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ABSTRACT KEYWORDS

A long-standing question in the blockchain community is which
class of computations are efficiently expressible in cryptocurren-
cies with limited scripting languages, such as Bitcoin Script. Such
languages expose a reduced trusted computing base, thereby being
less prone to hacks and vulnerabilities, but have long been believed
to support only limited classes of payments.

In this work, we confute this long-standing belief by showing for
the first time that arbitrary computations can be encoded in today’s
Bitcoin Script without introducing any language modification or
additional security assumptions, such as trusted hardware, trusted
parties, or committees with an honest majority. We present BitVM,
a two-party protocol that realizes a generic virtual machine by
combining cryptographic primitives and economic incentives. We
conduct a formal analysis of BitVM, characterizing its functionality,
system assumptions, and security properties. We further demon-
strate the practicality of our approach by implementing a prototype
and performing an experimental evaluation: in the optimistic case
(i.e., when parties agree), our protocol requires just three on-chain
transactions, whereas in the pessimistic case, the number of trans-
actions grows logarithmically with the size of the virtual machine.
We exemplify the deployment potential of BitVM by building a
Bitcoin-sidechain bridge application. This work not only solves a
long-standing theoretical problem, but it also promises a strong
practical impact, enabling the development of complex applications
in Bitcoin.
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1 INTRODUCTION

Smart contracts are a foundational component of modern
blockchain systems, enabling decentralized applications (dApps)
and programmable money without the need for trusted intermedi-
aries. These self-executing programs have unlocked a wide range
of use cases, spanning finance, governance, and supply chain man-
agement, by enforcing agreement logic directly on-chain.

While some blockchains, such as Ethereum, support quasi-Turing
complete! execution through bytecode languages like the Ethereum
Virtual Machine (EVM), others, most notably Bitcoin, opt for a min-
imalist approach. Bitcoin Script deliberately limits expressiveness
to minimize complexity and attack surface, trading expressiveness
for security and stability.

This trade-off has given rise to a long-standing open question:
Can general-purpose computation be supported on Bitcoin, using only
its existing scripting language and consensus rules? Unlocking such
expressiveness could expand Bitcoin’s utility for dApps and decen-
tralized finance (DeFi), while preserving its conservative security
model.

The prevailing belief in the blockchain community is that Bit-
coin Script cannot support general-purpose computation in practice.
This belief stems from several structural limitations of the language:
it is stateless, lacks loops and recursion, and enforces strict con-
straints on script and transaction size. These properties make it
well-suited for simple functionalities, such as multisignature pay-
ments or hashed timelock contracts, but appear to rule out the
execution of complex logic on-chain.

!This term is adopted in the blockchain community to indicate Turing-complete lan-
guages that enforce termination by bounding the execution (e.g., via gas consumption
in Ethereum) [27].
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Several proposals have attempted to overcome these constraints,
either by extending Bitcoin with new opcodes (e.g., covenants [8]),
encoding computations into low-level counter machines [9], or rely-
ing on trusted execution environments [14, 20] and oracles [15, 25].
However, these approaches either require consensus changes, incur
prohibitive on-chain costs, or compromise Bitcoin’s trust model.
As a result, it has long been assumed that supporting arbitrary
computation on Bitcoin would require trade-offs incompatible with
its conservative design philosophy.

Contributions. In this work, we challenge this long-standing be-
lief by showing that arbitrary (bounded) computations can be ex-
ecuted securely on Bitcoin in a practical manner. We introduce
BitVM?, a two-party protocol that enables expressive, verifiable
off-chain computation using only existing Bitcoin features. BitVM
requires no consensus changes, no new opcodes, and no trusted
hardware or oracles.

The core idea behind BitVM is to shift computation off-chain
while retaining on-chain verifiability through a fraud-proof mech-
anism. Specifically, a prover submits a claim about the output of
a bounded computation. The verifier can either accept the result
or, in case of disagreement, initiate an interactive dispute protocol.
This protocol relies on a custom virtual machine that encodes com-
putation as an execution trace, enabling the parties to identify a
point of disagreement and verify a single step of computation using
Bitcoin Script.

When both parties agree, the entire process completes with just
three on-chain transactions. In case of dispute, BitVM guarantees
that verification incurs only a logarithmic number of additional
transactions. This makes BitVM both practical and expressive, en-
abling Bitcoin to support advanced smart contract functionality
without compromising it trust model or requiring protocol changes.

To illustrate how BitVM operates in practice, consider a simple
two-party wager: a prover claims to have solved a chess puzzle,
and a verifier bets against them. Both parties lock funds into a
BitVM contract that verifies the claimed solution. If the verifier
agrees, the outcome is settled off-chain. If not, they can initiate
an on-chain dispute. The contract then executes the verification
step by step, and settles the funds accordingly, using only Bitcoin
Script to enforce the outcome. While conceptually simple, this
example demonstrates the core functionality of BitVM: enabling
trustless agreement on arbitrary computation, with minimal on-
chain footprint in the absence of disputes.

This same mechanism underpins more complex applications. A
key example, which we outline in this work, is a trust-minimized
bridge between Bitcoin and a sidechain. In typical designs, a commit-
tee of operators handles redemptions from the sidechain to Bitcoin,
with security guaranteed only under an honest-majority assump-
tion (t-of-n, where t > n/2). With BitVM, this trust requirement is
minimized to ¢ = 1: any operator can front coins to a user on Bitcoin
and later claim reimbursement by proving correctness. If another
committee member disputes the claim, they can initiate a BitVM
instance to verify or refute it on-chain. This approach reduces the
trust assumption from an honest majority to the existence of a sin-
gle honest party, while remaining fully compatible with Bitcoin’s

2This work extends and formalizes the original BitVM design, which was conceptual-
ized and developed by Robin Linus [30].
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existing scripting model. Crucially, such a bridge serves as a foun-
dational building block for a broader ecosystem of decentralized
applications: once assets can move between Bitcoin and external
execution layers securely and trustlessly, DeFi protocols, from de-
centralized exchanges to lending platforms, can operate on top of
Bitcoin without compromising its security guarantees. This vision
is already being explored by several ongoing deployment efforts,
e.g., [13, 19, 31], based on the initial informal BitVM report [30].
This paper makes the following contributions:

e We present BitVM, the first protocol to encode quasi-Turing
complete computations in Bitcoin Script, requiring no consensus
changes or trusted third parties (Section 5).

e We provide a formal analysis of BitVM, characterizing its func-

tionality, system assumptions, and security properties (Section 6).

To show the feasibility of our approach, we implement a pro-

totype of BitVM in JavaScript.3 Optimistic execution completes in

three on-chain transactions, costing approximately

5, 832 satoshis* (as of April 2025). In case of disputes, the on-chain

footprint grows logarithmically with the computation size. For a

virtual machine with 232 memory cells and steps—comparable

to a high-end 1990s workstation—settlement requires up to 81

transactions, at a cost of approximately 732, 000 satoshis (Sec-

tion 7).

e We demonstrate the capabilities of BitVM by constructing a trust-
minimized bridge protocol between Bitcoin and a sidechain, re-
ducing the traditional honest-majority assumption to that of a
single honest operator (Section 8).

Related work. Several works have attempted to overcome the
limited expressiveness of Bitcoin Script and enable more complex
smart contracts by combining UTXOs and scripts, effectively split-
ting functionality across multiple transactions. BitML [10] provides
a high-level, domain-specific language and compiler that translates
programs into Bitcoin transactions, illustrating Bitcoin’s potential
for intricate smart contract designs [7]. These methods, however,
incur substantial on-chain costs, as compiled programs often result
in numerous large transactions that must ultimately be recorded
on-chain.

To mitigate these costs, some approaches leverage Trusted Ex-
ecution Environments (TEEs). FastKitten [14] facilitates off-chain
computation within a secure hardware enclave, but relies on col-
lateral, rational adversaries, trusted TEE operators, and a limited
contract duration. POSE [20] improves upon FastKitten by remov-
ing collateral requirements and time constraints, and by enhancing
privacy, but it continues to rely on trusted TEE hardware.

A different approach uses Hashed Timelock Contracts (HTLCs)
to shift computation off-chain by encoding outcomes in preim-
ages of hash functions [6], similar in spirit to state channels on
Ethereum [16, 18]. This model underpins constructions such as
Discreet Log Contracts (DLCs)[15] and oracle-based conditional
payments[25], which depend on (semi-)trusted oracles to attest
to specific events. A key limitation of these approaches is that all
possible outcomes must be known and encoded in advance. Con-
sequently, they cannot support applications like the chess puzzle
or the bridge example, where the correct outcome—such as the

3The prototype is available in an anonymized GitHub repository [2].
4A satoshi is a fraction of a bitcoin, i.e., 1sat = 1038,
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solution to a puzzle or the identity of the party holding funds on
the sidechain—may not be known a priori to any participant.

Unlike prior works, BitVM enables quasi-Turing complete com-
putation on Bitcoin without consensus changes or relying on exter-
nal trust assumptions, such as TEEs and semi-trusted oracles. It is
the first trustless protocol to allow arbitrary, bounded computation
on Bitcoin, while incurring logarithmic on-chain cost in the worst
case, unlocking a range of potential applications.

A concurrent line of work [23], informally referred to as BitVM2,
proposes an alternative approach with the primary goal of building
a bridge between Bitcoin and layer-2 systems. This work, released
as a technical draft at the time of writing, compiles a zk-verifier
program into large Bitcoin Scripts, splits them across transactions,
and commits to intermediary states on-chain. While this design
supports permissionless dispute resolution, it incurs high on-chain
cost, requiring at least one transaction that fills a 4MB Bitcoin
block in case of disputes (e.g., ~ $2,211). In contrast, our BitVM
construction is better suited for permissioned settings and dispute
resolution with significantly lower on-chain cost (e.g., ~ $515 in
the same scenario), while offering formal security guarantees.

Table 1 summarizes the main distinctions between existing Bit-
coin smart contract approaches in terms of expressiveness, trust
assumptions, and on-chain cost.

Table 1: Comparison of Bitcoin-based smart contract ap-
proaches. n denotes the upper bound on computational steps,
and QT refers to Quasi-Turing completeness.

Approach Expressiveness | Extra Assumptions | On-chain cost
BitML [7, 10] QT None O(n)
TEEs [14, 20] QT TEE 0(n)
Gen. Channels [6] Bitcoin None 0(1)
Oracles [15, 25] QT trusted oracle 0(1)
BitVM QT None O(log(n))

2 MODEL

BitVM is a protocol between two mutually distrusting parties, the
prover P and the verifier V, designed to enable P to prove on the
Bitcoin blockchain that the outcome of a pre-agreed computation
with V was performed correctly. Concretely, for an agreed-upon
Turing-complete program II, a BitVM instance secures collateral
from both parties and it enables P to enforce a transaction on-chain
based on the outcome II(x) for a specific input x. In other words,
II(x) dictates the payout of the funds within the BitVM instance,
typically allocating them to P and V. If P or V stop collaborating
during protocol execution, after a designated period all the funds
are allocated to the other party.

2.1 System model

We assume time advances in discrete rounds (1, 2, . . . ). Protocol par-
ticipants run in probabilistic polynomial time (PPT) in the security
parameter k. We assume synchronous communication, i.e., mes-
sages sent between parties arrive at the beginning of the next round,

SNote that P and V can also agree to allocate the funds to a third party or, more
generally, make the funds spendable under any condition that can be expressed in
Bitcoin Script.
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as well as authenticated communication channels. Our protocol
employs a hash function modeled as a random oracle H : {0,1}* —
{0, 1}* which maps an input of arbitrary length to a fixed k-sized
output. Moreover, our protocol builds upon a distributed ledger
protocol (e.g., [5, 21, 32]).

DEFINITION 1 (DISTRIBUTED LEDGER PROTOCOL). A distributed
ledger protocol is an interactive Turing machine exposing the following
functionality on each party.

o execute(): executes one protocol round and enables the machine
to communicate with the network, invoked by the environment
in every round;

o write(tx): takes as input a transaction from the environment;

o read(): outputs a finite, ordered sequence of transactions, also
known as transaction ledger L.

We denote LY as the output of invoking read() on party P at the
end of round r. We restrict honest parties to only include valid trans-
actions in their ledgers®. As we are interested in building BitVM on
Bitcoin, when we present the construction, transactions are deemed
(in)valid based on Bitcoin’s validation rules (see Section 3.1). How-
ever, BitVM can be built on top of any distributed ledger protocol
with validation rules as expressive as those of Bitcoin. We assume
that our protocol participants have access to the functionality ex-
posed by the distributed ledger protocol, either by being an active
participant or by running some (light) client protocol. We are in-
terested in distributed ledger protocols that are safe and live, as
defined below (cf. [5, 21, 32]). Given two sequences A and B, we
use A < B to mean that A is a prefix of B.

DEFINITION 2 (STICKINESS). A distributed ledger protocol is sticky
if for any honest party P and any rounds ri < ry, it holds that

P P
b <P

DEFINITION 3 (SAFETY). A distributed ledger protocol is safe, if
it is sticky and for any pair of honest parties P1, Py and any pair of
rounds ry, ra, it holds that Lfll < szz \% szz < Lfll.

DEFINITION 4 (LIVENESS). A distributed ledger protocol execution
is live(u), if any transaction that is written to an honest party’s ledger
at round r, appears in the ledger of all honest parties by round r + u,

denoted as LQM.

Throughout this paper, we say “publish a transaction ¢x (on L)” to
denote calling the function write(tx). Furthermore, after publishing
a valid transaction tx, we sometimes say “wait until tx appears
(on L), to denote calling the function read() every round until
tx € L, which happens at most after u rounds due to liveness.
When presenting the BitVM construction, we sometimes refer to
the ledger as blockchain even though the distributed ledger protocol
could be realized differently. We say something happens on-chain
if there are one or more corresponding transactions in the ledger,
and something happens off-chain if there are no corresponding
transactions on the ledger.

There is a ledger state that is induced by a ledger L, denoted
as st(L), by executing each transaction in order, starting with a
genesis state. The execution of transactions is captured by a state

®This is not strictly necessary and is done mainly for convenience. Parties could also
take an outputted ledger and remove invalid transactions from it.
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transition function, taking a state and a transaction and outputting
a new state. We denote bal_ (P) € R as the balance of party P
in the state induced by L. A party can use parts of their balance
inp € [0, bal| (P)] as monetary input for a transaction. For a given
ledger L, we define the on-chain (monetary) utility of a transaction
tx € L for a party P as w (P, tx) := bal (P) — baly,(P), where
L; < L is the ledger up to (not including) ¢tx and Ly := Lq|tx.
Usually, it is obvious which ledger we refer to, so we omit the
subscript. In addition to balances of parties, a ledger state st(L) can
include a string s € {0, 1}*, denoted as s € st(L), if there exists a
transaction tx € L, such that tx contains the string s.

2.2 Threat model

We analyze BitVM in the presence of a PPT adversary that may cor-
rupt any protocol party {P, V'} during the execution of the protocol.
The adversary can corrupt parties, causing them to behave either
as Byzantine or as rational actors. Byzantine parties can deviate
arbitrarily from the honest protocol execution. Contrarily, rational
parties deviate from the honest protocol execution only when such
action increases their monetary utility.

The protocol gives different guarantees based on the type of
corruption. On a high level, we want to show that (i) honest protocol
participants are guaranteed their rightful balance even if the other
party is Byzantine, (ii) rational parties follow the honest protocol
execution, and (iii) if both parties behave rationally, the protocol
follows an optimistic execution (which is efficient). We formally
define these properties in Section 2.3.

2.3 Protocol goals

The core objectives of BitVM are termed balance security and ra-
tional correctness. Informally, balance security ensures an honest
party will not lose their funds against Byzantine counterparties,
whereas rational correctness guarantees that rational parties will
follow the protocol. To formally define balance security we argue
in terms of utility, i.e., the utility of the on-chain state of an honest
party after the settlement of a BitVM instance will be at least equal
to its utility of the correct final state, regardless of the actions of
its counterparty. Rational correctness implies that if both parties
are rational, they will commit on-chain the correct final state of
the BitVM instance. These properties are standard in the literature:
for instance, an honest user of a Lightning channel [28] can al-
ways dispute a malicious commitment and claim the channel funds,
while rational players will always commit to the last agreed-upon
state [29].

We formalize these objectives on a generic primitive, which we
call on-chain state verification protocol and is defined as follows.

DEFINITION 5 (ON-CHAIN STATE VERIFICATION PROTOCOL). An
on-chain state verification protocol, parameterized over a distributed
ledger protocol that outputs a ledger L, is a two-party protocol that
exposes the two following functionalities:

o setup(inp, iny,I1, f): takes as input monetary inputs inp €
[0,bal  (P)] and iny € [0,bal (V)] of parties P and V, a
computable function (or program)I1 : S — O that maps a set
of states S to a set of outcomes O and an outcome mapping

function f : O — Rzzo’ that maps the set of outcomes O
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to pairs of utilities (vp,vy) where vp + vy < inp + iny and
returns an instance I .

o execute(1,x): takes as input an instance I returned by the
setup function and a function input x € S (for function II).

Consider an execution of this primitive for given inputs inp, iny,

IL, f, where I « setup(inp, iny,IL, f), and then execute(Z, x) are

called, and finish in round r. Let 7 be the set of transactions that

are included in LQru as a result of this execution. Moreover, we
denote the utility of party A € {P,V} in f(II(x)) by fa(II(x)).

Balance Security. An execution achieves balance security, if it
holds that Y}, cq(w(tx,A)) = vy where vq4 = fy(II(x)),
for any honest A € {P,V}.

Rational Correctness. An execution achieves rational correct-
ness, if P and V are rational and ) ;,cq(w(tx, A)) = va
where v4 = fy(II(x)), for any A € {P,V} and II(x) €
st(LQru .

An on-chain state verification protocol achieves balance secu-

rity and rational correctness, respectively, if for any inp, iny, IL, f

the probability that the corresponding execution does not achieve

balance security and rational correctness, resp., is negligible in .

3 PRELIMINARIES

In this section, we present the necessary background concerning
Bitcoin Script and the key primitives our construction builds upon.

Notation. Given a sequence A := (ay,...,an), Ali] represents its
i-th element.We use A[i : j] to denote the subsequence (a;, ..., a;).
We use |A| to denote the length of a sequence, e.g., | (a1, . .., an)| = n.
For a string s € {0, 1}*, we use |s|p;; to denote its bit length.

3.1 Transactions in the UTXO model

A user U on a ledger L is identified by the secret-public key pair
(pky;, sky,); by oy (m) we denote the digital signature of U over the
message m € {0,1}".

In the unspent transaction output (UTXO) model, a transaction
Tx maps a (non-empty) list of existing, unspent, transaction outputs
to a (non-empty) list of new transaction outputs. A transaction out-
put is defined as an attribute tuple out := (aB}, lockScript), where
out.a € R is the amount of coins (expressed in B) held by the out-
put out and out.lockScript is the condition that needs to be fulfilled
to spend it and transfer the coins to a new output, which we also
call UTXO. We distinguish the already existing transaction outputs
(input of a transaction Tx) from the newly created outputs calling
them Tx.inputs and Tx.outputs, respectively. A transaction input in
is defined as in := (PrevTx, outlndex, lockScript), where the output
being spent is uniquely identified by specifying the transaction
PrevTx and an output index outlndex. To improve readability, we
also give the locking script lockScript that is being fulfilled.

