
VoltDB Kubernetes
Administrator's Guide

Abstract

This book explains how to create and manage VoltDB database clusters using Kubernetes.

V15

VoltDB Kubernetes Administrator's Guide
V15
Copyright © 2020-2025 Volt Active Data, Inc.

This document is published under copyright by Volt Active Data, Inc. All Rights Reserved.

The software described in this document is furnished under a license by Volt Active Data, Inc. Your rights to access and use VoltDB features are
defined by the license you received when you acquired the software.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.

Volt Active Data, VoltDB, and Active(N) are registered trademarks of Volt Active Data, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on January 23, 2026.

Table of Contents
Preface ... viii

1. Structure of This Book .. viii
2. Related Documents ... viii

1. Introduction .. 1
1.1. Overview: Running VoltDB in Kubernetes .. 1
1.2. Setting Up Your Kubernetes Environment ... 3

1.2.1. Product Requirements ... 3
1.2.2. Configuring the Host Environment and Accounts ... 3
1.2.3. Configuring the Client .. 4
1.2.4. Granting Kubernetes Access to the Docker Repository 4

2. Configuring the VoltDB Database Cluster ... 6
2.1. Using Helm Properties to Configure Your Database .. 7
2.2. Configuring the Cluster ... 8
2.3. Configuring the Network Protocols .. 9
2.4. Configuring the Database ... 10

2.4.1. Configuring High Availability (K-Safety and Placement Groups) 11
2.4.2. Configuring Command Logging .. 14
2.4.3. Configuring Export ... 14

2.5. Configuring Logging ... 14
3. Starting and Stopping the Database .. 16

3.1. Starting the Cluster for the First Time .. 16
3.2. Stopping and Restarting the Cluster .. 16
3.3. Resizing the Cluster with Elastic Scaling .. 17

3.3.1. Increasing the Size of the Cluster .. 17
3.3.2. Decreasing the Size of the Cluster ... 17
3.3.3. Autoscaling the Cluster .. 17

3.4. Pausing and Resuming the Cluster ... 22
3.5. Starting More than One Cluster Within a Namespace .. 23
3.6. Stopping, Restarting, and Shutting Down Multiple Clusters Within a Namespace 24

4. Managing VoltDB Databases in Kubernetes ... 25
4.1. Managing the Cluster Using kubectl and helm ... 25
4.2. Managing the Database Using voltadmin and sqlcmd .. 26

4.2.1. Accessing the Database Interactively .. 26
4.2.2. Accessing the Database Programmatically ... 28

5. Updates and Upgrades .. 29
5.1. Updating the Database Schema .. 29
5.2. Updating the Database Configuration ... 30

5.2.1. Changing Database Properties on the Running Database 30
5.2.2. Changing Database Properties That Require a Restart 31
5.2.3. Changing Cluster Properties ... 32

5.3. Upgrading the VoltDB Software and Helm Charts .. 32
5.3.1. Updating Your Helm Repository ... 33
5.3.2. Updating the Custom Resource Definition (CRD) ... 33
5.3.3. Upgrading the VoltDB Operator and Software ... 33
5.3.4. Using In-Service Upgrade to Update the VoltDB Software 34
5.3.5. Updating VoltDB for XDCR Clusters .. 37

6. Monitoring VoltDB Databases in Kubernetes ... 38
6.1. Using Prometheus to Monitor VoltDB .. 38

7. Configuring Security in Kubernetes .. 40
7.1. Configuring User Accounts and Roles Within The Database 40

7.1.1. Assigning Administrative Access to the Volt Operator 40

iii

VoltDB Kubernetes
Administrator's Guide

7.1.2. Using Kubernetes Secrets to Store User Definitions .. 40
7.1.3. Updating User Account Secrets ... 41

7.2. Configuring TLS/SSL .. 42
7.2.1. Configuring TLS/SSL With the Helm Install --set-file Argument 43
7.2.2. Using Kubernetes Secrets to Store and Reuse TLS/SSL Information 43
7.2.3. Using Kubernetes cert-manager to Store TLS/SSL Certificates 44
7.2.4. Using Certificate Revocation Lists (CRLs) .. 45
7.2.5. Configuring TLS/SSL for the Volt Operator and VMC 46

7.3. Updating TLS/SSL Security Certificates ... 47
8. Cross Datacenter Replication in Kubernetes ... 48

8.1. Requirements for XDCR in Kubernetes .. 48
8.2. Choosing How to Establish a Network Mesh ... 48
8.3. Common XDCR Properties ... 50
8.4. Configuring XDCR in Local Namespaces .. 50
8.5. Configuring XDCR Using Load Balancers .. 51

8.5.1. Separate Load Balancers For Each Node (cluster.serviceSpec.perpod) 52
8.5.2. Single Load Balancer For Discovery with Virtual Networking Peering (clus-
ter.serviceSpec.dr) ... 52

8.6. Configuring XDCR Using Node Ports for Replication ... 53
8.7. Configuring XDCR Using Network Services .. 54

9. Managing XDCR Clusters in Kubernetes ... 56
9.1. Removing a Cluster Temporarily ... 56
9.2. Removing a Cluster Permanently ... 56
9.3. Resetting XDCR When a Cluster Leaves Unexpectedly ... 57
9.4. Rejoining an XDCR Cluster That Was Previously Removed 57

A. Volt Diagnostics Tools .. 59
A.1. Starting and Stopping the Diagnostics Pod .. 59

A.1.1. Using the Diagnostics Pod With a Persistent Volume (PV) 60
A.1.2. Using the Diagnostic Tools Securely with TLS/SSL 60

A.2. Running the Diagnostic Tools .. 60
A.3. Diagnostic Tools .. 61

A.3.1. Collect (kcollect) ... 61
A.3.2. Mesh Monitor (meshmonitor, V1.5.0 and later) ... 61
A.3.3. Snapshot (ksnapshot, V1.3.0 and later) .. 62
A.3.4. Sqlcmd (ksqlcmd) .. 62

B. VoltDB Helm Properties .. 64
B.1. How to Use the Properties ... 64
B.2. Top-Level Kubernetes Options .. 65
B.3. Kubernetes Cluster Startup Options ... 65
B.4. Network Options .. 69
B.5. VoltDB Database Startup Options ... 71
B.6. VoltDB Database Configuration Options .. 72
B.7. Operator Configuration Options .. 79
B.8. Metrics Configuration Options .. 80
B.9. Volt Management Center (VMC) Configuration Options ... 80

iv

List of Figures
1.1. Kubernetes/VoltDB Architecture ... 2

v

List of Tables
B.1. Top-Level Options .. 65
B.2. Options Starting with cluster.clusterSpec... .. 65
B.3. Options Starting with cluster.serviceSpec... ... 70
B.4. Options Starting with cluster.config... ... 71
B.5. Options Starting with cluster.config.deployment... .. 72
B.6. Options Starting with operator... .. 79
B.7. Options Starting with vmc... ... 80

vi

List of Examples
5.1. Process for Upgrading the VoltDB Software .. 34

vii

Preface
This book describes using Kubernetes and associated products to create and manage VoltDB databases
and the clusters that host them. It is intended for database administrators and operators responsible for the
ongoing management and maintenance of database infrastructure in a containerized environment.

This book is not a tutorial on Kubernetes or VoltDB. Please see “Related Documents” below for documents
that can help you familiarize yourself with these topics.

1. Structure of This Book
This book is divided into 9 chapters and 2 appendices:

• Chapter 1, Introduction

• Chapter 2, Configuring the VoltDB Database Cluster

• Chapter 3, Starting and Stopping the Database

• Chapter 4, Managing VoltDB Databases in Kubernetes

• Chapter 5, Updates and Upgrades

• Chapter 6, Monitoring VoltDB Databases in Kubernetes

• Chapter 7, Configuring Security in Kubernetes

• Chapter 8, Cross Datacenter Replication in Kubernetes

• Chapter 9, Managing XDCR Clusters in Kubernetes

• Appendix A, Volt Diagnostics Tools

• Appendix B, VoltDB Helm Properties

2. Related Documents
This book assumes a working knowledge of Kubernetes, VoltDB, and the other technologies used in a
containerized environment (specifically Docker and Helm). For information on developing and managing
VoltDB databases, please see the manuals Using VoltDB and VoltDB Administrator's Guide. For new
users, see the VoltDB Tutorial. For introductory information on the other products, please see their respec-
tive websites for appropriate documentation:

• Docker

• Helm

• Kubernetes

Finally, this book and all other documentation associated with VoltDB can be found on the web at https://
docs.voltactivedata.com/.

viii

https://docs.voltactivedata.com/UsingVoltDB/
https://docs.voltactivedata.com/AdminGuide/
https://docs.voltactivedata.com/tutorial/
https://www.docker.com/
https://helm.sh/
https://kubernetes.io/
https://docs.voltactivedata.com/
https://docs.voltactivedata.com/

Chapter 1. Introducon
Kubernetes is an environment for hosting virtualized applications and services run in containers. It is
designed to automate the management of distributed applications, with a particular focus on microservices.
VoltDB is not a microservice — there is coordination between the nodes of a VoltDB cluster that requires
additional attention. So although it is possible to spin up a generic set of Kubernetes "pods" to run a VoltDB
database, additional infrastructure is necessary to realize the full potential of Kubernetes and VoltDB
working together.

VoltDB Enterprise Edition provides additional services to simplify, automate, and unlock the power of
running VoltDB within Kubernetes environments. There are six key components to the VoltDB Kubernetes
offering, three available as open-source applications for establishing the necessary hosting environment
and three provided by VoltDB to Enterprise customers. The three open-source products required to run
VoltDB in a Kubernetes environment are:

• Kubernetes itself

• Docker, for managing the container images

• Helm, for automating the creation and administration of VoltDB in Kubernetes

In addition to these base requirements, VoltDB provides the following three custom components:

• Pre-packaged docker image for running VoltDB cluster nodes

• The VoltDB Operator, a separate utility (and docker image) for orchestrating the startup and manage-
ment of VoltDB clusters in Kubernetes

• Helm charts for initializing and communicating with Kubernetes, the VoltDB Operator and its associ-
ated VoltDB cluster

The remainder of this chapter provides an overview of how these components work together to support
running virtualized VoltDB clusters in a Kubernetes environment, the requirements for the host and client
systems, and instructions for preparing the host environment prior to running VoltDB. Subsequent chapters
provide details on configuring and starting your VoltDB cluster as well as common administrative tasks
such as:

• Managing the running database with Helm and kubectl

• Updating the database schema, configuration, or the VoltDB software

• Configuring and managing security options for the database and auxiliary services

• Configuring and starting multiple clusters using cross datacenter replication (XDCR)

Finally, an appendix provides a full list of the Helm properties for configuring and controlling your VoltDB
clusters.

1.1. Overview: Running VoltDB in Kubernetes
Kubernetes lets you create clusters of virtual machines, on which you run "pods". Each pod acts as a sep-
arate virtualized system or container. The containers are pre-defined collections of system and application
components needed to run an application or service. Kubernetes provides the virtual machines, Docker

1

Introduction

defines the containers, and Kubernetes takes responsibility for starting and stopping the appropriate num-
ber of pods that your application needs.

So the basic architecture for running VoltDB is a VoltDB database running on multiple instances of a
Docker container inside a Kubernetes cluster. VoltDB also starts one or more auxiliary services as separate
pods, such as the Volt Management Center.

However, out of the box, VoltDB and Kubernetes do not "talk together" and so there is no agreement on
when pods are started and stopped and whether a VoltDB node is active or not. To solve this problem,
VoltDB provides an additional service, the VoltDB Operator that manages the interactions between the
VoltDB cluster, its auxiliary services, and the Kubernetes infrastructure. The Operator takes responsibil-
ity for initializing and starting the VoltDB server instances as appropriate, monitoring their health, and
coordinating changes to the configuration.

To further simplify the process, VoltDB uses the open-source management product Helm to integrate Ku-
bernetes, Docker, and VoltDB under a single interface. Helm uses "charts" to define complex management
operations, such as configuring and starting the Kubernetes pods with the appropriate Docker images and
then initializing and starting VoltDB on those pods. Simply by "installing" the appropriate Helm chart you
can instantiate and run a VoltDB database cluster within Kubernetes using a single command.

Once the database is running, you can use standard VoltDB command line utilities to interact with and
manage the database contents, such as modifying the schema or initiating manual snapshots. However,
you will continue to use Helm to manage the server process and cluster on which the database runs, for
activities such as stopping and starting the database. Figure 1.1, “Kubernetes/VoltDB Architecture” shows
the overall architecture of using VoltDB, the VoltDB Operator, and Helm to automate running a VoltDB
database within Kubernetes.

Figure 1.1. Kubernetes/VoltDB Architecture

2

Introduction

1.2. Setting Up Your Kubernetes Environment
Before you can run VoltDB in a containerized environment, you must be sure your host systems and client
are configured with the right software and permissions to support VoltDB. The following sections outline:

• What products are required on both the host environment and the local client you use to control Kuber-
netes and VoltDB

• How to configure the host environment and user accounts to run the VoltDB components

• How to configure your local client to control Kubernetes and the Helm charts

• How to set permissions in Kubernetes and Docker to allow access to the VoltDB components

1.2.1. Product Requirements
Before you start, you must make sure you have the correct software products and versions installed on
both the host system and your local client. The host environment is the set of servers where Kubernetes
is installed, whether they are systems you set up yourself or hosted by a third-party cloud service, such
as the Google Cloud Platform or Microsoft Azure. The local client environment is the system, such as a
desktop or laptop, you use to access the services.

The following are the software requirements for running VoltDB in Kubernetes.

Host Environment

• Kubernetes V1.28.x or later1

VoltDB on Kubernetes has been validated for the following cloud service providers:

• AWS
• Azure
• Google Cloud
• OpenShift
• Tanzu

Client Environment

• Kubectl V1.27 or later2

• Helm V3.11.x or later

Optionally, you may want to install VoltDB on the client so you can use the voltadmin and sqlcmd
command utilities to access the database remotely. If not, you can still use kubectl to create an interactive
shell process on one of the server instances and run the utilities directly on the Kubernetes pods.

1.2.2. Configuring the Host Environment and Accounts
Once you have the necessary software installed, you must prepare the host environment to run VoltDB.
This includes adding the appropriate Docker and chart repositories to Helm and configuring your host
account with the permissions necessary to access those repositories.

1Volt Active Data has been tested and verified against Kubernetes versions up to and including 1.34.x and is expected to operate correctly with
all subsequent releases.
2Kubectl on the client must be within one minor version of Kubernetes in the host environment. For example, if Kubernetes is at version 1.31,
Kubectl can be 1.30, 1.31, or 1.32. See the Kubernetes version skew documentation for further information.

3

https://kubernetes.io/docs/setup/release/version-skew-policy/

Introduction

First, you need accounts on the Kubernetes host environment and on the docker repository where the
VoltDB images are stored, https://docker.io. To run the VoltDB Helm charts, your accounts must be set
up with the following permissions:

• Your Kubernetes host account must have sufficient permissions to allocate persistent volumes and
claims and create and manage pods.

• Your Docker repository account must have permission to access the VoltDB docker images. Access to
the VoltDB docker images is assigned to VoltDB Enterprise customers on a per account basis. Contact
VoltDB support for more information.

1.2.3. Configuring the Client
Next you must configure your client environment so you can communicate with and control Kubernetes
and the Helm charts. First, install the Kubernetes and Helm command line interfaces, kubectl and helm.
Next, configure the services to access the appropriate remote accounts and repositories.

The primary setup task for kubectl is creating the appropriate context for accessing the Kubernetes host
you will be using. This is usually done as part of the installation or with a Kubconfig file and the kubectl
config command. Once you have a context defined, you can use the kubectl cluster-info command to
verify that your client is configured correctly.

For helm, you must add a link to the VoltDB chart repository, using the helm repo add command:

$ helm repo add voltdb \
 https://voltdb-kubernetes-charts.storage.googleapis.com

The first argument to the command ("voltdb") is a short name for referencing the repository in future
commands. You can specify whatever name you like. The second argument is the location of the repository
itself and must be entered as shown above.

Note

Helm first looks in local folders for charts you specify, then in the repositories. So if the short
name you use matches a local directory, they can conflict and cause errors. In that case, you
may want to choose a different name, such as "voltkube", to avoid any ambiguity. Then the chart
locations you use in Helm commands would be "voltkube/voltdb" rather than "voltdb/voltdb" as
shown in the examples.

1.2.4. Granting Kubernetes Access to the Docker Repository
Finally, you need to tell Kubernetes to access the Docker repository using the credentials for your Docker
account. There are several ways to do this. You can specify your credentials on the helm command line
each time you install a new VoltDB cluster. You can save the credentials in a YAML file with other
parameters you pass to helm. Or you can set the credentials in a Kuerbernetes secret using kubectl.

The advantage of using a secret to store the credentials is that you only need to define them once and they
are not easily discovered by others, since they are encrypted. To create a Kubernetes secret you use the
kubectl create secret command, specifying the type of secret (docker-registry) and the name of the secret
(which must be dockerio-registry), plus the individual credential elements as arguments:

$ kubectl create secret docker-registry dockerio-registry \
 --docker-username=johndoe \
 --docker-password='ThisIsASecret' \

4

https://docker.io

Introduction

 --docker-email="jdoe@anybody.org

Once you add the secret, you do not need to specify them again. If, on the other hand, you prefer to specify
the credentials when you issue the helm commands to initialize the VoltDB cluster, you can supply them as
the following helm properties using the methods described in Chapter 2, Configuring the VoltDB Database
Cluster:

• global.image.credentials.username
• global.image.credentials.password

5

Chapter 2. Configuring the VoltDB
Database Cluster

The two major differences between creating a VoltDB database cluster in Kubernetes and starting a cluster
using traditional servers are:

• In Kubernetes, there is a single Helm command (install) that performs both the initialization and the
startup of the database.

• You specify all the database and environment configuration with Helm properties rather than as separate
YAML properties, environment variables, or command line arguments.

In fact, all of the configuration — including the configuration of the virtual servers (or pods), the server
processes, and the database — is accomplished using Helm properties. Helm simplifies the process by
coordinating all the different components involved, including Kubernetes, Docker, and VoltDB. By using
the provided Helm charts, it is possible to start a default VoltDB cluster with a single command:

$ helm install mydb voltdb/voltdb \
 --set global.voltdbVersion=13.2.0 \
 --set-file cluster.config.licenseXMLFile=license.xml

For recent versions1 of Volt Active Data, you can start the cluster with just four arguments to the helm
install command:

1. The release name — The release name (mydb in the example) identifies the cluster and is used as a
prefix for the corresponding Kubernetes' artifacts (such as pod and service names) as well as in Helm
commands when managing the cluster. You can use any name you like to identify the cluster.

2. The name of the Helm chart — in the case of VoltDB, the chart name is the name you gave when
you added the Volt chart repository to Helm followed by the chart name voltdb. Assuming you named
the repository voltdb, the chart name is voltdb/voltdb.

3. The VoltDB version — You must also specify the version of Volt Active Data you want to use. This
is the server software version.

4. Your Volt Active Data license — Finally, you must provide the Volt Active Data license file you
received when you purchased Volt.

You specify the release and chart names as parameters to the command and you specify the VoltDB ver-
sion and license file as values using command arguments such as --set and --set-file. All other
properties — most notably the configuration properties — have default values that are used if not explicitly
changed. For example, the default node (or replica) count for the cluster is three.

Note

Although the global.voltdbVersion property is required, it is a Helm property and can be
set like any other, individually on the command line or in a properties file with other database and
cluster settings. For the purposes of demonstration, many of the examples in this book, assume
that the software version is set in a properties file as part of the overall configuration

1Recent Volt versions (13.0.3, 12.3.4, 11.4.13, and 10.2.21 or later) use the simplified command for starting the database. For earlier versions, you
must specify the specific chart and software versions to use. See the Volt Operator Release Notes for details.

6

https://docs.voltactivedata.com/ReleaseNotes/operator.php

Configuring the Volt-
DB Database Cluster

However, a default cluster of three nodes and no schema or configuration is not particularly useful. So
VoltDB provides Helm properties to let you customize every aspect of the database and cluster configu-
ration, including:

• Cluster configuration, including size of the cluster, available resources, and so on

• Network configuration, including the assignment of ports and external mappings

• Database initialization options, including administration username and password, schema, and class files

• Database configuration, including the settings normally found in the YAML configuration files on non-
Kubernetes installations

The following sections explain how to specify Helm properties in a properties file or on the command line,
as well how to use those properties to make some of the most common customizations to your database.
Later chapters explain how to configure specific features (such as security and XDCR). Appendix B,
VoltDB Helm Properties provides a full list of the properties, including a brief description and the default
value for each.

2.1. Using Helm Properties to Configure Your
Database

First, it is useful to understand the different ways you can specify properties on the Helm command line.
The following discussion is not intended as a complete description of Helm; only a summary to give you
an idea of what they do and when to use them.

Helm offers three different ways to specify properties:

--set

The --set flag lets you specify individual property values on the command line. You can use --set
multiple times or separate multiple property/value pairs with commas. For example, the following
two commands are equivalent:

$ helm install mydb voltdb/voltdb \
 --set cluster.serviceSpec.clientPort=22222 \
 --set cluster.serviceSpec.adminPort=33333
$ helm install mydb voltdb/voltdb \
 --set cluster.serviceSpec.clientPort=22222,\
 cluster.serviceSpec.adminPort=33333

The --set flag is useful for setting a few parameters that change frequently or for overriding parameters
set earlier in the command line (such as in a YAML file).

--set-file

The --set-file flag lets you specify the contents of a file as the value for a property. For example,
the following command sets the contents of the file license.xml as the license for starting the
VoltDB cluster:

$ helm install mydb voltdb/voltdb \
 --set-file cluster.config.licenseXMLFile=license.xml

As with --set, You can use --set-file multiple times or separate multiple property/file pairs with
commas. The --set-file flag is useful for setting parameters where the value is too complicated
to set directly on the command line. For example, the contents of the VoltDB license file.

7

Configuring the Volt-
DB Database Cluster

--values, -f

The --values flag lets you specify a file that contains multiple property definitions in YAML format.
Whereas properties set on the command line with --set use dot notation to separate the property
hierarchy, YAML puts each level of the hierarchy on a separate line, with indentation and followed
by a colon. For example, the following YAML file and --values flag set the same two properties
shown in the --set example above:

$ cat ports.yaml
cluster:
 serviceSpec:
 clientPort: 22222
 adminPort: 33333
$ helm install mydb voltdb/voltdb \
 --values ports.yaml

YAML files are extremely useful for setting multiple properties with values that do not change fre-
quently. You can also use them to group properties (such as port settings or security) that work to-
gether to configure aspects of the database environment.

You can use any of the preceding techniques for specifying properties for the VoltDB Helm charts. In fact,
you can use each method multiple times on the command line and mixed in any order. For example, the
following example uses --values to set the database configuration and ports, --set-file to identify
the license, and --set to specify the number of nodes requested:

$ helm install mydb voltdb/voltdb \
 --values dbconf.yaml,dbports.yaml \
 --set-file cluster.config.licenseXMLFile=license.xml \
 --set cluster.clusterSpec.replicas=5

There are a few important points about how Helm and the Volt Operator interpret YAML you should pay
attention to when configuring your database clusters. Specifically:

• For large numbers (six digits or more) Helm may convert the numbers to scientific E notation (for
example from 4000000 to 4.0e+06), which is not recognized to the Volt server. To avoid your input
being reformatted, enclose large numbers in quotation marks so they are interpreted as a string value,
which is passed as-is to the Volt server.

