
1. Show that for all integers a ≥ 1, b
√
a+
√
a + 1+

√
a + 2c = b

√
9a + 8c.

SOLUTION: We will prove the following inequality

√
9a + 8 <

√
a +
√
a + 1 +

√
a + 2 <

√
9a + 9.

Consider the following:

(
√
a +
√
a + 2)2 = a + a + 2 + 2

√
a2 + 2a

< 2a + 2 + 2
√
a2 + 2a + 1

= 4a + 4
= (2

√
a + 1)2

Thus √
a +
√
a + 2 < 2

√
a + 1

and so √
a +
√
a + 1 +

√
a + 2 < 3

√
a + 1 =

√
9a + 9.

By the AM-GM inequality,

√
a +
√
a + 1 +

√
a + 2

≥ 3 6
√

a(a + 1)(a + 2)

=
√

3
√

729(a3 + 3a2 + 2a)

=
√

3
√

729a3 + 2187a2 + 1458a)

=
√

3
√

729a3 + 1944a2 + 1728a + 512 + (243a2 − 270a− 512)

=
√

3
√

(9a + 8)3 + (243a2 − 270a− 512)

>
√

3
√

(9a + 8)3 when a ≥ 3

=
√

9a + 8

And when a = 1, 2 we can verify numerically that
√

9a + 8 <
√
a +
√
a + 1 +

√
a + 2

This shows that for all positive integers
√

9a + 8 <
√
a +
√
a + 1 +

√
a + 2 <

√
9a + 9.
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Taking the floor of the above inequality yields:

b
√

9a + 8c ≤ b
√
a +
√
a + 1 +

√
a + 2c ≤ b

√
9a + 9c.

Notice that
√

9a + 8 and
√

9a + 9 are the square roots of consecutive
integers. Thus, the floors of these will differ only when 9a + 9 is a
perfect square.

When 9a+9 is not a perfect square, the outer sides of the inequality are
equal, so the middle is also the same. When 9a+ 9 is a perfect square,
we had

√
a+
√
a + 1+

√
a + 2 <

√
9a + 9 and so the left hand inequality

holds with equality. Thus b
√
a +
√
a + 1 +

√
a + 2c = b

√
9a + 8c.

2. Given a set S, of integers, an optimal partition of S into sets T, U is a
partition which minimizes the value |t− u|, where t and u are the sum
of the elements of T and U respectively.

Let P be a set of distinct positive integers such that the sum of the
elements of P is 2k for a positive integer k, and no subset of P sums
to k.

Either show that there exists such a P with at least 2020 different
optimal partitions, or show that such a P does not exist.

SOLUTION: Consider the set

P = {1, 3}∪{10, 20, 30}∪{100, 200, 300}∪ · · ·∪{1011, 2 ·1011, 3 ·1011}.

We claim P has the desired properties. The sum of elements of P is
666666666664 = 2k for k = 333333333332. Note that k is 2 more than
a multiple of 10. Since the only elements of P which are not multiples
of 10 are 1 and 3, it is not possible for a subset of P to sum to k.

The set T = {3, 30, 300, . . . , 3 · 1011} sums to k + 1 which means T
and P − T are an optimal partition. For each 3 · 10k, k ≥ 1 in T, we
could instead put 10k and 2 ·10k and get another optial partition. Since
there are 11 values of k for which we could make this change, there are
211 > 2020 different optimal partitions of P.

3. Let N be a positive integer and A = a1, a2, . . . , aN be a sequence of
real numbers. Define the sequence f(A) to be

f(A) =

(
a1 + a2

2
,
a2 + a3

2
, · · · , aN−1 + aN

2
,
aN + a1

2

)
2



and for k a positive integer define fk(A) to be f applied to A consec-
utively k times (i.e. f(f(· · · f(A))))

Find all sequences A = (a1, a2, . . . , aN) of integers such that fk(A)
contains only integers for all k.

SOLUTION: Let M(A) = (a1+a2+· · · aN)/N and let S(A) = |M(A)−
a1|+ |M(A)− a2|+ · · ·+ |M(A)− aN |.
Then

S(A) = (1
2
|M(A)− a1|+ 1

2
|M(A)− a2|) + (1

2
|M(A)− a2|+ 1

2
|M(A)− a3|) + · · ·

≥ 1
2
|M(A)− a1+a2

2
|+ 1

2
|M(A)− a2+a3

2
|+ · · ·

= S(f(A))

And equality holds only when A is a constant sequence.

If fk(A) has only integer values for all k, then N · S(A) must always
be an integer. Since this is non-increasing positive integer value, it
must eventually be constant. Thus, the sequence A must eventually be
constant. If A is a constant sequence, then f−1(A) must either equal A,
or be a sequence of the form x, y, x, y, . . . , where N is even and x, y have
the same parity. When x 6= y, there is no sequence f−1(x, y, x, y, · · · ).
Thus A must be a constant integer seequence, or a sequence of the form
x, y, x, y, . . . , y.