We formally define a transaction as a tuple

Tx = (inputs, witnesses, outputs) where Tx.inputs :=
[iny,...,iny] are the transaction inputs, Tx.outputs =
[outy, ..., outy] are the transaction outputs and Tx.witnesses :=
[wi, ..., wp] represents the witness data, i.e., the list of the tuples

that fulfill the spending conditions of the inputs, one witness for
each input. The locking script of an output is expressed in the script-
ing language of the ledger. To transfer the coins held in a UTXO, its



BitVM: Quasi-Turing Complete Computation on Bitcoin

locking script is executed with a witness as script input and must
return True; if successful, the condition is considered fulfilled. If
the script execution returns False, the condition is not fulfilled and
the UTXO is not spendable’.

A transaction is valid only if every UTXO in input is unspent,
the witnesses fulfill the conditions of the corresponding locking
scripts, and the sum of the coins held in the inputs is equal to or
greater than the sum of the coins held in the outputs.

Transaction spending conditions. Bitcoin has a stack-based script-
ing language. Below, we describe the subset of Bitcoin spending
conditions that we use in this paper.

e Signature locks. The spending condition CheckSigpkU (m) is
fulfilled if the signature oy (m) is part of the witness.
Multisignature locks. To fulfill this spending condition, k out
of n signatures are required. In particular, for two users A and B,
a spending condition that represents a 2-of-2 multi-signature of a
message m between them is denoted as CheckMSigpkAB (m) and

is fulfilled by giving the signature o4 g(m) as part of the witness
of the spending transaction.
Relative timelocks make a transaction output spendable only
after a specified time A has elapsed since the transaction was
included on-chain. We denote the relative timelock spending
condition as TL(A).
Taproot trees [33], also known as Taptrees, enable a UTXO to be
spent by satisfying one of several possible spending conditions.
These conditions, referred to as Tapleaves, form the leaves of a
Merkle tree. To spend a UTXO locked by a Taptree locking script,
the user must provide a witness for one of the Tapleaves along
with proof of inclusion of that leaf in the Taptree.
We denote the Tapleaves of a Taptree locking script as
(leafy, ..., leaf,). When a user fulfills the script leaf; to unlock
the j-th output of the transaction Tx, the corresponding input is
represented as (Tx, j, (leaf;)).
Whenever a user spends a UTXO via a Tapleaf of a Taptree, we
assume that they have provided a valid Merkle proof of inclusion
for that Tapleaf.
e Other conditions. We denote with True (False) a condition that
is always fulfilled (can never be fulfilled), and with h(x) the hash
of x.

We use * to denote a generic transaction input, witness, or output
that is not directly relevant to our protocol, provided it remains
valid under Bitcoin consensus rules.

Combining spending conditions. When presenting spending
conditions with complex logic, we explicitly provide their pseu-
docode. We use the conditions described in this section as building
blocks, combining them with standard Bitcoin Script constructions
using logical operators A (and) and V (or). Furthermore, for con-
venience, inside long scripts we append the keyword Verify to
sub-spending conditions that return either True or False with the
following meaning;: if the sub-spending condition returns True, pop
True from the stack and continue to execute the rest of the script,
if it returns False, mark the transaction as invalid (and thus fail to

"In this work, we separate the locking script from the witness for readability. However,
note that in practice, the protocol is implemented using SegWit[24] transactions, where
the locking script is included in the witness.
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unlock the long script). This is meant to mimic how the Bitcoin
OP_VERIFY opcode works.

3.2 Lamport digital signature scheme

Let h : X — Y be a one-way function, where X := {0,1}* and
Y := {0, 1}, fora given security parameter A. Let m € {0,1}¢ be a ¢-
bit message, with £ € N . A Lamport digital signature scheme [22]
Lamp consists of a triple of algorithms (KeyGen, Sig, Vrfy), where:

o (pkat, skp) < Lamp.KeyGen(?) (cf. Algorithm 1), is a Proba-
bilistic Polynomial Time (PPT) algorithm that takes as input a
positive integer £ and returns a key pair, consisting of a secret
key sk pq and a public key pk ¢ which can be used for one-time
signing an £-bit message. We use M = {0, 1}¢ as an alias for the
£-bit message space.

® cm « LampSigy (m) (cf. Algorithm 2), is a Deterministic
Polynomial Time (DPT) algorithm parameterized by a secret key
sk o, that takes as input a message m € M and outputs the
signature cy,, which we also call (Lamport) commitment.

e {True, False} « Lamp.VrfypkM (m,cm) (cf. Algorithm 3), is a
DPT algorithm parameterized by a public key pk 5 that takes
as input a message m, a signature ¢, and outputs True iff ¢, is
a valid signature for m generated by the secret key sk 4, corre-
sponding to pk 4, i.e., (pkpq, sk pq) is a key pair generated by
Lamp.KeyGen.

Algorithm 1 The key generation algorithm Lamp.KeyGen for a ¢-bit
messages space M. In the following algorithms, we use matrix notation,
i.e., for a given two-dimensional matrix a, a[i, j] refers to the element at
row i and column j of it.

1: function Lamp.KeyGen(?)
x[0,0],...,x[0,£ - 1]
x[1,0],...,x[1,£—1]
is sampled uniformly at random from the set X;
3: fori=0,1and j=0,...,£—1do
4 yli, j1 < h(x[i j1);
y[0,0],...,y[0,¢£ - 1]
»o betpbaee (y[l,o],...,y[l,[— 1])
6: return (skpq, pkpt).

2: Let skpq ( ), where every element x[i, j]

5

Algorithm 2 The Lamport signature algorithm Lamp.Sig, parameterized
over a secret key sk for a ¢-bit sized message space M.

1: function LampSigsk (m)

2: fori=0,...,f—1do

3: Let ¢ [i] < skp[mlil,i];
4: return c;,.

Algorithm 3 Lamport verification algorithm Lamp.Vrfy, parameterized
over a public key pky for a £-bit message space M.

1: function LampAVrfypkM (m, cm)

2 fori=0,...,f—1do

3: if h(cm|i]) # pkpt[ml[i], i] then
4: return False;

5 return True.
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Lamport signatures are secure one-time signatures. Given a mes-
sage space M, it is possible to sign any message m € M by using
the secret key sk 5 of the key pair (sk pq, pkpg), i-e., the key pair
associated to M. When the message m is signed and ¢y, is created,
the key pair becomes bound to m. No polynomially bounded adver-
sary is able to forge a signature for a different message m’ # m with
non-negligible probability. However, if the signer uses the same
secret key sk 5 to sign another different £-bit messages m’”’ # m,
they can be held accountable. We call this action equivocation and
we show how to detect it in Algorithm 4.

Notice that signing the ¢-bit message m with the secret key sk 4
consists in revealing for every biti = 0,...,¢ — 1 of m one of the
two preimages that compose the i — th column of secret key sk y4,
namely, revealing x[0, i] to claim that m[i] = 0, or revealing x[1, i]
to claim that m[i] = 1. When the signer reveals both x[0, i], x[1, i]
for any bit i, they are equivocating.

For a formal discussion about one-time security and a proof that
Lamport signatures are one-time secure (assuming the existence of
one-way functions), see [11]. One-time security is crucial for the
correctness of BitVM as it enables the signer of a message to make
a non-repudiable commitment to that message. Lamport signatures
are implementable using Bitcoin Script, as demostrated in [2].

Algorithm 4 The CheckEquivocation algorithm for a bit b € 8 = {0, 1}.
The input is the corresponding public key pkg and two preimages x’, x” €
X.

1: function CheckEquivocation(pkg, x’, x”’)

2 if (h(x’) = pkg[0,0] and h(x”) = pkg[1, o]) then

3: return True;

4: > The committer is trying to commit to both 0 and 1 for the bit

174 <
5: else
6: return False.

In the following, we are interested in Lamport signatures as a
mechanism to enable a party to commit to (single or multiple bits)
messages. Thus, we will refer to Algorithm 2 as Comm instead of
Lamp.Sig and to Algorithm 3 as CheckComm instead of Lamp.Vrfy.

3.3 Stateful Bitcoin scripting

Although the Bitcoin scripting language is stateless, a clever use
of one-time digital signature schemes, such as Lamport signatures,
enables state preservation across different Bitcoin transactions.

Consider the following example: Let a user U hold a Lamport key
pair (sk pq, pk pq) associated with M, the set of all £-bit messages.
We can think of M as a variable that can hold any ¢-bit string. U
can assign a value m to M by creating the commitment ¢, «—
CommskM (m).

By hard-coding CheckCommyy.,, for a public key pk 44 in the
locking script of multiple outputs, this variable assignment can not
only be verified but also transferred from one output to another, ef-
fectively establishing a global state in Bitcoin. This is accomplished
by reading m and ¢y, from the unlocking script of one output and
passing them to another output through its witness. For exam-
ple, consider two different transactions Txq := (x, %, [outy, *]) and
Txo = (%, %, [out;, *]), where the outputs are defined as out; :=
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(aB, CheckCommyy., ) and out] = (bB, CheckCommyy, ). To un-
lock both out; and out}, a Lamport commitment ¢y, must be pro-
vided. Since the same Lamport public key appears in both scripts,
every party in the network knows that when U unlocks these scripts,
U is assigning a value to the same variable M. Following from one-
time security, no user other than U can assign a different value to
M without knowing sk 5. Moreover, U cannot assign two different
values m; # my to M without equivocating, which is detectable
and can be punished on-chain.

4 BitVM VIRTUAL MACHINE

In the BitVM protocol, both parties employ a Virtual Machine (VM)
to run off-chain any deterministic program II. Although the under-
lying concept closely resembles an abstract machine, we choose to
retain the term “VM" to stay consistent with the original naming
of the construction. In this section, we describe the components
of the VM and demonstrate how to initialize them for practical
deployment of the protocol.

VM components. At a high level, the virtual machine (VM) exe-
cutes programs composed of instructions written in a
VM-compatible language. While the program is running, the VM
continuously performs an instruction cycle, or state transition func-
tion. In each cycle, the VM fetches the instruction indicated by
the program counter, loads the values stored at specific memory
addresses referenced by the instruction, executes the operation
defined by the instruction on those values, stores the result at the
designated memory address, and updates the program counter ac-
cordingly (cf. Definition 7).

This process repeats until the program terminates or reaches
a predefined execution limit. Throughout its execution, the VM
produces an execution trace, recording (i) the current program
counter value and (ii) a commitment to the state of memory at each
step. The BitVM protocol leverages this execution trace for dispute
resolution, as described in Appendix A.3 and Appendix A.4.

Formally, let a VM address be an integer addr € A :=

{0,1,..., MemLen—1} where MemLen € N represents the mem-
ory length. We define the VM memory as the sequence M € M :=
{0,1,.. .,n}MemLe“, where n € N5 specifies the range of values

stored at any memory address. The VM program counter, denoted
pc, is an element of the set PC := {0,1,...,£ — 1} U {L}, where
¢ €{1,2,...,n}is the maximum length of the program, and L indi-
cates termination. Let OP := {fop : PCxA{0,...,n}x{0,...,n} —
PCx{0,...,n}U {J_}} be a set of CPU instructions that the VM can
execute®. The function fop takes as input a triple (pc, vala, valg)
and outputs a pair (pc, valc) or L. For any CPU instruction fop €
OP, we require that fop is executable in Bitcoin Script. A VM
program is an ordered sequence of ¢ elements, denoted IT € 7¢,
where I = {(fop, addra, addrg, addrc) | addra, addrg, addrc €
A, fop € OP } We can now define the following.

DEFINITION 6 (VM STATE). A VM state, or simply, state, is a triple
S := (M, pc,II), where M is the VM memory, pc is the VM program
counter, and II is a VM program.

8Even though OP can be arbitrary, we are interested in a Turing-complete instruction
set. In particular, we later use ADD, BEQ, and JMP, cf. Algorithm 7 - a well-known
Turing-complete instruction set [17].
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Figure 1: Overview of the state transition function execu-
tion fs7. Given a state S;: (1) instruction II{pc;] is fetched, (2)
values valA, valB are taken from memory at their respective
addresses, (3) the instruction is executed, and (4) part of the
result (i.e., valC) is stored in the memory. The state transition
function outputs the new state S;;;.

DEFINITION 7 (STATE TRANSITION FUNCTION). Let S := M X
PCxIE be the set of all VM states. We define the state transition func-
tion fst : S — S with fst taking as argument the state (M;, pc;, IT)
and giving as output the state (Miy1, pcis1, I1) as specified in Algo-
rithm 5.

Algorithm 5 State Transition Function fsT.

1: function fst(M, pc,II)
M — M;
(fop, addra, addrg, addrc) « I[pc];
valgy «— M[addra];
valg «— Maddrg];
(pc’,valc) « fop(vala,valp, pc);
ifvalc # 1 then
M’ [addrc] « valc;
return (M’, pc’,I1).

Given a program II and a memory configuration M, we assume
that the entry point of the program, namely the first instruction
that a program executes, is always II[0]. Thus, we define as initial
state the tuple Syp := (M, 0,II). We use the shorthand notation
fSiT(S) when we apply the state transition function fsr to a state
S exactly i times, ]”SiT(S) = for(fst (... (fs7(S)))). We say that a
state S; := (M, pci, IT) at step i is correct with respect to an initial
state So iff S; = f;T(SO). We avoid the subscripts (and simply refer
to the state S; as (M, pc, IT)) when it is clear from the context which
state we are referring to.

Finally, after a number of execution steps equal to final (final is
decided when a VM instance is created), the program terminates.
We denote the final state, or outcome, as I1(Sy) := fSﬁ;aI(So). Fig. 1
provides a visual representation of the execution of the state transi-
tion function fsr.
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We define a VM instance as a tuple
I := (II, MemLen, n, final).

We write "4 to refer to the VM instance executed by party A. We
write S‘lf‘ to denote a VM state S; that A claims to have produced
during the execution of A’s VM instance I'4. We say that two
parties A and B agree on the state S; if SlA = S?, and disagree on S;
otherwise.

DEFINITION 8 (EXECUTION TRACE ELEMENT). Let (M;, pc;, IT) :=
f;T(so), and let MR; be the root of the Merkle tree with the entries
of M; as its leaves. The i-th VM execution trace element, or simply,
i-th trace element is the pair E; := (MR, pc;), fori € {0,...,final}.

We write E;.“ to denote a VM execution trace element E; that A
claims to have produced during the execution of A’s VM instance
I'A. The VM execution trace is defined as a sequence of consecutive
trace elements ExecTrace := (Ey, . . ., Efjnal). We write ExecTrace?
as a short-hand for (E4, .. ., Efi\nal)'

We describe how the VM behaves in Algorithm 6: starting from
initial state Sp, it applies the state transition function fst to the state
and records the related trace elements until the program II ends,
namely, once pc is set to be L. The VM algorithm is parameterized
by final, a parameter that represents the maximum number of state
transitions that the VM is allowed to perform. The VM algorithm
returns as output the VM execution trace ExecTrace, along with
the resulting memory M after the program execution.

Algorithm 6 The VM algorithm. Sy is the initial VM state.

1: function VMgin,(So)

2 stepCount < 0;

3 while stepCount < final do

4: EstepCaunt — (MR3PC);

5 (M, pe,TT) «— fst(M, pe,T1);
6: increment stepCount by 1;

7 Estepcount < (MR, pc);

8 ExecTrace < (Ey,...,Efinal);

9 return (ExecTrace, M).

A practical VM instance. For better readability and to provide a
protocol instance that can be deployed in practice, in the rest of the
paper, we will consider a VM instance I' := (II, MemLen, n, final)
with the following initialization: We set the length of the memory
as MemLen = 232 and the greatest integer that can be stored in any
entry of the memory as n = 232,

Furthermore, we assume that the input program II has £ < 232
number of instructions® and we set final = 232,

As for the set OP of instructions that the VM can execute, our
VM instance employs the following: O := {ADD, BEQ, JMP}.
This is a minimal set of computer instructions known to be Turing
complete [17]. We underscore that the BitVM protocol can func-
tion with any Turing-complete instruction set, provided that each
instruction within the set is implementable in Bitcoin script. In Al-
gorithm 7, we give an implementation of ADD, BEQ and JMP that
can be easily translated in Bitcoin script.

°In the BitVM protocol, we build a Taproot tree where every program instruction is
a Tapleaf script. We chose such ¢ since 232 << 2128 the maximum number of leaf
scripts in the current specification of Bitcoin [33].
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Algorithm 7 The Algorithms ADD, BEQ, and JMP, each taking as input
the tuple (pc, vala, valg), and returning a pair (pc, valc).

1: function ADD(pc, vala, valp)
2: if pc = 1L thenreturn (L, L);
3: return (pc + 1, valp + valg).

: function BEQ(pc, vala, valg)
if pc = 1 then return (L, 1);
if vala = valg then
return (pc+1,1).
else
return (pc+2,1).

N A A

10: function JMP(pc, vala, valp)
11: if pc = 1 thenreturn (L, 1);
12: return (valy, 1).

5 THE BitVM PROTOCOL

The BitVM protocol enhances Bitcoin’s expressiveness by en-
abling spending conditions based on the result of general-purpose
computation—performed off-chain, but verifiable on-chain through
an interactive protocol. While Bitcoin Script is not (quasi-)Turing
complete, BitVM effectively simulates such computation by us-
ing cryptographic commitments, economic incentives, and Script-
compatible fraud proofs.

BitVM enables two mutually distrusting parties, the prover (P)
and the verifier (V), to agree on the output of a program II run on
input So. If both parties agree on the outcome, funds are distributed
accordingly with minimal on-chain interaction. In case of disagree-
ment, BitVM executes a dispute resolution protocol that isolates
the exact point of divergence and verifies correctness using Bitcoin
Script. All necessary transaction logic is expressible within Bitcoin,
utilizing Lamport signatures and other Bitcoin Script features.

In the following, we provide a high-level description of the pro-
tocol’s logic, and conclude with a discussion on its security guaran-
tees and on-chain performance. The full protocol specification and
concrete transaction constructions are deferred to Appendix A.

Protocol Phases. The BitVM protocol proceeds in four phases:

(1) Setup: P and V agree on:

o A program II written for the BitVM virtual machine.

e An outcome mapping function f, defining fund redistribution

based on program output.

e a time parameter A, used to timelock transactions to deter

inactivity,

¢ and a maximum execution trace length final

They presign all necessary transactions, including outcomes

and disputes, and publish a Setup transaction locking funds

on-chain in a multisig with timeout clauses.

Execution: P communicates the initial input So to V. Then,

both parties compute I1(Sp) off-chain, producing an execution

trace ExecTrace = (Eo, ..., Efinal), where each E; is a full VM

state.

(3) Commitment: P posts CommitComputation, committing to
both Sy and the claimed output I1(Sp) using Lamport-based
commitments. If V agrees, P finalizes with Close, spending
funds according to f. Otherwise, a dispute begins.

= 2%,

—
)
~
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(4) Dispute Resolution: If V disagrees with the claimed output,
V engages P in an on-chain bisection game over the execution
trace to identify a disputed VM step. Once found, this VM step is
executed on-chain using Bitcoin Script. If the result is different
from what P claimed, their funds are forfeited.

5.1 Optimistic Case (Happy Path)

If both parties agree on the result of the off-chain computation,
only three transactions are posted on-chain:

(1) Setup — locks funds in a multisig.

(2) CommitComputation — P commits to the input and the output
of the program using Lamport signatures.

(3) Close — P spends CommitComputation’s transaction output
with a result consistent with f, redistributing the funds.