• In YAML it is possible to set specific elements of a list by using array-like notation. For example, the
following YAML identifies the third element of the list of export connectors: cluster.config.deploymen-
t.export.configurations[2]. However, in several cases, the Helm YAML syntax includes subproperties
of list elements. If you use the helm upgrade command to reset one specific subelement of a list, it
resets the entire list element and you need to include any other subproperties that are not currently set
by default. In general, it is easier and less prone to error if you re-specify the entire list and its elements,
ensuring that all subproperties are set as desired.

2.2. Configuring the Cluster
Many of the configuration options that are performed through hardware configuration, system commands
or environment variables on traditional server platforms are now available through Helm properties. Most
of these settings are listed in Section B.3, “Kubernetes Cluster Startup Options”.

Hardware Settings

Hardware settings, such as the number of processors and memory size, are defined as Kubernetes
image resources through the Helm cluster.clusterSpec.resources property. Under re-

8

Configuring the Volt-
DB Database Cluster

sources, you can specify any of the YAML properties Kubernetes expects when configuring pods
within a container. For example:

cluster:
 clusterSpec:
 resources:
 requests:
 cpu: 500m
 memory: 1000Mi
 limits:
 cpu: 500m
 memory: 1000Mi

System Settings

System settings that control process limits that are normally defined through environment variables
can be set with the cluster.clusterSpec.env properties. For example, the following YAML
increases the Java maximum heap size and disables the collection of JVM statistics:

cluster:
 clusterSpec:
 env:
 VOLTDB_HEAPMAX: 3072
 VOLTDB_OPTS: -XX:+PerfDisableSharedMem

Note

There are no Volt database or cluster properties specific to the server hardware architecture. How-
ever, when running Volt Active Data on ARM64 processors, your Kubernetes host provider may
define certain Kubernetes attributes, such as taints, specific to ARM for which your Helm chart
must make allowances. In this case, you can use the tolerations properties associated with
the individual Volt services — including cluster.clusterSpec.tolerations, oper-
ator.tolerations, and vmc.tolerations — to provide the necessary accommoda-
tions.

One system setting that is not configurable through Kubernetes or Helm is whether the base platform has
Transparent Huge Pages (THP) enabled or not. This is dependent of the memory management settings on
the actual base hardware on which Kubernetes is hosted. Having THP enabled can cause problems with
memory-intensive applications like VoltDB and it is strongly recommended that THP be disabled before
starting your cluster. (See the section on Transparent Huge Pages in the VoltDB Administrator's Guide for
an explanation of why this is an issue.)

If you are not managing the Kubernetes environment yourself or cannot get your provider to modify their
environment, you will need to override VoltDB's warning about THP on startup by setting the cluster.clus-
terSpec.additionalArgs property to include the VoltDB start argument to disable the check for THP. For
example:

cluster:
 clusterSpec:
 additionalStartArgs:
 - "--ignore=thp"

2.3. Configuring the Network Protocols
Kubernetes has the ability to configure the networks serving your pods using IPv4, IPv6, or both (what
is known as a dual stack). How the network protocols are configured differs depending on the flavor of

9

https://docs.voltactivedata.com/AdminGuide/adminmemmgt.php#adminserverthp
https://docs.voltactivedata.com/AdminGuide/

Configuring the Volt-
DB Database Cluster

Kubernetes and the hosting service you use. But once established, Volt can use whichever protocol is
available. In the case of a dual stack, Volt will choose one or the other protocol for the individual interfaces
as it needs.

Since XDCR involves communication between clusters, it is important you know which protocol is in
use so you can configure the XDCR connections. So the Volt Helm chart provides the .ipFamilies
property so you can choose which protocol to use for XDCR communication. There are two flavors of
the .ipFamilies property, depending on how you are configuring XDCR. If you are establishing an
XDCR environment within a single namespace (as described in Section 8.4, “Configuring XDCR in Local
Namespaces”), you set the IP version in the cluster.serviceSpec.dr.ipFamilies property,
as in the following example that sets the IP family to IPv6:

cluster:
 serviceSpec:
 dr:
 enabled: true
 ipFamilies:
 - IPv6

If you are configuring per pod XDCR, you select the IP version in the cluster.serviceSpec.per-
pod.dr.ipFamilies property; as in this example:

cluster:
 serviceSpec:
 perpod:
 dr:
 enabled: true
 ipFamilies:
 - IPv6

It is possible to customize the network environment even further using third-party networking services,
such as Multus — which is a container networking service (CNI) plugin that gives pods access to multiple
networks. Again, how you configure third-party services is beyond the scope of this manual and differs
from one service to the next. However, these services provide instructions to the pods through annotations
that you include in your Helm chart. Specifically, Volt supports annotation properties that affect the XDCR
settings, which Multus can use to specify alternate networks, as in the following example:

cluster:
 ServiceSpec:
 dr:
 annotations:
 aviinfrasetting.ako.vmware.com/name: my-infra-sets
 clusterSpec:
 additionalAnnotations:
 k8s.v1.cni.cncf.io/networks: my-custom-network

See the Multus documentation for more information.

2.4. Configuring the Database
In addition to configuring the environment VoltDB runs in, there are many different characteristics of
the database itself you can control. These include mapping network interfaces and ports, selecting and
configuring database features, and identifying the database schema, class files, and security settings.

The network settings are defined through the cluster.serviceSpec properties, where you can
choose the individual ports and choose whether to expose them through the networking service. For ex-

10

https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/quickstart.md

Configuring the Volt-
DB Database Cluster

ample, the following YAML file disables exposure of the admin port and assigns the externalized client
port to 31313:

cluster:
 serviceSpec:
 type: NodePort
 adminPortEnabled: false
 clientPortEnabled: true
 clientNodePort: 31313

The majority of the database configuration options for VoltDB are declared using YAML for both bare
metal and Kubernetes. In general, almost all of the options are identical on both, except that on bare metal
the properties start with the prefix deployment, whereas Helm properties start with cluster.con-
fig.deployment. So, for example, where the number of sites per host is defined on bare metal as:

deployment:
 cluster:
 sitesperhost: {n}

It is defined in Kubernetes as:

cluster:
 config:
 deployment:
 cluster:
 sitesperhost: {n}

The following sections give examples of defining common database configurations options using YAML.
See Section B.6, “VoltDB Database Configuration Options” for a complete list of the Helm properties
available for configuring the database.

2.4.1. Configuring High Availability (K-Safety and Placement
Groups)

Volt Active Data provides high availability through K-safety, where copies of each partition are distributed
to different nodes in the database cluster. If a node fails, the database can continue to operate because there
are still copies of every partition within the cluster. The amount of durability depends on the K factor. So
a K factor of one means that the cluster is guaranteed to survive one node (or pod) failing, a factor of two
guarantees two nodes, and so on. (See the chapter on Availability in the Using VoltDB manual for more
information on how K-safety works.)

You set the K-safety factor using the cluster.config.deployment.cluster.kfactor prop-
erty when configuring your database. For example, the following YAML sets the K-safety factor to two:

cluster:
 clusterSpec:
 replicas: 6
 config:
 deployment:
 cluster:
 sitesperhost: 8
 kfactor: 2

Note that the number of replicas must be at least as large as the K factor plus one (K+1) and K-safety is
most effective if the number of replicas times the number of sites per host is a multiple of K+1.

11

https://docs.voltactivedata.com/UsingVoltDB/ChapKSafety.php
https://docs.voltactivedata.com/UsingVoltDB/

Configuring the Volt-
DB Database Cluster

The combination of K-safety and Kubernetes provides an automated, self-healing system where K-safety
ensures the cluster survives individual nodes failing and Kubernetes manages the automated recreation of
the pods when they fail so the database can be restored to a full complement of nodes as soon as possible.
However, to take full advantage of this capability you need to ensure the Kubernetes infrastructure is con-
figured correctly to distribute the Volt servers evenly and that Volt uses information about the configura-
tion to manage the distribution of partitions within the database. The following sections explain how to
use Kubernetes configuration options, such as affinity and spread constraints, and Volt placement groups
to achieve maximum availability.

2.4.1.1. Configuring Kubernetes Clusters for High Availability (Spread
Constraints and Affinity)

K-safety ensures the database cluster can survive at least a certain number of node failures. However, to
reduce the risk of larger scale outages, you need to make sure that the Volt servers are distributed in such
a way to minimize the impact of external outages. In particular, you want to ensure that each Volt server
pod runs on a separate Kubernetes node (so that a Kubernetes node failure cannot impact multiple pods)
and that the pods are, as much as possible, evenly distributed among the availability zones in use.

By default, the Volt Operator establishes Kubernetes affinity and anti-affinity rules such that no two Volt
server pods can run on the same Kubernetes node. So, normally, you do not need to take any actions to
make this happen. However, if you are overriding the Operator's default configurations, you will need to
make sure your custom Kubernetes configuration includes this behavior.

When using multiple availability zones, you should also adjust the Kubernetes configuration — specifi-
cally the spread constraints — so that the Volt server pods are evenly distributed among the zones. This
makes it possible to avoid the database failing due to the loss of any one zone that contains an unbalanced
and excessive number of Volt server processes. You can define the distribution of server pods within your
Helm configuration using the cluster.clusterSpec.topologySpreadConstraints proper-
ty. The following example demonstrates how to do this, using the label selector to identify the Volt server
processes.

cluster:
 clusterSpec:
 topologySpreadConstraints:
 - topologyKey: topology.kubernetes.io/zone
 whenUnsatisfiable: DoNotSchedule
 maxSkew: 1
 labelSelector:
 matchLabels:
 name: voltdb-cluster

If you are running multiple databases within a single namespace, you should consider replacing the last
line of the configuration, "name: voltdb-cluster", with an identifier that is specific to the cluster being
configured. For example, if the cluster release name is mydb, the last line of the configuration should read
"voltdb-cluster-name: mydb-voltdb-cluster".

2.4.1.2. Cloud Native Placement Groups
K-safety guarantees the minimum number of nodes that can fail without stopping the database. Configuring
Kubernetes affinity and spread constraints to evenly distribute the database server pods reduces the overall
threat of external failures taking down the database. However, to fully maximize the availability, Volt
needs to use knowledge about the Kubernetes configuration to intelligently distribute the individual copies
of the partitions among those servers.

12

Configuring the Volt-
DB Database Cluster

The cluster may survive more failures than just the minimum guaranteed by K-safety depending on how
the partitions are distributed and which nodes fail. Placement groups are a mechanism for providing more
context concerning the hardware environment to improve the likelihood of the cluster surviving multiple
failures. For example, if you tell Volt certain nodes are in the same region and zone (i.e. in the same
placement group), it avoids placing all copies of any partition on those nodes, so if the zone fails, the
database can survive.

Because you do not control exactly where each pod is created in Kubernetes, Volt can use its knowledge
of the Kubernetes availability zones and regions2 to automate the placement groups and minimize the po-
tential of an infrastructure failure taking the database down with it. You enable cloud native placement
groups in Kubernetes by setting the property cluster.clusterSpec.useCloudNativePlace-
mentGroup to "true". For cloud native placement groups to be effective, the cluster configuration must
meet the following requirements:

• The cluster must be distributed over three or more regions or availability zones.

• The number of nodes (or replicas) must be a multiple of the number of availability zones.

• The number of availability zones must be a multiple of K+1.

For example, the following configuration assumes the cluster is distributed across four availability zones:

cluster:
 clusterSpec:
 replicas: 8
 useCloudNativePlacementGroup: true
 config:
 deployment:
 cluster:
 sitesperhost: 8
 kfactor: 1

Once the database is running, you can use the @Statistics system procedure with the HOST selector to
determine where each node is running and what partitions are running on that node. In addition, if one or
more nodes go down, the "SAFETOSTOP" column lets you know which of the remaining nodes could
safely be stopped without endangering the cluster as a whole.

$ sqlcmd
1> execute @Statistics HOST;
TIMESTAMP HOST_ID HOSTNAME PARTITIONS LEADERS PLACEMENTGROUP SAFETOSTOP REGION ZONE
------------- ------- --------------------- ----------------------- ----------- -------------- ---------- ------ ----
1677777171869 0 mydb-voltdb-cluster-0 24,25,26,27,28,29,30,31 25,27,29,31 east--zone4 true east zone4
1677777171870 1 mydb-voltdb-cluster-1 8,9,10,11,12,13,14,15 8,10,12,14 east--zone1 true east zone1
1677777171870 2 mydb-voltdb-cluster-2 8,9,10,11,12,13,14,15 9,11,13,15 east--zone2 true east zone2
1677777171870 3 mydb-voltdb-cluster-3 16,17,18,19,20,21,22,23 16,18,20,22 east--zone3 true east zone3
1677777171870 4 mydb-voltdb-cluster-4 16,17,18,19,20,21,22,23 17,19,21,23 east--zone4 true east zone4
1677777171870 5 mydb-voltdb-cluster-5 24,25,26,27,28,29,30,31 24,26,28,30 east--zone3 true east zone3
1677777171870 6 mydb-voltdb-cluster-6 0,1,2,3,4,5,6,7 0,2,4,6 east--zone1 true east zone1
1677777171870 7 mydb-voltdb-cluster-7 0,1,2,3,4,5,6,7 1,3,5,7 east--zone2 true east zone2
(Returned 8 rows in 0.01s)
TIMESTAMP PLACEMENTGROUP SAFETOSTOP
------------- -------------- ----------

2Placement groups depend on the Kubernetes labels topology.kubernetes.io/region and topology.kubernetes.io/zone, which are defined automat-
ically by most commercial cloud providers. If you are using a custom cloud deployment, you will need to make sure these labels are declared
appropriately before enabling cloud native placement groups.

13

Configuring the Volt-
DB Database Cluster

1677777171882 east--zone3 true
1677777171882 east--zone2 true
1677777171882 east--zone1 true
1677777171882 east--zone4 true

2.4.2. Configuring Command Logging
Command logging provides durability of the database content across failures. You can control the level
of durability as well as the length of time required to recover the database by configuring the type of
command logging and size of the logs themselves. In Kubernetes this is done with the cluster.con-
fig.deployment.commandlog properties. The following example enables synchronous command
logging and sets the log size to 3,072 megabytes and the frequency to 1,000 transactions:

cluster:
 config:
 deployment:
 commandlog:
 enabled: true
 synchronous: true
 logsize: 3072
 frequency:
 transactions 1000

2.4.3. Configuring Export
Export simplifies the integration of the VoltDB database with external databases and systems. You use
the export configuration to define external "targets" the database can write to. In Kubernetes you define
export targets using the cluster.config.deployment.export.configurations property.
Note that the configurations property can accept multiple configuration definitions. In YAML, you
specify a list by prefixing each list element with a hyphen, even if there is only one element. The following
example defines one export target, eventlog, using the file export connector:

cluster:
 config:
 deployment:
 export:
 configurations:
 - target: eventlog
 type: file
 properties:
 type: csv
 nonce: eventlog

2.5. Configuring Logging
VoltDB uses Log4J for logging messages while the database is running. The chapter on '"Logging and
Analyzing Activity in a VoltDB Database" in the VoltDB Administrator's Guide describes some of the
ways you can customize the logging to meet your needs, including changing the logging level or adding
appenders. Logging is also available in the Kubernetes environment and is configured using a Log4J prop-
erties file. However, the default configuration and how you set the configuration when starting or updating
the database in Kubernetes is different than as described in the Administrator's Guide.

Before you attempt to customize the logging, you should familiarize yourself with the default settings.
The easiest way to do this is to extract a copy of the default configuration from the Docker image you will

14

https://docs.voltactivedata.com/AdminGuide/ChapLogging.php
https://docs.voltactivedata.com/AdminGuide/ChapLogging.php
https://docs.voltactivedata.com/AdminGuide/

Configuring the Volt-
DB Database Cluster

be using. The following commands create a docker container without actually starting the image, extract
the configuration file to a local file (my-k8s-log4j.properties in the example), then delete the
container.

$ ID=$(docker create voltdb/voltdb-enterprise)
$ docker cp ${ID}:/opt/voltdb/tools/kubernetes/voltserver-k8s-log.properties. \
 my-k8s-log4j.properties
$ docker rm $ID

Once you extract the default configuration and made the changes you want, you are ready to specify
your new configuration on the Helm command to start the database. You do this by setting the clus-
ter.config.log4jcfgFile property. For example:

$ helm install mydb voltdb/voltdb \
 --values myconfig.yaml \
 --set cluster.clusterSpec.replicas=5 \
 --set-file cluster.config.licenseXMLFile=license.xml \
 --set-file cluster.config.log4jcfgFile=my-k8s-log4j.properties

Similarly, you can update the logging configuration on a running cluster by using the --set-file
argument on the Helm upgrade command:

$ helm upgrade mydb voltdb/voltdb --reuse-values \
 --set-file cluster.config.log4jcfgFile=my-k8s-log4j.properties

15

Chapter 3. Starng and Stopping the
Database

The key to managing VoltDB clusters in Kubernetes is to let the Helm charts do the work for you. You
can use helm commands to perform all basic activities for running a database. This chapter explains how
to use helm commands to:

• Start the cluster for the first time

• Stop and restart the cluster

• Resize the cluster

• Pause and resume

• Start multiple clusters within one Kubernetes namespace

Subsequent chapters explain how to manage the database once it is running, how to modify the database
and cluster configuration, and how to upgrade the VoltDB software itself.

3.1. Starting the Cluster for the First Time
As described in Chapter 2, Configuring the VoltDB Database Cluster you can customize every aspect of
the database and the cluster using Helm properties and the configuration can be as simple or as complex as
you choose. But once you have determined the configuration options you want to use, actually initializing
and starting the database cluster is a single command, helm install. For example:

$ helm install mydb voltdb/voltdb \
 --values myconfig.yaml \
 --set global.voltdbVersion=13.2.0 \
 --set-file cluster.config.licenseXMLFile=license.xml \
 --set cluster.clusterSpec.replicas=5

When running VoltDB in Kubernetes, it is important to always use the latest versions of the Volt Operator
and custom resource definition (CRD). The first time you start a database in Kubernetes, Helm automati-
cally uses the latest operator and CRD. Helm continues to use the latest operator on subsequent installs.
However, it does not automatically update the CRD; you must do this manually. Therefore, if you have
used Helm to run VoltDB before, it is best to update the CRD before starting a new database, as described
in Section 5.3.2, “Updating the Custom Resource Definition (CRD)”.

It is also possible to identify specific versions of the Volt Operator and/or chart when starting VoltDB.
However, if you do, be sure to use matching versions of the Operator and chart to avoid any potential
compatibility issues.

3.2. Stopping and Restarting the Cluster
Once the cluster is running (what Helm calls a "release"), you can adjust the cluster to stop it, restart it, or
resize it, by "upgrading" the release chart, specifying the new value for the number of nodes you want. You
upgrade the release using much the same command as you do to start it, except rather than repeating the
configuration, you can use the --reuse-values flag. So, for example, to stop the cluster, you simply
set the number of replicas to zero, reusing all other parameters:

16

Starting and Stopping the Database

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.replicas=0

To restart the cluster after you stop it, you reset the replica count to five, or whatever you set it to when
you initially defined and started it:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.replicas=5

3.3. Resizing the Cluster with Elastic Scaling
Elastic scaling lets you increase or decrease the size of your cluster on the fly, without requiring any down-
time. You initiate elastic scaling by changing the value of the cluster.clusterSpec.replicas
property.

For both increasing and decreasing the size of the cluster, the change in the number of nodes must meet
the configuration requirements for the cluster's K factor. Specifically, you must add or remove K+1 nodes
at a time.

3.3.1. Increasing the Size of the Cluster
To scale up the cluster you add nodes by upgrading the release, specifying the new number of nodes you
want. Of course, the new value must meet the requirements for elastically expanding the cluster, as set
out in the discussion of adding nodes to the cluster in the VoltDB Administrator's Guide. So, for example,
to increase a five node cluster with a K-safety factor of one by two nodes, you can set the replica count
to seven:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.replicas=7

3.3.2. Decreasing the Size of the Cluster
To scale down or "shrink" the cluster, you upgrade the release specifying the new number of nodes you
need. The new value must meet the requirements for K-safety. Specifically, you can only remove K+1
nodes at a time. So if your cluster has a K-safety factor of one, you must remove two nodes to reduce the
size of the cluster. For example, if you have a five node cluster with K=1, you can shrink the cluster by
setting the replica count to three:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.replicas=3

If you want to reduce the cluster by more than K+1 nodes (for example, going from from seven to three
nodes in the preceding example), you must iterate the resizing operation in steps of K+1 nodes. In our ex-
ample that means first reducing the seven node cluster to five nodes. Then once the first resizing operation
is complete, you can perform a second resizing operation to reduce the cluster to three nodes.

3.3.3. Autoscaling the Cluster
In dynamic environments there can be significant variation in the workload, based on anything from time
of day to external events that drive usage. For example, traffic monitoring applications see the majority of

17

https://docs.voltactivedata.com/AdminGuide/MaintainUpgradeHw.php#MaintainUpgradeElastic
https://docs.voltactivedata.com/AdminGuide/

Starting and Stopping the Database

their activity during rush hour with very little at other times of day. For applications where usage can spike
and dip it is useful to be able to scale up and scale down the cluster to meet the needs of the workload.
Automatically adjusting the cluster size based on workload or other system performance metrics is called
autoscaling.

To set up autoscaling, you need to define thresholds on one or more metrics that are used to trigger the
resizing. For example, you might want to resize the cluster based on capacity, the amount of memory in
use — scaling up when memory usage exceeds a certain level and scaling down if memory drops below a
minimum size. Alternatively, you could schedule autoscaling based on throughput or CPU usage.

When you select a unit to measure, you also define the thresholds at which the cluster should scale up
or down for that metric. For example, if you are using memory consumption as the trigger, you set the
thresholds as the resident set size (RSS) in bytes, so that the cluster will scale up if too much memory is
being used and scale down if too little is used.

Having enabled autoscaling, if the cluster ever does exceed the upper limit, the Volt operator will auto-
matically start an elastic resize operation to increase the size of the cluster by K+1 nodes. Similarly, if
the memory usage drops below the lower limit, the operator will start an elastic downsizing of the cluster
by K+1 nodes.

In addition to defining the trigger metrics and their associated upper and lower thresholds, you can control
other aspects of the autoscaling process, such as:

• The minimum and maximum size for the cluster

• How frequently autoscaling status is reported in the logs

• How long the metric must remain beyond the threshold before actually starting to autoscale the cluster

The following sections explain how to configure autoscaling, how to monitor autoscaling while it is in
process, and how to troubleshoot potential problems if autoscaling fails.