4. Determine all graphs G with the following two properties:

• G contains at least one Hamilton path.

• For any pair of vertices, u, v ∈ G, if there is a Hamilton path from
u to v then the edge uv is in the graph G.

Solution: Consider a graph G with the desired properties and a Hamil-
ton path (v1, v2, . . . , vn). Then the edge v1vn must also be in G. If n = 2
then G is a graph with a single edge. If n ≥ 3 then (v1, v2, . . . vn) is a
Hamilton cycle. If G contains no other edges, then it satisfies the given
properties, so all cycle graphs satisfy the desired properties.

Suppose G has more edges than just a cycle. We call an edge from vi
to vj in G a chord of length j − i, where j − i is calculated module n.
We prove the following two lemmas:
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• If G has a chord of length k then G has all chords of length k.

• If G has a chord of length 2 ≤ k ≤ n− 2 then G has all chords of
length k + 2m for m an integer.

Suppose G has a chord of length k and let the edge v1vk+1 be in G.
Then the path v2, v3, . . . , vk, vk+1, v1, vn, vn−1, . . . , vk+2 is a Hamilton
path, and so the edge v2vk+2 is in the graph. Repeating this process
proves the first lemma.

Next consider the path (v1, vk+1, vk+2, v2, v3, . . . , vkvn, vn−1, . . . , vk+3).
By the first lemma, all of these edges are in G and so this is a Hamilton
path. This shows that the v1vk+3 is in the graph. A similar construction
show the edge v1vk−1 is also in the graph. Repeating these processes,
combined with the first lemma, proves the second lemma.

If n is odd, then an edge vivj gives a chord of length j− i and i− j, one
of which is odd and one of which is even (modulo n), and so G would
be a complete graph.

If n is even and k is odd, this give a complete bipartite graph. If G
had another edge then this would be an even chord and G would have
all even chords and be a complete graph.

If n is even and k is even, then the edge v1v3 is in G. If n = 4 then this
is a complete bipartite graph. If n > 4 We see that v2, v1, v3, v4, . . . , vn
is also a Hamilton path in G. On this path v2v4 is a chord of length 3
and v3v5 is a chord of length 2, both of which are in G. Thus the graph
is a complete graph.

Thus the graphs with the desired properties are all graphs which are
cycles, complete bipartite graphs, or complete graphs.

5. We define the following sequences:

• Sequence A has an = n.

• Sequence B has bn = an when an 6≡ 0 (mod 3) and bn = 0 other-
wise.

• Sequence C has cn =
∑n

i=1 bi.

• Sequence D has dn = cn when cn 6≡ 0 (mod 3) and dn = 0 other-
wise.
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• Sequence E has en =
∑n

i=1 di.

Prove that the terms of sequence E are exactly the perfect cubes.

SOLUTION:

Observe that the sequence {bn} is defined as:

bn =

{
0 if n ≡ (0 mod 3)

n otherwise.

Considering n modulo 3, we can compute cn as:

cn =


3k2 + 3k + 1 = 3k(k + 1) + 1 if n = 3k + 1

3(k + 1)2 if n = 3k + 2

3k2 if n = 3k.

To determine {dn}, we replace all multiples of 3 with zeroes. This is
occurs when n = 3k or n = 3k + 1, so {dn} is of the form

1, 0, 0, 7, 0, 0, 19, 0, 0, 37, 0, ...,

and en is of the form

1, 1, 1, 8, 8, 8, 27, 27, 27, 64, 64, ...

Noting that en increases on every n = 3k + 1 index, we redefine n as
cycling between 3k + 1, 3k + 2, 3k + 3 for values of k, so that For
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n = 3k + i, k ∈ {0} ∪ N, and i = {1, 2, 3}

en =
k∑

r=0

(3r2 + 3r + 1)

= 3
k∑

r=1

r2 + 3
k∑

r=1

r +
k∑

r=0

1

= 3
k(k + 1)(2k + 1)

6
+ 3

k(k + 1)

2
+ k + 1

=
2k3 + 3k2 + k

2
+

3k2 + 3k

2
+ k + 1

=
2k3 + 6k2 + 4k

2
+ k + 1

= k3 + 3k2 + 2k + k + 1

= (k + 1)3

6. In convex pentagon ABCDE, AC is parallel to DE, AB is perpendic-
ular to AE, and BC is perpendicular to CD. If H is the orthocentre of
triangle ABC and M is the midpoint of segment DE, prove that AD,
CE and HM are concurrent.

Solution. Let P denote the intersection of lines AE and CD and let
Q denote the midpoint of AC. Since H is the orthocentre of triangle
ABC, it follows that CH ⊥ AB and AH ⊥ BC. Combining this
with the fact that AE ⊥ AB and BC ⊥ CD yields that AH‖CD and
CH‖AE. This implies that AHCP is a parallelogram and consequently
that PH passes through the midpoint Q of AC. Since DE‖AC, it
follows that triangle PED is similar to triangle PAC. This implies
that ∠PEM = ∠PED = ∠PAC = ∠PAQ and that

AQ

AP
=

AC

2 · AP
=

ED

2 · EP
=

EM

EP
.