This path avoids any dispute mechanism and results in minimal
on-chain cost.

5.2 Dispute Resolution (Unhappy Path)

If V disagrees with P’s committed result, the protocol enters the
dispute phase. Let ExecTrace := (Ey, . .., Efina) be the off-chain VM
execution trace, where each element is defined as in Definition 8.
Notably, each successive element in this execution trace results
from applying a single VM instruction to the preceding element.
Since P and V agree on S, any disagreement on the result implies
a disagreement on some Sj41, while agreeing on S;. The bisection
game locates such an index N, enabling on-chain verification of a
single VM step. Fig. 2 illustrates an overview of the dispute process.

Identify Disagreement. V initiates the dispute by publishing the
Kickoff transaction, starting a 32-round challenge-response game.
In each round j, V commits to a bit b3y ; via TraceChallengej;,
directing the search left (b33 = 0) or right (b32—; = 1).

P responds with TraceResponsej1, revealing the midpoint Ey, ,
wherer =32 - (j+1)and n, = Z?:lr b; - 2t + 2. After 32 rounds,
the final index is N = Z?io b; - 2, with N’ = N + 1. This yields the
first divergent pair: agreement on S, disagreement on Spy.

Instruction Commitment. P must now prove that Sn» = fsT(Sn).
To do so, they publish a CommitInstruction transaction, commit-
ting to:

e pcg = pep and pegr = pepr: the program counters of the states

Sy and Sy, respectively;

o insTypeg € OP := {ADD, BEQ, JMP}: the instruction type at

[peql;

e addrAyg, addrBy, addrCy: the memory addresses referenced in

M[pegl;

e valAg,valBy: the memory values at addresses addrAy, addrBy
in Sps;

e valCy the memory value at address addrCy in Spr, i.e., after
executing fsT(Spy).

The Taproot script must enforce that:

(pcgr,valCyg) = insTypeg(pcg, valAg,valBg)

Next, V may challenge this step via several failure cases.

10They agree by default, since P chooses the initial state Sy and communicates it to V.
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3. Challenge Single Instruction

Ey = (pey, MRy) (Challenge Read)

- A_A : MRy
By = (peyn|MByf)

walBy

Committo Npar, Nsib

A&~ (without equivocating)
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Eyx Eyx
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(pegr, valCy) + instTypeg(val Ay, val By, peg)

and show that
Npar = H(Nsib| |Nchild)

Point of disagreement:(E -, Ex) = (Sy, Sy1)! My

Figure 2: Example of dispute resolution in the BitVM protocol: To resolve a dispute, (1) P and V engage in a bisection game to
identify the point of disagreement (En/, Exr) in their execution traces, indicating a disagreement in the transition from state
Sy to Spr. Next, (2) P commits on-chain to all necessary information for executing Sy = fs7(Sp) (i-e., the values highlighted
by colored boxes in the figure). In this example, we assume that P is committing to an incorrect value for valAy, resulting in
incorrect value for valCg and MRy . (3) V challenges P through a bisection game over the path in the memory Merkle tree My,
from the root MRy, to the leaf containing valAy. This bisection game reveals two intermediate nodes, Npar and Nchild, on which
P and V disagree. To get away while using an incorrect value, P would need to prove that Nchild is indeed the left child of Npar,
which is impossible without equivocating, leading to punishment.

Verifier Challenges. There are five challenge paths to verify the
correctness of the transition Spy — Spr. In essence, either the
values are not correctly derived from the agreed upon state Sy, or
the result is not stored correctly in S . By executing this step, V/
can pinpoint which of these errors occurred, and thus choose the
appropriate challenge path.

(i)-(ii) Program Counter (Current/Next). V can dispute that pcg #
pen or pegr # pepr via ChallengeCurrPC or ChallengeNextPC.
If proven, V claims the funds. If V' equivocates on their bitwise
commitment to N, P can reveal equivocation via PunishCurrPC,
claiming all funds instead.

(iii) Instruction Mismatch. Each program line (indexed by pcy) is
encoded in a tapleaf with the expected insTypey, addrAg, addrBy,
and addrCy. If P commits to inconsistent values, V can reveal this
via DisproveProgram, spending the corresponding tapleaf. If the
program counter matches but any operand or opcode does not, V
wins the dispute and claims the funds.

(iv) Read Error. To verify valAg = Mp/[addrAg], V initiates a
challenge by publishing ChallengeRead. A 5-round bisection game
over the Merkle path Pg := (MRp, ..., Ma[addrAg]), i.e. the path
from the root MRy, to the leaf My/[addrAg], isolates a disagree-
ment (Npar, Nchild). If P fails to justify it via a sibling hash Nsib
(such that H(Nsib||Nchild) = Npar) or equivocates on one of the
elements of Pg, V wins via PunishRead. Otherwise, P claims the
funds after a timeout. The same logic applies to valBy at address
addng.

(v) Write Error. V challenges valCy # Mpy[addrCg] by pub-
lishing ChallengeWrite. The bisection game now runs on two

Merkle paths (before and after the write). Again, V identifies a dis-
agreement (Npar, Nchild) and challenges P to provide a consistent
sibling node. If P cannot do so, V wins via PunishWrite; otherwise,
P claims the funds after a timeout.

5.3 Security and Efficiency Guarantees

The security of the BitVM protocol rests on two key principles:
economic deterrence and verifiable execution.

Balance security is achieved by ensuring that every on-chain
transaction, including disputes, is publicly verifiable and enforce-
able through Bitcoin Script and Lamport commitments. An honest
party can always construct a valid fraud proof in case of misbehav-
ior by the counterparty, thereby guaranteeing that they can reclaim
their locked funds.

Rational correctness follows from the structure of the protocol
itself: cheating leads to an inescapable penalty, while following the
protocol allows both parties to exit with minimal cost. Since all
challenge paths are exhaustive and provably sound, any attempt to
deviate from correct execution is either detected or discouraged by
design. As a result, rational parties are incentivized to cooperate
rather than contest.

In terms of efficiency, the optimistic execution path requires
only three on-chain transactions: Setup, CommitComputation, and
Close. In the unhappy path, the number of transactions is loga-
rithmic in the VM’s size. For a VM execution trace length of 232
the entire dispute process requires at most 81 transactions: 1 setup,
1 commitment of the result of the computation, 65 for execution
trace bisection, 1 commitment of the single instruction, and up to
13 for a memory proof challenge (including read/write paths).
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6 SECURITY ANALYSIS

We now show that BitVM is an on-chain state verification protocol
that satisfies two key properties: Balance Security, which ensures
that honest users never lose funds even if their counterparty be-
haves arbitrarily; and Rational Correctness, which guarantees that
rational participants always follow the intended optimistic execu-
tion path. Our analysis models BitVM as an Extensive Form Game
(EFG) (see Appendix C), which enables unified reasoning about
both Byzantine and rational adversaries. This approach builds on
recent work on incentive-compatible Layer-2 protocols [29], and
provides a natural way to establish equilibrium guarantees, which
are essential in financial settings.!!

THEOREM 6.1. BitVM is an on-chain state verification protocol
that achieves balance security and rational correctness.

6.1 Balance Security

We consider two cases: (i) both parties behave honestly, and (ii) one
party A € {P,V} deviates at any step. In both scenarios, we prove
that the honest party does not lose their funds.

We note that if either party deviates during Setup, the honest
party will refuse to sign the Setup transaction, ensuring no coins are
locked unless both parties have received all necessary pre-signed
transactions (Lemma D.1). Thus, we assume that the setup phase
has concluded successfully.

Honest parties. When both parties are honest, BitVM follows an
optimistic path: the prover posts the correct computation result
on-chain via CommitComputation, and after the timelock expires,
publishes Close to distribute the funds according to the outcome
function f (Lemma D.3).

V honest, P Byzantine. If the prover fails to publish in time
CommitComputation, either due to inactivity or incorrect compu-
tation, or subsequently fails to post Close, the verifier can reclaim
the funds after the respective timelocks expire (Lemmas D.2, D.3).
This mechanism prevents hostage scenarios by ensuring that the
verifier can recover their coins in case of non-responsiveness.

If the prover commits to an incorrect result in
CommitComputation, the verifier initiates the Identify Disagree-
ment phase by publishing KickOff. If the prover remains inac-
tive, the verifier can claim the coins after the timelock expires
(Lemma D.4). If the phase completes, the verifier obtains a VM step
for which the prover has incorrectly committed to the outcome of
the state transition function (Algorithm 5) (Lemma D.7).

The prover may have deviated by using an invalid program
counter (current or next), performing an incorrect memory read
or write, or executing an invalid instruction. For each case, the
verifier can post the corresponding on-chain transaction—such as
ChallengeCurrPC, ChallengeNextPC, ChallengeRead,
ChallengeWrite, or DisproveProgram—to initiate the appropri-
ate dispute path. This allows the verifier to disprove the prover’s
computation and claim the funds (Lemma D.14).

While Universal Composability (UC) is well-suited for modeling arbitrary adversaries,
it does not support equilibrium reasoning. Formal tools targeting rational security
exist for simple constructions (e.g., Lightning’s closing game [12]), but do not scale to
BitVM ’s combinatorial structure (e.g., bisection-based disputes). Developing general-

purpose frameworks for rational security in expressive smart contract systems remains
an open challenge.
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P honest, V Byzantine. A malicious verifier may initiate the Dis-
pute Phase by publishing KickOff on-chain, even though the prover
has correctly committed to the result in CommitComputation. If
the verifier becomes inactive during the Identify Disagreement
phase, the prover can claim the funds once the timelock expires
(Lemma D.5).

If the phase completes, the verifier must follow up with a chal-
lenge by posting one of the transactions ChallengeCurrpPC,
ChallengeNextPC, ChallengeRead, ChallengeWrite, or
DisproveProgram. Since the prover’s commitment is correct, the
verifier cannot produce a valid inconsistency and ultimately fails
to disprove the computation. In this case, the prover reclaims the
funds (Lemma D.15).

6.2 Rational Correctness

We now establish that rational participants are incentivized to
follow the optimistic execution path of BitVM. Specifically, in The-
orem D.16, we prove that the honest strategy profile constitutes a
Subgame Perfect Nash Equilibrium (SPNE). The proof proceeds by
backward induction on the game tree: in every subgame, deviation
results in strictly lower utility, since the honest counterparty can
either recover funds via timeouts or successfully disprove incorrect
behavior on-chain. These consequences are established through
the same mechanisms formalized in Lemmas D.2-D.15.

In particular, if the prover deviates by omitting
CommitComputation, failing to post Close, or committing an in-
valid transition, the verifier can either reclaim their funds or win
the dispute. Conversely, if the verifier initiates an unwarranted
dispute, they will be unable to disprove the prover and ultimately
forfeit their claim. As any unilateral deviation leads to lower utility,
both parties are incentivized to behave honestly. This establishes
that BitVM is incentive-compatible: rational players adhere to the
optimistic path without invoking the dispute mechanism.

7 IMPLEMENTATION AND EVALUATION

To show the feasibility of our approach, we implement a proto-
type of BitVM in JavaScript. The prototype can be found in an
anonymized GitHub repository [2]. In addition to showing how
BitVM can be implemented practically, we use it to compute the
transaction fees for both an optimistic run and the most expensive
dispute branch of BitVM.

We assume constant transaction fees of 3sat /vB!'2, a Bitcoin price
0f 70,3008 (as of April 7, 2025). To make the prototype more efficient,
we realize the one-time signatures with Winternitz signatures [11]
instead of Lamport signatures. Using Winternitz signatures, both
the size of a signature and the size of a public key are around 50B per
message bit. As hash function, we use the Bitcoin Script primitive
OP_HASH160 [27]. We also assume that A = 12 hours, meaning
each timelock expires after half a day. Different concrete values can
be chosen, but any such selection would require scaling the time
evaluation accordingly.

121n Bitcoin, the size of a SegWit [24] transaction is expressed in virtual Bytes, or vBytes
(vB). The number of vBytes of a transaction witness is equal to its number of Bytes
divided by four.
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Optimistic case. In the optimistic case, three on-chain transac-
tions are published: Setup, CommitComputation, and Close, total-
ing 1, 944vB. The protocol’s execution cost is 5, 832 sat (4.01$). In
terms of execution time, once Setup is published, BitVM completes
in at most 2A time, corresponding to 1 day.

Dispute case. We focus on the most expensive path in terms of
fees, the Write Error path. Overall, 81 transactions are posted on-
chain; the path weighs 244, 0400B. The total protocol execution
cost is 732ksat, or about 515$, and, once the Setup transaction is
published on-chain, it takes at most 80 X A = 40 days to complete
its execution. We stress that in case of a dispute, all the fees needed
to run the protocol on-chain are covered by the misbehaving party.

8 BRIDGE APPLICATION

In this section, we leverage BitVM to instantiate a bridge applica-
tion between the Bitcoin ledger and a sidechain system running a
distributed ledger protocol, as defined in Definition 1, which sat-
isfies stickiness, safety, and liveness. This bridge enables users to
mint (wrapped) Bitcoin tokens on the sidechain and later redeem
them back on the Bitcoin blockchain and is secure, assuming only
existential honesty of the participants.

We first outline the bridge protocol, then present some high-level
security arguments and conclude this section with an evaluation.

8.1 A BitVM-based Bridge Design

Consider two users, Alice and Bob: Alice mints tokens on the
sidechain, transfers them to Bob, who then redeems the equiv-
alent amount back to Bitcoin. The protocol assumes a committee of
n members active during the BridgeSetup phase!?, with at least one
assumed honest during execution. We illustrate the bridge protocol
in Fig. 3.

During the BridgeSetup phase, the committee members pre-sign
the transactions required for the protocol execution. The core pro-
cedures are Pegln (Alice mints tokens) and PegOut (Bob redeems
them). To enable PegOut, a committee member fronts coins to Bob
and later reclaims them in the reimbursement phase!*. We refer to
this member as the operator. The remaining committee members
ensure that only honest operators can reclaim funds in the reim-
bursement phase by disproving any member falsely claiming to
have fronted coins to Bob.

BridgeSetup. The committee pre-signs, before the Pegln proce-
dure is executed, specific transactions to reimburse an honest oper-
ator or punish a misbehaving one.

First, for each distinct pair of committee members denoted c;
and cj, c; pre-signs and forwards the transaction Slash; ;) to
¢j, which ¢; can later publish to punish ¢; upon misbehavior, as
we explain below. Second, for any member c;, all the committee
members pre-sign the Take; transaction that refunds c;, according
to the conditions described below.

Pegln. Alice deposits u coins on Bitcoin via a PegIn transaction.
This transaction has a single output that deposits the u coins into
the multi-signature wallet controlled by the n committee members.

130therwise, the committee is reshuffled until BridgeSetup completes.
14To coordinate among committee members, we can define an operator schedule, for
example, in a round-robin fashion.
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n-of-n multisig

Claim;
In | Out

Figure 3: Illustration of our BitVM-based bridge protocol. For
readability, we represent transactions as boxes, the value
carried by transaction inputs and output is written inside a

and green rectangle, respectively. Pink dashed rectan-
gles around the inputs and outputs of Take and Slash transac-
tions denote that the transaction is pre-signed during Bridge-
Setup, while the black dashed rectangle indicates which por-
tion of the PegOut transaction Bob signed at PegOut time.
Above the arrows, we denote the condition that unlocks the
output from which the arrow start. The arrows are blue if
they represent a path taken by the operator, and red if the
path is taken by one of the other committee members. The
amount out;j, output of the BitVM instance I;, j, depends on
the funds still present after the BitVM dispute phase.

The sidesystem verifies the inclusion of the PegIn transaction in
the Bitcoin blockchain using a Bitcoin light client. Once confirmed,
the sidesystem mints u wrapped tokens to Alice’s account.

PegOut. To withdraw the u coins, Bob first publishes a Burn trans-
action on the sidesystem. Then, he constructs a PegOut transaction
with a single output allocating u — f coins to his Bitcoin address
where fj is a service fee. Bob broadcasts this PegOut request to the
committee members. At least one committee member effectively
fronts the u— f coins from their own funds to fulfill the withdrawal,
in exchange for f;.

Reimbursement. To facilitate the reimbursement of the commit-
tee member that fronted its coins to Bob, we proceed with the
following construction.

Claim. Each committee member c; can claim that they fronted
coins to Bob by posting the transaction Claim; on-chain. Claim;
takes as input an empty transaction from the committee member c;
and has an empty output that can be spent after a timelock TL(A)
expires, along with a connector output, i.e., a transaction output
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given as input to different transactions to guarantee that only one
of them will appear on-chain.

Slashing Mechanism. If ¢; falsely claims to have fronted coins
to Bob, any c; can later publish on-chain Slash; j) to punish c;.
To achieve that, we employ a number of O(n?) BitVM instances as
follows. For every pair of distinct committee members c; and c;,
we consider the instance I; j where c; acts as the prover and c; as
the verifier.1®

For a fixed i, the program II, hardcoded into each instance I; ;,
verifies the following conditions:

(1) Bob’s Burn transaction exists on the sidechain.
(2) A PegOut transaction, where operator c; fronts the coins to
Bob, exists on the Bitcoin ledger.

For example, the program IT could encode a zk-SNARK verifier
that verifies a proof of (1) and (2), making use of a light client of both
the sidechain and the Bitcoin ledger, as shown in, e.g., [3, 4, 23].

The transaction Slash; ;) takes as input: i) the connector output
of Claim; and ii) an input from any transaction where c; wins the
instance I; j (i.e., any transaction where all the coins of the multi-
signature are attributed to c;) and has a single output where all the
remaining coins locked in the instance I; j are given to c;.

Take. The committee member c; that fronted coins to Bob, can
finally retrieve their funds by publishing transaction Take; on-
chain. The transaction Take; has the following inputs: i) the output
of Pegln, ii) the first output of Claim;, and iii) the connector output
of Claimj, and has a single output where the coins of the first input
are transferred to c;.

For each operator c;, all committee members presign Take; only
if: (i) Claim; is constructed according to the protocol, and (ii) they
have received all the pre-signed transactions related to the BitVM
instance I j.

The size and cost of each of the additional transactions necessary
for the bridge are computed (according to Appendix E) in Table 2.

8.2 Security Arguments

Since the sidechain ensures the success of PegIn, our goal is to guar-
antee that a successful PegIn implies a corresponding successful
PegOut. That is, if Alice mints and transfers coins to Bob, Bob can
eventually reclaim the equivalent amount on Bitcoin. This relies
on two properties:

o (Safety) No false claims: A committee member cannot
falsely claim to have fronted coins to Bob. Otherwise, funds
in the multisig are stolen, and future honest operators are
unable to reclaim their coins.

o (Liveness) Honest redemption: Eventually, an honest op-
erator will front coins and reclaim them.

Safety holds because if a malicious member ¢; posts Claimj
without first posting PegOut, an honest challenger c; can initiate
BitVM instance I; ; and post Slash; j, which spends the connector
output of Claim; and invalidates Takej.

5The only difference from the current protocol is that, in this case, the verifier commits
the BridgeSetup on-chain to initiate a dispute.
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Liveness holds because an honest member ¢; who posts PegOut
is protected: no malicious c; can succeed with Slash; j, and after
the Claim; timelock, ¢; can post Take;j to reclaim their funds.

8.3 Evaluation

In the most optimistic scenario, where all committee members
behave honestly, executing an instance of our bridge protocol re-
quires only four on-chain transactions—PegIn, PegOut, Claim, and
Take—resulting in a minimal total cost of approximately $2.