3.3.3.1. Enabling Autoscaling
You configure autoscaling using the cluster.clusterSpec.autoScaling.* properties. First,
you must set the cluster.clusterSpec.autoScaling.enabled property to true. Next, you
select one or more metrics to measure as triggers for autoscaling. At the same time, you define the upper
and lower thresholds using the .scaleUp and .scaleDown properties. There are currently four metrics
you can choose from:

• CPU Usage (cpu) — measured in percentage of total CPU currently in use

• Memory Usage — measured by the resident set size in megabytes (rss) or percentage of total memory
(memused)

• Latency (tps) — measured in the average number of transactions per second

• Idle Time (idletime) — measured in the percentage of time the partitions were idle (that is, not processing
any transactions because the queues were empty)

You must define at least one metric as a trigger, but you can define more than one if you like. For example,
the following Helm chart enables autoscaling based on both TPS and CPU, using 50K TPS or 75% CPU
usage as the upper threshold and 10K TPS or 25% CPU usage as the lower threshold:

cluster:
 clusterSpec:
 autoScaling:

18

Starting and Stopping the Database

 enabled: true
 metrics:
 tps:
 scaleUp: 50000
 scaleDown: 10000
 cpu:
 scaleUp: 75
 scaleDown: 25

3.3.3.1.1. Setting Appropriate AutoscalingThresholds

Defining appropriate thresholds is critical to effective autoscaling. What metrics you choose and what
limits to set depend on the needs of your specific application. However, you have to be careful that the
thresholds are both not too far apart that your application hits a resource constraint before scaling can take
effect and not so close together that autoscaling ends up bouncing between scale up and scale down.

On the one hand, autoscaling does not take effect immediately. The trigger metrics are monitored period-
ically, so there can be a delay between when a threshold is crossed and when the Volt operator detects
the event. Then actually scaling the cluster takes time as well. If a metric is steadily increasing, you do
not want it to reach its physical maximum before the additional nodes are operational. So, for example, it
would be dangerous to set the cpu.scaleUp threshold at 90%, since your cluster could easily reach 100%
before the autoscaling is complete. Be sure to leave enough headroom for further growth until the elastic
scaling operation can run to completion.

On the other hand, if you set the limits too close together, there is the danger that scaling up the cluster will
reduce the trigger metric to the point where is now drops below the scale down threshold. For example, if
you set the TPS limits at 20K and 40K, scaling up a 3-node, K=2 cluster to 6 nodes could easily cut the
TPS in half, risking it dropping below the scale down threshold of 20K. The result would be a cluster that
is constantly switching between scaling up and scaling down, seriously impinging on the cluster's ability
to process requests.

The one other unusual situation to consider, when monitoring multiple metrics, is if one metric crosses
the threshold in one direction while a second metric crosses the threshold in the opposite direction. For
example, using the Helm chart from the preceding section, if the TPS upper threshold of 50K is crossed
while at the same time the CPU usage drops below the lower threshold of 25%, the Volt operator will not
take any action. Autoscaling will not be triggered unless only the upper or lower thresholds are crossed.
This rule also applies when using a stabilization window (as described in the next section); if two thresholds
are crossed in opposite directions during the stabilization window, the resize operation is canceled and the
stabilization window reset.

3.3.3.1.2. Controlling the Autoscaling Process

Finally, there are additional properties that let you control the behavior of autoscaling. These include:

• cluster.clusterSpec.autoScaling.minReplicas and cluster.clusterSpec.autoScaling.maxReplicas

These properties specify the minimum and maximum number of nodes in the cluster. Autoscaling will
not resize the cluster beyond these values, even of the threshold of a trigger metric is exceeded. The
default minimum is K+1. The default maximum number of nodes is 16.

• cluster.clusterSpec.autoScaling.stabilizationWindow

There are actually two properties (.scaleUp and .scaleDown) specified in seconds that define how long
after a threshold is crossed before the Volt operator actually starts the elastic resizing. If the metric
drops back across the threshold during that window, the elastic operation is canceled and the stabiliza-
tion "clock" reset. Providing a stabilization window allows applications with more dynamic workloads

19

Starting and Stopping the Database

to cross the thresholds temporarily without triggering an elastic resize operation until the threshold is
crossed for an extended period of time. The default stabilization window is 10 minutes (600 seconds).

• cluster.clusterSpec.autoScaling.maxRetries and cluster.clusterSpec.autoScaling.retryTimeout

Specify how many times an autoscaling resize operation is retried after it fails and how long to wait for
such operations to start before deciding that it has failed. The default is not to retry any failed resizing
(a value of zero) and the retry timeout is 60 seconds. See Section 3.3.3.3, “Troubleshooting Autoscaling
and Recovering From Errors” for more information about troubleshooting autoscaling failures.

• cluster.clusterSpec.autoScaling.notificationInterval

This property specifies (in seconds) how frequently the Volt operator updates the logs and statistics
during an autoscaling event. The default notification interval is zero, or no notifications.

3.3.3.2. Monitoring Autoscaling
Once autoscaling begins, it takes time for the cluster to either elastically expand or shrink, which can vary
significantly depending on the size of the data, the current workload, and other circumstances. During this
period, it is a good idea to monitor the process to ensure the elastic operations are proceeding as expected.

The operator periodically updates the status of the operation in the operator log, the Kubernetes cluster
status, and as Kubernetes events. You can see the operator logs using the kubectl logs command. For
example, if the Helm release name is mydb:

$ kubectl logs -f deploy/mydb-voltdb-operator

To see the Kubernetes events associated with the operator, you can use the kubectl events command:

$ kubectl events --for deploy/mydb-voltdb-operator

Or you can see both the cluster status and Kubernetes events using the kubectl describe command:

$ kubectl describe voltdbcluster mydb-voltdb-cluster
 [. . .]
Status:
 Cluster State:
 Auto Scaling:
 Desired Replicas: 3
 Metrics:
 Tps:
 State: Monitoring auto-scaling metrics

You can use whichever method you find most useful. However, the following examples use the cluster
status because it is the easiest to read. In the preceding example, where a three node, K=1 cluster has
autoscaling enabled, the status display tells you:

1. The number replicas the operator expects. Before any autoscaling occurs, this matches the node count
for the cluster (3).

2. Which metrics are being monitored. In this case, only the TPS metric is being used.

3. The overall state of autoscaling. In this case, autoscaling is enabled and the metrics are being monitored.

If a metric crosses an associated threshold, the status changes to indicate which metric it is and when the
threshold was crossed:

Status:

20

Starting and Stopping the Database

 Cluster State:
 Auto Scaling:
 Desired Replicas: 3
 Metrics:
 Tps:
 Direction: ScaleUp
 Last Value: 22981
 Time Threshold Crossed: 2024-02-02T19:27:05.870Z
 State: Monitoring auto-scaling metrics

The number of replicas (1) remains the same, because the stabilization window is in effect. But the metrics
section (2) now includes information on which threshold has been triggered and when. While the status
line still reports it is monitoring the metrics to make sure it stays over the threshold for the duration of
the stabilization window.

If the metrics stays above (or below) the threshold when the stabilization window expires, the autoscaling
event begins and the status changes to reflect the new state:

Status:
 Cluster State:
 Auto Scaling:
 Desired Replicas: 5
 Direction: ScaleUp
 Metrics:
 Tps:
 Direction: ScaleUp
 Last Value: 28617
 Time Threshold Crossed: 2024-02-02T19:38:03.763Z
 State: Scaling cluster
 Time Scaling Notified: 2024-02-02T19:38:34.695Z
 Time Scaling Started: 2024-02-02T19:38:34.695Z

The target number of replicas (1) increases by K+1, to 5. Note this is the desired number of nodes, not the
current number. It also reports the direction the cluster is resizing (in this case, scaling up). The metrics
information (2) continues to report the current value and when the threshold was crossed triggering the
autoscale activity. Finally, the status line (3) now reports that the cluster is elastically resizing to expand
the cluster.

The cluster status will continue to report this information throughout the elastic resizing, which can take
minutes, or even hours, depending on how much data must be moved and how busy the database is pro-
cessing transactions. But once the resize is complete, the status returns to its initial stage, except the num-
ber of desired replicas now matches the new cluster size, 5.

Status:
 Cluster State:
 Auto Scaling:
 Desired Replicas: 5
 Metrics:
 Tps:
 State: Monitoring auto-scaling metrics

3.3.3.3. Troubleshooting Autoscaling and Recovering From Errors
The autoScaling.maxRetries and autoScaling.retryTimeout properties give the Volt op-
erator some flexibility in recovering from issues that might arise during an autoscaling event. However,

21

Starting and Stopping the Database

not all failures are transitory. For example, there may be provisioning or configuration issues that are
stopping the cluster from expanding. Which it is why it is important to know what to do if autoscaling
does not operate correctly.

The first step is to monitor the autoscaling activity — either proactively or by reviewing the logs and status
after the fact. If the maximum number of retries is exceeded or a scaling operation fails to restart, the
cluster status is changed to indicate that autoscaling has stopped:

Status:
 Cluster State:
 Auto Scaling:
 Desired Replicas: 3
 Direction: ScaleDown
 Metrics:
 Tps:
 Direction: ScaleDown
 Time Threshold Crossed: 2024-02-02T21:24:17.690Z
 State: Auto-scaling stopped by failure

At this point autoscaling has stopped. But more importantly, the elastic resizing has not completed. So it
requires human intervention to either complete or revert the resizing before autoscaling can be resumed.
Again, the first step is to determine what is causing the resize operation to fail and, if at all possible,
correcting the situation. This is particularly true when resizing to reduce the size of the cluster because the
only reliable way to recover the cluster is to complete the resizing operation.

To do this, you want to shutdown the cluster, then restart it specifying the number of replicas before the
resize operation began. For example, if the cluster was resizing from 5 nodes to 3, you will want to restart
the cluster with the number of replicas set to 5:

$ helm upgrade mydb voltdb/voltdb --resuse-values \
 --set cluster.clusterSpec.replicas=5

Finally, there are a few basic rules about what not to do with the cluster while using autoscaling:

• Do NOT manually initiate a resizing operation while autoscaling is enabled.

• Do NOT initiate a software upgrade while autoscaling is enabled.

• Do NOT shutdown the cluster while autoscaling is actively resizing the cluster.

• Do NOT disable autoscaling while autoscaling is actively resizing the cluster.

In all cases, it is safest to wait for all resizing to complete, then disable autoscaling by setting clus-
ter.clusterSpec.autoScaling.enabled to false before performing any of the preceding ac-
tions.

3.4. Pausing and Resuming the Cluster
To pause the database — that is stop client activity through the client port when performing certain ad-
ministrative functions — you set the property cluster.clusterSpec.maintenanceMode to true. For example,
the following commands pause and then resume the database associated with release mydb:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.maintenanceMode=true

22

Starting and Stopping the Database

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.maintenanceMode=false

3.5. Starting More than One Cluster Within a
Namespace

By default, the Volt Helm charts assume there is only one cluster in each Kubernetes namespace. It is
possible to run more than one Volt cluster within a namespace; however, to do so you need to start and stop
the clusters and the operator separately. You do this by performing separate helm install operations for the
operator and each cluster, using separate release names for each operation and setting the cluster.en-
abled and operator.enabled properties appropriately in each step. As with a regular helm install,
you must specify the version of VoltDB you want to use when starting both the operator and the cluster.

For example, let's assume we want to start two clusters, rome and venice, in a single namespace, The steps
for starting multiple Volt clusters in a single Kubernetes namespace are as follows:

1. Start the operator separately

Issue the helm install command setting the operator.enabled property to true and the clus-
ter.enabled to false. Then wait for the operator to reach the ready state:

$ helm install voltoperator voltdb/voltdb \
 --set global.voltdbVersion=13.2.0 \
 --values opconfig.yaml \
 --set operator.enabled=true \
 --set cluster.enabled=false

Note that you can provide additional operator properties, separately or as a YAML file, as part of the
install operation. See Section B.7, “Operator Configuration Options” for a list of available operator
properties.

2. Start the first cluster

Once the operator is ready, you can start the first cluster, reversing the values for operator.en-
abled and cluster.enabled and providing whatever cluster-specific configuration you need:

$ helm install rome voltdb/voltdb \
 --set global.voltdbVersion=13.2.0 \
 --values romeconfig.yaml \
 --set cluster.clusterSpec.replicas=3 \
 --set operator.enabled=false \
 --set cluster.enabled=true

Again, wait for the pods of the cluster to reach the ready state before moving on to the next step.

3. Start subsequent clusters

Repeat step #2 for any other clusters you want to run in the namespace waiting after each install com-
mand for the pods to reach their ready state. In our example, we only have one other cluster:

$ helm install venice voltdb/voltdb \
 --set global.voltdbVersion=13.2.0 \

23

Starting and Stopping the Database

 --values veniceconfig.yaml \
 --set cluster.clusterSpec.replicas=3 \
 --set operator.enabled=false \
 --set cluster.enabled=true

The key point when running multiple clusters within a single namespace is that there is only one Volt
Operator and the operator executes one operation at a time. So be sure to wait for each Helm command
to complete before issuing a new command. Because of the constraint to sequential processing in the
Operator, we recommend limiting the number of simultaneous Volt clusters within any single namespace
to three.

3.6. Stopping, Restarting, and Shutting Down Mul-
tiple Clusters Within a Namespace

Once you have multiple clusters running in the same namespace, you can stop and start the databases
independently, the same way you would a single database, by setting the property cluster.clus-
terSpec.replicas to zero to stop the database and the correct number of nodes to restart it. For ex-
ample, the following command stops the rome cluster without affecting the operator or other clusters in
the namespace:

$ helm upgrade rome voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.replicas=0

If you want to shutdown and remove the clusters and operator entirely, you must first shutdown and delete
the clusters, then delete the operator. The key point is that you cannot delete the Helm release for the
operator until all of the releases it manages have been removed. Therefore, the process is:

4. Shutdown and delete the individual clusters

$ helm upgrade rome voltdb/voltdb --reuse-values \
 --set cluster.clusterSpec.replicas=0
$ helm upgrade venice voltdb/voltdb --reuse-values \
 --set cluster.clusterSpec.replicas=0
$ helm delete rome
$ helm delete venice

5. Delete the operator

$ # Make sure all pods have been deleted
$ kubectl get pods
$ # Once all pods are gone, remove the Operator
$ helm delete voltoperator

24

Chapter 4. Managing VoltDB Databases in
Kubernetes

When running VoltDB in Kubernetes, you are implicitly managing two separate technologies: the database
cluster — that consists of "nodes" and the server processes that run on them — and the collection of
Kubernetes "pods" the database cluster runs on. There is a one-to-one relationship between VoltDB nodes
and Kubernetes pods and it is important that these two technologies stay in sync.

The good news is that the VoltDB Operator and Helm manage the orchestration of Kubernetes and the
VoltDB servers. If a database server goes down, Kubernetes recognizes that the corresponding pod is not
"live" and spins up a replacement. On the other hand, if you intentionally stop the database without telling
the Operator or Kubernetes, Kubernetes insists on trying to recreate it.

Therefore, whereas on traditional servers you use voltadmin and sqlcmd to manage both the cluster and
the database content, it is important in a Kubernetes environment that you use the correct utilities for the
separate functions:

• Use kubectl and helm to manage the cluster and the database configuration

• Use voltadmin and sqlcmd to manage the database contents.

The following sections explain how to access and use each of these utilities. Subsequent chapters explain
how to perform common cluster and database management functions using these techniques.

4.1. Managing the Cluster Using kubectl and helm
The key advantage to using Kubernetes is that it automates common administrative tasks, such as making
sure the cluster keeps running. This is because the VoltDB Operator and Helm charts manage the synchro-
nization of VoltDB and Kubernetes for you. But it does mean you must use helm or kubectl, and not
the equivalent voltadmin commands, to perform operations that affect Kubernetes, such as starting and
stopping the database, resizing the cluster, changing the configuration, and so on.

When you start the database for the first time, you specify the VoltDB Helm chart and a set of properties
that define how the cluster and database are configured. The result is a set of Kubernetes pods and VoltDB
server processes known as a Helm "release".

To manage the cluster and database configuration you use the helm upgrade command to update the
release and change the properties associated with the feature you want to control. For example, to change
the frequency of periodic snapshots in the mydb release to 30 minutes, you specify the new value for the
cluster.config.deployment.snapshot.frequency property, like so:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.config.deployment.snapshot.frequency=30m

Note

It is also possible to use the kubectl patch command to change release properties, specifying
the new property value and action to take as a JSON string. However, the examples in this book
use the helm upgrade equivalent wherever possible as the helm command tends to be easier to
read and remember.

25

Managing VoltDB Data-
bases in Kubernetes

One caveat to using the helm upgrade command is that it not only upgrades the release, it checks to see if
there is a new version of the original chart (in this example, voltdb/voltdb) and upgrades that too. Problems
could occur if there are changes to the original chart between when you first start the cluster and when
you need to stop or resize it.

The public charts are not changed very frequently. But if your database is in production for an extended
period of time it could be an issue. Fortunately, there is a solution. To avoid any unexpected changes, you
can tell Helm to use a specific version of the chart — the version you started with.

First, use the helm list command to list all of the releases (that is, database instances) you have installed.
In the listing it will include both the name and version of the chart in use. For example:

$ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
mydb default 1 2020-08-12 12:45:30 deployed voltdb-1.0.0 10.0.0

You can then specify the specific chart version when your upgrade the release, thereby avoiding any
unexpected side effects:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.replicas=7 \
 --version=1.0.0

4.2. Managing the Database Using voltadmin and
sqlcmd

You manage the database using the VoltDB command line utilities voltadmin and sqlcmd, the same way
you would in a traditional server environment. The one difference is that before you can issue VoltDB
commands, you need to decide how to access the database cluster itself. There are two types of access
available to you:

• Interactive access for issuing sqlcmd or voltadmin commands to manage the database

• Programmatic access, through the client or admin port, for invoking stored procedures

4.2.1. Accessing the Database Interactively
Kubernetes provides several ways to access the pods running your services. You can run commands on
individual pods interactively through the kubectl exec command. You can use the same command to
access the command shell for the pod by running bash. Or you can use port forwarding to open ports from
the pods to your current environment.

In all three cases, you need to know the name of the pod you wish to access. When you start a VoltDB clus-
ter with Helm, the pods are created with templated names based on the Helm release name and a sequential
number. So if you named your three node cluster mydb, the pods would be called mydb-voltdb-cluster-0,
mydb-voltdb-cluster-1, and mydb-voltdb-cluster-2. There are also separate pods for any auxiliary services,
such as the Volt Management Center (VMC). If you are not sure of the names, you can use the kubectl
get pods command to see a list:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mydb-voltdb-cluster-0 1/1 Running 0 26m

26

Managing VoltDB Data-
bases in Kubernetes

mydb-voltdb-cluster-1 1/1 Running 0 26m
mydb-voltdb-operator-6bbb96b575-8z75x 1/1 Running 0 26m
mydb-voltdb-vmc-86c8d7b688-pnmlg 1/1 Running 0 26m

Having chosen a pod to use, running VoltDB commands interactively with kubectl exec is useful for
issuing individual commands. After the command executes, kubectl returns you to your local shell. For
example, you can check the status of the cluster using the voltadmin status command:

$ kubectl exec -it mydb-voltdb-cluster-0 -- voltadmin status
Cluster 0, version 10.0, hostcount 2, kfactor 0
 2 live host, 0 missing host, 0 live client, uptime 0 days 00:41:34.293

 HostId Host Name
 0mydb-voltdb-cluster-0
 1mydb-voltdb-cluster-1

You can even use kubectl exec to start an interactive sqlcmd session, which stays active until you exit
sqlcmd:

$ kubectl exec -it mydb-voltdb-cluster-0 -- sqlcmd
SQL Command :: localhost:21212
1> exit
$

Or you can pipe a file of SQL statements to sqlcmd as part of the command:

$ kubectl exec -it mydb-voltdb-cluster-0 -- sqlcmd < myschema.sql

However, kubectl exec commands execute in the context of the pod. So you cannot do things like load
JAR files that are in your local directory. If you need to load schema and stored procedures, it is easier to
use port forwarding, where ports on the pod are forwarded to the equivalent ports on localhost for your
local machine, so you can run applications and utilities (such as sqlcmd, voltdb, and voltadmin) locally.

The kubectl port-forward command initiates port forwarding, which is active until you stop the command
process. So you need a second process to utilize the linked ports. In the following example the user runs
the voter sample application locally on a database in a Kubernetes cluster. To do this, one session enables
port forwarding on the client port and the second session loads the stored procedures, schema, and then
runs the client application:

Session #1

$ kubectl port-forward mydb-voltdb-cluster-0 21212

Session #2

$ cd ~/voltdb/doc/tutorials/voter
$ sqlcmd
SQL Command :: localhost:21212
1> load classes voter-procs.jar;
2> file ddl.sql;
3> exit
$./run.sh client

Port forwarding is useful for ad hoc activities such as loading schema and stored procedures to a running
database and quick test runs of client applications. Port forwarding is not good for running production ap-
plications or any ongoing activities, due to its inherent lack of security or robustness as a network solution.

27

Managing VoltDB Data-
bases in Kubernetes

You can also use port forwarding to monitor the cluster using the web-based Volt Management Center
(VMC) by forwarding port 8080 from the VMC service, using the service name. The following example
also adds the --address argument so it is available to others on the local area network. (Otherwise it is
only accessible as localhost:8080 from the system on which the port forward command is issued.)

$ kubectl port-forward svc/mydb-voltdb-vmc 8080 --address=0.0.0.0

Note that there is only one instance of VMC for the entire cluster. By forwarding the port from the VMC
service you can access all nodes of the cluster by using the servers menu on the DB Monitor tab.

4.2.2. Accessing the Database Programmatically
The approaches for connecting to the database interactively do not work for access by applications, because
interactive access focuses on connecting to one node of the database. Applications are encouraged to create
connections to all nodes of the database to distribute the workload and avoid bottle necks. In fact, the Java
client for VoltDB has special settings to automatically connect to all available nodes (topology awareness)
and direct partitioned procedures to the appropriate host (client affinity).

Kubernetes provides a number of services to make pods accessible beyond the Kubernetes cluster they run
in; services such as cluster IPs, node ports, and load balancers. These services usually change the address
and/or port number seen outside the cluster. And there are still other layers of networking and firewalls
to traverse before these open ports are accessible outside of Kubernetes itself. This complexity, plus the
fact that these services result in port numbers and external network addresses that do not match what the
database itself thinks it is running on, make accessing the database from external applications impractical.

The recommended way to access a VoltDB database running in Kubernetes programmatically is to run
your application as its own service within the same Kubernetes cluster as the database. This way you can
take advantage of the existing VoltDB service names, such as mydb-voltdb-cluster-client, to connect to the
database. You can then enable topology awareness in the Java cient and let the client make the appropriate
connections to the current VoltDB host IPs.

For example, if your database Helm release is called mydb and is running in the namespace mydata, the
Java application code to initiate access to the database might look like the following:

org.voltdb.client.Client client = null;

ClientConfig config = new ClientConfig("","");
config.setTopologyChangeAware(true);

client = ClientFactory.createClient(config);
client.createConnection("mydb-voltdb-cluster-client.mydata.svc.cluster.local");

28

Chapter 5. Updates and Upgrades
Once the database is up and running, Kubernetes works to keep it running in the configuration you speci-
fied. However, you may need to change that configuration as your database requirements evolve. Changes
may be as simple as adding, deleting, or modifying database tables or procedures. Or you may want to
modify the configuration of the database, adding new users, or even expanding the cluster by adding nodes.

