v_2v_{k+2} is in the graph. Repeating this process proves the first lemma.

Next consider the path $(v_1, v_{k+1}, v_{k+2}, v_2, v_3, \dots, v_kv_n, v_{n-1}, \dots, v_{k+3})$. By the first lemma, all of these edges are in G and so this is a Hamilton path. This shows that the v_1v_{k+3} is in the graph. A similar construction shows the edge v_1v_{k-1} is also in the graph. Repeating these processes, combined with the first lemma, proves the second lemma.

If n is odd, then an edge v_iv_j gives a chord of length $j - i$ and $i - j$, one of which is odd and one of which is even (modulo n), and so G would be a complete graph.

If n is even and k is odd, this gives a complete bipartite graph. If G had another edge then this would be an even chord and G would have all even chords and be a complete graph.

If n is even and k is even, then the edge v_1v_3 is in G . If $n = 4$ then this is a complete bipartite graph. If $n > 4$ we see that $v_2, v_1, v_3, v_4, \dots, v_n$ is also a Hamilton path in G . On this path v_2v_4 is a chord of length 3 and v_3v_5 is a chord of length 2, both of which are in G . Thus the graph is a complete graph.

Thus the graphs with the desired properties are all graphs which are cycles, complete bipartite graphs, or complete graphs.

5. We define the following sequences:

- Sequence A has $a_n = n$.
- Sequence B has $b_n = a_n$ when $a_n \not\equiv 0 \pmod{3}$ and $b_n = 0$ otherwise.
- Sequence C has $c_n = \sum_{i=1}^n b_i$.
- Sequence D has $d_n = c_n$ when $c_n \not\equiv 0 \pmod{3}$ and $d_n = 0$ otherwise.

- Sequence E has $e_n = \sum_{i=1}^n d_i$.

Prove that the terms of sequence E are exactly the perfect cubes.

SOLUTION:

Observe that the sequence $\{b_n\}$ is defined as:

$$b_n = \begin{cases} 0 & \text{if } n \equiv (0 \pmod{3}) \\ n & \text{otherwise.} \end{cases}$$

Considering n modulo 3, we can compute c_n as:

$$c_n = \begin{cases} 3k^2 + 3k + 1 = 3k(k+1) + 1 & \text{if } n = 3k + 1 \\ 3(k+1)^2 & \text{if } n = 3k + 2 \\ 3k^2 & \text{if } n = 3k. \end{cases}$$

To determine $\{d_n\}$, we replace all multiples of 3 with zeroes. This occurs when $n = 3k$ or $n = 3k + 1$, so $\{d_n\}$ is of the form

$$1, 0, 0, 7, 0, 0, 19, 0, 0, 37, 0, \dots,$$

and e_n is of the form

$$1, 1, 1, 8, 8, 8, 27, 27, 27, 64, 64, \dots$$

Noting that e_n increases on every $n = 3k + 1$ index, we redefine n as cycling between $3k + 1, 3k + 2, 3k + 3$ for values of k , so that For

$n = 3k + i$, $k \in \{0\} \cup \mathbb{N}$, and $i = \{1, 2, 3\}$

$$\begin{aligned}
e_n &= \sum_{r=0}^k (3r^2 + 3r + 1) \\
&= 3 \sum_{r=1}^k r^2 + 3 \sum_{r=1}^k r + \sum_{r=0}^k 1 \\
&= 3 \frac{k(k+1)(2k+1)}{6} + 3 \frac{k(k+1)}{2} + k + 1 \\
&= \frac{2k^3 + 3k^2 + k}{2} + \frac{3k^2 + 3k}{2} + k + 1 \\
&= \frac{2k^3 + 6k^2 + 4k}{2} + k + 1 \\
&= k^3 + 3k^2 + 2k + k + 1 \\
&= (k+1)^3
\end{aligned}$$

6. In convex pentagon $ABCDE$, AC is parallel to DE , AB is perpendicular to AE , and BC is perpendicular to CD . If H is the orthocentre of triangle ABC and M is the midpoint of segment DE , prove that AD , CE and HM are concurrent.

Solution. Let P denote the intersection of lines AE and CD and let Q denote the midpoint of AC . Since H is the orthocentre of triangle ABC , it follows that $CH \perp AB$ and $AH \perp BC$. Combining this with the fact that $AE \perp AB$ and $BC \perp CD$ yields that $AH \parallel CD$ and $CH \parallel AE$. This implies that $AHCP$ is a parallelogram and consequently that PH passes through the midpoint Q of AC . Since $DE \parallel AC$, it follows that triangle PED is similar to triangle PAC . This implies that $\angle PEM = \angle PED = \angle PAC = \angle PAQ$ and that

$$\frac{AQ}{AP} = \frac{AC}{2 \cdot AP} = \frac{ED}{2 \cdot EP} = \frac{EM}{EP}.$$

Hence triangles PAQ and PEM are similar and $\angle EPM = \angle APQ$. Therefore the point M lies on the line through P , Q and H and it suffices to show that PH , CE and AD are concurrent. Since $DE \parallel AC$, $AH \parallel CD$ and $CH \parallel AE$, it follows that triangles PED and HCA are similar with corresponding sides parallel. Therefore

$$\frac{CH}{EP} = \frac{AH}{DP}.$$

Let X and Y be the intersections of CE and AD with HP , respectively. Because $CH \parallel EP$ and $AH \parallel DP$, it follows that triangles EXP and CXH are similar and that triangles PYD and HYA are similar. Considering the ratios of similarity yields that

$$\frac{HX}{XP} = \frac{CH}{EP} = \frac{AH}{DP} = \frac{HY}{YP}.$$

Since points X and Y both lie on segment HP , it follows that $X = Y$. Therefore CE , AD and HP are concurrent at the point X , as desired. This implies that AD , CE and HM are concurrent.