In the event of disputes, the worst-case total transaction fees are
as follows:

i) Cost for an honest operator: If all remaining n— 1 commit-
tee members are adversarial and each initiates a correspond-
ing BitVM instance, the honest operator wins all dispute
games, incurring at most 515$ per game as detailed in Sec-
tion 7. Along with PegIn, PegOut, Claim, and the BitVM
instances, the honest operator publishes a Take transaction
on-chain to reclaim the funds. The overall transaction fee
costis 515 - n — 513$.

Importantly, the cost of the BitVM instances is borne by the

adversarial committee members. The honest operator only

pays the fees for PegIn, PegOut, Claim, and Take (approxi-

mately 2$), which can be covered by the application fee f;

paid by Bob.

Cost for a faulty operator: If the operator is dishonest

and the remaining n — 1 committee members are honest,

each initiates a BitVM instance to challenge the operator’s
claim leading to (n — 1) - 515$ coins paid in transaction fees.

Additionally, they will publish n — 1 Slash transactions on-

chain. The cumulative transaction fees are 515.45-n—514.46 $.

All transaction fees associated with the BitVM disputes are

paid by the faulty operator.

iii) Cost per bridge instance: In the worst-case scenario, n — 1
faulty operators attempt to illegitimately reclaim coins, each
incurring the cost described in case (ii). In addition, a single
honest operator reclaims their funds, incurring the worst-
case cost as outlined in case (i).

ii

~

We emphasize that in all scenarios, the transaction costs associ-
ated with disputes are borne by the malicious parties. The honest
operator consistently incurs only a minimal cost of around $2.

Table 2 summarizes the transaction costs associated with each

phase of the bridge protocol.

Table 2: Evaluation of a BitVM-based bridge instance in terms
of transaction sizes and on-chain costs.

Tx Size (vB) | On-chain cost ($)
PegIn 117 0.25
PegOut 180 0.40
Claim 160 0.34
Slash 212 0.45
Take 475 1.00
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9 CONCLUSION AND FUTURE WORK

This work presents BitVM, the first protocol to enable general-
purpose, trustless computation on Bitcoin without requiring con-
sensus changes, or additional assumptions, e.g., trusted hardware
or semi-trusted oracles. By combining off-chain execution with an
interactive, Bitcoin-compatible dispute resolution protocol, BitVM
achieves quasi-Turing completeness using only existing scripting
capabilities. We demonstrate the applicability of BitVM through
a trust-minimizing bridge construction and provide a prototype
implementation along with a concrete cost analysis.

BitVM extends the design space for Bitcoin-based applications,
enabling programmable logic and verifiable off-chain computation
in a trustless setting. Its ability to condition Bitcoin transactions
on arbitrary program outputs opens new avenues for decentralized
infrastructure anchored in Bitcoin’s security model.

Several directions remain for future work. First, while BitVM
currently supports two-party interactions, generalizing the pro-
tocol to support multiparty or permissionless settings—such as
decentralized oracle networks or bridges—is an important next step.
Second, further reducing on-chain cost through improved dispute
resolution mechanisms, such as more efficient encodings or batched
verifications, could improve scalability. Third, building higher-level
tooling, including compilers or domain-specific languages, would
help lower the barrier to adoption and enable broader experimenta-
tion with complex BitVM-based applications.

We believe BitVM marks a foundational step in unlocking the
next generation of Bitcoin-native applications.
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In this section, we present the full BitVM protocol specification.
All scripts that we use comprise only (multi-) signature and Lamport
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signature verification, if/else statements, timelocks, and hashing,
and are thus compatible with Bitcoin.

A.1 Setup

In the setup phase, the prover P and the verifier V create and presign
the necessary transactions for both honest protocol execution and
potential dispute resolution; then both P and V lock an on-chain
deposit, inp and iny, respectively.

At first, both P and V create all the transactions that are defined
in this section and Appendix A.3, except Setup. Whenever such a
transaction contains a new Lamport public key, the corresponding
party creates one using Lamp.KeyGen and shares the public key
with the other party.

Each transaction output either requires a 2-of-2 multisignature
opy to be spent and is presigned by both parties or requires a signa-
ture from one party along with a timelock. The timelock condition
ensures that if a party ceases participation in the BitVM protocol,
they forfeit the deposit, which the counterparty can then claim,
along with their deposit.

After creating the transactions, the parties exchange them for
presigning. For each transaction P (V) verifies it is well-formed
according to the definitions below. If verified, the transaction is
signed and sent to V (P). The

Finally, P and V sign and publish the Setup (cf. Eq. (1)) transac-
tion on-chain. This transaction takes inputs from P (holding inpB)
and V (holding (inyB), creating an output that can be unlocked by
both parties under the following conditions: P can spend the output
by presenting Lamport commitments to MRy and MR, (i-e., the
commitments to the input and output of program IT), while V can
spend the output after a timeout period A. For brevity, we use oy
when the signature is in a transaction’s witness; the message signed
in that case is the transaction body (inputs and outputs without
witnesses).

Setup =
(,-n = [(+, CheckSigp ), (+ * CheckSigy )1,

wit = [(op), (ov)], 1)
out = [(dB; (CommitComputationScript, TL(A)A

CheckSigpkv))]),

The script CommitComputationScript is defined below.

CommitComputationScript :=

CheckMSigkaV A CheckCommpkEg A CheckCommpkE

final
A.2 VM Execute

The prover P sends to the verifier V the input x of program II
via a communication channel. Both P and V execute off-chain the
program IT with input x on their VM instance. They copy x into
the VM memory M and call Algorithm 6 with input Sp := (M, 0, IT).
They get as output the VM execution trace ExecTrace and the
memory M, from which they fetch the output y of program IT with
input x. We stress that this is the most resource-intensive phase of
BitVM and it is entirely performed off-chain.
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A.3 Commit

The prover P publishes the CommitComputation transaction
(cf. Eq. (2)) on-chain, which spends the output of the Setup transac-
tion by providing a Lamport commitment to Eq := (MR, pco) and

Efinal = (MRfinal, PCfinal)-

CommitComputation :=
([in = (Setup, 0, CommitComputationScript)],

[wit = (opv, Eo, cEy» Efinals CEgny) 1 ®)
[out = (dB; (CheckMSigkaV, CloseScript,

CheckSigyy A TL(ZA)))]).

The script CloseScript; is defined in Algorithm 8.

Algorithm 8 The script CloseScript;. In the setup phase, the public key
PKprRy,, 15 hard-coded in the script.

1: function CloseScripti(opy, MRfinal, CMRﬁna|)

2: TL(A);

3: CheckMSlgVenfykav (opV);

(MRginal, CMRinal );

final
5: if MRfina = MR; then

6: return True;
7: return False.

4: CheckCommVerifypkMR

The verifier V can either challenge P if they disagree with the

MR¢ina) published on-chain by P or simply take no action if they
agree. Since the VM execution is deterministic, honest parties run-
ning the same program on the same input naturally agree on MR-
A disagreement, therefore, implies that one party is behaving dis-
honestly.
Close. 'V agrees with P’s commitment to MR, and does not
dispute it. The BitVM protocol follows the happy path: after a time-
out period A, P publishes one of the close transactions Closeq,
..., Closep. Each of these transactions distributes the funds ac-
cording to the outcome mapping function f, applied to one of
the possible results of the computation'®. If P does not publish any
Closej transaction after that TL(2A) expires after the publication of
CommitComputation transaction, \%4 can unlock
CommitComputation output with their signature and claim all the
funds.

Transaction Closej (cf. Eq. (3)) spends the output of
CommitComputation by unlocking CloseScript; and creates two
outputs. The first output carries opB and can be unlocked by P
after a timeout period A or by V if P equivocates on MR, (as
shown in Algorithm 9). The second output carries oy 3 and can be
unlocked by V.

1During the setup phase, P and V agree on f and jointly create and sign a finite set
of closing transactions, one for each possible outcome. The funds are distributed to P
and V according to the result of f.
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Closej :=
([in = (CommitComputation, 0, CloseScript)],

[wit = (opv, MRfinal, CMRya )]s (3)
[out = (vp; (CheckSigka ATL(A),

PunishCloseScript)), (vy; CheckSigka)]).

Algorithm 9 The script PunishCloseScript. In the setup phase, the public
key pk, Renal is hard-coded in the script.

1: function PunishCloseScript(opy, ¢, c1)

2 CheckMSigVerifykaV (opv);

3 fori=1,...,|MRfnallpir do

4: if Equivocation(pkMRﬁnal 1] €0- ¢1) = True then
5 return True;

6

return False.

Identify Disagreement. 'V disagrees with P’s commitment to MRf;pa]-

To dispute P’s result, V publishes the KickOff transaction
(cf. Eq. (4)) by spending CommitComputation’s output, unlocking
it through the multisignature.

KickOff :=

([in = (CommitComputation, O, CheckMSigkaV)],
4
wit = [(opv)], @
out = [(df; (ChallScripty, TL(A) A CheckSigka))]).

The script ChallScriptj, with j € {1,..., 31}, is defined as follows:

ChallScript; := CheckMSigkaV A CheckCommyy

n3_j

The parties engage in an on-chain interactive protocol known
as dispute bisection game (cf. Appendix B.1): the game is played
over the VM execution trace ExecTrace := (Ey, ..., Efjna)) and has
the goal to determine a pair of consecutive VM trace elements
(EnsEpr), where N” == N + 1, such that they agree on E  and
disagree on Epp.

After that, V initiates the bisection game by publishing the
Kickoff transaction, P responds by publishing the
TraceResponse; transaction (cf. Eq. (5)), committing to Ep,, in
the witness, where n3; = 1 - 231,

TraceResponse; :=

(in = [(Kickoff,0, CheckMSigy, A
CheckCommpkEn31 )1, (5)
wit = [(opy, Eny,. ¢g,,, )],
out = [(dB; (RespScriptq, TL(A) A CheckSigka))]).

The script RespScriptj, with i € {1, ..., 32}, is defined as follows:

RespScript; = CheckMSigkaV A CheckCommpkb .
32—i

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Next, V publishes the TraceChallenge; transaction (cf. Eq. (6)),
committing to bit b3; in the witness.

TraceChallengeq :=

(in = [(TraceResponsej, 0, RespScript)],
(6)

wit = [(apy, b31, cp,, )],

out = [(dB; (ChallScripty, TL(A) A CheckSigka))]).

During the dispute bisection game, P publishes transactions
TraceResponse; (cf. Eq. (7)), with i = 1,...,32, and V publishes
transactions TraceChallenge; (cf. Eq. (8)), withj =1,...,31.

TraceResponse; :=

(in = [(TraceChallenge;_1, 0, ChallScripti_1)],
7)

wit = [(opy, Ensy,_ s CEnaz—i)]’

out = [(dB; (RespScriptj, TL(A) A CheckSigka))]),

1. 932—i 31 Lok
where ngp_; =1-2 +Zk=32—(i+1) by - 2F.

TraceChallenge; :=

(in = [(TraceResponsej, 0, RespScript;)],
8)

wit = [(opy, b32—j’ cbsz—j)]’

out = [(dB; (ChallScriptjs1, TL(A) A CheckSigpkv))]),
Finally, V publishes TraceChallenges; (cf. Eq. (9)).

TraceChallenges; =
(in = [(TraceResponsesy, 0, RespScriptsz)],

wit = [(apv, bo, cp, )], 9)
out = [(dB; (ADDScript, BEQScript, JMPScript,

TL(A) A CheckSigka))]),

To unlock the TraceChallenges; output, P is forced to provide
a commitment for pcy, pcy:, insTypeg, addrAg, addrBg, addrCy,
valAg, valBy, valCy. The instruction insTypey must match the leaf
being spent and pcy, pcy:, valAg, valBy, valCy must align with the
instruction’s semantics. For instance, if P unlocks the ADDScript
tapleaf (cf. Algorithm 10), the condition ADD(pcg, valAg, valBy) =
(pcgr,valCy) must hold, where ADD is the VM instruction defined
in Algorithm 7, lines 1 to 3. The leaves BEQScript and JMPScript
are analogous to ADDScript but they encode the semantics of the
BEQ and JMP instructions, respectively. The resolve dispute phase
is deferred to Appendix A.3.

A.4 Dispute Resolution
P spends the TraceChallenges, output by publishing the
CommitInstruction transaction (cf. Eq. (10)).
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Algorithm 10 The script ADDScript. In the setup phase, the public keys
pkpcg’ pkng/ > pkinsTypeg ’ pkaddrAg’ pkuddng ’ pkaddrce’ pkvulA‘g ’
pkwlBa, pkwlca and the sematics of the ADD instruction are hard-coded

in the script.

1: function ADDScript(cpy, pcg, Cpcys PCeors Cpegr» insTypey,
CinsTypeq> AddrAg, Caddray, addrBg, CaddrB,, addrCo, caddrcy,
valAg, coaiay» valBy, coaiBy, valCo, Cyaicy)

2: CheckMSigVerifykaV(crpV);

3: CheckCommVerifypkpce (pcos cpeg)s

4: CheckCommVerifykacgl (pcor, Cpegr );

5: CheckCommVerifypkmSType (insTypeg, CinsTypey);
0

6: CheckCommVerifypk w (addrAg, caddray);
addrAg

7 CheckCommVerifypk w (addrBy, cadars,);
addrBg

8: CheckCommVerifypk s (addrCo, cadarcy);
a r 9

9: CheckCommVerifypk " (valAg, cuaiagy);
oa 9

10: CheckCommVerifypk 5 (valBg, cpaiBy );
va 9

11: CheckCommVerifypk o (valCo, cyaicy);
va 6

12: if insTypeg = ADD A ADD(pcy, valAg, valBg) = (pcor, valCg)

then

13: return True;

14: else

15: return False.

CommitInstruction :=

(in = [(TraceChallengesy, 0, OPScript)],

wit = [(UPV> PCG, Cng’pce’$ CpCQ/ > imTyPeH’
CinsTypegs AddrAg, Caddray> addrBg, CaddrB,, addrCy,

CaddrCo> valAy, CoalAg> valBg, CvalBg> valCg, CoalCy )1,
out = [(dB; (CheckMSigkav, {CIScriptPCCurri}ic1,... 32}

{CISCriptPCNext;}ic(1,... 32}, {CIScriptinstri}ic (1, ¢}

TL(A) A CheckSigy, D)1)-
(10)
The tapleaf that P unlocks when publishing CommitInstruction
is OPScript € {ADDScript, BEQScript, JMPScript}.

By publishing the CommitInstruction transaction, P reveals all
the information necessary for the state transition from Sp to Sa».
Depending on the specific error that V' claims P made, V spends
the output of CommitInstruction in one of the following ways.
A.4.1 Challenging the Current Program Counter. 'V is claiming
that, by publishing CommitInstruction, P is committing to a pro-
gram counter pcy at step N that differs from the program counter
pe s (previously committed by P during the dispute bisection game).
V challenges the current program counter pcg by unlocking one of
the leaves CIScriptPCCurr; (cf. Algorithm 11) via the publication of
transaction ChallengeCurrPC (cf. Eq. (11)). We use Algorithm 12 to
map the challenge-response rounds to the leaves CIScriptPCCurr,
..., CIScriptPCCurrz;. When V unlocks leaf CIScriptPCCurrj, they
challenge the program counter of the (32—1i)-th challenge-response
round of the dispute bisection game.

Algorithm 11 The script CIScriptPCCurr;, for i € {0,...,31}. For each

CIScriptPCCurrj, in the setup phase, we hard-code the public keys pkpcg,

pkN. For each ClScriptPCCurrj, for i € {1,...,31}, we hard-code the same
public key pk,,., hard-coded in ChallScript;. For CIScriptPCCurrg, we hard-

code the same public key pk

peo hard-coded in CommitComputationScript.

function ClScriptPCCurri(opy, N, cn, pci, Cpc;» PCo> Cpeg)
CheckMSigVerifykaV (opv);
CheckCommVerifypkN(N, K

1:
2
3
4 if CountZeroes(N) # i then

5: > Maps N to one of the 32 program counters PCngys ---> PCnsy- <
6 return False;

7 CheckCommVerifykaCi (pciscpe;)s

8 CheckCommVerifypkpcg (pcos cpey )s

9: if pc; # pco then

10: return True;
11: else
12: return False.

Algorithm 12 The algorithm CountZeroes. It counts the number of
consecutive bits set to 0 in the binary representation of a number N, starting
from the least significant bit (LSB), until the first occurrence of a bit set to
1.

1: function CountZeroes(N)

2 counter «— 0;

3 flag « False;

4 fori=0,...,|N|pi;s — 1do

5: if N[|N|p;is — i] =1 then

6 flag < True;

7 > Set the flag, stop incrementing the counter. <

8 else

9 if flag = False then

10: counter <« counter +1;

11: return counter.
ChallengeCurrPC :=

(in = [(CommitInstruction, 0, CIScriptPCCurrp/)],
; (11)
wit = [(opy, N, e e, Cpens PCO> Cpce)],

out = [(dB; (ChallPCScript, TL(A) A CheckSigka))]).
In the ChallengeCurrPC transaction, V commits again to N,

potentially equivocating. P can punish equivocation by unlocking
ChallPCScript script (cf. Algorithm 13).

Algorithm 13 The script ChallPCScript. In the setup phase, the public
key pk,, is hard-coded in the script.

1: function ChallPCScript(opy, ¢y, c1)

2 CheckMSigVerifykaV (opv);

3 fori=1,...,|Nlpi; do

4: if Equivocation(pkN[i], co, ¢1) = True then
5: return True;

6 return False.

If V equivocates, P publishes PunishCurrPC (cf. Eq. (12)), re-
deeming all the funds in the multisignature.
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PunishCurrPC :=

(in = [(ChallengeCurrPC, 0, ChallPCScript)],
(12)

wit = [(opy, co, c1)],

out = [(dB;CheckSigka)]).

A.4.2 Challenging the Next Program Counter. V is claiming that,
by publishing CommitInstruction, P is committing to a program
counter pcy: at step N’ (output of the VM operation executed on-
chain) that differs from the previously committed program counter
pear. V challenges the next program counter pcygs by unlocking one
of the leaves CIScriptPCNext; (cf. Algorithm 14) via the publication
of transaction ChallengeNextPC (cf. Eq. (13)).

Algorithm 14 The script CIScriptPCNext;, for i € {0,...,31}. In the
script ClScriptPCNext;, during the setup phase we hard-code the same
public keys that we hard-code in the script CIScriptPCCurr;, except for

public key pk,, 5 We hard-code pk instead.

pcor

1: function ClScriptPCNexti(opv, N’, cnr, pci, Cpe;» PCors cpcg,)

2 CheckMSigVerifykaV (opv);

3 CheckCommVerifypkN (N, enr);

4 if CountZeroes(N’) # i then

5: > Maps N’ to one of the 32 program counters PCnys -5 PCngy-
6 return False;

7 CheckCommVerifykaCi (pci, Cpc; );

8 CheckCommVerlfypkpcg, (peors cpeg: )

9: if pc; # pcor then

10: return True;

11: else

12: return False.
ChallengeNextPC :=

(in = [(CommitInstruction,0, CIScriptPCNexta)],
. (13)
wit = [(opy, N, e, PCN7 s Cpepr s PEOr Epegr) ]

out = [(dB; (ChallPCScript, TL(A) A CheckSigpkv>)]).