The following sections describe some common update scenarios and how to perform them in a Kubernetes
environment, including:

• Modifying the database schema

• Modifying the database or cluster configuration

• Upgrading the VoltDB software and Helm charts

5.1. Updating the Database Schema
Once the VoltDB database starts, you are ready to manage the database contents. Using Kubernetes does
not change how you manage the database content. However, it does require a few extra steps to ensure you
have access to the database, as described in Section 4.2.1, “Accessing the Database Interactively”.

First you need to identify the pods using the kubectl get pods command. You can then access the pods,
individually, using the kubectl exec command, specifying the pod you want to access and the command
you want to run. For example, to run sqlcmd on the first pod, use the following command:

$ kubectl exec -it mydb-voltdb-cluster-0 -- sqlcmd
SQL Command :: localhost:21212
1>

You can execute a local batch file of sqlcmd commands remotely by piping the file into the utility. For
example:

$ cat schema.sql
 CREATE TABLE HELLOWORLD (
 HELLO VARCHAR(15), WORLD VARCHAR(15),
 DIALECT VARCHAR(15) NOT NULL
);
 PARTITION TABLE HELLOWORLD ON COLUMN DIALECT;
$ kubectl exec -it mydb-voltdb-cluster-0 -- sqlcmd < schema.sql
Command succeeded.
Command succeeded.
$

Changing the database schema does not require synchronization with Helm or Kubernetes necessarily.
However, if you specified the schema and/or procedure classes when you initially created the Helm release,
it may be a good idea to keep those properties updated in case you need to re-initialize the database. (For
example, when re-establishing a XDCR connection that was broken due to conflicts.) This can be done
by updating the cluster.config.schemas and/or cluster.config.classes properties and
their unique subproperties. For example:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set-file cluster.config.schemas.mysql=schema.sql \

29

Updates and Upgrades

 --set-file cluster.config.classes.myjar=procs.jar

Note that for the schema and classes you must specify a unique subproperty of your choosing for each
file (In the previous example mysql and myjar). This way you can include multiple schema or class files
by specifying each with a separate --set-file flag and a separate unique subproperty name (such as
sql1, sql2, and so on).

5.2. Updating the Database Configuration
You can also change the configuration options for the database or the cluster while the database is running.
In Kubernetes, you do this by updating the release properties rather than with the voltadmin update
command.

How you update the configuration properties is the same for all p4roperties: you use the helm upgrade
command to update the individual properties. However, what actions result from the update depend on the
type of properties you want to modify:

• Dynamic database configuration properties that can be modified "on the fly" without restarting the
database

• Static database configuration properties that require the database be restarted before they are applied

• Cluster configuration properties that alter the operation of the cluster and associated Kubernetes pods

The following sections describe these three circumstances in detail.

5.2.1. Changing Database Properties on the Running Data-
base

There are a number of database configuration options that can be changed while the database is running.
Those options include:

• Security settings, including user accounts

cluster.config.deployment.security.enabled
cluster.config.deployment.users

• Import and export settings

cluster.config.deployment.export.configurations
cluster.config.deployment.import.configurations

• Database replication connections settings

cluster.config.deployment.dr.connection

• Automated snapshots

cluster.config.deployment.snapshot.*

• Heartbeat timeout

cluster.config.deployment.heartbeat.timeout

• System settings:

30

Updates and Upgrades

cluster.config.deployment.systemsettings.compaction.*
cluster.config.deployment.systemsettings.elastic.*
cluster.config.deployment.systemsettings.flushinterval.*
cluster.config.deployment.systemsettings.query.timeout
cluster.config.deployment.systemsettings.resourcemonitor.*

For example, the following helm upgrade command changes the heartbeat timeout to 30 seconds:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.config.deployment.heartbeat.timeout=30

When dynamic configuration properties are modified, the VoltDB Operator updates the running database
configuration as soon as it is notified of the change.

5.2.2. Changing Database Properties That Require a Restart
Many database configuration properties are static — they cannot be changed without restarting the data-
base. Normally, this requires manually performing a voltadmin shutdown --save, reinitializing and
restarting the database cluster, then restoring the final snapshot. For example, command logging cannot
be turned on or off while the database is running; similarly, the number of sites per host cannot be altered
on the fly.

However, you can change these properties using the helm upgrade command and the VoltDB Operator
will make the changes, but not while the database is running. Instead, the Operator recognizes the changes
to the configuration, marks the database as requiring a restart, and then schedules a shutdown snapshot,
reinitialization, and restart of the database for later.

For example, you cannot change the number of sites per host while the database is running. But the Operator
does let you change the property in Kubernetes:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.config.deployment.cluster.siteperhost=12

No action is taken immediately, since the change will require a restart and is likely to interrupt ongoing
transactions. Instead, the Operator waits until you are ready to restart the cluster, which you signify by
changing another property, cluster.clusterSpec.allowRestartDuringUpdate, to true:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.allowRestartDuringUpdate=true

Important

You should never set the .allowResstartDuringUpdate property to true for an XDCR
cluster. If you do, the cluster will not be able to rejoin the XDCR mesh and will fail during startup.
To change configuration options that require a restart for an XDCR cluster, you must:

• Permanently remove the cluster from the XDCR mesh and shut it down (Section 9.2, “Remov-
ing a Cluster Permanently”).

• Reinitialize and rejoin the cluster to the XDCR environment (Section 9.4, “Rejoining an XDCR
Cluster That Was Previously Removed”).

31

Updates and Upgrades

If you are sure you are ready to restart the cluster when you change the configuration property, you can
set the two properties at the same time so that the change takes immediate effect:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.config.deployment.cluster.siteperhost=12 \
 --set cluster.clusterSpec.allowRestartDuringUpdate=true

Once allowRestartDuringUpdate is set to true, the Operator initiates the restart process, saving,
shutting down, reinitializing, restarting and restoring the database automatically. Note that once the data-
base is restarted, it is a good idea to reset allowRestartDuringUpdate to false to avoid future con-
figuration changes triggering immediate restarts:

$ helm upgrade mydb voltdb/voltdb \
 --reuse-values \
 --set cluster.clusterSpec.allowRestartDuringUpdate=false

Warning

There are certain database configuration changes that cannot be made either on the fly or with a
restart. In particular, do not attempt to change properties associated with directory paths or SSL
configuration. Changing any of these properties will leave your database in an unstable state.

5.2.3. Changing Cluster Properties
There are properties associated with the environment that the VoltDB database runs on that you can also
modify with the helm upgrade command. Most notably, you can increase the size of the cluster, using
elastic scaling, by changing the cluster.clusterSpec.replicas property, as described in Sec-
tion 3.3, “Resizing the Cluster with Elastic Scaling”.

Some properties affect the computing environment, such as environment variables and number of nodes.
Others control the network ports assigned or features specific to Kubernetes, such as liveness and readiness.
All these properties can be modified. However, they each have separate scopes that affect when the changes
will go into effect.

Of particular note, pod-specific properties will not take effect until each pod restarts. If this is not a
high availability cluster (that is, K=0), the Operator will wait until you change the property clus-
ter.clusterSpec.allowRestartDuringUpdate to true before restarting the cluster and ap-
plying the changes. The same applies for any cluster-wide properties.

However, for a K-safe cluster, the Operator can apply pod-specific changes without any downtime by
performing a rolling upgrade, stopping and replacing each pod in sequence. (You should only initiate such
changes if the cluster is complete; that is, has no missing or stopped nodes.) For high availability clusters,
the Operator will start applying pod-specific changes automatically via a rolling restart regardless of the
cluster.clusterSpec.allowRestartDuringUpdate setting.

5.3. Upgrading the VoltDB Software and Helm
Charts

When new versions of the VoltDB software are released they are accompanied by new versions of the
Helm charts that support them. By default when you "install" a "release" of VoltDB with Helm, you get the
latest version of the VoltDB software at that time. Your release will stay on its initial version of VoltDB
as long as you don't update the charts and VoltDB Operator in use.

32

Updates and Upgrades

You can upgrade an existing database instance to a recent version using a combination of kubectl and
helm commands to update the charts, the operator, and the VoltDB software. The steps to upgrade the
VoltDB software in Kubernetes are:

1. Update your copy of the VoltDB repository.

2. Update the custom resource definition (CRD) for the VoltDB Operator.

3. Upgrade the VoltDB Operator and software.

The following sections explain how to perform each step of this process, including a full example of the
entire process in Example 5.1, “Process for Upgrading the VoltDB Software” However, when upgrading
an XDCR cluster, there is an additional step required to ensure the cluster's schema is maintained during the
upgrade process. Section 5.3.5, “Updating VoltDB for XDCR Clusters” explains the extra step necessary
for XDCR clusters.

Note

To use the helm upgrade command to upgrade the VoltDB software, the starting version of
VoltDB must be 10.1 or higher. See the VoltDB Release Notes for instructions when using Helm
to upgrade earlier versions of VoltDB.

5.3.1. Updating Your Helm Repository
The first step when upgrading VoltDB is to make sure your local copy of the VoltDB Helm repository is
up to date. You do this using the helm repo update command:

$ helm repo update

5.3.2. Updating the Custom Resource Definition (CRD)
The second step is to update the custom resource definition (CRD) for the VoltDB Operator. This allows
the Operator to be upgraded to the latest version.

To update the CRD, you must first save a copy of the latest chart, then extract the CRD from the resulting
tar file. The helm pull command saves the chart as a gzipped tar file and the tar command lets you extract
the CRD. For example:

$ helm pull voltdb/voltdb
$ ls *.tgz
voltdb-3.1.0.tgz
$ tar --strip-components=2 -xzf voltdb-3.1.0.tgz \
 voltdb/crds/voltdb.com_voltdbclusters_crd.yaml

Note that the file name of the resulting tar file includes the chart version number. Once you have extracted
the CRD as a YAML file, you can use it to replace the CRD in Kubernetes:

$ kubectl replace -f voltdb.com_voltdbclusters_crd.yaml

5.3.3. Upgrading the VoltDB Operator and Software
Once you update the CRD, you are ready to upgrade VoltDB. You do this using the helm upgrade com-
mand and specifying the new software version you wish to use on the command line. What happens when

33

https://docs.voltactivedata.com/ReleaseNotes/

Updates and Upgrades

you issue the helm upgrade command depends on whether you are performing a standard software up-
grade or an in-service upgrade.

For a standard software upgrade, you simply issue the helm upgrade command specifying the software
version in the global.voltdbVersion property. For example:

$ helm upgrade mydb voltdb/voltdb --reuse-values \
 --set global.voltdbVersion=13.2.1

When you issue the helm upgrade command, the operator saves a final snapshot, shuts down the cluster,
restarts the cluster with the new version and restores the snapshot. For example, Example 5.1, “Process
for Upgrading the VoltDB Software” summarizes all of the commands used to update a database release
to VoltDB version 13.2.1.

Example 5.1. Process for Upgrading the VoltDB Software

$ # Update the local copy of the charts
$ helm repo update
$ # Extract and replace the CRD
$ helm pull voltdb/voltdb
$ ls *.tgz
voltdb-3.1.0.tgz
$ tar --strip-components=2 -xzf voltdb-3.1.0.tgz \
 voltdb/crds/voltdb.com_voltdbclusters_crd.yaml
$ kubectl replace -f voltdb.com_voltdbclusters_crd.yaml
$
$ # Upgrade the Operator and VoltDB software
$ helm upgrade mydb voltdb/voltdb --reuse-values \
 --set global.voltdbVersion=13.2.1

Note it is also possible to identify specific versions of the Volt Operator and/or chart when starting VoltDB.
However, if you do, be sure to use matching versions of the Operator and chart to avoid any potential
compatibility issues.

5.3.4. Using In-Service Upgrade to Update the VoltDB Soft-
ware

Standard upgrades are convenient and can upgrade across multiple versions of the VoltDB software. How-
ever, they do require downtime while the cluster is shutdown and restarted. In-Service Upgrades avoid
the need for downtime by upgrading the cluster nodes one at a time, while the database remains active
and processing transactions.

To use in-service upgrades, you must have an appropriate software license (in-service upgrades are a
separately licensed feature), the cluster must be K-safe (that is, have a K-safety factor of one or more),
the cluster must be complete (that is, have no missing or stopped nodes), and the difference between the
current software version and the version you are upgrading to must fall within the limits of in-service
upgrades. The following sections describe:

• What versions can be upgraded using an in-service upgrade

• How to perform the in-service upgrade

• How to monitor the upgrade process

• How to rollback an in-service upgrade if the upgrade fails

34

Updates and Upgrades

5.3.4.1. The Scope of In-Service Upgrades
There are limits to which software versions can use in-service upgrades. The following table describes the
rules for which releases can be upgraded with an in-service upgrade and which releases cannot.

✔ Patch Releases You can upgrade between any two patch releases. That is, any two releases
where only the third and final number of the version identifier changes. For
example, upgrading from 13.1.1 to 13.1.4.

✔ Minor Releases You can also use in-service upgrades to upgrade between two consecutive minor
releases. That is where the second number in the version identifier differ. For
example, you can upgrade from V13.2 to V13.3. You can also upgrade between
any patch releases within those minor releases. For example, upgrading from
V13.2.1 to V13.3.4.

You cannot use in-service upgrades to upgrade more than one minor version at
a time. In other words, you can upgrade from V13.2 to V13.3 but you cannot
perform an in-service upgrade from V13.1 to V13.3. To transition across multi-
ple minor releases your options are to perform consecutive in-service upgrades
(for example, from V13.1.3 to V13.2.0, then from V13.2.0 to V13.3.8) or to
perform a regular upgrade where all cluster nodes are upgrading at one time.

✔ Major Releases Starting with VoltDB V13.3.1, you can even upgrade between two consecutive
major releases using an in-service upgrade. For example, you can perform an
in-service upgrade from V13 to V14. Upgrading across major versions requires
that your starting version is an official Long-Term Support (LTS) release and
the target version is either the initial release of the next major version or the LTS
release of that version. For example, you can upgrade from the V13 LTS release
13.3.9 to either 14.0.x or 14.3.x (the LTS release) of version 14. You cannot
use in-service upgrade to upgrade from a pre-LTS release (such as V13.1) or to
an interim minor release (between n.0 and the n.LTS release) of the subsequent
major version.

5.3.4.2. How to Perform an In-Service Upgrade
If your cluster meets the requirements, you can use the in-service upgrade process to automate the software
update and eliminate the downtime associated with standard upgrades. The procedure for performing an
in-service upgrade is:

1. Set the property cluster.clusterSpec.enableInServiceUpgrade to true to allow the up-
grade.

2. Set the property global.voltdbVersion to the software version you want to upgrade to.

For example, the following command performs an in-service upgrade from V13.1.2 to V13.2.0:

helm upgrade mydb voltdb/voltdb --reuse-values \
 --set cluster.clusterSpec.enableInServiceUpgrade=true \
 --set global.voltdbVersion=13.2.0

5.3.4.3. Monitoring the In-Service Upgrade Process
Once you initiate an in-service upgrade, the process proceeds by itself until completion. At a high level you
can monitor the current status of the upgrade using the @SystemInformation system procedure with the
OVERVIEW selector and looking for the VERSION keyword. For example, in the following command

35

Updates and Upgrades

output, the first column is the host ID and the last column is the currently installed software version for
that host. Once all hosts report using the upgraded software version, the upgrade is complete.

$ echo "exec @SystemInformation overview" | sqlcmd | grep VERSION
 2 VERSION 13.1.2
 1 VERSION 13.1.2
 0 VERSION 13.1.3

During the upgrade, the Volt Operator reports various stages of the process as events to Kubernetes. So
you can monitor the progression of the upgrade in more detail using the kubectl get events command.
For example, the following is an abbreviated listing of events you might see during an in-service upgrade.
(The messages often contain additional information concerning the pods or the software versions being
upgraded from and to.)

$ kubectl get events -w
11m Normal RollingUpgrade mydb-voltdb-cluster Gracefully terminating pod 2
11m Normal RollingUpgrade mydb-voltdb-cluster Gracefully terminated pod 2
11m Normal RollingUpgrade mydb-voltdb-cluster Recycling Gracefully terminated pod mydb-voltdb-cluster-2
9m43s Normal RollingUpgrade mydb-voltdb-cluster Recycled pod 2 has rejoined the cluster
9m42s Normal RollingUpgrade mydb-voltdb-cluster Pod mydb-voltdb-cluster-2 is now READY
9m35s Normal RollingUpgrade mydb-voltdb-cluster Gracefully terminating pod 1
 [. . .]

Once the upgrade is finished, the Operator reports this as well:

5m10s Normal RollingUpgrade mydb-voltdb-cluster RollingUpgrade Done.

5.3.4.4. Recovering if an Upgrade Fails
The in-service upgrade process is automatic on Kubernetes — once you initiate the upgrade, the Volt
Operator handles all of the activities until the upgrade is complete. However, if the upgrade fails for any
reason — for example, if a node fails to rejoin the cluster — you can rollback the upgrade, returning the
cluster to its original software version.

The Volt Operator detects an error during the upgrade whenever the VoltDB server process fails. The
failure is reported as an appropriate series of events to Kubernetes:

12m Warning RollingUpgrade mydb-voltdb-cluster Rolling Upgrade failed upgrading from... to...
12m Normal RollingUpgrade mydb-voltdb-cluster Please update the clusterSpec image back to...

In addition to monitoring the events, you may wish to use the kubectl commands get events, get pods,
and logs to determine exactly why the node is failing. The next step is to cancel the upgrade by initiating
a rollback. You do this by resetting the image tag to the original version number.

Invoking the rollback is a manual task. However, once the rollback is initiated, the Operator automates the
process of returning the cluster to its original state. Consider the previous example where you are upgrading
from V13.1.2 to V13.2.0. Let us assume three nodes had upgraded but a fourth was refusing to join the
cluster. You could initiate a rollback by resetting the global.voltdbVersion property to V13.1.2:

$ helm upgrade mydb voltdb/voltdb --reuse-values \
 --set global.voltdbVersion=13.1.2

Once you initiate the rollback, the Volt Operator stops the node currently being upgraded and restarts it
using the original software version. After that process completes, the Operator goes through any node that
had been upgraded, one at a time, downgrading them back to the original software. Once all nodes are
reset and have rejoined the cluster, the rollback is complete.

36

Updates and Upgrades

Note that an in-service rollback can only occur if you initiate the rollback during the upgrade process.
Once the in-service upgrade is complete and all nodes are running the new software version, resetting the
image tag will force the cluster to perform a standard software downgrade, shutting down the cluster as
a whole and restarting with the earlier version.

5.3.5. Updating VoltDB for XDCR Clusters
When upgrading an XDCR cluster, there is one extra step you must pay attention to. Normally, during the
upgrade, VoltDB saves and restores a snapshot between versions and so all data and schema information
is maintained. When upgrading an XDCR cluster, the data and schema is deleted, since the cluster will
need to reload the data from another cluster in the XDCR relationship once the upgrade is complete.

Loading the data is automatic. But loading the schema depends on the schema being stored properly before
the upgrade begins.

If the schema was loaded through the YAML properties cluster.config.schemas and clus-
ter.config.classes originally and has not changed, the schema and classes will be restored auto-
matically. However, if the schema was loaded manually or has been changed since it was originally loaded,
you must make sure a current copy of the schema and classes is available after the upgrade. There are
two ways to do this.

For both methods, the first step is to save a copy of the schema and the classes. You can do this using the
voltdb get schema and voltdb get classes commands. For example, using Kubernetes port forwarding
you can save a copy of the schema and class JAR file to your local working directory:

$ kubectl port-forward mydb-voltdb-cluster-0 21212 &
$ voltdb get schema -o myschema.sql
$ voltdb get classes -o myclasses.jar

Once you have copies of the current schema and class files, you can either set them as the default schema
and classes for your database release before you upgrade the software or you can set them in the same
command as you upgrade the software. For example, the following commands set the default schema and
classes first, then upgrade the Operator and server software. Alternately, you could put the two --set-
file and two --set arguments in a single command.

$ helm upgrade mydb voltdb/voltdb --reuse-values \
 --set-file cluster.config.schemas.mysql=myschema.sql \
 --set-file cluster.config.classes.myjar=myclasses.jar
$ helm upgrade mydb voltdb/voltdb --reuse-values \
 --set global.voltdbVersion=12.3.1

37

Chapter 6. Monitoring VoltDB Databases
in Kubernetes

Once the database is running, you need to monitor the system to ensure reliable uptime and performance.
Variations in usage, workload, or the operational environment can affect the dynamics of the data appli-
cation, which may need corresponding adjustments to the schema, procedures, or hardware configuration.
VoltDB provides system procedures (such as @Statistics) and the web-based Volt Management Center to
help monitor current performance. But to provide persistent, historical intelligence concerning application
performance it is best to use a dedicated metrics data store, such as Prometheus.

Prometheus is a metrics monitoring and alerting system that provides ongoing data collection and persistent
storage for applications and other resources. By providing an open source industry standard for collecting
and storing metrics, Prometheus allows you to:

• Offload monitoring from the database platform itself

• Combine metrics from VoltDB with other applications within your business ecosystem

• Query and visualize historical information about your database activity and performance (through tools
such as Grafana)

Section 6.1, “Using Prometheus to Monitor VoltDB” explains how to configure your VoltDB database
so the information you need is gathered and made available through Prometheus and compatible graphic
consoles such as Grafana.

6.1. Using Prometheus to Monitor VoltDB
To monitor VoltDB with Prometheus on Kubernetes, you enable per pod metrics where each node of
the cluster reports its own set of server-specific information. The servers make this data available in
Prometheus format through an HTTP endpoint (/metrics) on the metrics port (which defaults to 11781).
You can control the port number and other characteristics of the metrics system through Helm properties.

To enable Prometheus metrics, set the cluster.config.deployment.metrics.enabled prop-
erty to true. You can also set the cluster.serviceSpec.perpod.metrics.enabled property
to true, which creates a Kubernetes metrics service for each pod. Prometheus uses these metrics services to
identify the Volt pods as targets for scraping. For example, the following command enables per pod metrics
with default settings while initializing the mydb database cluster. It also sets the service type to ClusterIP:

$ helm install mydb voltdb/voltdb \
 --set-file cluster.config.licenseXMLFile=license.xml \
 --set cluster.clusterSpec.replicas=5 \
 --set cluster.config.deployment.metrics.enabled=true \
 --set cluster.serviceSpec.perpod.metrics.enabled=true \
 --set cluster.serviceSpec.service.metrics.type=ClusterIP

Once metrics are enabled, each Volt server reports its own information through the Prometheus endpoint
on the metrics port. If you enable the per pod service, connection to the Prometheus server is handled
automatically. If the service is not enabled or Prometheus is not configured to auto-detect targets, you will
need to edit the Prometheus configuration to add the cluster nodes to the list of scraping targets.

Finally, if the database has security enabled, you will also need to configure Prometheus with the appro-
priate authentication information based on the truststore and password for the cluster. See the Prometheus
documentation for more information.

38

https://prometheus.io/docs/introduction/overview/

Monitoring VoltDB Data-
bases in Kubernetes

Once Prometheus is scraping the Volt metrics, you can use tools such as Grafana to combine, analyze, and
present the information in meaningful ways. There are example Grafana dashboards in the Volt Github
repository (https://github.com/VoltDB/volt-monitoring) demonstrating some of the visualizations that are
possible.