7. Let a, b, c be positive real numbers with $ab + bc + ac = abc$. Prove that

$$\frac{bc}{a^{a+1}} + \frac{ac}{b^{b+1}} + \frac{ab}{c^{c+1}} \geq \frac{1}{3}.$$

Solution 1. Since the desired inequality is symmetric in a, b, c , it may be assumed without the loss of generality that $a \geq b \geq c$. Further $0 < ab + ac = (a - 1)bc$ implies that $a > 1$, and by a similar argument it follows that $b > 1$ and $c > 1$. Combining these results yields that $ab \geq ac \geq bc$ and $a^{a+1} \geq b^{b+1} \geq c^{c+1}$. Applying Chebyshev's inequality and the above inequality yields that

$$\begin{aligned} \frac{bc}{a^{a+1}} + \frac{ac}{b^{b+1}} + \frac{ab}{c^{c+1}} &\geq \frac{1}{3}(bc + ac + ab) \left(\frac{1}{a^{a+1}} + \frac{1}{b^{b+1}} + \frac{1}{c^{c+1}} \right) \\ &= \frac{1}{3} \cdot abc \left(\frac{1}{a} \cdot a^{-a} + \frac{1}{b} \cdot b^{-b} + \frac{1}{c} \cdot c^{-c} \right). \end{aligned}$$

Rearranging the condition yields that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$. Applying Weighted AM-GM with weights $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ yields that

$$\frac{1}{a} \cdot a^{-a} + \frac{1}{b} \cdot b^{-b} + \frac{1}{c} \cdot c^{-c} \geq (a^{-a})^{\frac{1}{a}} (b^{-b})^{\frac{1}{b}} (c^{-c})^{\frac{1}{c}} = \frac{1}{abc}.$$

Applying this to the inequality derived above yields the desired result.

Solution 2. Rearranging the condition yields that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$.

Applying Weighted AM-GM with weights $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ yields that

$$\begin{aligned}\frac{bc}{a^{a+1}} + \frac{ac}{b^{b+1}} + \frac{ab}{c^{c+1}} &= abc \left(\frac{1}{a} \cdot \frac{1}{a^{a+1}} + \frac{1}{b} \cdot \frac{1}{b^{b+1}} + \frac{1}{c} \cdot \frac{1}{c^{c+1}} \right) \\ &\geq abc \left(\frac{1}{a^{a+1}} \right)^{\frac{1}{a}} \left(\frac{1}{b^{b+1}} \right)^{\frac{1}{b}} \left(\frac{1}{c^{c+1}} \right)^{\frac{1}{c}} \\ &= \frac{1}{a^{\frac{1}{a}} b^{\frac{1}{b}} c^{\frac{1}{c}}}.\end{aligned}$$

It suffices to show that $3 \geq a^{\frac{1}{a}} b^{\frac{1}{b}} c^{\frac{1}{c}}$. Since $\log x$ is a concave function, applying Jensen's inequality with weights $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ yields that

$$\frac{1}{a} \cdot \log a + \frac{1}{b} \cdot \log b + \frac{1}{c} \cdot \log c \leq \log \left(\frac{1}{a} \cdot a + \frac{1}{b} \cdot b + \frac{1}{c} \cdot c \right) = \log 3.$$

Since $\log x$ is increasing, this implies the desired inequality.

8. Find all pairs (a, b) of positive rational numbers such that $\sqrt[b]{a} = ab$.

Answer. $(a, b) = \left(\left(\frac{q}{q+1} \right)^q, \frac{q}{q+1} \right)$ where $q \in \mathbb{N}$; $(a, b) = \left(\left(\frac{q}{q+1} \right)^{q+1}, \frac{q+1}{q} \right)$ where $q \in \mathbb{N}$; and $(a, b) = (a, 1)$ where $a \in \mathbb{Q}$.

Solution. Let $b = c/d$ where $c, d \in \mathbb{N}$ and $\gcd(c, d) = 1$. The equation now rearranges to $a^d = (ab)^c$ which implies that a^d is the c th power of a rational number and, since $\gcd(c, d) = 1$, that there exists an $r \in \mathbb{Q}$ such that $a = r^c$. Substituting this into the equation yields that $r^{d-c} = c/d$. Letting $|c - d| = n$ yields that either $r^n = c/d$ or $r^{-n} = c/d$ which both imply, since $\gcd(c, d) = 1$, that c and d are each the n th power of a positive integer. Letting $c = p^n$ and $d = q^n$ for some $p, q \in \mathbb{N}$ yields that $|p^n - q^n| = n$ and, if $n = 0$ and $p = q$, then since $\gcd(c, d) = 1$, it must follows that $p = q = 1$ which yields the solution $(a, b) = (a, 1)$ where $a \in \mathbb{Q}$. If $p \neq q$, then $n = |p^n - q^n| \geq 2^n - 1$. If $n \geq 2$, then $2^n - 1 > n$, which is a contradiction. Considering the case when $n = 1$ yields the solution sets $(a, b) = \left(\left(\frac{q}{q+1} \right)^q, \frac{q}{q+1} \right)$ and $(a, b) = \left(\left(\frac{q}{q+1} \right)^{q+1}, \frac{q+1}{q} \right)$ for each $q \in \mathbb{N}$.