In this challenge path, V can equivocate on N’!7. P can punish
equivocation by publishing the PunishNextPC transaction
(cf. Eq. (14)), which unlocks ChallPCScript by proving the equiv-
ocation. Upon doing so, P redeems all the funds locked in the
multisignature.

PunishNextPC :=

(in = [(chal1engeNextPc, 0, ChallPCScript)], (14)

wit = [(opy, co, c1)], out = [(dB;CheckSigka)]).

7We use N’ to emphasize that challenging the next program counter is a distinct
path from challenging the current program counter. However, in practice, V' commits
to the same bits by, . . ., bsq, i.e., the same public key pkN is used in both current and
next program counter challenge paths.
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A.4.3  Punish Wrong Instruction. P has committed to a current pro-
gram counter pcy that does not correspond to the correct program
instruction, specifically:

I[pcg] # (insTypey, addrAg, addrBy, addrCy).

V spends the CommitInstruction output by unlocking the script
ClScriptinstrj  (cf. Algorithm 15) and publishing the
DisproveProgram transaction (cf. Eq. (15)). A script ClScriptInstr
exists for each of the ¢ instructions in the program II.

Algorithm 15 The script ClScriptinstrj, for j € {1,..., £}. In the script
ClScriptlnstrj, during the setup phase we hard-code the public keys pkpcg,
PRinsTypeg® PRaddrag® PRaddrsy: PRadarc,> for j € {1.-... ¢} In addi-
tion to the public keys, the j-th instruction of II is also hard-coded into the

script ClScriptlnstr;.

1: function ClScriptinstrj(opv., pcg, cpcys insTypeg, CinsTypeg»
addrAg, caddra,> addrBe, Caddrpy, addrCe, caadrcy)
2: CheckMSigVerifykaV (opv);

3: CheckCommVerifypkpce (pco, cpeg)s

4 CheckCommVerifypkinsTypeg (insTypeg, CinsTypey )
5: CheckCommVerifypkaddrAg (addrAe, caddray);

6: CheckCommVerifypkaddrBe (addrBg, caddrBy );

7: CheckCommVerifypkaddrcg (addrCe, cadarcy);

8: if ((pcg =Jj) A (insType; # insTypeg V addrAj # addrAg v
addrB; # addrBy v addrC; # addrCo)) then

9: return True;

10: else

11: return False.
DisproveProgram :=

(in = [(CommitInstruction,0, CIScriptinstrpc,)],

wit = [(opy, pcg, Cpegs insTypeg, CinsTypeg> (15)
addrAg, caddrag addrBy, cagarpy, addrCy, cagdrcy)]s

out = [(dB;CheckSigpkv)]).

A.4.4 Challenge Read. V starts the challenge by publishing the
ChallengeRead transaction (cf. Eq. (16)), spending the
CommitInstruction output!®.

ChallengeRead :=

(in = [(CommitInstruction, O,CheckMSigkaV)],

wit = [(opy), 1o
out = [(dB; (ReadChallScriptq, TL(A) A CheckSigpkv))]),
The script ReadChaIIScriptj, with j € {1,...,5} is defined as

follows:

ReadChallScript; := CheckMSigkaV A CheckCommPkN .
o edS—J

18We explain how Challenge Read works by presenting a challenge to valAy; the
process for challenging valBg is analogous.
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The parties engage in the read bisection game (cf. Appendix B.2) .
The game is played over the sequence
Pr = (MRp,...,Mpy[addrAg]), namely, a path from the root
to one of the leaves in MerkleTreeyy,,, i.e., the Merkle tree of the
memory at step V. P responds by publishing the ReadResponse
transaction (cf. Eq. (17)), committing to Nodey, := Pr[d4] in the
witness, where dq = 1- 2%,

ReadResponseq :=

(in = [(ChallengeRead, 0, ReadChallScriptq)],
17)

wit = [(opy, Nodeg,, cNodeg, ) |-

out = [(dB; (ReadRespScript1, TL(A) A CheckSigka))]).
ReadRespScript; with i € {1,...,5} is defined as:

ReadRespScript; := CheckMSigkaV A CheckCommpkb,

5—i

Then, V publishes ReadChallenge transaction (cf. Eq. (18)),
committing to bit b} in the witness, where b} = 1if V agrees with
Nodeg,, and bfl = 0 otherwise.

ReadChallengeq :=
(in = [(ReadResponse1, 0, ReadRespScript1)],
wit = [(opy, by cpy)],

out = [(dB; (ReadChallScripty, TL(A) A CheckSigpkv)))]);

(18)

P and V continue playing the read bisection game by publish-

ing transactions ReadResponse; (cf. Eq. (19) and ReadChallenge;
(cf. Eq. (20)), respectively, withi =2,...,5and j =1,...,4.

ReadResponse; :=

(in = [(ReadChallenge;_1, 0, ReadChallScript;)],
(19)

wit = [(O.PVs NOdeds,ii cNOdeds,i )]=

out = [(dB; (ReadRespScript;, TL(A) A CheckSigka))]);

ReadChallengej :=
(in = [(ReadResponsej, 0, ReadRespScript;)],
wit = [(opy, b;—j’ Cbé—j)]’

out = [(dB; (ReadChallScriptj,q, TL(A) A CheckSigka})]);
(20)
whereds_j =1-2°"1 + 2i=5—i+1 b;c .ok,

Then, V publishes the ReadChallenges transaction (cf. Eq. (21)).
In total, V has committed to the bits b;, e b(’). These bits determine
the last element on the path $g upon which P and V agree. Let
Nirer be the corresponding integer, computed as Nyjer = 22:0 bl’c .

2k,
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ReadChallenges :=

(in = [(ReadResponses, 0, ReadRespScripts)],
wit = [(apy, by, cpr)],
out = [(dB; (HashReadScripty, . .., HashReadScriptyo,
RootReadScripty, . .., RootReadScriptsp, ValueAScript,

(21)

TL(A) A CheckSigpkv))]).

The integer Njer, chosen by V, conditions which Tapleaves P

can unlock to spend the ReadChallenges output. We can distin-
guish three cases.
(A) Commit Read. The point of disagreement is between two
consecutive elements of the path Pg, excluding the first and the
last. P publishes the CommitRead1 transaction (cf. Eq. (22)) to spend
the ReadChallenges output. To do so, P provides a witness that
unlocks one of the scripts HashReadScripty, ..., HashReadScriptyo.
Each script hard-codes the public key of a pair of nodes belong-
ing to {Nodey,, ..., Nodeg, }, the first being the parent node in
MerkleTreepr,, and the second being the child node!®. Addition-
ally, P provide a sibling node Nsib, claiming whether it is the left
or right sibling by committing to the bit 05, the Nye,r-th bit of
addrAg. To unlock the script, it must hold that the child node, when
concatenated with the sibling node, hashes to the parent node.

We present the pseudocode of the script in HashReadScript;
in Algorithm 16. The scripts HashReadScripty, ...,
HashReadScripty are identical except for the public keys hard-
coded to set the parent and the child nodes, and the mapping from
Nper to the appropriate Tapleaf.

CommitRead? :=
(in = [(ReadChallenges, 0, HashReadScript;)],

wit = [(0pV, NMers € Nysers Vposs Coposs CaddrAgs NSib,
Npar, CNpars Nchild, enchild) 1,

out = [(dB; (CommitRead1Script, TL(A) A CheckSigka))]).
(22)
V can punish P if they equivocate either on Npar, Nchild, vpos
by publishing PunishRead1 (cf. Eq. (23)), which requires to unlock
the CommitRead1Script (cf. Algorithm 17) script.

PunishRead1 :=

(in = [(CommitRead1, 0, CommitRead1Script)], (23)

wit = [(opy, co, c1)], out = [(dB;CheckSigka]).

(B) Commit Value A. If V agrees with every element that P com-
mitted (i.e, by = -+ = b = 1), Njer is set to 31. The point of
disagreement is between the last intermediate node published by
P, Nodey,, and valAy; To spend the ReadChallenges output, P un-
locks ValueAScript. ValueAScript is analogous to HashReadScript;
with the following differences: (i) CountZeroes(Njser) = 0; (ii) the

19Since any node can be the parent of any other, we need 20 scripts to capture all the
possibilities.
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Algorithm 16 The script HashReadScript;. The bit vp0s € {0,1} rep-
resents the position of the child node (vp0s = 0 means that Nodey, is the
left child of Nodey, , vpos = 1 means the opposite. Nsib is the sibling node
of Nodey, that P presents. In the setup phase, the public keys pk Nater®
pkaddrAg’ pkNodedA’ pkNodedO’ are hard-coded in the script.

1: function HashReadScripti(opv, NMer, CNyy,, s Uposs Copos> CaddrAg
Nsib, Nodeg, , CNodey, > Nodey,, CNOdedO)
2: CheckMSigVerifykaV (opv);
3: CheckCommVerifypkNM (NMers CNpger )
4: > Since V committed to Nﬁz\ri‘,,,, P does not know Sk/‘\'mvr' Therefore,
to satisfy this guard, has to provide the commitment that V made

<

5: if CountZeroes(Npjer) # 5 — 1then

6: > Since Nodey, is the parent node here, CountZeroes(Npser)
should be 4. 4
7: return False;

8: CheckCommVerify, (Vposs CaddrAg [Nager])

addrag(Nyger ]
9: > The whole public key pk is hard-coded in the script, but

addrAg

only the the Npjer-th entry is used <
10: CheckCommVerifyPk'\loded (Nodeg,, CNodey, ); > Parent node
11: CheckCommVerifypkNOded (Nodey,, CNodeg, ); > Child node
12: if vpos = 0 then ’
13: if H(Nodeg,||Nsib) = Nodey, then
14: return True;
15: else
16: return False;
17: else
18: if H(Nsib||Nodeg,) = Nodegy, then
19: return True;
20: else
21: return False.

Algorithm 17 The script CommitRead1Script. The public keys pk
PKychilg> @nd pkaddrAg are hard-coded during the setup.

Npar?

1: function CommitRead1Script(opy, ¢, 1)
2: CheckMSigVerifykaV (opv);

3: fori=1,...,|Npar|p;; do

4: if Equivocation(pkNpar[i], cp,c1) = True V
Equivocation(pchh”dliJ, cp,c1) = True V
Equivocation(pkaddrAg[i], ¢p, 1) = True then

5: return True;

6: return False.

parent node is Nodey_; (iii) the child node is not one of the nodes
Noded4, Nodedo, but valAg instead.

P publishes CommitRead2 transaction (analogous to
CommitRead1, but unlocking ValueAScript instead). V' can publish
transaction PunishRead?2 (analogous to PunishRead1) if P equivo-
cates on the values committed in the CommitRead?2 transaction.
(C) Commit Read Root. If V disagrees with every element that P
committed (i.e., by = --- = by = 0), Nper is set to 0. The point of
disagreement is between the last intermediate node published by P,
Nodeg,,and MR . P unlocks one of the leaves RootReadScripty, ...,
RootReadScripts3y, according to which number N V committed at
the end of the dispute bisection game. We provide RootReadScript;
in Algorithm 18.

Algorithm 18 The script RootReadScript;. In the setup phase, the public
keys pkNMer, pky pkNodedO’ pkMRl_ are hard-coded in the script.

1: function RootReadScripti(opv, Numers CNyy,, s Oposs Copos> CaddrAg»
Nsib, N, ¢y, Nodey,, CNodey, > MR;, cMR;)

2: CheckMSigVerifykaV (opv);

3: CheckCommVerifypkNM (NMer N, )

4 > Since V' committed to /\7:“.,.‘ P does not knowsk/\,””. Therefore,
to satisfy this guard, P has to provide the commitment that V
made <

CheckCommVerifypkN(N, cN);

> P has to provide the commitment that V made in the dispute phase <

if CountZeroes(N) # i then

return False;

if CountZeroes(Njter) # 5 then

10: return False;

11: CheckCommVerify

0 ® N>

> Narter must be equal to 0

Upos, € ;
addrAglNMer]( poss CaddrAg[Nazer])

12 CheckCommVerifyPkl\m(md (Nodeg,, CNodey, );
13: > for any RootReadScript;, Nodey, is always the child node <
14: CheckCommVerifypkMR (Nodeg,, CNodey, );
15: if vpos = 0 then '

16: if H(Nodeg, ||Nsib) = MR; then

17: return True;

18: else

19: return False;

20: else

21: if H(Nsib||Nodeq,) = MR; then

22: return True;

23: else

24: return False.

P unlocks RootReadScript; by publishing the Commi tRead3 trans-
action (cf Eq. (24)).

CommitRead3 :=
(in = [(ReadChallenges, 0, ReadRootScript;)],
wit = [(UPVa NMera CNaters N, CN> NOdedos CNOdedO )]’

out = [(dB; (CommitRead3Script, TL(A) A CheckSigka))]).
(24)
V can punish P if they equivocate on Nodey,, MR; or addrAg by
publishing PunishRead3 (cf. Eq. (25)), which unlocks
CommitRead3Script, analogous to CommitRead1Script but with

pk instead of pk

'MR;’ pkNoded0 Npar’ pchhiId'

PunishRead3 :=

(in = [(CommitRead3, 0, CommitRead3Script)], (25)

wit = [(opy, co, c1)], out = [(dB;CheckSigka]).

A.4.5 Challenge Write. V challenges the result of the writing op-
eration. Specifically, V claims that P is writing 0alCj) # 0valCy in
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My [addrCy] in their local VM execution®’. As a result, the mem-
ory root MRy is incorrect.

The parties engage in the write bisection game (cf. Appendix B.3)
over the sequences Py := (MRy,, ..., My [addrCy]) and SD"/V =
(MRpps - . .,ij[addrce]), that are paths in the merkle trees
MerkleTreeyy, and MerkleTreeyy,, , respectively. The transactions
and locking scripts in the challenge write branch of the protocol
closely follow the structure of those in the challenge read branch,
with the following differences:

o The structure of the WriteResponse; transaction is analogous to
ReadResponse; transaction but, in the witness, P provides two
values (and their commitments) instead of one. These values are
the ds_;-th elements of Py and P, respectively.

e Aslongas V agrees on the elements of the path Py, they focus on
finding the disagreement in the path #j,. In the
WriteChallenge; transaction (analogously to ReadChallenge;),
V sets (and commits to) the bit b _ ;=0 if V agrees with the
element of P}, provided by P. Otherwise, V' sets (and commits
to) the bit bg_ . = 1. However, once V finds a disagreement in an
element of Pyy, from that point on, V focuses on Py and set the
bit b;_j as in the Challenge Read branch.

During the write bisection game, P commits to the pairs nodes
{(Nodey,, Node:h), e (Nodey,, Nodeao)},
where Nodey,, ..., Nodey, € Py and Nodeé4, . ..,Node:jO € PX//V'
Analogous to the Challenge Read branch, V commits bit by bit to an
integer Njfer = Zi:o bl'C - 2% which conditions how P can unlock
WriteChallenges. There are three cases.

Note that P does not explicitly know which pair of elements

in Py or Py, V disagrees with. However, as long as P is able
to provide a pair of nodes (Npar, Nchild) for Py, a pair of nodes
(Npar’,Nchild’) for %}, and a node Nsib such that
H(Nsib||Nchild) = Npar and H(Nsib||Nchild") = Npar’, they will
be able to unlock WriteChallenges.
(A) CommitWrite. The point of disagreement is between two
consecutive elements of Py, or between two consecutive elements
of P}/, excluding for both paths the first and the last elements. P can
unlock one of the scripts HashWriteScripty (cf. Algorithm 19), ...,
HashWriteScriptyg via publishing the CommitWritel transaction
(cf. Eq. (26)).

CommitWritel :=

(m = [(WriteChallenges, 0, HashWriteScript;)],

wit = [(O-PV: NMeh CNMer’ vaS: cvpos, Caddngs NSib:
Npar, cNpars Nchild, enchitds Npar’, enpars Nehild’,

CNchild') ]

out = [(dB; (CommitWrite1Script, TL(A) A CheckSigpkp))]);
(26)

The script CommitWrite1Script is  identical to

CommitRead1Script (cf. Algorithm 17) except that it also checks for
potential equivocation on Npar’, Nchild’, and addrCy rather than

20We assume P commits correctly to valCy in the witness of the CommitInstruction
transaction, regardless of local execution. For example, if insT ypeg := ADD, then
valAg + valBg = valCg. If valCy is incorrect, V can challenge valAg or valBg.
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Algorithm 19 The script HashWriteScript;. The bit vp0s € {0, 1} rep-
resents the position of the child nodes (vpos = 0 means that Nodegy, and
Node(’jﬂ are the left childs of Nodeg, and Node:u, respectively). Nsib is the
sibling node of Nodey, in Py and of Nodeéo in P}, In the setup phase,
the public keys pkNMer’ pkaddng’ I:)kNoded4 > pkNodedo > pkNodeZ14 > pkNodeao

are hard-coded in the script.

1: function HashWriteScript1(opv, NMers €Njyjey» Uposs Coposs CaddrCy>

’

Nsib, Nodey,, CNodeg, Nodey,, CNodey, Node:u, CNode/, 5 Nodedo,
4

CNode:j )
4
2: CheckMSigVerifyka (opV);
v
3: CheckCommVerifypkNM (NMers CNpger )5
er
4: > Since V committed to Npjer, P does not know sk Nater” Therefore,
4 er h

to satisfy this guard, has to provide the commitment that V made <
5: if CountZeroes(Njter) # 5 — 1then

6: > Since Nodey,, Nodc(’14 are the parent nodes here,
CountZeroes(Npjer) should be 4. <
7: return False;

8: CheckCommVerify,, (vposs CaddrCy[Nager])s

addrCg[Npferl
9: > The whole public key Pkur]dz-(‘ﬁ is hardcoded in the script, but

only the the Njjer-th entry is used <

10: CheckCommVerifypk (Nodey,, CNodey, )3 > Parent node in

Noded4 4
Pw

11: CheckCommVerifypk (Nodegy, cNodey, ); > Child node in Py,
Nodegy 0

12: CheckCommVerify (Node:u, CNode’, ); & Parent node in
Node:14 dg

P . ) . e

13: CheckCommVerlfyPkNOde:i (Nodedo, CNOdeéo ); > Child node in 7,

14: if vpos = 0 then ’

15: if H(Nodeg, ||Nsib) = Nodeg, A H(Nodeéolleib) = Node(’14

then

16: return True

17: else

18: return False

19: else

20: if H(Nsib||Nodeg,) = Nodeg, A H(Nsib||Node&0) = Node(’14

then

21: return True

22: else

23: return False

addrAg. As a consequence, the PunishWritel transaction is anal-
ogous to PunishRead1. Thus, if P equivocates while committing
to Npar, Nchild, Npar’, Nchild’, V can claim all the coins locked in
the multisignature.

(B) Commit Value C. Ny, = 31, the point of disagreement is
between Nodey, and valCy or between Node(’jo and valCy. This case
is analogous to the “commit value A" case of the Challenge Read
branch. For ValueCScript, the difference with HashWriteScript;,
is that: (i) CountZero = 0; (ii) the parent nodes are Nodey, and
Node:jo, and (iii) the child node is valCy.