39

https://github.com/VoltDB/volt-monitoring

Chapter 7. Configuring Security in
Kubernetes

There are two aspects to security with Volt Active Data — security within the database with is managed
through user accounts and roles and network security between the database nodes, between the cluster and
client applications, and between clusters in the case of cross datacenter replication (XDCR). For internal
security, you define user accounts as part of the database configuration and assign them to roles that
are defined as part of the schema. For network security, Volt recommends encryption and authentication
certificates using the TLS/SSL protocol. The following sections explain how to configure both types of
security within Kubernetes.

7.1. Configuring User Accounts and Roles Within
The Database

User accounts allow you to control who has access to specific functions and procedures within the data-
base. Security is enabled in the configuration with the cluster.config.deployment.securi-
ty.enabled property. You must also use the properties to define the actual user names, passwords, and
assigned roles. The users property expects a list of sub-elements so you must prefix each set of properties
with a hyphen. The following example enables security and defines two user accounts:

cluster:
 config:
 deployment:
 security:
 enabled: true
 users:
 - name: controller
 password: superman
 roles: administrator
 - name: mitty
 password: thurber
 roles: user

7.1.1. Assigning Administrative Access to the Volt Operator
If you enable basic security, you must also tell the VoltDB operator which account to use when accessing
the database. To do that, you define the cluster.config.auth properties, as shown below, which
must specify an account with the built-in administrator role. The following example assigns the controller
account for use by the VoltDB Operator:

cluster:
 config:
 auth:
 username: controller
 password: superman

7.1.2. Using Kubernetes Secrets to Store User Definitions
Normally, the definitions of user accounts and passwords are part of the overall database configuration
options. To provide an additional level of security, you can store the user definitions separately in a Ku-

40

Configuring Security in Kubernetes

bernetes secret so they are not visible to operators or other personnel when starting or managing the data-
base pods with Helm.

To hide the user definitions, you include them as a separate YAML file in a Kubernetes secret. You can
name the secret whatever you like. But the secret must contain only one key and the key must be named
users.yaml. The easiest way to do this is to create the secret using a file named users.yaml. If not,
you must use the syntax create secret --from-file=users.yaml={local-file-name}.

The file in the secret must be a YAML file containing the user definitions and must start with the YAML
file separator, three hyphens ("---"). For example:

$ cat users.yaml

cluster:
 config:
 deployment:
 users:
 - name: controller
 password: superman
 roles: administrator
 - name: mitty
 password: thurber
 roles: user
$ kubectl create secret generic secure-users-secret --from-file=users.yaml

Note that the users.yaml secret file contains only the user definitions. It does not contain the assignment of
an administrators account to the Volt Operator. To hide the Operator assignment, you can create another
Kubernetes secret with the keys username and password:

$ kubectl create secret generic operator-auth-secret \
 --from-literal=username=controller \
 --from-literal=password=superman

Once you create the user definition and Operator authorization secrets, you can start the cluster using
those secrets by assigning them to the cluster.config.usersSecretName and cluster.con-
fig.auth.credSecretName properties, respectively. For example:

$ helm install mydb voltdb/voltdb \
 --values myconfig.yaml \
 --set cluster.config.usersSecretName=secure-users-secret \
 --set cluster.config.auth.credSecretName=operator-auth-secret \
 [. . .]

7.1.3. Updating User Account Secrets
If you define user accounts as part of the Helm configuration properties, you can update, add, or remove
accounts like other Helm properties using the helm upgrade command. If you define the user accounts
using a Kubernetes secret, you can update the account information either by updating the secret itself or
by replacing the current secret with a new one with the updated information. Using the External Secrets
Operator (ESO) simplifies the process of updating the secret in place. Or if you are managing your secrets
manually, creating a new secret may be the easier approach. For example:

$ cat newusers.yaml

cluster:

41

Configuring Security in Kubernetes

 config:
 deployment:
 users:
 - name: controller
 password: superman
 roles: administrator
 - name: jimmyolsen
 password: photography
 roles: user
$ kubectl create secret generic new-users-secret \
 --from-file=users.yaml=newusers.yaml
$ helm upgrade mydb voltdb/voltdb --reuse-values \
 --set cluster.config.usersSecretName=new-users-secret

Important

If you alter the account used to authorize access for the Volt Operator, you must update the
config.auth... properties in the same helm upgrade command that updates the accounts.

7.2. Configuring TLS/SSL
Another important aspect of security is securing and authenticating the ports used to access the database.
The most common way to do this is by enabling TLS/SSL to encrypt data and authenticate the servers
using user-created certificates. The process for creating the private keystore and truststore using openssl is
described in the section on "Creating the TLS/SSL Certificates" in the Using VoltDB guide. This process
is the same whether you are running the cluster directly on bare metal servers or in Kubernetes.

Note

The following instructions describe creating and using TLS/SSL certificates in Privacy Enhanced
Mail, or PEM, format. PEM is a text-based format that is easy to work with and is accepted by all
Volt functions starting with Volt version 14.2.0 and Volt Operator 3.6.0. For earlier versions of
Volt, certain functions require a JKS file instead of PEM. Please see the version 13 documentation
for configuring TLS on Kubernetes for instructions on creating and using certificates acceptable
to previous releases.

The following example uses YAML properties to enable TLS/SSL security, in much the same way you
enable SSL encryption on bare metal. First you must enable SSL encryption, using the cluster.con-
fig.deployment.ssl.enabled property. Then you choose which ports will use SSL (in this ex-
ample, the internal and external ports, but not XDCR). The YAML does not include the actual content of
the truststore and keystore files. The example also chooses to have the operator authenticate the servers
by setting cluster.clusterSpec.ssl.insecure to false.

cluster:
 config:
 deployment:
 ssl:
 enabled: true
 external: true
 internal: true
 clusterSpec:
 ssl:
 insecure: false

42

https://docs.voltactivedata.com/UsingVoltDB/SecuritySSL.php#SecuritySSLCerts
https://docs.voltactivedata.com/UsingVoltDB/
https://docs.voltactivedata.com/v13docs/KubernetesAdmin/ConfigSSL.php

Configuring Security in Kubernetes

Note that the certificates themselves and associated key and trust stores are not specified in the YAML
for the cluster deployment configuration. Instead, you pass the associated files to the Operator (and sub-
sequently the server pods) in one of three ways:

• Using the --set-file argument to the Helm install

• Using Kubernetes secrets

• Using cert-manager

The following sections describe the three methods for configuring encryption. Two additional sections
describe alternate methods for configuring TLS/SSL for the Operator and VMC and how to update the
certificates when they expire.

7.2.1. Configuring TLS/SSL With the Helm Install --set-file
Argument

Using the example YAML file in Section 7.2, “Configuring TLS/SSL” (and calling it ssl.yaml), we
can complete the SSL configuration by specifying the truststore and keystore files on the helm command
line with the --set-file argument:

helm install mydb voltdb/voltdb \
 --values myconfig.yaml \
 --values ssl.yaml \
 --set-file cluster.config.deployment.ssl.keystore.file=keystore.pem \
 --set-file cluster.config.deployment.ssl.truststore.file=truststore.pem

Two important notes concerning TLS/SSL configuration:

• If you enable SSL for the cluster's external interface and ports and you enable metrics, you must provide
the appropriate SSL information to the Prometheus data retriever configuration so it can access the
metrics port.

• If you enable SSL for the cluster, you must repeat the specification of the truststore and keystore files
every time you update the configuration. Using the --reuse-values argument on the helm up-
grade command is not sufficient.

7.2.2. Using Kubernetes Secrets to Store and Reuse TLS/SSL
Information

An alternative method is to store the key and trust stores in a Kubernetes secret. Secrets are a standard
feature of Kubernetes that allow you to store sensitive information as key value pairs in a protected space.
Three advantages of using a secret are:

• You do not have to enter sensitive TLS/SSL information in plain text when configuring or updating
your database.

• The secret is used automatically for subsequent updates; you do not have to repeatedly specify the TLS/
SSL files when updating the database configuration.

• You can reuse the same secret for multiple database instances and services.

To use a Kubernetes secret to store the TLS/SSL information for your database, you must first create the
necessary PEM files as described in the section on "Creating the TLS/SSL Certificates" in the Using Volt-

43

https://docs.voltactivedata.com/UsingVoltDB/SecuritySSL.php#SecuritySSLCerts
https://docs.voltactivedata.com/UsingVoltDB/

Configuring Security in Kubernetes

DB guide. Next you create your Kubernetes secret using the kubectl create secret command, specifying
the key names and corresponding artifacts as arguments. For example:

$ kubectl create secret generic my-ssl-creds \
 --from-file=keystore_data=keystore.pem \
 --from-file=truststore_data=truststore.pem

It is critical you use the key names keystore_data and truststore_data (as well as keystore_password and
truststore_password if you created a password for the certificate). If not, the Volt Operator will not be
able to find them. Also, the secret must be in the same Kubernetes namespace as the Helm release you
are configuring.

Once you create the secret you can use it to configure your database by not setting any of standard SSL
properties such as the cluster.config.deployment.ssl... properties or cluster.clus-
terSpec.ssl.certificateFile. Instead, set the property cluster.config.deploymen-
t.ssl.sslSecret.certSecretName. Using the secret created in the preceding example, the con-
figuration of your database will look something like this:

cluster:
 config:
 deployment:
 ssl:
 sslSecret:
 certSecretName: my-ssl-creds

7.2.3. Using Kubernetes cert-manager to Store TLS/SSL Cer-
tificates

Another alternative for maintaining the TLS/SSL information is to use the Kubernetes cert-manager (cert-
manager.io). The cert-manager is an add-on for Kubernetes that helps you create and maintain certificates
and other private information in Kubernetes. If you wish to use cert-manager for self-signed certificates,
you not only use it to store the certificate and truststore, you create them with cert-manager as well. (For
more detailed information concerning cert-manager, see the cert-manager documentation.)

The basic steps for storing self-signed TLS/SSL credentials in cert-manager are:

1. Create an issuer resource in Kubernetes that will generate and authenticate the certificate. You only
need to do this once for the namespace and multiple certificate requests can use the same issuer.

2. Create a request for the issuer to generate the actual TLS/SSL certificate and store it in a Kubernetes
secret.

3. Specify the resulting certificate secret in the VoltDB configuration and start your cluster.

You create the cert-manager issuer and the certificate request using YAML properties. The easiest way to
do this is by typing the property declarations into a YAML file. For example, the following two YAML
files create a cert-manager issuer service and request a certificate.

create-issuer.yaml

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: selfsigned-issuer
 namespace: mydb

44

https://docs.voltactivedata.com/UsingVoltDB/
https://cert-manager.io/
https://cert-manager.io/
https://cert-manager.io/docs/

Configuring Security in Kubernetes

spec:
 selfSigned: {}

request-cert.yaml

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: my-ssl-certificate
 namespace: mydb
spec:
 commonName: voltdb.com
 duration: 8766h
 secretName: my-ssl-creds
 issuerRef:
 name: selfsigned-issuer
 kind: Issuer
 privateKey:
 algorithm: RSA
 encoding: PKCS8
 size: 2048
 usages:
 - server auth

Three key points to note about the certificate request are:

• The issuer must be in the same namespace as the database that uses the certificate.

• You specify the duration of the certificate in hours. In this example, 8766 hours, or one year.

• The encoding must be PKCS8

Once you create the YAML files, you can create the issuer and request the certificate:

$ kubectl apply -f create-issuer.yaml # Do only once
$ kubectl apply -f request-cert.yaml

Finally, in your database configuration, you point to the secret created by the certificate request (in this
case, my-ssl-creds) the same way you would for a manually created secret:

cluster:
 config:
 deployment:
 ssl:
 sslSecret:
 certSecretName: my-ssl-creds

7.2.4. Using Certificate Revocation Lists (CRLs)
A certificate revocation list (CRL) lets you deny access to the server from certain clients based on their
certificates, when using mutual TLS (mTLS). For example, say you had separate client certificates for
each vendor with access to your database. If the partnership with a vendor ends, you want to now deny
access to the vendor's clients by adding their certificate to the list of CRLs. Note that the CRL files must be
in PEM format. See the section on Using CRLs in the Using VoltDB guide for instructions on converting
files in other formats to PEM using the openssl utility.

45

https://docs.voltactivedata.com/UsingVoltDB/

Configuring Security in Kubernetes

In Kubernetes, you add CRLs to the server in one of two ways:

• By specifying the CRLs, one at a time, using the --set-file qualifier when installing the database
release. For example:

helm install mydb voltdb/voltdb \
 --values myconfig.yaml \
 --set-file cluster.config.deployment.ssl.crl.file.a=/etc/ssl/local/crl/crl1.pem \
 --set-file cluster.config.deployment.ssl.crl.file.b=/etc/ssl/local/crl/crl2.pem \
 --set-file cluster.config.deployment.ssl.crl.file.c=/etc/ssl/local/crl/crl3.pem

The last name of the cluster.config.deployment.ssl.crl.file.{name} property can
be any name you choose as long as it is unique within the set of CRL file property names.

• By creating a configuration map containing the CRLs. Create a directory with one or more CRL files
in it. Then create a configuration map using the kubectl create configmap command pointing to the
CRL directory. For example, using the directory name /etc/ssl/local/crl from the preceding
example and naming the configuration map mycrlmap:

kubectl create configmap mycrlmap --from-file /etc/ssl/local/crl

Once you create the configuration map, you can add it to the Helm configuration using the clus-
ter.config.deployment.ssl.crl.configName property when installing the database re-
lease:

helm install mydb voltdb/voltdb \
 --values myconfig.yaml \
 --set cluster.config.deployment.ssl.crl.configName=mycrlmap

7.2.5. Configuring TLS/SSL for the Volt Operator and VMC
By default, when you enable TLS/SSL, the Volt Operator and the Volt Management Console (VMC)
automatically use the truststore configured for the servers as their truststore for authenticating the server.
In other words, you do not have to set any SSL configuration properties yourself for these two services to
the servers. Of course, you can choose to explicitly identify a separate truststore for these other services
and provide the associated files yourself, if you wish. But by default, configuring SSL for the server
automatically configures the Operator and VMC correctly to respond to the encrypted messages.

The same is true if you enable mutual TLS (mTLS) for the cluster. In this case, the Operator and VMC
use the same certificate (and truststore) as the servers by default. If you want to have these services use
a distinct client certificate, you need to specify that certificate using the appropriate YAML properties
for those services. For example, the following Helm command loads a separate certificate for the Volt
Operator and uses the root truststore for both the server and Operator:

helm install mydb voltdb/voltdb \
 --values myconfig.yaml \
 --values ssl.yaml \
 --set-file cluster.config.deployment.ssl.keystore.file=server.keystore.pem \
 --set-file cluster.config.deployment.ssl.truststore.file=root.truststore.pem \
 --set-file cluster.clusterSpec.ssl.clientCertFile=client.keystore.pem

However, the Jetty service that VMC uses to provide a public interface to web browsers and for the JSON
programming interface does not support PEM-fomatted files. Therefore to enable TLS/SSL between the
VMC service and web browsers and client applications using the JSON API, you should use either JKS or
PKCS12 formatted key and trust stores. You can either convert an existing PEM file to JKS or PKCS12

46

Configuring Security in Kubernetes

format using the openssl utility or see the VoltDB V13 documentation for instructions on creating user-
defined certificates using the keytool utility. (To create PKCS12 rather than JKS files, simply replace
the -storetype jks qualifier with -storetype pkcs12 in the examples.) Once you create the
necessary keystore and truststore files, use the instructions in Section 7.2.2, “Using Kubernetes Secrets to
Store and Reuse TLS/SSL Information” to create a Kubernetes secret to store the files and then assign it
to the vmc.service.ssl.sslSecret.certSecretName property.

7.3. Updating TLS/SSL Security Certificates
TLS certificates have an expiration date. If you are using TLS/SSL to encrypt data (either internally, ex-
ternally, or both), you will need to update those certificates before they expire to ensure minimal disruption
to normal operation.

One of the advantages of using cert-manager to create and manage your certificates is that it automatically
updates the certificates before they expire. If you are not using cert-manager — that is, you are either cre-
ating your own secret to contain the keystore and truststore or defining them manually with helm properties
— you will need to update the certificates yourself. Either way, shortly after the certificates are updated in
Kubernetes, the operator takes responsibility for applying the new credentials to the cluster, the Operator,
and the auxiliary services as appropriate.

To update the TLS keystores, truststores, and credentials when using a self-defined secret, you must:

1. Create a new version of the truststore and keystore using a certificate with a new expiration date.

2. Delete the current Kubernetes secret.

3. Create a new version of the same secret using the new files.

You create the new truststore and keystore using the same openssl commands used to create the original
files, as described in Section 7.2, “Configuring TLS/SSL”. You then update the secret by deleting and
recreating the secret using the kubectl create secret command from earlier, making sure you use the same
name for the secret but the new SSL files. For example:

$ kubectl delete secret/my-ssl-creds
$ kubectl create secret generic my-ssl-creds \
 --from-file=keystore_data=newkey.pem \
 --from-file=truststore_data=newtrust.pem

If you defined the TLS/SSL credentials manually using Helm properties, you will need to reapply the new
truststore and keystore files using a helm upgrade command and the --set-file flag.

47

https://docs.voltactivedata.com/v13docs/UsingVoltDB/SecuritySSL.php#SecuritySSLCli

Chapter 8. Cross Datacenter Replicaon
in Kubernetes

Previous chapters describe how to run a single VoltDB cluster within Kubernetes. Of course, you can run
multiple independent VoltDB databases in Kubernetes. You do this by starting each cluster in separate
regions, under different namespaces within the same Kubernetes cluster, or running a single instance of the
VoltDB Operator managing multiple clusters in the same namespace. However, some business applications
require the same database running in multiple locations — whether for data redundancy, disaster recovery,
or geographic distribution. In VoltDB this is done through Cross Datacenter Replication, or XDCR.

Important

Please note that in addition to the guidance specific to Kubernetes provided in this chapter, the
following rules apply to XDCR in any operating environment:

• You must have command logging enabled for three or more clusters.

• You can only join (or rejoin) one cluster at a time to the XDCR environment.

Command logging is always recommended when using XDCR to ensure durability. Using XDCR
without command logging on two clusters, it is possible for transactions processed on one cluster
to be lost if the cluster crashes before the binary log is sent to the other cluster. However, for three
or more clusters, command logging is required. Without command logging, not only can XDCR
transactions be lost, but it is likely the databases will diverge without warning, if a cluster crashes
after sending a binary log to one cooperating cluster but not to the other.

8.1. Requirements for XDCR in Kubernetes
Once established, XDCR in Kubernetes works the same way it does in any other network environment, as
described in the chapter on Database Replication in the Using VoltDB guide. The key difference when using
XDCR in Kubernetes is how you establish the initial connection between the clusters. Unlike traditional
servers with known IP addresses, in Kubernetes network addresses are assigned on the fly and are not
normally accessible outside individual namespaces or regions. Therefore, you must do additional work to
create the appropriate network relationships. Specifically, you must:

• Establish a network mesh between the Kubernetes clusters containing the VoltDB databases so that
the nodes of each VoltDB cluster can identify and resolve the IP addresses and ports of all the nodes
from the other VoltDB clusters.

• Configure the VoltDB clusters, including properties that identify the type of mesh involved and mesh-
specific annotations that determine what network addresses and ports to use.

The following sections describe the different approaches to establishing a network mesh and how to con-
figure the clusters in each case.

8.2. Choosing How to Establish a Network Mesh
For XDCR to work, each cluster must be able to identify and connect to the nodes of the other cluster.
Establishing the XDCR relationship occurs in two distinct phases:

48

https://docs.voltactivedata.com/UsingVoltDB/ChapReplication.php
https://docs.voltactivedata.com/UsingVoltDB/

Cross Datacenter Repli-
cation in Kubernetes

1. Network Discovery — First, the clusters connect over the replication port (port 5555, by default). The
initial connection confirms that the configurations are compatible, that the schema of the two clusters
match for all DR tables, and that there is data in only one of the clusters.

2. Replication — Once the clusters agree on the schema, each cluster sends a list of node IP addresses and
ports to the other cluster and multiple connections are made, node-to-node, between the two clusters.
If there is existing data, a synchronization snapshot is sent between the clusters and then replication
begins.

For the network discovery phase, each cluster must have a clearly identifiable network address that the
other cluster can specify as part of its XDCR configuration. For the replication phase, each cluster must
have externally reachable network addresses for each node in the cluster that it can advertise during the
discovery phase and that the other cluster uses to make the necessary connections for replication.

Since, by default, the ports on a Kubernetes pod are not externally accessible, you must use additional
services to make the VoltDB nodes accessible. Three such options are:

• Kubernetes Load Balancers — One way to establish a network mesh is to use the built-in load balancer
service within Kubernetes. Load balancers provide a defined, persistent external interface for internal
pods. The advantage of using load balancers is that they are a native component of Kubernetes and
are easy to configure. The disadvantage is that if you are running your VoltDB clusters in a hosted
environment, load balancers tend to be far more expensive than regular pods and creating a separate
load balancer for each node in the cluster to handle the replication phase can be prohibitively expensive
unless you are managing your own infrastructure.

• Kubernetes Node Ports — An alternative to load balancers is using node ports. Node ports, like load
balancers, are native services of Kubernetes and provide an externally accessible interface for the inter-
nal pods. However, unlike load balancers where the addresses are persistent over time, node ports take
on the addresses of the underlying Kubernetes nodes and therefore can change as Kubernetes nodes
are recycled. Therefore node ports are not appropriate for the Network Discovery phase. On the other
hand, they can be a cheaper alternative to load balancers for the replication phase, since the cluster can
advertise the current set of node port addresses as pods come and go.

• Network Mesh Services — These additional services, such as Consul, create a network mesh between
Kubernetes clusters and regions. They essentially act as a virtual private network (VPN) within Kuber-
netes so the VoltDB clusters can interoperate as if they were local to each other. The advantage of us-
ing network mesh services is that configuring the VoltDB clusters is simpler, since all of the network
topology is handled separately. The deficit is that this requires yet another service to set up. And the
configuration of these services can be quite complex, requiring a deep understanding of — and access
to — the networking layer in Kubernetes.

Which networking solution you use is up to you. You can even mix and match the alternatives — using,
for example, a single load balancer per cluster for the Network Discovery phase and individual node ports
for each VoltDB cluster node during the replication phase.

You define the type of network mesh to use and how to connect using YAML properties when you config-
ure your clusters. In general, the Helm properties starting with cluster.config.deployment.dr,
such as id and role, are generic properties common to all XDCR implementations. Helm properties
starting with cluster.serviceSpec define the type of network mesh to use and annotations specific
to the network type.

The following sections explain how to configure XDCR using Helm properties, with individual sections
discussing the differences necessary for various networking options, including:

• Common XDCR Properties

49

Cross Datacenter Repli-
cation in Kubernetes

• Configuring XDCR in Local Namespaces

• Configuring XDCR Using Load Balancers

• Configuring XDCR Using Node Ports for Replication

• Configuring XDCR Using Network Services

8.3. Common XDCR Properties
No matter what approach you choose for establishing the network mesh, you must first configure the
clusters as members of the XDCR quorum the same way you do on bare metal. That is, you must assign:

• A unique DR ID for each cluster between 0 and 127

• The cluster role (XDCR)

• At least one node from the other cluster as the point of connection for the Network Discovery phase

The following table configures XDCR using DR ID 1 with a connection to the cluster with a release name
of brooklyn.

cluster:
 config:
 deployment:
 dr:
 id: 1
 role: xdcr
 connection:
 enabled: true
 source: \
 "brooklyn-voltdb-cluster-dr:5555"

8.4. Configuring XDCR in Local Namespaces
The easiest way to configure XDCR clusters is when the VoltDB clusters are within the same Kuber-
netes namespace or cluster. In this case, the cluster IP addresses are all locally visible and so do not
need any additional network setup. The first step is to enable the DR service using the cluster.ser-
viceSpec.dr.enabled property:

cluster:
 serviceSpec:
 dr:
 enabled: true

Next, you must provide the address of a replication port from one node of the remote cluster as the source
property.