Hence triangles PAQ and PEM are similar and ∠EPM = ∠APQ.
Therefore the point M lies on the line through P , Q and H and it
suffices to show that PH, CE and AD are concurrent. Since DE‖AC,
AH‖CD and CH‖AE, it follows that triangles PED and HCA are
similar with corresponding sides parallel. Therefore

CH

EP
=

AH

DP
.
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Let X and Y be the intersections of CE and AD with HP , respec-
tively. Because CH‖EP and AH‖DP , it follows that triangles EXP
and CXH are similar and that triangles PY D and HY A are similar.
Considering the ratios of similarity yields that

HX

XP
=

CH

EP
=

AH

DP
=

HY

Y P
.

Since points X and Y both lie on segment HP , it follows that X = Y .
Therefore CE, AD and HP are concurrent at the point X, as desired.
This implies that AD, CE and HM are concurrent.

7. Let a, b, c be positive real numbers with ab+ bc+ ac = abc. Prove that

bc

aa+1
+

ac

bb+1
+

ab

cc+1
≥ 1

3
.

Solution 1. Since the desired inequality is symmetric in a, b, c, it may
be assumed without the loss of generality that a ≥ b ≥ c. Further
0 < ab + ac = (a− 1)bc implies that a > 1, and by a similar argument
it follows that b > 1 and c > 1. Combining these results yields that
ab ≥ ac ≥ bc and aa+1 ≥ bb+1 ≥ cc+1. Applying Chebyshev’s inequality
and the above inequality yields that

bc

aa+1
+

ac

bb+1
+

ab

cc+1
≥ 1

3
(bc + ac + ab)

(
1

aa+1
+

1

bb+1
+

1

cc+1

)
=

1

3
· abc

(
1

a
· a−a +

1

b
· b−b +

1

c
· c−c

)
.

Rearranging the condition yields that 1
a
+ 1

b
+ 1

c
= 1. Applying Weighted

AM-GM with weights 1
a
, 1

b
and 1

c
yields that

1

a
· a−a +

1

b
· b−b +

1

c
· c−c ≥ (a−a)

1
a (b−b)

1
b (c−c)

1
c =

1

abc
.

Applying this to the inequality derived above yields the desired result.

Solution 2. Rearranging the condition yields that 1
a

+ 1
b

+ 1
c

= 1.
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Applying Weighted AM-GM with weights 1
a
, 1

b
and 1

c
yields that

bc

aa+1
+

ac

bb+1
+

ab

cc+1
= abc

(
1

a
· 1

aa+1
+

1

b
· 1

bb+1
+

1

c
· 1

cc+1

)
≥ abc

(
1

aa+1

) 1
a
(

1

bb+1

) 1
b
(

1

cc+1

) 1
c

=
1

a
1
a b

1
b c

1
c

.

It suffices to show that 3 ≥ a
1
a b

1
b c

1
c . Since log x is a concave function,

applying Jensen’s inequality with weights 1
a
, 1

b
and 1

c
yields that

1

a
· log a +

1

b
· log b +

1

c
· log c ≤ log

(
1

a
· a +

1

b
· b +

1

c
· c
)

= log 3.

Since log x is increasing, this implies the desired inequality.

8. Find all pairs (a, b) of positive rational numbers such that b
√
a = ab.

Answer. (a, b) =
((

q
q+1

)q
, q
q+1

)
where q ∈ N; (a, b) =

((
q

q+1

)q+1

, q+1
q

)
where q ∈ N; and (a, b) = (a, 1) where a ∈ Q.

Solution. Let b = c/d where c, d ∈ N and gcd (c, d) = 1. The equation
now rearranges to ad = (ab)c which implies that ad is the cth power
of a rational number and, since gcd (c, d) = 1, that there exists an
r ∈ Q such that a = rc. Substituting this into the equation yields
that rd−c = c/d. Letting |c − d| = n yields that either rn = c/d or
r−n = c/d which both imply, since gcd (c, d) = 1, that c and d are each
the nth power of a positive integer. Letting c = pn and d = qn for some
p, q ∈ N yields that |pn − qn| = n and, if n = 0 and p = q, then since
gcd (c, d) = 1, it must follows that p = q = 1 which yields the solution
(a, b) = (a, 1) where a ∈ Q. If p 6= q, then n = |pn − qn| ≥ 2n − 1.
If n ≥ 2, then 2n − 1 > n, which is a contradiction. Considering the

case when n = 1 yields the solution sets (a, b) =
((

q
q+1

)q
, q
q+1

)
and

(a, b) =

((
q

q+1

)q+1

, q+1
q

)
for each q ∈ N.
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