P publishes CommitWrite2 transaction (analogous to
CommitWritel, but unlocking ValueCScript instead). V can pub-
lish transaction PunishWrite2 (analogous to PunishWrite1) if P
equivocates on the values committed in the CommitWrite2 trans-
action.
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(C) Commit Write Root. Nz, = 0, the point of disagreement
is between MRy and Nodey, or between MR- and Nodeéo. This
case is analogous to the “commit read root" case of the Challenge
Read branch. The script RootWriteScript;, with i € {0,...,31} is
the same as RootReadScript; but takes as additional inputs Nodeao,
MR;41 (their public key are hard-coded in the script accordingly),
and takes as input c444,c, instead of cuggra,-

In RootWriteScript;, instead of lines 15 to 24 of Algorithm 18 the
code is the one in Algorithm 20. V' can punish P if they equivocate
on Nodey,, Node:jo, MR, MRj1, addrCy.

Algorithm 20 The script RootWriteScript;. In the setup phase, the public
keys pkNMer, 13V pkNodedO’ pkMR,» are hard-coded in the script.

1: function RootWriteScript;

2 L <
3 if vpos = 0 then

4 if H(Nodeg, ||Nsib) = MRL-/\H(Node:jo ||Nsib) = MR;;1 then
5: return True;

6 else

7 return False;

8 else

9 if H(Nsib||Nodeg,) = MR; AH (Nsib| |Nodeéo = MR;;1) then

10: return True;
11: else
12: return False.

B BISECTION GAME

In this section, we formally describe the bisection games that the
prover and verifier play interactively during the dispute, challenge
read, and challenge write subphases of the BitVM protocol. These
are referred to as the dispute bisection game, read bisection game,
and write bisection game, respectively.

In general, the bisection game is played as follows. P and V each
hold a sequence of values, which are assumed to be identical. The
prover makes public the first and the last elements of their sequence.
If the verifier disagrees with one of these two values, V initiates
a bisection game to find a point of disagreement, i.e. , a pair of
consecutive sequence elements such that they agree on one of them
and disagree on the other. Given sequences A” and A", a point of
disagreement is defined as a tuple (APTi), AP[i+1], AV [1], AV [i+1])
such that either AP[i] = AV[i] AAP[i+1] # AV[i+1] or AP[i]
AVTi]l A AP[i+1] = AV [i + 1] (for brevity, we refer to such a point
of disagreement as (A[i], A[i + 1])).

The first stage of the game is called disagreement phase: the game
progresses as the prover responds to the verifier’s challenges by
revealing specific elements of their sequence. A response consists
of publishing an on-chain transaction with a commitment to a
sequence element in the witness, while a challenge consists of
publishing a transaction with a commitment to a bit, indicating
which element should be revealed next.

After a point of disagreement has been found, the dispute bisec-
tion game ends, while the read and write bisection games proceed
to the solve phase. At the end of the solve phase, either P or V is
declared the winner, and the other one is declared the loser of the
bisection game.
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For brevity and readability, we use a shorthand notation for trans-
actions that abstracts away all but the fundamental components
needed to present the bisection game. Specifically, if party A €
{P,V} wants to publish a transaction with m variables vy, ..., v
as part of the witness, and for n of them they want to publish
their Lamport commitment as well, we express this by writing
TxA[{01,...,9n}, Ontt, - - ., Um]. Furthermore, we assume that every
transaction that we describe in this section has a timelock mecha-
nism that punishes inactivity.

B.1 Dispute bisection game

Disagreement phase. P and V play the dispute bisection game to
find a point of disagreement in their VM execution traces. P runs
DisagreeP(ExecTrace’, |ExecTrace?|) (cf. Algorithm 21, lines 1
to 14), where ExecTrace? is the VM execution trace of the VM
instance I'P run by the prover during the BitVM protocol. V runs
DisagreeV (ExecTraceV,|ExecTrace"|) (cf. Algorithm 21, lines 15
to 32).

B.2 Read bisection game

Disagreement phase. P and V play this phase of the read bisec-
tion game to find a point of disagreement in the path from the
root to Mps[addrAg] in the merkle tree of the memory My. P
runs DisagreeP(SD};, |SD£|) (cf. Algorithm 21, lines 1 to 14), where
SD}I; = (MRE, ... ,Mﬁ/[addrA,g]). The algorithm outputs the index

of a point of disagreement. V runs DisagreeV(PX, |73}‘{|) (cf. Algo-
rithm 21, lines 15 to 32). The algorithm outputs the index of a point
of disagreement.

Solve phase. Let (Npar, Nchild) be the point of disagreement iden-
tified by P and V during the disagreement phase. In the read bi-
section game, a point of disagreement is a pair of intermediate
Merkle tree nodes, where one is the parent of the other. P runs
SolveReadP(NparP, Nchild?, Nsib, Upos) (cf. Algorithm 22, lines 1
to 7). In the algorithm, P asserts that Nchild? is the left or right
child of Npar? by setting the bit Upos to 0 or 1, respectively. To
do so, P provides a sibling node Nsib. P publishes the transac-
tion CommitRead”, where they provide a commitment for Npar?,
Nchild?, UII;OS. V runs SolveReadV(.) (cf. Algorithm 22, lines 8 to 14),
where V publishes the transaction PunishRead" if P equivocated on
any of the values published as part of the witness of CommitRead”.

Notice that P does not risk equivocation only if Nchild” is a real
child node of Npar?, meaning that the leaf that they provided in
M/{’/[addrAg] is really the addrAg-th leaf of the Merkle tree with
root MRIL,

The winning conditions of the prover and the verifier for the
read bisection game are shown in Fig. 4.

B.3 Write bisection game

Disagreement phase. Let Py = (MRE .. .,Mi,[addng]) be the
path from the root to MZ[addrCQ] in the merkle tree of the mem-
ory Mﬁ. Let Py, = (MRE ..., M/{J/, [addrCy)) be the path in the
merkle tree of the memory M}I\)/, from the root to M)Iz/, [addrCy].

P runs DisagreeWriteP(PP , P;VP, |P€V|), which returns the in-
dex of a point of  disagreement. V. runs
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Algorithm 21 DisagreeP and DisagreeV are the algorithms run by P
and V as they interact with each other through the ledger L through the
dispute/read bisection game. The variable Ip denotes the prover’s sequence
and n denotes its length. Likewise, the variable Iy denotes the verifier’s
sequence and n denotes its length.

1: function DisagreeP(Ip, n)

2: 1 > Left search boundary

3: renm > Right search boundary

4 i—1; > Counter

5: while [ +1 < r do

6: me |5

7 Publish Txf[{Ip[m] } onlL;

8: Wait until Txly [{bi}] appears in L, where b; is part of the wit-
ness of transaction Txly published by V. Then, fetch b; from
Y [{bi}]:

9: if b; = 0 then

10: r < m;

11: else

12: [ — m;

13: ie—i+1;

14: returnr — 1.

—_

5: function DisagreeV(ly, n)

16: l—1; > Left search boundary
17: ren > Right search boundary
18: ie—1; > Counter
19: while [ +1 < r do

20: Wait until Txf[{lp[m] }] appears in L, where Ip[m] is part

of the witness of transaction TxfJ published by P. Then, fetch
Ip[m] from Tx]'[{Ip[m]}];

21: m «— L“Tr 1;

22: if Ip[m] # Iy [m] then > Disagreement
23: b; « 0;

24: else

25: b; — 1;

26: Publish Tx} [{b;}] on L;

27: if b; = 0 then

28: re—m; > Challenge the left half of at the next step
29: else

30: l —m; > Challenge the right half of at the next step
31: ie—i+1;

32: returnr — 1.

DisagreeWriteV(PV,PévV, IPX,I), which returns the index of a
point of disagreement.

In the disagreement phase, the verifier seeks a point of disagree-
ment in the path P}, given that P and V agree on the sequence
P . However, as soon as the verifier identifies a disagreement in
Py (cf. Algorithm 23, 1. 24), V shifts focus to finding a point of
disagreement within #yy. From this point forward, V disregards
the elements of #;,, published by P and considers only the elements
of Py to determine how to set the bit b;.

Solve phase. The point of disagreement is either the pair
(Npar,Nchild) or the pair (Npar,Nchild"). P runs
SoIveWriteP(NparP, Nchild?, Npar’P, Nchild’?, Nsib, pos) (cf. Al-
gorithm 24, Lines 1 to 7). In the algorithm, P asserts that Nchild?
and Nchild’? are the left or right child of the nodes Nparf and

Algorithm 22 SolveReadP and SolveReadV are the algorithms executed
by P and V, respectively, as they interact through the ledger L to resolve
the disagreement in the read bisection game in favor of either P or V. The
variables Npar, Nchild, and Nsib represent a triple, where Npar is the parent
node in a Merkle tree, and Nchild and Nsib are the child nodes, with Nchild
being the left or right child based on the bit v0s.

1: function SolveReadP(Npar, Nchild, Nsib, vp0s)

2 if vpos = 0 then

3 if H(Nchild||Nsib) = Npar then

4: Publish CommitRead®” [ {Npar, Nchild, Ypos }> Nsib] on L.
5 else

6 if H(Nsib||Nchild) = Npar then

7 Publish CommitReadP[{Npar, Nchild, vpos }, Nsib] on L.

8: function SolveReadV(.)

9: Wait until CommitRead” [ {Npar, Nchild, Upos}» Nsib] appearsinL,
where Npar, Nchild, Yposs Nsib is part of the witness of transaction
CommitRead” published by P.

10: if there is a bit b of Npar, Nchild, vp0s for which there are two
different commitments then

11: > Recall that V' cannot forge such commitments if P has not
equivocated <

12: Let ¢ be the commitment for b = 0;

13: Let c¢; be the commitment for b = 1;

14: Publish PunishReadV[co, ci]onlL.

Verifier wins. The verifier wins once one of these events happens:

(1) During the execution of DisagreeP (DisagreeWriteP) algo-
rithm, P fails to publish Response; transaction within A
rounds after Challenge; transaction has been published.

(2) During the execution of SolveReadP (SolveWriteP) algo-
rithm, P fails to publish CommitRead (CommitWrite) trans-
action within A rounds after the last tx Challenge; has been
published.

(3) V publishes PunishRead (PunishWrite) transaction.

Prover wins. The prover wins once one of these events happens:

(1) During the execution of DisagreeV (DisagreeWriteV) algo-
rithm, V fails to publish Challenge; transaction within A
rounds after Response; transaction has been published.

(2) During the execution of SolveReadV (SolveWriteV) algo-
rithm, V fails to publish PunishRead (PunishWrite) trans-
action within A rounds after CommitRead (CommitWrite)
transaction has been published.

Figure 4: The conditions that determine the winner of the
read bisection game (write bisection game).

Npar'P, respectively, based on the bit vpos (similar to the read bi-
section game). P demonstrates this by providing a node Nsib that
serves as the sibling of both Nchild? and Nchild’?. p publishes the
transaction CommitWrite?, where they provide a commitment for
NparP, Nchild?, Npar’P, Nchild’?, ’01};03. Intuitively, the prover can
commit to all the aforementioned elements without equivocating

only if they previously committed to MRE , and MZ, [addrCg] such
that Mﬁ,, [addrCy] is really the addrCy-th leaf of the Merkle tree
with root MRIL,.
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Algorithm 23 DisagreeWriteP and DisagreeWriteV are the algorithms
run by P and V as they interact with each other through the ledger L through
the write bisection game. The variable Ip denotes the prover’s sequence
and n denotes its length. Likewise, the variable Iy denotes the verifier’s
sequence and n denotes its length.

1: function DisagreeWriteP(Ip, I}’,, n)

2: 1 > Left search boundary

3: ren > Right search boundary

4 i—1; > Counter

5: while [ +1 < r do

6: me |5

7: Publish TxF'[{Ip[m],I,,[m]}] on L;

8: Wait until Txly [{bi}] appears in L, where b; is part of the wit-
ness of transaction TXZV published by V. Then, fetch b; from
Y [{bi) ;

9: if b; = 0 then

10: r < m;

11: else

12: | — m;

13: ie—i+1;

14: returnr — 1.

—_

5: function DisagreeWriteV(Iy, I"/, n)

16: l—1; > Left search boundary
17: ren > Right search boundary
18: ie—1; > Counter
19: flag « False;

20: while /[ +1 < r do

21: Wait until Txf[{Ip[m], Ip[m]}] appears in L, where

Ip[m], I,[ m] is part of the witness of transaction Txf published
by P. Then, fetch Ip[m], I,[m] from Txf[{Ip[m],Il’J[m]}];

22: m e« |_I+Tr 1;

23: if flag = False then

24: if Ip[m] # Iy [m] then

25: flag = True;> From now on, look only for disagreement
only

26: b; « 0;

27: else

28: if I,[m] = I}, [m] then

29: b; « 0;

30: else

31: b; « 1;

32: else

33: if Ip[m] # Iy [m] then

34: b; « 0;

35: else

36: b; — 1;

37 Publish Tx} [{b;}] on L;

38: if b; = 0 then

39: r e m; > Challenge the left half of at the next step

40: else

41: l —m; > Challenge the right half of at the next step

42: i—i+1;

43: returnr — 1.

V runs SolveWriteV(.)(cf. Algorithm 24, lines 8 to 14), where V
publishes the transaction PunishWrite" if P equivocated on any of
the values published as part of the witness of CommitWrite?.

Algorithm 24 SolveWriteP and SolveWriteV are the algorithms executed
by P and V, respectively, as they interact through the ledger L to resolve
the disagreement in the write bisection game in favor of either P or V.
The variables Npar, Nchild, Npar’, Nchild’, and Nsib represent two triples,
where Npar and Npar’ are the parent nodes in a Merkle tree, with Nchild,
Nsib and Nchild’, Nsib as the child nodes, respectively. The nodes Nchild,
Nchild” are the left or right children based on the bit Vpos-

1: function SolveWriteP(Npar, Nchild, Npar’, Nchild’, Nsib, vp0s)
2: if vpos = 0 then

3: if (H(Nchild||Nsib) = Npar) A (H(Nchild’||Nsib) = Npar’)
then

4: Publish CommitWrite? [ {Npar, Nchild,

Npar’, Nchild’, up0s }, Nsib] on L.

5: else

6: if (H(Nsib||Nchild) = Npar) A (H(Nsib||[Nchild") = Npar’)
then

7: Publish CommitWriteP[{Npar, Nchild,

Npar’, Nchild’, upos }, Nsib] on L.

8: function SolveWriteV(.)
9: Wait until CommitWriteP[{Npar, Nchild,
Npar’,Nchild’, vpos},Nsib] ~ appears in L,  where
Npar, Nchild, Npar’, Nchild’, Ypos» Nsib is part of the witness
of transaction CommitWrite” published by P.
10: if there is a bit b of Npar, Nchild, Npar’, Nchild’, v05 for which
there are two different commitments then

11: > Recall that V cannot forge such commitments if P has not
equivocated <

12: Let ¢ be the commitment for b = 0;

13: Let ¢; be the commitment for b = 1;

14: Publish PunishWrite" [¢g, ¢1] on L.

The winning conditions of the prover and the verifier for the
write bisection game are the same as the read bisection game, thus
in Fig. 4.

C EXTENSIVE FORM GAMES WITH PERFECT
INFORMATION

We introduce the concept of Extensive Form Games (EFG) as follows.
In an EFG, a game tree encapsulates all possible protocol executions,
with nodes representing players’ decision points, branches indi-
cating possible actions, and leaves denoting the utility outcomes
associated with chosen strategies.

DEerFINITION 9 (EXTENSIVE FORM GAME-EFG). An Extensive Form
Game (EFG) is a tuple G = (N, H, P,u), where set N represents the
game player, the set H captures EFG game history, T C H is the set
of terminal histories, P denotes the next player function, and u is the
utility function. The following properties are satisfied.

(A) The set H of histories is a set of sequence actions with

(1) 0 € H;
(2) if the action sequence (ak)]’;(:1 € H and L < K, then also
L .
(ak)k:1 € H;
(3) an action sequence is terminal (ak)f:l € T, if there is no
further action a1 that (ak)llf:ll € H.

(B) The next player function P
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(1) assigns the next player p € N to every non-terminal history
(@), € H\T;
(2) after a non-terminal history h, it is player P(h)’s turn to choose
an action from the set A(h) = {a: (h,a) € H}.
A player p’s strategy is a function o, mapping every historyh € H
with P(h) = p to an action from A(h). Formally,

op:{heH:P(h)=p} — {a:(ha) € HVheH}
such that op(h) € A(h).

A subgame of an EFG is defined as a subtree rooted at a specific
history node, representing the last decision point in that sequence
of actions.

DEFINITION 10 (EFG suBGAME). The subgame of an EFG ¢ =
(N,H,P,u) associated to history h € H is the EFG
@(h) = (N, Hp, P, up,) defined as follows: Hyy, == h'|(h,h’) € H,
Pip(W') = P(h,1'), and ujp(h') := u(h, b').

The core concept of our proof methodology is to demonstrate
that utility-maximizing players will choose to adhere to the protocol
specification at each step of the protocol. We further show that this
implies rational parties will follow the optimistic path of BitVM.
This is accomplished by leveraging the notion of a Subgame Perfect
Nash Equilibrium (Definition 11) [26]. Specifically, we show that the
strategy profile encompassing the "correct protocol execution" of
BitVM constitutes an SPNE of our game, using a technique known
as backward induction.

In backward induction, we evaluate each decision point by
traversing backwards the EFG, i.e., starting from the final outcomes
and moving backward to the initial decision. At each step, the player
selects the action that maximizes their utility, assuming that sub-
sequent players will also choose optimal actions in response. This
process continues up the game tree until the root is reached, yield-
ing a sequence of optimal strategies that together form a Subgame
Perfect Nash Equilibrium.

DEFINITION 11 (SUBGAME PERFECT NASH EQUILIBRIUM (SPNE)).
A subgame perfect equilibrium strategy is a joint strategy
o = (01,...,0n) € S, st o) = (O1|p, -+ O)p) is @ Nash Equilib-
rium of the subgame ¢ (h), for every h € H. The strategies o;|, are
functions that map every ' € Hy, with Pp,(k") = i to an action from
Ap(h).

D SECURITY ANALYSIS

Notation and Assumptions. We denote by N; the number of
execution steps of the VM and by N the size of the memory. For
convenience, we denote the logarithm of a quantity x as X = log(x)
and the nested logarithmic value as x= log(log(x)).

Moreover, we denote the balance account of a user A € {P,V}
by (u)4, meaning that there are u coins to the account associated
with A. We consider only funds related to the execution of BitVM
and assume a constant fee f for each transaction.

In the Setup phase, P locks inp = a + (2N + 2N, + 7) f coins in
the multisignature, and V iny = f + (2Ny + 2Nz + 7) f coins. This
amount ensures that if, w.l.o.g., P deviates from the protocol and

the execution follows the longest path until V claims the remaining
funds, V will not lose money even if f = 0. That is because, as
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we will show in Lemma D.11, in the worst case 2Nj + 2Ny + 7
transactions are posted on-chain.

Last, for the pair of utilities corresponding to any final state by
the outcome mapping function we assume that vp + vy < inp +

iny — (2N} + 2N; + 7) f. We interpret that cost as application fees,
which is again analogous to the longest path of the execution.

D.1 Agreement phase

LEmMMA D.1 (CORRECTNESS OF THE SETUP). Let Presignedp be the
set of presigned transactions V handovers to P and Presignedy be
the set of presigned transactions P handovers to'V during the Setup
phase. If Setup is published on chain, then:

(1) Presigned transactions availability: P possesses all the trans-
actions € Presignedp along with Vs signature. V possesses all
the transactions € Presignedy along with P’s signature.

(2) Locking the deposit: o+ f+ (4N1 +4Nz +14) f coins are locked
in the multisig opy of P and V.