In Kubernetes the cluster nodes are assigned unique host names based on the initial Helm release name (that
is, the name you assigned the cluster when you installed it). The VoltDB Operator also creates services that
abstract the individual server addresses and provide a single entry point for specific ports on the database
cluster. The two services of interest are DR and client, which will direct traffic to the corresponding port
(5555 or 21212 by default) on an arbitrary node of the cluster. If the two database instances are within the
same Kubernetes cluster, you can use the DR service to make the initial connection between the database
systems, as shown in the following YAML configuration file.

50

Cross Datacenter Repli-
cation in Kubernetes

If the databases are running in different namespaces, you will need to specify the fully qualified service
name as the connection source in the configuration, which includes the namespace. So, for example, if the
manhattan database is in namespace ny1 and brooklyn is in ny2, the YAML configuration files related to
XDCR for the two clusters would be the following.

Manhattan Cluster

cluster:
 config:
 deployment:
 dr:
 id: 1
 role: xdcr
 connection:
 enabled: true
 source: "brooklyn-voltdb-cluster-dr.ny2.svc.cluster.local:5555"

Brooklyn Cluster

cluster:
 config:
 deployment:
 dr:
 id: 2
 role: xdcr
 connection:
 enabled: true
 source: "manhattan-voltdb-cluster-dr.ny1.svc.cluster.local:5555"

8.5. Configuring XDCR Using Load Balancers
Kubernetes load balancers are an alternative for making VoltDB clusters accessible outside the Kubernetes
cluster or region they are in. In this case you are not using load balancers for their traditional role, balancing
the load between multiple pods. Instead, the load balancers are solely used to provide externally accessible
IP addresses.

There are two approaches to using load balancers. The first approach is to assign a load balancer for
each node of the cluster. Since the nodes are externally reachable through persistent IP addresses on their
corresponding load balancer, the load balancers can be used for both the network discovery and replication
phases. The second approach is to use only one load balancer for the entire cluster to provide network
discovery, and use virtual network peering, available from your hosting provider, for replication.

Many hosting platforms, such as Google Cloud or AWS, provide proprietary mechanisms for performing
network peering between regions or data centers. Each of these solutions has its own unique set up and
configuration, separate from the configuration of VoltDB and the VoltDB Operator . As a result, using a
network peering service is not as simple as the use of load balancers for replication. However, they can be
significantly more cost effective when paired with a single load balancer for network discovery.

There is also the choice of assigning the IP addresses for the load balancers dynamically, or having them
selected from a range of static addresses. Dynamic assignment is simpler, since you do not need to arrange
with your hosting provider for pre-assigned IPs or hostnames. However, dynamic addresses also mean you
do not know what the addresses are until the cluster starts. This means the remote XDCR cluster cannot
assign the source property until after the cluster starts with its associated load balancers and you can
determine the IP addresses assigned to them.

51

Cross Datacenter Repli-
cation in Kubernetes

8.5.1. Separate Load Balancers For Each Node (cluster.ser-
viceSpec.perpod)

First you must assign the DR id and role as Helm properties. If the remote cluster is using static ad-
dresses, you can specify one of its nodes as the source, as in the following example. If you are using
dynamic load balancers, leave the source property blank and use the helm upgrade --set command once
the clusters are running to assign a resulting node address for the remote cluster.

cluster:
 config:
 deployment:
 dr:
 id: 1
 role: xdcr
 connection:
 enabled: true
 source: "chicago-dc-2" # Remote cluster

Then in the cluster.serviceSpec section, you enable perpod by setting its type to LoadBal-
ancer. You will also want to set the dr.enabled property to true so the per pod load balancers are used
for network discovery as well as replication.

For dynamically assigned addresses, set the publicIPFromService to true:

cluster:
 serviceSpec:
 perpod:
 type: LoadBalancer
 publicIPFromService: true
 dr:
 enabled: true

For static IP addresses, use the staticIPs property to specify the addresses to assign when creating the
load balancers and, again, set dr.enabled to true.

cluster:
 serviceSpec:
 perpod:
 type: LoadBalancer
 staticIPs:
 - 12.34.56.78
 - 12.34.56.79
 - 12.34.56.80
 dr:
 enabled: true

8.5.2. Single Load Balancer For Discovery with Virtual Net-
working Peering (cluster.serviceSpec.dr)

To reduce the number of resources needed to connect XDCR clusters in different regions, you can use
a single load balancer for network discovery and use virtual network peering services from your hosting
provider for connecting the two clusters during replication. How you set up and configure your network
peering is specific to each provider. See your provider's documentation for additional information. This

52

Cross Datacenter Repli-
cation in Kubernetes

section describes how to set up a single Kubernetes load balancer for network discovery once you have
your network peering established.

First you must assign the DR id and role as Helm properties and, if known in advance, the source
for the remote cluster:

cluster:
 config:
 deployment:
 dr:
 id: 1
 role: xdcr
 connection:
 enabled: true
 source: "chicago-dc-2" # Remote cluster

Then in the cluster.serviceSpec section, you enable the dr service (rather than perpod) and
set its type to LoadBalancer. You may also need to provide additional annotations that help configure
the service. These annotations are specific to the host environment you are using. So, for example, the
following configuration provides annotations for AWS and the Google Cloud:

cluster:
 serviceSpec:
 dr:
 enabled: true
 type: LoadBalancer
 annotations:
 # Google Cloud
 networking.gke.io/load-balancer-type: "Internal"
 networking.gke.io/internal-load-balancer-allow-global-access: "true"

 # AWS
 service.beta.kubernetes.io/aws-load-balancer-internal: "true"
 service.beta.kubernetes.io/aws-load-balancer-type: "nlb"

8.6. Configuring XDCR Using Node Ports for Repli-
cation

Kubernetes node ports are another option for providing external access to the VoltDB cluster for replica-
tion. Node ports are similar to load balancers in that they provide an externally accessible network address
for individual ports. Node ports are different in that the addresses are transitory — the address and/or port
number will change as pods come and go. So node ports are less practical for the Network Discovery
phase. However, they can be a cheap alternative for providing external access during the replication phase,
since the cluster can advertise the new addresses as its topology changes.

It is also possible to mix and match solutions. So a single load balancer can be used to provide the Network
Discovery service for a cluster, while node ports provide per pod network addresses for the replication
phase, as described next.

Again, you start by assigning the DR id and role as Helm properties and, if known in advance, the
source for the remote cluster:

cluster:
 config:

53

Cross Datacenter Repli-
cation in Kubernetes

 deployment:
 dr:
 id: 1
 role: xdcr
 connection:
 enabled: true
 source: "chicago-dc-2" # Remote cluster

You then define the load balancer for Network Discovery by setting the values of the cluster.ser-
viceSpec.dr properties enabled to true and type to LoadBalancer.

cluster:
 serviceSpec:
 dr:
 enabled: true
 type: LoadBalancer

Finally, define the replication phase as using node ports by configuring cluster.ser-
viceSpec.perpod properties type to NodePort and dr.enabled to true. You can also use the
dr.startReplicationNodePort property to specify the starting port number for the externally
accessible ports assigned to the node ports.

cluster:
 serviceSpec:
 perpod:
 type: NodePort
 dr:
 enabled: true
 startReplicationNodePort: 33111

8.7. Configuring XDCR Using Network Services
The goal of network services, such as Consul, is to make Kubernetes pods in different clusters or regions
appear as if they were local to each other. This makes configuring XDCR within VoltDB itself easier; in
most cases it is almost identical to how you configure clusters within local namespaces. However, how
you configure the network service itself is very dependent on which service you are using and the hosting
environment in which you are operating.

Using Consul as an example, Consul provides a "sidecar" — an additional process running in the same
pod as the VoltDB process — that makes remote pods and clusters appear to be local to the pod itself.
So rather than providing a remote IP address and port as the source for XDCR Network Discovery, you
specify a local port. For example:

cluster:
 config:
 deployment:
 dr:
 id: 1
 role: xdcr
 connection:
 enabled: true
 source: "localhost:4444"

What port you specify and how you configure and start Consul and the Consul sidecar, is specific to the
Consul product and your implementation of it. The same is true when using other third-party networking

54

Cross Datacenter Repli-
cation in Kubernetes

services. You may also need to provide additional annotations within the Helm configuration to complete
the network setup, depending upon which network service you use. For example:

cluster:
 clusterSpec:
 additionalAnnotations:
 "consul.hashicorp.com/connect-service": "chicago-voltdb-cluster"
 "consul.hashicorp.com/connect-service-upstreams": "chicago-voltdb-cluster:5554:illinois"

See the product documentation for the specific service for further information.

55

Chapter 9. Managing XDCR Clusters in
Kubernetes

Once you have configured your XDCR clusters and your network environment, you are ready to start the
clusters. You begin by starting two of the clusters. (Remember, only one of the clusters can have data in the
DR tables before the XDCR communication begins.) Once the schema of the DR tables in two databases
match, synchronization starts. After the initial two databases are synchronized, you can start additional
XDCR clusters, one at a time.

There are several management procedures that help keep the clusters in sync, especially when shutting
down or removing clusters from the XDCR environment. In other environments, these procedures use
voltadmin commands, such as shutdown, dr drop and dr reset. In Kubernetes, you execute these pro-
cedures through the VoltDB Operator using Helm properties. Activities include:

• Removing a cluster temporarily

• Removing a cluster permanently

• Resetting XDCR when a cluster is lost

• Rejoining a cluster that was removed

9.1. Removing a Cluster Temporarily
If you want to remove a cluster from the XDCR environment temporarily, you simply shutdown the cluster
normally, by setting the number of replicas to zero. This way, when the cluster restarts, the command
logs will take care of recovering all of the data and re-establishing the XDCR "conversations" with the
other clusters:

--set cluster.clusterSpec.replicas=0

9.2. Removing a Cluster Permanently
If you want to remove a cluster from the XDCR environment permanently, you want to make sure it sends
all of its completed transactions to the other clusters before it shuts down. You do this by setting the DR
role to "none" to perform an orderly shutdown:

--set cluster.config.deployment.dr.role="none"
--set cluster.clusterSpec.replicas=0

Of course, you do not have to shut the cluster down immediately. You can simply remove it from the
XDCR environment. Note that if you do so, the data in the current cluster will diverge from those clusters
still participating in XDCR. So only do this if you are sure you want to maintain a detached copy of the data:

--set cluster.config.deployment.dr.role="none"

Setting the role to "none" drops the cluster out of the XDCR mesh. However, it does not actually change the
configuration property on the cluster itself until the cluster restarts. In other words, there is a pending con-
figuration change. So if the property cluster.clusterSpec.allowRestartDuringUpdate is
set to "TRUE", not only will the cluster drop out of the XDCR mesh, it will automatically restart.

Finally, if you cannot perform an orderly removal from XDCR — for example, if one of the other clusters
is offline or if sending the outstanding transactions will take too long and you are willing to lose that data

56

Managing XDCR Clus-
ters in Kubernetes

— you can set the property cluster.clusterSpec.dr.forceDrop to "TRUE" to force the cluster
to drop out of the XDCR mesh without finalizing its XDCR transfers. Once the cluster has been removed,
it is advisable to reset this property to "FALSE" so future procedures revert to the orderly approach of
flushing the queues.

--set cluster.clusterSpec.dr.forceDrop=TRUE
--set cluster.config.deployment.dr.role="none"
--set cluster.clusterSpec.replicas=0
 . . .
--set cluster.clusterSpec.dr.forceDrop=FALSE

9.3. Resetting XDCR When a Cluster Leaves Unex-
pectedly

Normally, when a cluster is removed from XDCR in an orderly fashion, the other clusters are notified that
the cluster has left the mesh. However, if a cluster leaves unexpectedly — for example, if it crashes or is
shutdown and deleted without setting its role to "none" to notify the other clusters — the XDCR network
still thinks the cluster is a member and may return. As a result, the remaining clusters continue to save DR
logs for the missing member, using up unnecessary processing cycles and disk space. You need to reset
the XDCR network mesh to correct this situation.

To reset the mesh you notify the remaining clusters that the missing cluster is no longer a member. You do
this be adding the DR ID of the missing cluster to the cluster.clusterSpec.dr.excludeClus-
ters property. The property value is an array of DR IDs. For example, if the DR ID (cluster.con-
fig.deployment.dr.id) of the lost cluster is "3", you set the property to "{3}":

--set cluster.clusterSpec.dr.excludeClusters='{3}'

You must set this property for all of the clusters remaining in the XDCR environment. If later, you want
to add the missing cluster (or another cluster with the same DR ID) back into the XDCR mesh, you will
need to reset this property. For example:

--set cluster.clusterSpec.dr.excludeClusters=null

9.4. Rejoining an XDCR Cluster That Was Previ-
ously Removed

If a cluster is removed from the XDCR cluster permanently, by resetting the DR role, or through exclusion
by the other clusters, it is still possible to rejoin that cluster to the XDCR network. To do that you must
reinitialize the cluster and, if it was forcibly excluded, remove the exclusion from the current members of
the network. (Note, the following procedure is not necessary if the cluster was removed temporarily by
setting the number of replicas to zero.)

First, if the cluster was forcibly removed by exclusion, you must remove the exclusion from the current
members of the XDCR network by clearing the cluster.clusterSpec.dr.excludeClusters
property (removing the missing cluster's ID from the array):

--set cluster.clusterSpec.dr.excludeClusters=null

Then you must restart the cluster you want to rejoin, reinitializing the cluster's contents with the clus-
ter.clusterSpec.initForce property and setting the appropriate properties (such as the DR role
and connection properties):

57

Managing XDCR Clus-
ters in Kubernetes

--set cluster.clusterSpec.initForce=TRUE
--set cluster.config.deployment.dr.role="xdcr"
--set cluster.clusterSpec.replicas=3

Once the cluster rejoins the XDCR network and synchronizes with the current members, be sure to reset
the cluster.clusterSpec.initForce property to false.

58

Appendix A. Volt Diagnoscs Tools
Volt Active Data provides a number of diagnostic tools to assist in managing and troubleshooting VoltDB
databases. On Kubernetes, some of these tools are available with additional automation in a separately
installable diagnostics tools pod. The diagnostics tools include:

• Data Collection (kcollect) — Collects historical and performance data from the nodes of the cluster, for
both the database and the server, then compresses them into a single file on the diagnostics tools pod
for easy backup or submission to Volt support as necessary.

• Interactive SQL (ksqlcmd) — Interactive access to the database using the same commands and directives
available using sqlcmd on bare metal.

• Network performance monitoring (meshmonitor) — Monitors network performance between cluster
nodes.

• Snapshots (ksnapshot) — Saves a snapshot of the current database contents, then collects all of the files
from the cluster nodes and compresses them into a single file on the diagnostics tools pod.

You can start the diagnostics pod using Helm, then create a terminal session (using kubectl exec) and
run the individual tools from the command line. This appendix explains how to start and stop the pod and
provides a brief description of the individual tools. See the online help for each tool for further information.

A.1. Starting and Stopping the Diagnostics Pod
You start the diagnostics pod using Helm in the same way you start a VoltDB database. First make sure
you have the latest Volt Active Data Helm charts by doing a helm repo update:

$ helm repo update

Next, start the pod with the helm install command. The diagnostics pod is independent of the Volt database
and the Operator. So it does not matter whether you start the tools pod before or after the database. For
example, the following command starts the diagnostics pod using the volt-diagnostics chart to create a
release called tools:

$ helm install tools voltdb/volt-diagnostics

The diagnostics helm chart does not create a deployment resource, it only creates the temporary pod. This
approach has several benefits:

• The pod is consistently named using the release name plus the suffix -volt-diagnostics.

• The pod is not automatically rescheduled if Kubernetes stops it, which can be beneficial if your cluster
runs low on resources.

When you have finished using the diagnostics pod, you can remove it by simply uninstalling it. For exam-
ple, the following command deletes the diagnostics pod, tools, created in the previous example:

$ helm uninstall tools

59

Volt Diagnostics Tools

A.1.1. Using the Diagnostics Pod With a Persistent Volume
(PV)

The only writable space on the diagnostics pod itself is the /tmp directory. If you need more space for
collecting cluster data (for example, when using the collect command) we encourage you to attach persis-
tent storage. You can attach additional storage in two ways:

• If you already have defined a PersistentVolumeClaim (PVC), set the diagnostics.pvc.claim-
Name property pointing to the PVC:

$ helm install tools voltdb/volt-diagnostics \
 --set diagnostics.pvc.claimName=tooloutput

• If no PVC is defined, but there is a existing Storage Class, you can use the diagnostics.pvc.s-
torage.className property and a PVC will be created for you when the diagnostics pod starts:

$ helm install tools voltdb/volt-diagnostics \
 --set diagnostics.pvc.storage.className=standard

Attaching a PVC to the diagnostics pod provides an additional writeable target for the output of the diag-
nostics tools, collect, meshmonitor, and snapshot. Use the output qualifiers, either --outdir or --
output-file, to save output to the PVC.

A.1.2. Using the Diagnostic Tools Securely with TLS/SSL
If the cluster being analyzed has security enabled using TLS/SSL, the diagnostics pod must provide the
necessary key information to establish connection to the cluster. The tools themselves also connect to
VoltDB cluster so must be aware of the TLS/SSL settings. You can configure this information when you
start the pod using the diagnostics.ssl.* properties. For example:

$ helm install tools voltdb/volt-diagnostics \
 --set-file diagnostics.ssl.truststore.file=mytrust.jks \
 --set diagnostics.ssl.truststore.password=mySSLpassword

Note that the password is optional. Once TLS is configured for the diagnostics pod, those security settings
are used automatically when invoking the diagnostics tools from within the pod.

A.2. Running the Diagnostic Tools
The diagnostics pod comes with four primary tools customized for use with Kubernetes. To use these tools
you must first connect to the diagnostics pod using the kubectl exec command. Note that the Kubernetes
pod name is the Helm release name plus the suffix -volt-diagnostics. For example, the following command
accesses the tool pod for the Helm release named tools:

$ kubectl exec tools-volt-diagnostics -it -- /bin/bash

When you connect to the command shell for the diagnostics pod, it displays a welcome message, listing
all of the VoltDB databases running in the current namespace. For example:

--
 Welcome!
 Volt Kubernetes Basic Environment information
--

60

Volt Diagnostics Tools

Helm releases installed:
 mydb
Default release used: "mydb"
 There are 6 pods in READY state
 There are 0 pods in NOT READY state
--

From the command prompt, you can issue commands for any of the diagnostics tools. For example:

$ ksqlcmd --query="select * from contestants" --output-file=/tmp/results.txt
$ kcollect --release="mydb" --outdir=/tmp

A.3. Diagnostic Tools
The following sections give a summary of each of the diagnostics tools. See the online help for detailed
instructions on commands and qualifiers.

A.3.1. Collect (kcollect)
The kcollect command collects logs, error files, and configuration information for both the base system
and the database. This information can help debug issues with the database operation.

kcollect [--release={release-name}] [--dir={directory-path}]

Additional qualifiers:
 --context={context-name}
 --namespace={namespace-name}
 --no-cores
 --no-zip
 --password={password}
 --username={user-name}

If there is only one database release running in the namespace, the release name defaults to that release.
Otherwise, you should specify the release name of the database cluster with the --release qualifier.
Similarly, the output directory where the resulting collection is stored defaults to the /tmp directory. If
you are using an additional PVC, you can use the --dir qualifier to redirect the output.

Note

The command for running the collect tool changed in version 1.2.0. See the online help for the
helm voltadmin command on the diagnostics pod for information on running the collect function
on earlier versions.

A.3.2. Mesh Monitor (meshmonitor, V1.5.0 and later)
The meshmonitor command starts network monitoring on the database cluster, recording network per-
formance between the cluster nodes. This tool is useful in diagnosing issues such as network delays and
instability, mysterious timeouts and hangs, and scheduling problems that impact database performance.

meshmonitor [qualifier]... start

meshmonitor [qualifier]... stop

meshmonitor [qualifier]... collect

61

Volt Diagnostics Tools

Qualifiers:
 --dir={directory-path}
 --release={release-name}

There are three commands available for mesh monitor. The start command starts monitoring on the cluster
nodes. The stop command stops monitoring, collects the results, and saves them as a compressed file in the
output directory (/tmp by default). The collect command collects current results and saves them without
stopping the monitoring.

For a quick analysis of potential network issues, you can use the meshmonitor start and stop commands
to start monitoring for an hour or so, then stop and collect the data. This is useful if you are seeing problems
with database connectivity or latency and want to see if network performance may be the cause.

For extended monitoring, you can use the meshmonitor start command to initiate monitoring, then inter-
mittently use the collect command to collect and review the results without interrupting further monitor-
ing. When you are done, you can use the stop command to cancel monitoring and collect the final data.

Note that monitoring continues only as long as the database pod is running. If the pod or pods stop for any
reason (for example a crash or a reboot), the monitoring will not automatically restart. You can use the
meshmonitor start command to restart monitoring in this situation.

Note

The meshmonitor command was introduced in version 1.5.0 of the diagnostic pod. The network
monitoring code itself was added to the VoltDB server software in V14.2.0. So, for the time be-
ing, monitoring cannot be turned on for earlier versions of VoltDB and the meshmonitor com-
mand will report that the command is unsupported for the VoltDB version running on the cluster.
However, the monitoring code will be included in all future releases of VoltDB and, in upcoming
updates, it will be added to the earlier LTS versions as well.

A.3.3. Snapshot (ksnapshot, V1.3.0 and later)
The ksnapshot command takes a native database snapshot of the database's current contents, collects the
resulting files and saves them as a compressed file in the output directory (/tmp by default).

ksnapshot [--release={release-name}] [--outdir={directory-path}]

If there is only one database release running in the namespace, the release name defaults to that release.
Otherwise, you should specify the release name of the database cluster with the --release qualifier.
Similarly, the output directory where the resulting collection is stored defaults to the /tmp directory. If
you are using an additional PVC, you can use the --outdir qualifier to redirect the output.

Note

The ksnapshot command was introduced in version 1.3.0 of the diagnostics pod.

A.3.4. Sqlcmd (ksqlcmd)
The ksqlcmd command lets you enter interactive SQL commands and execute stored procedures (includ-
ing system procedures) on the database.

ksqlcmd [--release={release-name}]

The ksqlcmd command is identical to the sqlcmd command except with the --release qualifier in
place of the --servers and --port qualifiers for specifying which database you want to connect

62

Volt Diagnostics Tools

to. By default, the command connects to the "default" release listed in the welcome message when you
connect to the diagnostics pod. The command also uses the TLS/SSL security configuration specified for
the diagnostics pod when connecting to the database, as described in Section A.1.2, “Using the Diagnostic
Tools Securely with TLS/SSL”.