Proof: First, since Setup is accepted by the miners, both P and
V must have signed Setup. Given that, the following holds:

(1) P signed Setup only after receiving the set of transactions
in Presignedp signed by V. Similarly, V signed Setup only
after receiving the transactions in Presignedy signed by P.

(2) Setup has an output of a+ S+ (4N1+4N3+14) to the multisig
opy of Pand V.

D.2 Execution phase

LeEMMA D.2 (P DOES NOT PosT CommitComputation). If Setup
is published on chain and CommitComputation is not published on
chain within the timelock A, it is a dominant strategy for V to claim
the output of Setup. As a result, P’s balance account is (0)p and V’s

(o + B+ (4N + 4N, + 12) f),.

Proof: P can only spend Setup by publishing
CommitComputation on chain. If P does not publish
CommitComputation after A when the timelock in Setup expires,
V can claim the output of Setup. If V claims the collateral, she
spends f coins in transaction fees. Moreover, since P has already
posted Setup on-chain, 2f has been spent in transaction fees in

total. Therefore V’s account is u; = (a + f + (4Nj + 4Ny + 12)fHv.
Otherwise, if V' does not claim the collateral, the respective balance
account is u = (0)y. Since uy > uy, it is a dominant strategy for V
to claim the output of Setup when the timelock expires. O

D.3 Identify Disagreement phase
D.3.1  Normal closing.

LeEMmMA D.3 (V DOES NOT PUBLISH KickOff TO INITIATE A DIS-
PUTE. P 1S SUPPOSED PUBLISH A CloSe TRANSACTION). Assume that
CommitComputation is published on-chain and KickOff is not pub-
lished on-chain within the timelock A. Moreover, consider f (Rpinal) =
(fp, fv) where Rginqy the final state that uniquely corresponds to
MR¢inal Which P has committed in CommitComputation, f is the
outcome mapping function and Close; for somei € {1,..,m} is the
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corresponding transaction that distributes the funds accordingly. Then,
the following statements hold:

o If P publishes on-chain Closej, P’s balance account will be
(fp+ (2N; + 2N, + 5.5)f)p, and V'’s balance account will be
{(fv + (21\71 + 2]\72 +55) )v.

o If P publishes on-chain Closej, for some j € {1,...m},j #1,
it is dominant strategy for'V to claim the coins in the multi-
signature. Then, P’s balance account is {(a + f + (4N7 + 4N, +
11) f)p and V'’s {0),.

e If none of transactions in the set S = Uy myClose; is pub-
lished on-chain within 2/ since CommitInstruction was pub-
lished, it is a dominant strategy for V to claim the coins in
the multisignature. In that scenario, V'’s balance account is

(ot + B+ (4N1 + 4N + 11) )y and P’s (0)s.

Proof: Since CommitComputation is posted on chain, the trans-
action Setup must have been previously published. That is because
CommitComputation spends Setup. Therefore 2f of the coins in
the multisignature have already been spent in transaction fees.

e Close; redistributes the rest of the coins to the parties ac-
cording to the outcomes mapping function f, namely (fp +

(2N1 +2N; +5.5)f) coins to P and (fp + (2N; + 2Nz +5.5) f)
coins to V, where f(Sfinal, & B) = (fa, fp)- Since the result

RP_ corresponds to MRin, V cannot spend Close;.

final

e Since i # j and each transaction in S uniquely corresponds

to an outcome of the computation, in Closej P commits
to an MR;inal # MRfinal. V can show the equivocation of
P by providing the conflicting commitments since for each
k € {1,...,m} the Script CloseScript; (Algorithm 8) has the

same hard-code keys with CommitComputationScript. As

a result P will have a balance u; = (a + f + (4N1 +4N; +
10) f)v, since 4f are spent in the transaction fees for Setup,
CommitComputation, Closej and the transaction sending
the collateral to their account. In this scenario, P’s balance
account is (0)p . Otherwise, if V does not utilize the timelock,
their balance account is uy = (0)p. Since u; > uy it is a
dominant strategy for V to use the timelock.

e P can only spend CommitComputation by posting exactly
one transaction in S, otherwise V can utilize the timelock
after 2A. Since P any transaction in S, P can claim the coins
of the multisig after the timelock 2A, leading to a balance

account u; = (a+f+ (4N +4N,+11) f)y, since 3f are spent
in the transaction fees for Setup, CommitComputation, and
the transaction sending the collateral to their account. In this
scenario, P’s balance account is (0)p . Otherwise, if V does
not utilize the timelock, their balance account is uz = (0)p.
Since u; > ugy it is a dominant strategy for V to use the
timelock.

m|
D.3.2 Dispute bisection game.

LEMMA D.4 (P 1S INACTIVE DURING THE CHALLENGE PATH). Con-
sider a set of transactions {tx} c {Kickoff} U
{TraceChallengei}ie{lmﬁl}, where {tx} # 0, is published on-
chain and one of the following scenarios is true:
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(1) Kickoff e {tx} (let j = 0) and P has not posted
TraceResponse; within A,

(2) TraceChallenge; € {tx} fori < Nj (let j = i) and P has not
posted TraceResponse;,; within A,

3) TraceChallengeI;]1 € {tx} (let j = N1) and P has not posted
CommitInstruction within A.

Then, it is a dominant strategy forV to utilize the timelock. P’s balance

account is then (0)p, and V ’s balance account is (a+ §+ (4N1 +4N3 —
2j+10)f)y.

Proof: Since {tx} # 0, KickOff has been published on-chain, P
has previously published on-chain Setup, and Commi tComputation,
which cost 3f in transaction fees. If scenario 1 is true and V' uti-
lizes the timelock to claim the output of KickOff, which costs
another f in fees (thus 4f in total), her balance account is u; =

(a+p+ (4N7 + 4N + 10))y, and P’s balance account is (0)p. If V
does not utilize the timelock, her balance account is uy = (0), < ug,
which shows that it is a dominant strategy for her to utilize the
timelock.

Otherwise, if scenario 2 or 3 is true, P has posted on-chain before
{TraceResponsey}reqy,...j} paying extra jf in transaction fees,
and V, in turn, has posted {TraceChallengey}re(y,.. 3 paying jf
in fees too. Now, if V utilizes the timelock, her balance account is
(u; = a + p+ (4N1 + 4N — 2j + 10) f)y and P’s balance account
is (0)p. Otherwise, if V does not utilize the timelock, V’s balance
account is uz = (0)y < uj, which again shows that it is a dominant
strategy for her to use the timelock. O

LeEmMA D.5 (V 1S INACTIVE DURING THE CHALLENGE PATH). Con-
sider a set of transactions {tx} C {TraceChallenge; }ie{l Ny Y
{CommitInstruction}, where {tx} # 0, is published on-chain and

one of the following scenarios is true:

(1) TraceResponse; € {tx} for somei < Ni (let j = i), and V
has not posted TraceChallenge; within A,

(2) CommitInstruction € {tx} (let j = Ny + 1) and V has not
posted any transaction tx’ €  {ChallengeCurrPC,
PunishInstruction,ChallengeRead, ChallengeWrite}
within A.

Then, it is a dominant strategy for P to utilize the timelock. P’s balance

account is then (o + f + (4Ny + 4Ny — 2j + 11)f)p, and V'’s balance
account is (0)y.

Proof: Since TraceResponse; is posted on-chain, Setup, Close,
KickOff are posted on-chain as well. Moreover, if i > 1,
{TraceResponsey}iei,...i-1} and
{TraceChallengey}ieqs,.. -1} are also published on-chain. More
specifically, first, P committed the Setup and the Close. Then, V
posted KickOff. Furthermore, if i > 1, P has also published on-
chain {TraceResponsey}ieqi,. i1} and V the respective
{TraceChallengey}re (s, i—1}- This results in (2j + 2) f in trans-
action fees. Now, if Scenario 2 is true, then V has published on-
chain TraceChallengey; which P spent by publishing on-chain
CommitInstruction. In both scenarios, 1 and 2, P spends extra f
in transaction fees to claim the collateral. "I:herefore, P’s balance

account will now be u1 = (& +  + (4Nj + 4Nz — 2j + 11))p. In that
case, V’s balance account is (0)y . Otherwise, P’s balance account
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isup = (0)p < uj, which means that it is a dominant strategy for P
to use the timelock. o

LEmMA D.6. Consider parties P and V' play the bisection game on-
chain described in Algorithm 21. P runs the function DisagreeP (A, n)
where A is a sequence of n values, and V runs the function
DisagreeV(8, n) where B is a sequence of n values. The following
statements hold:

o if A[1] = B[1] and A[n] # B[n], the protocol pinpoints
an index j such that A[j] = B[j] and A[j + 1] # B[j + 1]
where j € {1,...,n— 1},

o The bisection game finishes after O(logn) steps.

Proof: We denote the local variable i of P and V by i¥ and iV
respectively. We say we are in the i—th step of the bisection game
(or the loop) if if = i. Moreover, we denote the local variables I, r of
P and V in the i-th step of the loop by llP, rlP, and lly, rly respectively.
Precondition. The following condition holds: A[1] = B[1], and
A[n] # B[n], P starts with the local variables léJ =1, réJ =n, lé’ <

rP i¥ = 1 and V with the local variables l(‘)/ =1, r(‘)/ =n, l(‘)/ <

Loop invariant. We will prove that, in every step of the loop the
protocol maintains the following loop invariant by induction on
the number of steps.

After the i-th step of the loop, P and V have the same local
variables i = il = i, and ll.P = liV =1, r{’ = rf =r;withl; <rj,and
therefore, they continue with the subsequences A[l; : r;], B[l; : r;]
respectively. Moreover, it holds that A[l;] = B[l;] and A[r;] #
Bri].

Base Case. In the base case where n = 2 and A[1] = B[1],
Al2] # B[2],then ¥ =1V =1 =2 r" =¥ = 2, and since
r — 1 = 1 the condition in line 19 is not satisfied so the bisection
game pinpoints as the point of disagreement j = 1.

Induction Step. Assume that in the i—th step of the loop the
invariant holds. So, P and V have the same local variables i¥ = iL =
i llP = lly = li,rlP = rly = ri, l; < ri, and for their subsequences
All;] = B[l;] and A[s;] # B|si] respectively. We will show that
the invariant holds for the step i + 1.

First, P publishes on-chain the value A[m], where m = LHT”J
(line 7). When V witnesses A[m] on-chain, we have the following
cases:

e Case 1, A[m] # B[m] : V sets b; = 0 (line 23), publishes b;
on-chain (line 26) and updates its local variables iV « i + 1

(line 31) and rl.‘frl «— m (line 28). As soon as P witnesses

b; = 0 on-chain it updates its local variables i¥ « i+ 1 (line

13) and r{il «— m (line 10). Moreover, since P and V entered
the loop at step i, r; # [; + 1, and r; > [; (by assumption), it
must be r; > [;+2. Therefore, rifjrl =m= L#J > I_ZIiT+2J =

L+1=1F 41

Therefore, since lj+1 = lil

rier > lig1, iV = i¥ = i+ 1, P and V continue with the

subsequences A[li+1 : rig1], Blliv1 : ris1] respectively s.t.

Alli+1] = Blli+1], Alriv1] # Blris1], the invariant still

holds.

o Case 2, A[m] = B[m]: V sets b; = 1 (line 25), publishes b;

on-chain (line 26) and updates its local variables [V « m

gV g P _ o _
=l =lrm =r =, =m
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(line 30) and iV « i+1 (line 13). As soon as party P witnesses
b; = 1 on-chain it updates its local variables I «— m (line 12)
and i « i+1 (line 13). Moreover, since P and V entered the
loop at step i, I; < r; — 2 and by assumption r; > I;, which
means that lj;; = m = I_Z’JrTr’J < L%J = r; — 1. Since
ri+1 = ri, it holds that rit1 > [i+1.

Again, since, =1 = Tit1, Fit1 > liv1, iV =
i¥ = i+ 1 and both parties continue with the subsequences
Alliv1 ¢ riv1], Bllivr : risa], such that Allj1] = Blli],
Alrit1] # B[ri+1] the invariant still holds.

= LiprP =1

Termination: In every step of the bisection game the interval of the
sequences of P and V remains the half. Moreover, after the step i
of the loop for the local variables of P and V it holds that ll.P+1 =
IIKI = lit1, rﬁ_l = rf+1 = ri+1, i+1 > liz1. Since, the subsequences
are decreasing to the half after every step i and rj41 > l;41, after
O(logn) steps the algorithm will pinpoint the point of disagreement.
O

LEMMA D.7 (P HAS COMMITTED TO THE WRONG STATE AND V
INITIATES A DISPUTE). Assume that P has committed to an execution
trace EPinal in CommitComputation different than the VM execution

f

trace element at step final, i.e., Pinal # Efinal- Assume that V

E
f

follows the protocol specifications, publishes on-chain Kickoff and

P andV run Algorithm 21. Algorithm 21 outputs a step N such that

P has committed to the execution traces Ei( = En at step N and

Ei(+1 # Enyp at step N + 1.

Proof: Let 7 be the set which consists of i) all the VM steps to
which P has committed to an execution trace on-chain (line 7), ii)
step i = 1, for which P has committed to EOP], and i = final for
which P has committed to E]Izmal in CommitInstruction.

By assumption V follows the protocol specification and, there-
fore, runs the function DisagreeV (8, final) of Algorithm 21, where
the sequence B consists of the VM execution trace element at each
step, i.e,, Vi € {1, ..., final} : B[i] = E;.

P runs the function DisagreeP (A, final) of Algorithm 21, where
the sequence of values A is constructed as follows. For every i € 7,
Ali] = Ef;inal’ ie., Ali] is the execution trace to which P has
committed on-chain for step i. For the rest indices, i € {1, ..., final}\
T, without loss of generality, we assume that A[i] = E;, i.e, A[i]
is the correct VM execution trace element at step i.

By assumption A[1] = B[1] and A|[final] # B[final], and
therefore according to Lemma D.6 the bisection game outputs a

step N such that A[N] = B[N]and AN +1] # B[N +1]. O

D.4 Punishment phase

In this section, we consider the case where P has posted on-chain
CommitInstruction along with the witness, which consists of the
values pcy, pcgr, insTypey, addrAg, addrBg, addrCy, valAg, valBy,
valCyg and the respective commitments that correspond to the VM
state at step 6. This means that the following arguments are true:

e Since CommitInstruction is accepted by the miners, Setup
must have been first published on the chain. That is because
CommitInstruction spends TraceChallengeN7, which can
only exist on-chain if Setup has previously been published
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on-chain too. Therefore, according to Lemma D.1, P has pre-
signed and sent to V the transactions ChallengeCurrPC, (or
ChallengeNextPC), PunishInstruction, ChallengeRead,
ChallengeWrite.

e Moreover, during the dispute bisection game V has commit-
ted to the bits b; € {0,1}, j € {0, ... N1 — 1} which form the

N -bit integer N = Z;\QO_I 2/b;.
o All the presigned transaction assiociated with the resolve dis-
pute phase are available to the parties according

to Lemma D.1.

LEMMA D.8 (INCONSISTENT PROGRAM COUNTER). Consider thatV
publishes on-chain the transaction ChallengeCurrPC, committing
to a number N’ € {0, ..., N1} and providing P’s commitment for the
program counter at a step N* € {0, ..., N1}, pcn+= # pcg. Then the
following scenarios hold.

e V equivocates: If pcy = pcp, namely, the program counter
that P included as part of the witness to CommitInstruction
is the one he committed during the dispute bisection game at
step N, then it is a dominant strategy for P to claim the output
of CommitInstruction. As a result, P’s balance account will

be (ot + + (2Ny + 4Ny +8) f)p, and V ’s balance account (0)y .
e P misbehaved: If pcy # pcp and N’ = N, namely the pro-
gram counter that P included as part of witness to
CommitInstruction is different than the one he committed
during the dispute bisection game at step N, then it is a domi-
nant strategy for V  to claim the output of
CommitInstruction. As a result, P’s balance account will

be (0)p, and V ’s balance account {at + f + (2Ni + 4Ny + Nf)v.

Proof: Since ChallengeCurrPC is published on-chain, P has pub-
lished on chain the set of transactions SetupUCommitComputation
U {TraceResponsei}ie{l’mﬂl} U CommitInstruction and V has
published KickOff u {TraceChallenge; }ie{1 .... N}
U ChallengeCurrPC so (2Nj +5) f coins have been already spent
in transaction fees.

Moreover, ChallengeCurrPC is accepted by the miners which
means that V unlocked the i — th spending condition of
CommitInstruction for some i € {0,..,N; — 1}, by committing
to the bits bj,j € {0,..., Np — 1} which form the Nj-bit integer
N’ = Zj.\]:lo_l Zjbj such that CountZeroes(N’) = i.

Furthermore, for P’s commitment pcy+ it must be that pcn+ =
peny. Namely, V can only provide as a witness P’s commitment at
step N’, which is the execution step V claimed they disagree. That is,
because ChallengeCurrPCi and the i-th spending condition have
the same hard-coded public key. Therefore, from all of P’s com-
mitments to program counters shared during the dispute bisection
game, only the one for pcn satisfies the condition in Algorithm 11,
line 8 .

o P is honest (pcg = pc): Since pcg = per and peg # pen= by
assumption, and pcy+ = pcnr as explained before, it must
hold that pcyy # pens. Therefore N # N, which means
that V committed now to N’ which is different than N, to
which V committed during the dispute bisection game. Since
N’ # N, the two numbers must differ in at least one bit.
W.l.o.g., assume the two numbers differ in the k — th bit. P
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can spend the transaction ChallengeCurrPC to claim the
coins in the multisignature, spending extra f in transaction
fees too, showing that V equivocates by providing the secret
key to the commitment of b} # by.

e P is malicious (pcg # pcy and N’ = N ): P cannot spend the
transaction ChallengeCurrPC, since V included to
ChallengeCurrPC indeed the number N to which she has
committed before. V will do Therefore, after A where the
timelock expires, V can claim the coins in the multisignature.
|

LEMMA D.9 (P CLAIMS AN INCORRECT INSTRUCTION). Ifand only if
the instruction that P claims for the program counter
pco is the wrong instruction, ie.,
II(pcg) # (insTypey, addrAg, addrBy, addrCy), then V can claim
the output of CommitInstruction by publishing on-chain
PunishInstruction. In that scenario, P’s balance account is (0)p,

and V’s balance account {a + + (2N + 41\:]2 +9)fHv.

Proof: First, since PunishInstruction is published on-chain, P
has published on-chain the set of transactions Setup U

CommitComputation U {TraceResponsei}iE{1 A v
CommitInstruction and V has published KickOff U
{TraceChallengei}iE{l___Nl} U PunishInstruction so (2N +

5)f coins have been spent in transaction fees.

We remind that the pcp-th spending condition of
ClScriptPCCurrj in CommitInstruction is true if and only if it re-
ceives as witness P’s commitment to the program counter pcg and to
the tuple (insTypey,addrAg, addrBg,addrCy) such that
(insTypeg, addrAg, addrBg, addrCq) # I1(pcy).

=:V provides P’s commitments to pcg and (insTypey, addrAg,
addrBg, addrCy) as witnesses to unlock the transaction
PunishInstruction by spending the pcy-th condition of
ClScriptPCCurr;.

Since II(pcy) # (insTypeg, addrAg, addrBy, addrCy) by assump-
tion, V will successfully unlock the pcy-th locking script and spend
PunishInstruction to claim the output of CommitInstruction.

Therefore, Vs balance account is (&t + f§ + (2N7 + 4Ny + 9)f)v and
P’s balance account (0)p.