63

Appendix B. VoltDB Helm Properes
You communicate with the VoltDB Operator, and Kubernetes itself, through the Helm charts that VoltDB
provides. You can also specify additional Helm properties that customize what the Helm charts do. The
properties are hierarchical in nature and can be specified on the Helm command line either as one or more
YAML files or as individual arguments. For example, you can specify multiple properties in a YAML file
then reference the file as part of your command using the --values or -f argument, like so:

$ helm install mydb voltdb/voltdb --values myoptions.yaml

Or you can specify the properties individually in dot notation on the command line using the --set flag,
like so:

$ helm install mydb voltdb/voltdb \
 --set cluster.clusterSpec.replicas=5 \
 --set cluster.config.deployment.cluster.kfactor=2 \
 --set cluster.config.deployment.cluster.sitesperhost=12

For arrays and lists, you can specify the values in dot notation by enclosing the list in braces and then
quoting the command as required by the shell you are using. For example:

$ helm upgrade mydb voltdb/voltdb -reuse-values
 --set cluster.clusterSpec.excludeClusters='{1,3}'

In YAML, you specify each element of the property on a separate line, following each parent element
with a colon, indenting each level appropriately, and following the last element with the value of the
property . On the command line you specify the property with the elements separated by periods and the
value following an equals sign. So in the preceding install example, the matching YAML file for the
command line properties would look like this:

cluster:
 clusterSpec:
 replicas: 5
 config:
 deployment:
 cluster:
 kfactor: 2
 sitesperhost: 12

Many of the properties have default values; the following tables specify the default values where applic-
able. You do not need to specify values for all of the properties. In fact, you can start a generic VoltDB
database specifying only the license file. Otherwise, you need only specify those properties you want to
customize.

Finally, the properties are processed in order and can be overridden. So if you specify different values
for the same property in two YAML files and as a command line argument, the latter YAML file setting
overrides the first and the command line option overrides them both.

B.1. How to Use the Properties
The following sections detail all of the pertinent Helm properties that you can specify when creating or
modifying the VoltDB Operator and its associated cluster. The properties are divided into categories and
each category identified by the root elements common to all properties in that category:

• Top-Level Kubernetes Options

64

VoltDB Helm Properties

• Kubernetes Cluster Startup Options

• Network Options

• VoltDB Database Startup Options

• VoltDB Database Configuration Options

• Operator Configuration Options

• Metrics Configuration Options

• Volt Management Center (VMC) Configuration Options

For the sake of brevity and readability, the properties in the tables are listed by only the unique elements
of the property after the root. However, when specifying a property in YAML or on the command line,
you must specify all elements of the full property name, including both the root and the unique elements.

B.2. Top-Level Kubernetes Options
The following properties affect how Helm interacts with the Kubernetes infrastructure.

Table B.1. Top-Level Options

Parameter Description Default

cluster.enabled Configure VoltDB Cluster as part of Helm operation (set false if
you are installing operator and cluster separately)

true

cluster.serviceAccount.create If true, create and use service account for VoltDB cluster node
containers

true

cluster.serviceAccount.name If not set and create is true, a name is generated using the full-
name template

""

B.3. Kubernetes Cluster Startup Options
The following properties affect the size and structure of the Kubernetes cluster that gets started, as well as
the startup attributes of the VoltDB cluster running on those pods.

Table B.2. Options Starting with cluster.clusterSpec...

Parameter Description Default

.additionalAnnotations Additional custom pod annotations { }

.additionalLabels Additional custom pod labels { }

.additionalStartArgs Additional arguments for the 'voltdb start' command issued in the
pod container

[]

.additionalVolumeMounts Pod volumes to mount into the container's filesystem; cannot be
modified once set

[]

.additionalVolumes Additional list of volumes that can be mounted by node contain-
ers

[]

.affinity Kubernetes node affinity { }

.allowRestartDuringUpdate Allow VoltDB cluster restarts if necessary to apply user-request-
ed configuration changes. May include automatic save and re-
store of database.

false

65

VoltDB Helm Properties

Parameter Description Default

.adminOperationTimeout Timeout for activity check for admin actions such as pause/stop/
shutdown. If not specified 120 seconds is used as default. If set
less than 120 it will use default 120 seconds.

0

.autoScaling.enabled Enable/disable auto-scaling. Also used to reset a failed state by
disable/enable sequence

false

.autoScaling.maxReplicas Maximum scale up limit. Effective value will be rounded up to
nearest multiple of kfactor+1

16

.autoScaling.maxRetries Maximum number of times a failed elastic operation will be re-
tried. 0 means no retries

0

.autoScaling.metrics.cpu.scaleDown The threshold that the value of the CPU metric must cross down-
wards for a cluster scale down

0

.autoScaling.metrics.cpu.scaleUp The threshold that the value of the CPU metric must cross up-
wards for a cluster scale up

0

.autoScaling.metrics.cpu The 'CPU percent usage' metric: the average value of the PER-
CENT_USED values reported in the CPU statistics

{ }

.autoScaling.metrics.idletime

.scaleDown
The threshold that the value of the idle time metric must cross
upwards for a cluster scale down

0

.autoScaling.metrics.idletime

.scaleUp
The threshold that the value of the idle time metric must cross
downwards for a cluster scale up

0

.autoScaling.metrics.idletime The 'idle time' metric: the average value of the PERCENT values
reported in the IDLETIME statistics. Note: lower values require
scale up, higher values require scale down

{ }

.autoScaling.metrics.memused

.scaleDown
The threshold that the percent integer value of the MEMUSED
metric must cross downwards for a cluster scale down

0

.autoScaling.metrics.memused

.scaleUp
The threshold that the percent integer value of the MEMUSED
metric must cross upwards for a cluster scale up

0

.autoScaling.metrics.memused The 'memory used' metric: the average PERCENT integer value
of the RSS over PHYSICALMEMORY values reported in the
MEMORY statistics

{ }

.autoScaling.metrics.rss.scaleDown The threshold that the value of the RSS metric must cross down-
wards for a cluster scale down

0

.autoScaling.metrics.rss.scaleUp The threshold that the value of the RSS metric must cross up-
wards for a cluster scale up

0

.autoScaling.metrics.rss The 'resident set size' metric: the average value of the RSS values
reported in the MEMORY statistics

{ }

.autoScaling.metrics.tps.scaleDown The threshold that the value of the TPS metric must cross down-
wards for a cluster scale down

0

.autoScaling.metrics.tps.scaleUp The threshold that the value of the TPS metric must cross up-
wards for a cluster scale up

0

.autoScaling.metrics.tps The 'transactions per second' metric: the average value of the TPS
values reported in the LATENCY statistics

{ }

.autoScaling.metrics Lists the thresholds for the monitored metrics, indexed by metric
name: cpu, idletime, rss, tps

{ }

66

VoltDB Helm Properties

Parameter Description Default

.autoScaling.minReplicas Minimum scale down limit. Effective value will be rounded up
to nearest multiple of kfactor+1

kfactor + 1

.autoScaling.notificationInterval The duration, in seconds, between notification events reporting
that an elastic operation is ongoing. 0 means no notification

0

.autoScaling.retryTimeout Defines the duration, in seconds, to wait for a retried operation
to start. If the timeout expires and the operation didn’t start, au-
to-scaling will be stopped.

60

.autoScaling.stabilizationWindow

.scaleDown
The duration, in seconds, that a ‘scaleDown threshold crossed’
condition must remain true in order to trigger an elastic remove
operation

300

.autoScaling.stabilizationWindow

.scaleUp
The duration, in seconds, that a ‘scaleUp threshold crossed’ con-
dition must remain true in order to trigger an elastic add operation

300

.clusterInit

.classesConfigMapRefName
Name of pre-created Kubernetes configmap containing stored
procedure classes

""

.clusterInit.licenseSecretRefName Name of pre-created Kubernetes secret containing Volt license,
using key 'license.xml'

""

.clusterInit.logConfigMapName Name of pre-created Kubernetes config map containing custom
logging configuration, using key 'log4j2.properties' or 'log4j.xml'

""

.clusterInit

.schemaConfigMapRefName
Name of pre-created Kubernetes configmap containing schema
configuration

""

.customEnv Key-value map of additional environment variables to set in all
VoltDB node containers

{ }

.disableFinalizers Disables Helm finalizers to permit cluster deletion. WARNING:
many resources will require manual cleanup.

false

.deletePVC Delete and cleanup generated PVCs when VoltDBCluster is
deleted, requires finalizers to be enabled (on by default)

false

.dr.excludeClusters User-specified list of clusters not part of XDCR []

.dr.forceDrop Indicate if you want to drop cluster from XDCR without produc-
er drain.

false

.elasticRemove.checkInterval Time in seconds to wait between checks of the status of an on-
going elastic remove operation. A value of 10 seconds or more is
recommended to let other workflows be executed by the operator

10

.elasticRemove.ignore Can be set to disabled_export to force ignoring the disabled ex-
ports, since elastic remove waits for all exports to be drained pri-
or to removing the nodes

``

.elasticRemove.restart Requests the restart of an elastic remove operation currently in
the FAILED state. Value must be nonzero and also different from
the last value used for restart

0

.elasticRemove.shutdownDelay Specifies the number of minutes to wait before shutting down the
nodes being removed. Must be greater than 0 if topics are being
used, otherwise the elastic remove fails

0

.elasticRemove.update Requests an update of the parameters of an ongoing elastic re-
move operation, e.g. ignore or shutdownDelay. Value must be
nonzero and also different from the last value used for update

0

67

VoltDB Helm Properties

Parameter Description Default

.elasticReset Requests a reset of the elastic remove information in the cluster
status. Reserved for VoltDB support. Value must be nonzero and
also different from the last value used for reset

0

.enableInServiceUpgrade Enable rolling upgrade of software version rather than requiring
full cluster restart (V13.1.0 or later).

false

.env.VOLTDB_GC_OPTS VoltDB cluster java runtime garbage collector options (VOLT-
DB_GC_OPTS)

""

.env.VOLTDB_HEAPCOMMIT Commit VoltDB cluster heap at startup, true/false (VOLTD-
B_HEAPCOMMIT)

""

.env.VOLTDB_HEAPMAX VoltDB cluster heap size, integer number of megabytes (VOLT-
DB_HEAPMAX)

""

.env.VOLTDB_OPTS VoltDB cluster additional java runtime options (VOLTDB_OP-
TS)

""

.env

.VOLTDB_REGION_LA-
BEL_NAME

Override for region label on node ""

.env

.VOLTDB_ZONE_LABEL_NAME
Override for zone label on node ""

.forceStopNode Enable or disable force stop node (V12.2 or later) false

.image.pullPolicy Image pull policy Always

.image.registry Image registry docker.io

.image.repository Image repository voltdb/volt-
db-enter-
prise

.image.tag Image tag Same as
global.volt-
dbVersion

.inServiceUpgrade.delay FOR TESTING PURPOSES ONLY: Specifies the delay in sec-
onds upgrading pods to new image.

false

.initForce Always init --force on VoltDB node start/restart. WARNING:
This will destroy VoltDB data on PVCs except snapshots.

false

.livenessProbe.enabled Enable/disable livenessProbe; see Kubernetes documentation for
probe settings

true

.maintenanceMode VoltDB Cluster maintenance mode (pause all nodes) false

.maxPodUnavailable Maximum pods allowed to be unavailable in Pod Disruption
Budget

kfactor

.nodeSelector Node labels for pod assignment { }

.persistentVolume.hostpath.enabled Use HostPath volume for local storage of VoltDB. This node
storage is often ephemeral and will not use PVC storage classes
if enabled.

false

.persistentVolume.hostpath.path HostPath mount point. "/
data/volt-
db/"

.persistentVolume.size Persistent Volume size per pod (VoltDB Node) 32Gi

68

VoltDB Helm Properties

Parameter Description Default

.persistentVolume.storageClassName Storage Class name to use, otherwise use default ""

.podSecurityContext Pod security context defined by Kubernetes See file val-
ues.yaml

.podTerminationGracePeriodSeconds Duration in seconds the pod needs to terminate gracefully. 30

.priorityClassName Pod priority defined by an existing PriorityClass ""

.readinessProbe.enabled Enable/disable readinessProbe; see Kubernetes documentation
for probe settings

true

.replicas Pod (VoltDB Node) replica count; scaling to 0 will shutdown the
cluster gracefully

3

.resources CPU/Memory resource requests/limits { }

.securityContext Container security context defined by Kubernetes See file val-
ues.yaml

.statefulSetUpdateMode Override default decision on applying stateful set changes; not
normally set. Values are restart, stop, terminate.

``

.ssl.certificateFile PEM-encoded certificate chain used by the operator to verify
VoltDB cert when TLS/SSL is enabled

""

.ssl.clientCertFile PEM-encoded private key and certificate identifying operator
when mutual TLS is required

""

.ssl.insecure If true, skip VoltDB certificate verification by the operator when
TLS/SSL is enabled

false

.startupProbe.enabled Enable/disable startupProbe; see Kubernetes documentation for
probe settings

true

.stoppedNodes User-specified list of stopped VoltDB nodes, by pod ordinal (0,
1, ...)

[]

.storageConfigs Optional storage configs for provisioning additional persistent
volume claims automatically

[]

.takeSnapshotOnShutdown Takes a snapshot when cluster is shut down by scaling to 0.
One of: NoCommandLogging, Always, Never. NoCommand-
Logging means 'only if command logging is disabled'.

"NoCom-
mandLog-
ging"

.tempVolumeSizeLimit Limit on temporary storage volume mounted on /tmp; decimal
number optionally followed by one of M/Mi/G/Gi/T/Ti

no limit

.tolerations Pod tolerations for node assignment (see Kubernetes documen-
tation)

[]

.topologySpreadConstraints Describes how a group of pods ought to spread across topology
(see Kubernetes documentation)

[]

.useCloudNativePlacementGroup Enable or disable cloud native placement group in VoltDB false

B.4. Network Options
The following properties specify what ports to use and the port-mapping protocol.

69

VoltDB Helm Properties

Table B.3. Options Starting with cluster.serviceSpec...

Parameter Description Default

.adminNodePort Port to expose VoltDB Admin service on each node, type Node-
Port only

31211

.adminPortEnabled Enable exposing admin port with the VoltDB service true

.adminPort Admin port number to be exposed on VoltDB service 21211

.clientNodePort Port to expose VoltDB Client service on each node, type Node-
Port only

31212

.clientPortEnabled Enable exposing client port with the VoltDB service true

.clientPort Client port number to be exposed on VoltDB service 21212

.dr.annotations Additional custom service annotations { }

.dr.enabled Create single DR service for DR false

.dr.externalTrafficPolicy VoltDB DR service external traffic policy ""

.dr.ipFamilies Select IPv4/IPv6 protocols used by DR replication service []

.dr.override Allows per-pod-service overrides of serviceSpec []

.dr.publicIPFromService Operator will wait to get the public IP address from the service
status set by Kubernetes

false

.dr.replicationNodePort Kubernetes service ports[].nodePort for VoltDB replication ser-
vice on each node, type NodePort only. If -1 is specified, kuber-
netes will select a random unused port

31555

.dr.replicationPort Kubernetes service ports[].port for the VoltDB DR replication
service

5555

.dr.staticIP Single static IP for DR service use when creating LoadBalancers
single DR service

``

.dr.type VoltDB DR service type, valid options are ClusterIP (default),
LoadBalancer, or NodePort

""

.externalIPs List of IP addresses at which the VoltDB service is available []

.externalTrafficPolicy VoltDB service external traffic policy (options Cluster, Local) Cluster

.http.sessionAffinityConfig.clientIP

.timeoutSeconds
Timeout override for http.sessionAffinity=ClientIP (onboard
http only)

10800

.http.sessionAffinity SessionAffinity override for the onboard HTTP service ClientIP

.kafka.annotations Additional custom Service annotations { }

.kafka.availableIPs[] Available IPs and IP-ranges to use when creating LoadBalancers
on a per-pod basis

[]

.kafka.externalTrafficPolicy Kafka service external traffic policy ""

.kafka.publicIPFromService Operator will wait to get the public IP address from the service
status set by Kubernetes

false

.kafka.topicsNodePort NodePort for the kafka service when the service type is NodePort 31092

.kafka.topicsPort Kafka replication exposed Service port 9092

.kafka.type Kafka service type, valid options are ClusterIP (default), Load-
Balancer, or NodePort

""

.loadBalancerIP VoltDB Load Balancer IP ""

70

VoltDB Helm Properties

Parameter Description Default

.loadBalancerSourceRanges VoltDB Load Balancer Source Ranges []

.perpod.dr.enabled Enable DR services on a per-pod basis false

.perpod.dr.externalTrafficPolicy VoltDB DR service external traffic policy for per pod DR ser-
vices.

""

.perpod.dr.ipFamilies Select IPv4/IPv6 protocols used by per pod DR replication ser-
vices

[]

.perpod.dr.replicationPort Kubernetes service ports[].port for the perpod VoltDB DR repli-
cation services

5555

.perpod.dr.startReplicationNodePort Starting Kubernetes service ports[].nodePort for perpod Volt-
DB replication service, type NodePort only. Sequential alloca-
tion from start. -1 means kubernetes will select a random unused
port

32555

.perpod.metrics.enabled Enables metrics k8s service for each pod false

.perpod.publicIPFromService Operator will wait to get the public IP address from the service
status set by Kubernetes

false

.perpod.staticIPs[] Available IPs and IP-ranges to use when creating LoadBalancers
on a per-pod basis

[]

.perpod.type VoltDB service type, valid options are ClusterIP (default), Load-
Balancer, or NodePort

""

.service.metrics.type Metrics port service type (options ClusterIP, NodePort, and
LoadBalancer)

ClusterIP

.type VoltDB service type (options ClusterIP, NodePort, and LoadBal-
ancer)

ClusterIP

.vmcNodePort Port to expose Volt Management Center service on each node,
type NodePort only (onboard httpd only)

31080

.vmcPort Volt Management Center web interface Service port (onboard
httpd only)

8080

.vmcSecureNodePort Port to expose Volt Management Center secure service on each
node, type NodePort only (onboard httpd only)

31443

.vmcSecurePort Volt Management Center secure web interface Service port (on-
board httpd only)

8443

B.5. VoltDB Database Startup Options
The following properties affect how Helm interacts with the VoltDB cluster and specific initialization
options, such as the initial schema and procedure classes.

Table B.4. Options Starting with cluster.config...

Parameter Description Default

.auth.credSecretName Name of the premade secret containing Operator admin
username and password. This overrides auth.username and
auth.password values and avoids including the password in yaml.

""

71

VoltDB Helm Properties

Parameter Description Default

.auth.password Operator admin password used to access VoltDB; required if se-
curity is enabled. Superseded by credSecretName when provid-
ed.

""

.auth.username Operator admin user name used to access VoltDB; required if
security is enabled. Superseded by credSecretName when pro-
vided.

voltdb-op-
erator

.classes Map of optional jar files containing stored procedures { }

.licenseXMLFile VoltDB Enterprise license file { }

.log4jcfgFile Custom Log4j configuration file { }

.schemas Map of optional schema files containing data definition state-
ments

{ }

.usersSecretName Name of pre-created Kubernetes secret containing users config-
uration, using key 'users.yaml'. If defined, no users should be
specified in 'cluster.config.deployment'.

""

B.6. VoltDB Database Configuration Options
The following properties define the VoltDB database configuration.

Table B.5. Options Starting with cluster.config.deployment...

Parameter Description Default

.avro.namespace Avro namespace (since V11) ""

.avro.prefix Avro configuration prefix ""

.avro.properties Avro configuration properties { }

.avro.registry Avro registry URL ""

.cluster.kfactor K-factor to use for database durability and data safety replication 1

.cluster.sitesperhost SitesPerHost for VoltDB Cluster 8

.commandlog.enabled Command logging for database durability (recommended) true

.commandlog.frequency.time How often the command log is written, by time (milliseconds) 200

.commandlog.frequency.transactions How often the command log is written, by transaction commands 2147483647

.commandlog.logsize Command logging allocated disk space (MB) 1024

.commandlog.synchronous Transactions do not complete until logged to disk false

.compoundproc.callsperstage Maximum number of procedure invocations per stage of each
compound procedure

10

.compoundproc.queuelimit Maximum number of compound procedures queued to the com-
pound procedure executor

10000

.compoundproc.threads Number of threads used by the compound procedure executor Max(avail-
ableProces-
sors, 4)

.dr.conflictretention Automatic pruning of XDCR conflict logs; integer followed by
one of m/h/d, for minutes/hours/days(since V11)

""

72

VoltDB Helm Properties

Parameter Description Default

.dr.connection.connectiontimeout Connection timeout for connecting to producer cluster in mil-
liseconds.

""

.dr.connection.enabled Specifies whether this DR connection is enabled false

.dr.connection.preferredSource Cluster ID of preferred DR source ""

.dr.connection.receivetimeout Timeout receiving response from producer cluster in millisec-
onds

""

.dr.connection.source If role is replica or xdcr: list of host names or IP addresses of
remote nodes

""

.dr.connection.ssl.sslSecret

.certSecretName
Optional pre-made secret containing truststore data, including
password if needed

""

.dr.connection.ssl.truststore.file Optional truststore file used to verify the identity of the remote
VoltDB cluster; defaults to truststore of this cluster, unless ss-
lSecret is set

""

.dr.connection.ssl.truststore.password Password for truststore file specified in truststore.file ""

.dr.connection.ssl-host-check Enable validation of Subject Alternative Name in received cer-
tificates

false

.dr.consumerlimit.maxbuffers Enable DR consumer flow control; either maxsize or maxbuffers
must be specified

""

.dr.consumerlimit.maxsize Enable DR consumer flow control; either maxsize or maxbuffers
must be specified. maxsize is an integer optionally followed by
'g' (gigabytes) or 'm' (megabytes)

""

.dr.exportconflicts Optional setting. If false, XDCR conflict logs are not generated
into export stream and therefore are not exported. Conflicts are
still handled and shown in statistics.

true

.dr.id Unique cluster id, 0-127 0

.dr.role Role for this cluster, either xdcr or none xdcr

.dr.schemachange.enabled Enable DR consumer to continue while compatible schema
changes are being made (since V12)

false

.dr.schemachange.truncate Enable values to be truncated if a VARCHAR column is wider
on another cluster while schema changes are being made

false

.export.configurations List of export configurations (complex structure) []

.export.configurations.enabled Is this export enabled? false

.export.configurations

.exportconnectorclass
Class name for custom exporters ""

.export.configurations.properties List of type-specific properties []

.export.configurations.reconnect Reconnect interval, integer followed by 's' or 'm' (V12 or later) "120s"

.export.configurations.target Name of export target ""

.export.configurations.threadpool Name of thread pool to use for export processing ""

.export.configurations.type Export type (file, custom, etc.) "file"

.export.defaultpoolsize Size of the default export thread pool (if not set, sites per host
value used); only used for Volt V13+

Not set

73

VoltDB Helm Properties

Parameter Description Default

.heartbeat.timeout Internal VoltDB cluster verification of presence of other nodes
(seconds)

90

.httpd.enabled Determines if HTTP API daemon is enabled (external VMC ser-
vice is recommended instead)

false

.httpd.jsonapi.enabled Determines if JSON over HTTP API is enabled; requires http.en-
abled

false

.httpd.port Specifies port for HTTP; default varies according to whether
TLS/SSL enabled

8080 or
8443

.import.configurations List of import configurations (complex structure) []

.import.configurations.enabled Is this import enabled? "false"

.import.configurations.format Format of import data ""

.import.configurations

.formatProperties
List of formatter-specific properties (only used for Volt V13+) []

.import.configurations.module Name of jar file for custom importer ""

.import.configurations.nickname Arbitrary but unique name for import configuration (Volt V14+) "im-
port-NNNNNNNN"

.import.configurations.priority Priority of transactions for this import configuration 4

.import.configurations.properties List of type-specific properties []

.import.configurations.type Import type e.g. kafka ""

.import.configurations.version The kafka version (only used for Volt V13+) "10"

.metrics.enabled Enables cloud-native metrics system on each VoltDB pod. It is
an alternative to using Prometheus Agent.

false

.metrics.interval How often the metrics system prepares a new metrics slice to be
sourced by an external system like prometheus. Supported unit
indicators are s (seconds), m (minutes), h (hours), d (days).

60s

.metrics.maxbuffersize Limits memory that the metric system can use for internal metric
buffering (system will always retain at least one metrics slice in
the buffer). In megabytes.

16

.partitiondetection.enabled Controls detection of network partitioning. Setting this false is
deprecated in V14, and doing so will be ignored in V15+.

true

.paths.commandlog.path Directory path for command log /pvc/voltdb
/voltdbroot/
com-
mand_log

.paths.commandlogsnapshot.path Directory path for command log snapshot /pvc/voltdb
/voltdbroot/
com-
mand_log_s-
napshot

.paths.droverflow.path Directory path for disaster recovery overflow /pvc/voltdb
/voltdbroot/
dr_over-
flow

74

VoltDB Helm Properties

Parameter Description Default

.paths.exportcursor.path Directory path for export cursors /pvc/voltdb
/voltdbroot/
export_cur-
sor

.paths.exportoverflow.path Directory path for export overflow /pvc/voltdb
/voltdbroot/
ex-
port_over-
flow

.paths.largequeryswap.path Directory path for large query swapping /pvc/voltdb
/voltdbroot/
large_query_swap

.paths.snapshots.path Directory path for snapshots. Must be located in a writeable di-
rectory, not the root (as init --force will rename existing snapshot
folder).

/pvc/voltdb
/voltdbroot/
snapshots

.security.enabled Controls whether user-based authentication and authorization
are used

false

.security.ldap.group List of LDAP groups and their mapping to VoltDB roles []

.security.ldap.group.name Distinguished name of LDAP group ""

.security.ldap.group.nickname Arbitrary but unique name for this group entry (Volt V14+) name/role

.security.ldap.group.role Comma-list of Volt roles equivalent to this LDAP group ""

.security.ldap.groupclass Name of the LDAP schema's objectClass defining a group of
users

"groupO-
fUnique-
Names"

.security.ldap.groupmemberid Name of the LDAP schema's objectClass defining a group of
users

"unique-
Member"

.security.ldap.password Password corresponding to LDAP server username, required ""

.security.ldap.rootdn Distinguished Name of the root of the LDAP schema that defines
users and groups, required

""

.security.ldap.server URL for LDAP server, required; as 'ldap://server:port', or
'ldaps://server:port', port optional

""

.security.ldap.ssl.truststore.file Truststore file used to validate LDAPS server certificate (Java
KeyStore format)

""

.security.ldap.ssl.truststore.password Password for LDAP truststore file ""

.security.ldap.timeout Timeout, in seconds, for requests to the LDAP server 10

.security.ldap.user Username used by VoltDB for read-only access on LDAP server,
required

""

.security.ldap.userclass Name of the LDAP schema's objectClass containing user infor-
mation

"inetOrg-
Person"

.security.ldap.useruid Name of the LDAP attribute in the userObjectClass that should
contain the username provided by the VoltDB client

"uid"

.security.provider Sets authentication provider as hash (local) or ldap (using a cus-
tomer-specified LDAP/LDAP server)

hash

.snapshot.enabled Enable/disable periodic automatic snapshots true

75

VoltDB Helm Properties

Parameter Description Default

.snapshot.frequency Frequency of automatic snapshots (in s,m,h) 24h

.snapshot.prefix Unique prefix for snapshot files AUTOS-
NAP

.snapshot.retain Number of snapshots to retain 2

.snmp.authkey SNMPv3 authentication key if protocol is not NoAuth voltdbau-
thkey

.snmp.authprotocol SNMPv3 authentication protocol. One of: SHA, MD5, NoAuth SHA

.snmp.community Name of SNMP community public

.snmp.enabled Enables or disables use of SNMP false

.snmp.privacykey SNMPv3 privacy key if protocol is not NoPriv voltdbpri-
vacykey

.snmp.privacyprotocol SNMPv3 privacy protocol. One of: AES, DES, 3DES, AES192,
AES256, NoPriv

AES

.snmp.target Host name or IP address, and optional port (default 162), for SN-
MP server

""

.snmp.username Username for SNMPv3 authentication; else SNMPv2c is used ""

.ssl.clientauthrequired Enables mTLS on external port; client applications must be con-
figured with a certificate

false

.ssl.crl.configName Name of pre-created Kubernetes configmap containing CRL
files (overrides the explicit CRL files if defined)

""

.ssl.crl.file Map of optional explicit CRL files (e.g. --set-file clus-
ter.config.deployment.ssl.crl.file.1=crl1, --set-file cluster.con-
fig.deployment.ssl.crl.file.2=crl2, etc...)

{ }

.ssl.dr Extends TLS/SSL security to the DR port (5555). false

.ssl.drclientauthrequired Enables mTLS on DR port; DR consumer will use local cluster
keystore to identify itself to remote

false

.ssl.enabled Enable or disable TLS/SSL on the cluster. Other properties con-
trol activation of TLS/SSL for specific ports and features.

false

.ssl.external Extends TLS/SSL security to all external ports (default admin
21211, client 21212).

false

.ssl.internal Extends TLS/SSL security to the internal port (default 3021). false

.ssl.keystore.file Keystore file for cluster, in Java Key Store format; ignored if
sslSecret is used

""

.ssl.keystore.password Password for VoltDB keystore file ""

.ssl.sslSecret.certSecretName Pre-made secret containing keystore and truststore data, option-
ally including passwords

""

.ssl.sslSecret.passwordSecretName Pre-made secret containing password for keystore/truststore, if
password is not in the secret named by certSecretName

""

.ssl.truststore.file Truststore file, in Java Key Store format; ignored if sslSecret is
used

""

.ssl.truststore.password Password for VoltDB truststore file ""

76

VoltDB Helm Properties

Parameter Description Default

.systemsettings.clockskew.interval Interval of the scheduled clock skew collection (minutes). 0 is
allowed and it disables collection. Interval cannot be less than 0
and if set below such value it will be reset to default.

60

.systemsettings.compaction.interval Interval to indicate how often memory compaction should run
(seconds)

60

.systemsettings.compaction

.maxcount
Set a target block count compaction should try and achieve if
there is memory fragmentation

1

.systemsettings.elastic.duration Target value for the length of time each rebalance transaction
will take (milliseconds)

50

.systemsettings.elastic.throughput Target value for rate of data processing by rebalance transactions
(MB)

2

.systemsettings.flushinterval.dr

.interval
Interval for flushing DR data (milliseconds) 1000

.systemsettings.flushinterval.export

.interval
Interval for flushing export data (milliseconds) 4000

.systemsettings.flushinterval

.minimum
Interval between checking for need to flush (milliseconds) 1000

.systemsettings.priorities.batchsize Modifies priority scheduling algorithm to execute multiple re-
quests before rescheduling

25

.systemsettings.priorities.dr.priority Priority for DR requests (1-8, 1 is highest priority) 5

.systemsettings.priorities.enabled Enables priority scheduling of requests by VoltDB cluster (true/
false)

false

.systemsettings.priorities.maxwait Modifies priority scheduling by setting a limit on time waiting
while higher priority requests execute (millisecs)

1000

.systemsettings.priorities.snapshot

.priority
Priority for snapshot requests (1-8, 1 is highest priority) 6

.systemsettings.procedure

.copyparameters
If set, mutable array parameters should be copied before process-
ing

true

.systemsettings.procedure.loginfo Threshold for long-running task detection (milliseconds) 10000

.systemsettings.query.timeout Timeout on SQL queries (milliseconds) 10000

.systemsettings.resourcemonitor

.disklimit.commandlog.alert
Alert level for disk use (in GB or as percentage, empty is unlim-
ited)

""

.systemsettings.resourcemonitor

.disklimit.commandlog.size
Limit on disk use (in GB or as percentage, empty is unlimited) ""

.systemsettings.resourcemonitor

.disklimit.commandlogsnapshot.alert
Alert level for disk use (in GB or as percentage, empty is unlim-
ited)

""

.systemsettings.resourcemonitor

.disklimit.commandlogsnapshot.size
Limit on disk use (in GB or as percentage, empty is unlimited) ""

.systemsettings.resourcemonitor

.disklimit.droverflow.alert
Alert level for disk use (in GB or as percentage, empty is unlim-
ited)

""

.systemsettings.resourcemonitor

.disklimit.droverflow.size
Limit on disk use (in GB or as percentage, empty is unlimited) ""

.systemsettings.resourcemonitor

.disklimit.exportoverflow.alert
Alert level for disk use (in GB or as percentage, empty is unlim-
ited)

""

77

VoltDB Helm Properties

Parameter Description Default

.systemsettings.resourcemonitor

.disklimit.exportoverflow.size
Limit on disk use (in GB or as percentage, empty is unlimited) ""

.systemsettings.resourcemonitor

.disklimit.snapshots.alert
Alert level for disk use (in GB or as percentage, empty is unlim-
ited)

""

.systemsettings.resourcemonitor

.disklimit.snapshots.size
Limit on disk use (in GB or as percentage, empty is unlimited) ""

.systemsettings.resourcemonitor

.disklimit.topicsdata.alert
Alert level for disk use (in GB or as percentage, empty is unlim-
ited)

""

.systemsettings.resourcemonitor

.disklimit.topicsdata.size
Limit on disk use (in GB or as percentage, empty is unlimited) ""

.systemsettings.resourcemonitor

.frequency
Interval between Resource Monitor resource checks (seconds) 60

.systemsettings.resourcemonitor

.memorylimit.alert
Alert level for memory use (in GB or as percentage) 70%

.systemsettings.resourcemonitor

.memorylimit.size
Limit on memory use (in GB or as percentage) 80%

.systemsettings.resourcemonitor

.memorylimit.compact
Enable memory compaction true

.systemsettings.snapshot.priority Delay factor for snapshot work; larger values cause longer waits
between bursts of execution. Ignored if systemsettings.priorities
.enabled is true.

6

.systemsettings.snapshot.autotune

.enabled
Autotuning for snapshot work (for beta test only, in 14.1.0) false

.systemsettings.temptables.maxsize Limit the size of temporary database tables (MB) 100

.task.mininterval Task scheduling parameter 0

.task.maxfrequency Task scheduling parameter 0.0

.task.threadpools Threadpools available for task execution []

.task.threadpools.host.size Threadpool host size 0

.task.threadpools.partition.size Threadpool partition size 0

.threadpools List of thread pools to create []

.threadpools.pool.name Thread pool name ""

.threadpools.pool.size Thread pool size ""

.topics.broker.properties Kafka topics: broker configuration properties []

.topics.broker Kafka topics: broker configuration ``

.topics.enabled Kafka topics: enabled or not (supported since V11) true

.topics.threadpool Kafka topics: threadpool to use ``

.topics.topic.allow List of roles allowed to access the topic ``

.topics.topic.format Format of topic message ``

.topics.topic.name Topic name ``

.topics.topic.opaque Is this an opaque topic? false

.topics.topic.priority Priority for topics requests (if priority scheduling is enabled) 4

78

VoltDB Helm Properties

Parameter Description Default

.topics.topic.procedure Procedure to invoke upon getting message ``

.topics.topic.properties Topic configuration properties []

.topics.topic.retention Topic retention policy ``

.topics.topic List of topics []

.users.expires Expiration date for this user account None

.users.name A VoltDB user name ""

.users.password User password ""

.users.plaintext If false, password was pre-hashed false

.users.roles Comma-list of roles assigned to user ""

.users List of VoltDB users to be added to the deployment []

B.7. Operator Configuration Options
The following properties configure the Volt Operator, which is in turn responsible for managing the startup
and operation of all other Volt components.

Table B.6. Options Starting with operator...

Parameter Description Default

.affinity Kubernetes node affinity (node affinity and pod anti-affinity) { }

.cleanupCustomResource Attempt to delete CRD when uninstalling the Helm chart false

.cleanupNamespaceClusters Delete ALL VoltDB clusters in the namespace when the operator
Helm chart is deleted

false

.cleanupImagePullPolicy Pull policy for operator image used in cleanup mode IfNotPre-
sent

.debug.enabled Debug level logging false

.enabled Create VoltDB Operator to manage clusters true

.image.pullPolicy Image pull policy Always

.image.registry Image registry docker.io

.image.repository Image repository voltdb/volt-
db-operator

.image.tag Image tag Same as
Chart ver-
sion

.livenessProbe Standard probe; see Kubernetes documentation for probe set-
tings

See file val-
ues.yaml

.logformat Log encoding format for the operator (console or json) json

.nodeSelector Node labels for pod assignment { }

.podAnnotations Additional custom pod annotations { }

.podLabels Additional custom pod labels { }

.readinessProbe Standard probe; see Kubernetes documentation for probe set-
tings

See file val-
ues.yaml

79

VoltDB Helm Properties

Parameter Description Default

.replicas Pod replica count 1

.resources CPU/Memory resource requests/limits See file val-
ues.yaml

.securityContext Kubernetes container security context See file val-
ues.yaml

.serviceAccount.create If true, create & use service account for VoltDB operator con-
tainers

true

.serviceAccount.name If not set and create is true, a name is generated using the full-
name template

""

.startupProbe Standard probe; see Kubernetes documentation for probe set-
tings

See file val-
ues.yaml

.tolerations Kubernetes pod tolerations for node assignment []

.topologySpreadConstraints Kubernetes topology spread constraint { }

B.8. Metrics Configuration Options
Properties starting with metrics... were used to configure the standalone VoltDB Prometheus agent.
However, the Prometheus agent has been deprecated in favor of per pod metrics. See Section 6.1, “Using
Prometheus to Monitor VoltDB” for more information on using the current metrics system.

B.9. Volt Management Center (VMC) Configura-
tion Options

The following properties start and configure the web-based Volt Management Center auxiliary service.

Table B.7. Options Starting with vmc...

Parameter Description Default

.affinity Kubernetes node affinity { }

.enabled Create VoltDB VMC Service true

.image.pullPolicy Image pull policy Always

.image.registry Image registry docker.io

.image.repository Image repository voltdb/volt-
db-vmc

.image.tag Image tag From glob-
al.voltdb-
Version

.nodeSelector Node labels for pod assignment { }

.resources CPU/Memory resource requests/limits See file val-
ues.yaml

.service.ssl.enabled Enable TLS/SSL for the VMC service: true/false/auto. 'Auto' us-
es cluster settings.

"auto"

.service.ssl.keystore.file Contents of the keystore file for the VMC service (if not using
auto or sslSecret)

""

80

VoltDB Helm Properties

Parameter Description Default

.service.ssl.keystore.password Password for the keystore file for the VMC service ""

.service.ssl.sslSecret.certSecretName Pre-made secret containing truststore data, optionally including
password

""

.service.ssl.sslSecret

.passwordSecretName
Pre-made secret containing password for truststore, if not in se-
cret certSecretName

""

.service.ssl.truststore.file Contents of the trust store file for the VMC service (if not using
auto or sslSecret)

""

.service.ssl.truststore.password Password for the trust store file for the VMC service, if used ""

.serviceSpec.externalTrafficPolicy External Traffic Policy of VMC Service See file val-
ues.yaml

.serviceSpec.type Type of VMC Service See file val-
ues.yaml

.sessionLogging Enable logging of client HTTP sessions and connections to Volt-
DB (V13.3.3+, V14.1.0 and later)

false

.tempVolumeSizeLimit Limit on temporary storage volume mounted on /tmp; see cluster
.clusterSpec.tempVolumeSizeLimit

same as
cluster

.tolerations Pod tolerations for node assignment []

.topologySpreadConstraints Topology Spread Constraint { }

.voltdb.adminPort VoltDB API admin port, uses 21211 if not specified 21211

.voltdb.credSecretName Name of the premade secret. ""

.voltdb.port VoltDB API port, uses 21212 if not specified 21212

.voltdb.ssl.enabled Enable TLS/SSL for VMC to VoltDB traffic: true/false/auto.
'Auto' uses cluster settings if needed.

"auto"

.voltdb.ssl.keystore.file Contents of key store file if VoltDB requires mutual auth,
V14.2+ (if not using auto or sslSecret)

""

.voltdb.ssl.keystore.password Password for key store file, if used ""

.voltdb.ssl.sslSecret.certSecretName Pre-made secret containing truststore data, optionally including
password

""

.voltdb.ssl.sslSecret

.passwordSecretName
Pre-made secret containing password for truststore, if not in se-
cret certSecretName

""

.voltdb.ssl.truststore.file Contents of the VoltDB trust store file (if not using auto or ss-
lSecret)

""

.voltdb.ssl.truststore.password Password for the VoltDB trust store file, if used ""

81

	VoltDB Kubernetes Administrator's Guide
	Table of Contents
	Preface
	1. Structure of This Book
	2. Related Documents

	Chapter 1. Introduction
	1.1. Overview: Running VoltDB in Kubernetes
	1.2. Setting Up Your Kubernetes Environment
	1.2.1. Product Requirements
	1.2.2. Configuring the Host Environment and Accounts
	1.2.3. Configuring the Client
	1.2.4. Granting Kubernetes Access to the Docker Repository

	Chapter 2. Configuring the VoltDB Database Cluster
	2.1. Using Helm Properties to Configure Your Database
	2.2. Configuring the Cluster
	2.3. Configuring the Network Protocols
	2.4. Configuring the Database
	2.4.1. Configuring High Availability (K-Safety and Placement Groups)
	2.4.1.1. Configuring Kubernetes Clusters for High Availability (Spread Constraints and Affinity)
	2.4.1.2. Cloud Native Placement Groups

	2.4.2. Configuring Command Logging
	2.4.3. Configuring Export

	2.5. Configuring Logging

	Chapter 3. Starting and Stopping the Database
	3.1. Starting the Cluster for the First Time
	3.2. Stopping and Restarting the Cluster
	3.3. Resizing the Cluster with Elastic Scaling
	3.3.1. Increasing the Size of the Cluster
	3.3.2. Decreasing the Size of the Cluster
	3.3.3. Autoscaling the Cluster
	3.3.3.1. Enabling Autoscaling
	3.3.3.1.1. Setting Appropriate AutoscalingThresholds
	3.3.3.1.2. Controlling the Autoscaling Process

	3.3.3.2. Monitoring Autoscaling
	3.3.3.3. Troubleshooting Autoscaling and Recovering From Errors

	3.4. Pausing and Resuming the Cluster
	3.5. Starting More than One Cluster Within a Namespace
	3.6. Stopping, Restarting, and Shutting Down Multiple Clusters Within a Namespace

	Chapter 4. Managing VoltDB Databases in Kubernetes
	4.1. Managing the Cluster Using kubectl and helm
	4.2. Managing the Database Using voltadmin and sqlcmd
	4.2.1. Accessing the Database Interactively
	4.2.2. Accessing the Database Programmatically

	Chapter 5. Updates and Upgrades
	5.1. Updating the Database Schema
	5.2. Updating the Database Configuration
	5.2.1. Changing Database Properties on the Running Database
	5.2.2. Changing Database Properties That Require a Restart
	5.2.3. Changing Cluster Properties

	5.3. Upgrading the VoltDB Software and Helm Charts
	5.3.1. Updating Your Helm Repository
	5.3.2. Updating the Custom Resource Definition (CRD)
	5.3.3. Upgrading the VoltDB Operator and Software
	5.3.4. Using In-Service Upgrade to Update the VoltDB Software
	5.3.4.1. The Scope of In-Service Upgrades
	5.3.4.2. How to Perform an In-Service Upgrade
	5.3.4.3. Monitoring the In-Service Upgrade Process
	5.3.4.4. Recovering if an Upgrade Fails

	5.3.5. Updating VoltDB for XDCR Clusters

	Chapter 6. Monitoring VoltDB Databases in Kubernetes
	6.1. Using Prometheus to Monitor VoltDB

	Chapter 7. Configuring Security in Kubernetes
	7.1. Configuring User Accounts and Roles Within The Database
	7.1.1. Assigning Administrative Access to the Volt Operator
	7.1.2. Using Kubernetes Secrets to Store User Definitions
	7.1.3. Updating User Account Secrets

	7.2. Configuring TLS/SSL
	7.2.1. Configuring TLS/SSL With the Helm Install --set-file Argument
	7.2.2. Using Kubernetes Secrets to Store and Reuse TLS/SSL Information
	7.2.3. Using Kubernetes cert-manager to Store TLS/SSL Certificates
	7.2.4. Using Certificate Revocation Lists (CRLs)
	7.2.5. Configuring TLS/SSL for the Volt Operator and VMC

	7.3. Updating TLS/SSL Security Certificates

	Chapter 8. Cross Datacenter Replication in Kubernetes
	8.1. Requirements for XDCR in Kubernetes
	8.2. Choosing How to Establish a Network Mesh
	8.3. Common XDCR Properties
	8.4. Configuring XDCR in Local Namespaces
	8.5. Configuring XDCR Using Load Balancers
	8.5.1. Separate Load Balancers For Each Node (cluster.serviceSpec.perpod)
	8.5.2. Single Load Balancer For Discovery with Virtual Networking Peering (cluster.serviceSpec.dr)

	8.6. Configuring XDCR Using Node Ports for Replication
	8.7. Configuring XDCR Using Network Services

	Chapter 9. Managing XDCR Clusters in Kubernetes
	9.1. Removing a Cluster Temporarily
	9.2. Removing a Cluster Permanently
	9.3. Resetting XDCR When a Cluster Leaves Unexpectedly
	9.4. Rejoining an XDCR Cluster That Was Previously Removed

	Appendix A. Volt Diagnostics Tools
	A.1. Starting and Stopping the Diagnostics Pod
	A.1.1. Using the Diagnostics Pod With a Persistent Volume (PV)
	A.1.2. Using the Diagnostic Tools Securely with TLS/SSL

	A.2. Running the Diagnostic Tools
	A.3. Diagnostic Tools
	A.3.1. Collect (kcollect)
	A.3.2. Mesh Monitor (meshmonitor, V1.5.0 and later)
	A.3.3. Snapshot (ksnapshot, V1.3.0 and later)
	A.3.4. Sqlcmd (ksqlcmd)

	Appendix B. VoltDB Helm Properties
	B.1. How to Use the Properties
	B.2. Top-Level Kubernetes Options
	B.3. Kubernetes Cluster Startup Options
	B.4. Network Options
	B.5. VoltDB Database Startup Options
	B.6. VoltDB Database Configuration Options
	B.7. Operator Configuration Options
	B.8. Metrics Configuration Options
	B.9. Volt Management Center (VMC) Configuration Options