& Assume that V has managed to spend the transaction
PunishInstruction. That means that V has unlocked the pc; —
th spending condition for pc; € {1,...,len(I)}, which in turn
means V provided as witness P’s commitment to pc; for which
(pcj) # (instrTypej, addrAj, addrB;, addrCj). Since the transac-
tion PunishInstruction and CommitInstruction have the same
hard-coded keys, it must be that pc; = pcg since this is the only
commitment at program counter which satisfies the condition in Al-
gorithm 15, line 3. O

D.4.1 Read bisection game.

LEMMA D.10 (A PARTY IS INACTIVE DURING THE READ BISECTION
GAME). Assume that V publishes on-chain the transaction
ChallengeRead by spending the script ClScriptRead,
(or ClScriptReadp) of CommitInstruction.

(1) Scenario 1, V is inactive: Assume that ReadResponsej, i €

{1,..., 1\72} is published on-chain. If ReadChallenge; is not
published on-chain after time A, then it is a dominant strategy
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for P to claim the coins locked in the multisignature. As a result,

P’s balance account is (a + + (2Ny + 4Ny + 0 — 2i)f)p, and
V'’s balance account is (0)y.
(2) Scenario 2, P is inactive: Assume that a set of transactions

{tx} C {ChallengeRead} U {ReadChallenge;}. :
ie{l,...Ny}

where {tx} # 0, is published on-chain and one of the following
scenarios is true:
(a) ChallengeRead € {tx} (let j = 0) and P has not posted
ReadResponse; within A,
(b) ReadChallenge; € {tx} fori < Ny (let j = i) and P has
not posted ReadResponse;,; within A,

(c) ReadChallengey, € {tx} (letj = Na) and P has not posted

exactly one transaction
tx’ € {MerkleRootHash} U {MerkleHash;} z

IE{I,...,NQ}
within A,

Then, it is a dominant strategy for V to claim the coins locked
in the multisignature. P’s balance account is then (0)p, and

V’s balance account is (a + f§ + (2Ni + 4Ny — 2j + ) )v-

Proof: First, in every case, since ChallengeRead is published
on-chain, P has published on-chain the set of transactions Sp =
Setup U (Zommi'c(iomputation,U{MerkleResponsei}ie{1 ’’’’’ N}
CommitInstruction and V has published Sy = Kickoff U
{MerkleChallengei}ie{l)._vﬂl} U ChallengeRead so (2N +5)f
coins have been already spent in transaction fees.

(1) In this scenario, P has published on-chain Sp U
{ReadResponsey}ie(y,...i}» and V has published on-chain
Sy U Syv, where Sy» = {ReadChallengey}reyy,.  i-1) if i >
0, otherwise V’ = 0. Therefore, extra 2i — 1 have been spent
in fees. Since ReadResponse;j is published on-chain and V
has not published ReadChallenge; on-chain after A, P can
activate the timelock to claim the coins locked in the multisig-
nature. To this end, P spends extra f in transaction fees. As a

result, his balance accountis u; = (a+[3+(21\71+4]\72+9—2i)f)
and V’s account is (0)y . Otherwise, P’s balance account is
0 < uq, and therefore activating the timelock is a dominant
strategy.

(2) In all of the scenarios Items 2a to 2c¢ extra 2j have been
spent in transaction fees. Moreover, since P is inactive, V
can activate the timelock to claim the coins locked in the
multisignature, spending an extra f in transaction fees. As a

result, V’s balance account is u; = (a+ﬁ+(a+/3+(21\71+41\72+
8 — 2j)f) and V’s account is (0)y. Otherwise, V’s balance
account is 0 < up, and therefore activating the timelock is a
dominant strategy. o

LeEmMA D.11 (READ BISECTION GAME COMPLETES). Assume that V
publishes on-chain the transaction ChallengeRead by spending the
script ClScriptRead 4 (or CIScriptReady) of CommitInstruction.

(1) Scenario 1, P reads an incorrect value from the memory:
Consider N the number to which V has committed during
the dispute bisection game. If P has committed to a correct
execution trace element for step N in the dispute bisection
game, i.e., E/Ii/ = Ep/, and P has committed to a value valAy +
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MladdrAg] (or to a value valBy # M[addrBy)), it is a domi-
nant strategy for V to claim the coins in the multisignature. As
a result, P’s balance account is (0)p, and V'’s balance account
is (o + f+ (2Ny + 2Nz + 7) f)y.

(2) Scenario 2, P follows the protocol specifications: If P has
followed the protocol specifications, P will eventually claim
the coins in the multisignature. In that scenario, V'’s balance
account is (0)p, and P’s balance account is (ot + § + (2N} +

2Nz +8) Fy.

Proof: As explained in Lemma D.10, when ChallengeRead is
published on-chain (2N7 + 5)f coins have been already spent in
transaction fees.

(1) Consider the Merkle tree of the memory at step N with root

MR . Moreover, consider the path 7 from the root MR, to
MN[addrAg], ie., = (MRN, ey MN[addrAg]).
By assumption, V follows the protocol specification and
therefore runs the function DisagreementReadP(%5, n) of Al-
gorithm 21, where the sequence B of length n = Ny consists
of the values of r, i.e., Vi € {1, ...Na}, B[i] = x[i]. P runs the
function DisagreementReadP (A, n) of Algorithm 21, where
the sequence A of length n = Ny is constructed as follows.
Let 7 be the set of all the nodes to which P commits on-chain
(line 7) including the root (i = 1), since P has committed to
the root MRi/ in the dispute bisection game (in the trace
element Ei), and the leaf of the path (i = N) to which P com-
mitted in CommitInstruction, i.e., Mf\)/[addrAg] = valAy.
For every i € I, A[i] = #P[i], where by 7°[i] we de-
note the nodes of level (i — 1) to which P has committed
on-chain. For the rest indices, i € {1, ..., }\72} \ 7, without
loss of generality we assume that A[i] = x[i], i.e, Ali]
is the correct node of & at level (i — 1). By assumption
A[1] = B[1] and A[N3] # B[Nz], and therefore according
to Lemma D.6 the bisection game outputs a step Ny, such
that A[Npyer] :~$ [Nuer] and A[Npger+1] # B[Npter+1]
and finishes in N, steps. Depending on the value of Njer,
P can spend the transaction ReadChallengey, as follows.

Npter = 0. P can unlock the script RootReadScript; (Algo-
rithm 18) for some i € {1,..,N;} by providing the com-
mitment of V to Nyje, made in the disagreement phase of
the read bisection game (line 3). and the commitment of
V to N, the number output in the Identify Disagreement
phase (line 5), for which it must hold Count_Zeroes(N) = i.
Since V follows the protocol specifications, the condition
Nuer = 0 is true only when V disagrees with every node
committed by P, including the node u = B[2] committed
in ReadResponsey, which is on of the children of the root
B[1] = MRﬁ/. To unlock the script, P must provide as
input three nodes (Npar, Nchild, Nsib) s.t. Npar = B[1],
Nchild = 8[2], and i) if Nchild is the right child of Npar then
H(Nchild||Nsib) = Npar (line 16), ii) else H(Nsib||Nchild) =
Npar (line 21). We enforce the position of the child Nchild
as follows. We take the Nje,-th bit of the binary represen-
tation of addrAg which we denote by by, . By construc-
tion of a Merkle Tree, by, defines the position of Nchild,
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namely if b, = 1the Nchild is the right child of Npar, else
Nchild is the left child child of Npar. P can only provide the
wrong position of Nchild only by providing a commitment
to aaldrA"9 # addrAy, i.e., in which case V can prove the
equivocation and publish PunishRead3 to claim the coins in
the multisignature. That is because the scripts for unlocking
CommitInstruction and RootReadScript; hard-code the
same public key pkada'rAg for addrAy (line 11). For the rest
of the proof, we assume that P did not equivocate at this
point and that, w.l.o.g., Nchild is the right child of Npar.
Since V has followed the protocol specifications, V knows
anode NsibY that satisfies this condition, i.e., for the input
x = Nsib"||A[2] the hash function H returns H(x) = A[1].
P must find a value Nsib s.t. x’ = Nsib||B[2] # x (since
B[2] # A[2]), and H(x) = B[1] = H(x’) (since B[1] =
A[1],) which can happen only with a negligible probability
since H is a collision-resistant function. Therefore, to sat-
isfy the condition, P must equivocate and provide Nchild =
Al2] # B[2] or Npar = A[1] # B[1]. In both cases V
proves the equivocation and publish on-chain PunishRead3
to claim the coins in the multisignature, since the scripts
ChallScript; and RootReadScript;j have the same hard-coded
public key for MRi/ and the scripts ReadChallScripts and
RootReadScript; have the same hard-coded public key for
Nodey,.

Nuer # 0. To spend the transaction ReadChallengey, P

must unlock the script ValueAScript if Njjer = Ny — 1, oth-

erwise unlock the script HashReadScript; (Algorithm 16) for
some i s.t. Count_Zero(Npmer) = i. In both scenarios, P must
provide as input three nodes in the path (Npar, Nchild, Nsib)

s.t. Npar = B[], Nchild = B[j + 1], and i) if Nchild is the

right child of Npar then H(Nsib||Nchild) = Npar, ii) else

H(Nchild||Nsib) = Npar. Again, we enforce the position of

Nchild using the Njpse,-th bit of the binary representation

of addrAy. Wlo.g., we assume that Nchild is the right child

of Npar.

Since V has followed the protocol specifications V knows a

node Nsib" s.t. for the input x = Nsib" ||A[j + 1] the hash

function H returns H(x) = A[j]. P must find a value Nsib

s.t. x” = Nsib||B[j + 1] # x (since B[j + 1] # A[j + 1]),

and H(x) = B[j] = H(x’) (since B[j] = A[j],) which can

happen only with a negligible probability since we assume a

collision-resistant function H.

To provide such a pair P has to equivocate and therefore

present a pair s.t. at least Npar # B[j] or Nchild # B[j +1].

More specifically, we have the following scenarios:

o Nuer € {1,..., N2 — 2} : In this scenario, V can show the
equivocation because the hard-coded public keys for the
pair Nchild, Npar corresponding to HashReadScript; are
the same to which P commits during the disagreement
phase of the read bisection game.

e Nyter = Nz — 1 : If P equivocates on Npar, V can prove
the equivocation as explained for Ny, € {1, Ny —
2}. The extra condition in this situation is that the hard-
coded public key of Nchild is the same with valAy in
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CommitInstruction. Therefore, if P equivocates on
Nchild, V can again provide the conflicting commitments.
In the worst case, the set of transactions {ReadChallenge;,

Wri’ce(:hallengei},E{1 %) is published on-chain along
i s N

with two extra transactions, when P equivocate while.
Thus, (2N2+2) f have been spent in transaction fees. There-
fore, if V disproves P, V’s balance account is (a+ S+ (2N7 +

2Nz +7)f)y and P’s balance account is (0)p. If V does not
disprove P the respective balance account is (0)p, and thus
it is a dominant strategy to disprove P.

(2) For any number N and Njfe, committed by V during the dis-
pute bisection game and the read bisection game, P will use
the respective script (either ValueAScript or HashReadScript;
or RootReadScript; for some i € {1,..,Ni}), to spend the
transaction ReadChallengey,. In the worst case, one less
transaction is published than Scenario 1 since V cannot
prove an equivocation when P provides the required triple of
nodes. Therefore, if P claim the deposits P’s balance account

is ( + B+ (2N + 2Ny + 8)f)p and V’s balance account is
(0)y. This is the dominant strategy for P, since otherwise
the respective balance account is (0)p. ]

D.4.2  Write bisection game.

LEMMA D.12 (A PARTY IS INACTIVE DURING THE WRITE BISEC-
TION GAME). Assume that V spends the script ClScriptWrite- of
CommitInstruction to publish on-chain the transaction
ChallengeWrite. The following statements hold for the Write bi-
section game.

(1) V is inactive: Assume WriteResponse;, i € {1,..,Na} is
published on-chain. If WriteChallenge; is not published on-
chain after time A, then it is a dominant strategy for P to claim
the coins locked in the multisignature. As a result, P’s balance
account is (a + f + (2N1 + 4Ny +0 — 2i)f)p, and V'’s balance
account is (0)y.

(2) P is inactive: Assume that a set of transactions {tx} C
{ChallengeValueC}U{WriteChallenge; }ie{l Ny where
{tx} # 0, is published on-chain and one ofthef,oll’owing sce-
narios is true:

(a) ChallengeValueC € {¢x} (let j = 0) and P has not posted
WriteResponse; within A,

(b) WriteChallenge; € {tx} fori < Ny (let j = i) and P has
not posted WriteResponse;,; within A,

(c) WriteChallengeI\:jz € {tx} (let j = N3) and P has not

posted exactly one transaction

’ . ~
tx’ € {MerkleRootHash} U {MerkleHashl}ie{lwﬂz}
within A,

Then, it is a dominant strategy for V to claim the coins locked
in the multisignature. P’s balance account is then (0)p, and

V’s balance account is (a + f + (2N1 + 4Nz — 2j + 8) f)y.

Proof: Since ChallengeWrite is published on-chain, P has pub-
lished on-chain the set of transactions P = Setup U
CommitComputation U {TraceResponse; }ie{l,...,Nl} V]
CommitInstruction and V has published V' = KickOff U
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{TraceChallengei}iE{lm N} U ChallengeRead so (2N + 5)f

coins have been already spent in transaction fees.

(1) In this scenario, P has published on-chain P U
{WriteResponse}re(y,...i}> and V has published on-chain
VUV’ where V' = {WriteChallengey}ieyy,. -1} if i > 0,
otherwise V/ = (. Therefore, extra 2i — 1 have been spent
in fees. Since WriteResponse; is published on-chain and V
has not published WriteChallenge; on-chain after A, P can
activate the timelock to claim the coins locked in the multisig-
nature. To this end, P spends extra f in transaction fees. As a

result, his balance accountis u; = (a+[3+(21\71+4]\72+9—2i)f)
and V’s account is (0)y . Otherwise, P’s balance account is
0 < uy, and therefore activating the timelock is a dominant
strategy.

(2) In all of the scenarios Items 2a to 2c¢ extra 2j have been
spent in transaction fees. Moreover, since P is inactive, V
can activate the timelock to claim the coins locked in the
multisignature, spending an extra f in transaction fees. As a

result, V’s balance account is u; = (a+ﬁ+(a+/3+(21\71+41\72+
8 — 2j)f) and V’s account is (0)y. Otherwise, V’s balance
account is 0 < up, and therefore activating the timelock is a
dominant strategy. O

LEMMA D.13 (THE WRITE BISECTION GAME COMPLETES). Assume
that V spends the script ClScriptWrite~ of CommitInstruction to
publish on-chain the transaction ChallengeWrite. The following
statements hold for the Write Bisection game.

(1) Scenario 1, P has written incorrect values in the memory:
Consider the number N' the number to which V has committed
during the dispute bisection game. If P has committed to two
execution trace elements for steps N and N + 1 s.t. Ei/ =En

andEl;H1 # E a1 and P has committed only correct values in
CommitInstruction, then it is a dominant strategy for V to
claim the coins in the multisignature. As a result, P’s balance
account is (0)p, and V’s balance account is {at +  + (2N +
2N + 7)f>v.

(2) Scenario 2, P follows the protocol specifications: If P has
followed the protocol specifications, P will eventually claim the
coins in the multisignature. As a result, P’s In that scenario,
V'’s balance account is (0)p, and P’s balance account is (a +

B+ (2N1 + 2Nz +8) )y

Proof: First, in both scenarios, since ChallengeWrite is pub-
lished on-chain (2N7 +5) f coins have been already spent in trans-
action fees as explained in Lemma D.12.

(1) Consider the Merkle trees of the memory at steps N, N + 1
with the respective roots MR p;, MR pr41. Moreover, consider
the path 7 from the root MR s to Mp/[addrCy] and the path
7’ from the root MR /1 to Mpr41[addrCyg], where addrCy
was committed by P in CommitInstruction.

By assumption, V follows the protocol specifications and
therefore runs function DisagreeWriteV (81, Bz, 1\72) of Al-
gorithm 23, where the pair of sequences (81, B,) consists
of the values of 7 and 7’ respectively, i.e., Vi € {1,..., 1\72},
it holds that (8B1[i], B2[i]) = (x[i], 7’[i]). On the other
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side, P runs function DisagreeWriteP (A1, Aa, Nz) of Algo-

rithm 23 where the pair of sequences (A1, Ay) is constructed

as follows. Let 7 be the set of all the nodes to which P

commits on-chain (line 7) including the root (i = 1) for

which A [1] = MRY, A[1] = MRE, | to which P com-
mitted via the respective execution trace elements in the
dispute bisection game, and the leaf of the paths (i = Ny),

Ai[1] = MRi(,.?lz[l] = MRIK(+1 which are the values P

committed in CommitInstruction. For every i € 7, the pair
(Aq[i], A2[i]) consists of the nodes to which P has commit-
ted on-chain. For the rest indices, i € {1, ..., 1\72} \ 7, with-
out loss of generality, we assume that P’s pair of sequences
holds the correct nodes of the paths, i.e., (A;[i], A[i]) =
(m[i], 7" [i]).
We will show that Algorithm 23 pinpoints a step Najer
such that A;[Nyer] = Bi[Nmer] and Ai[Nyger + 1] #
Bi[Nuyter + 1] for at least one i € {1,2}. To this end, we
decompose the result of the execution of Algorithm 23 in
the following cases:

o There is a step of the bisection game i s.t. for some j €

{1, ... No} s.t. A1[j] # B1[j]: V will set its local variable
flag to True (line 25. In that situation, starting from the
next iteration i+ 1, V will always skips the lines 24-31. The
remaining code that V and P run, given that the sequences
Ay and By do not affect the execution, is similar to run-
ning Appendix B.2 where V has the sequence A;[1 : j]
and P has the sequence B1[1 : j]. Therefore with a proof
similar to Lemma D.7, we can show that Algorithm 23
pinpoints a step Nyer s.t- A2[Numer] = B2[Naer] and
Az [NMer + 1] # By [NMer + 1]'
Otherwise: V’s local variable flag is always False. In this
case, V will always skips the lines 32-36. For the remaining
code that V and P run the sequences A, and B3 do not
affect the execution. We can prove that since Az[1] #
By[1] and A3 [N3] = B3[N,] Algorithm 23 pinpoints a step
Nuer s-t. A2[Nper] = B2[Nper] and Az [Npyger + 1] #
By [ Nper + 1] with a proof similar to Lemma D.7.

In any case, since the point of disagreement is identified,

we can prove that V will eventually manage to disprove P

similar to the Read Bisection game (Lemma D.11).

(2) Similar to the Read Bisection game (Lemma D.11), since P
has committed to only correct values, V cannot dispove the
computation. Therefore, P will eventually claim the coins in
the multisignature. O

D.5 Concluding Lemmas

LEMMA D.14 (P HAS COMMITTED TO THE WRONG STATE AND
CommitInstruction 1s PUBLISHED ON-CHAIN). Assume that P has
committed to the execution trace E in CommitComputation s.t.

‘final
E]If)inal #  Efina, and P has also published on-chain
CommitInstruction committing to the values pcy, pcy:, insTypey,
addrAg, addrBy, addrCy, valAg, valBy, valCy. It is a feasible and
dominant strategy for V to prove the misbehavior. As a result, V'’s
balance account will be (u)y, whereu > a + f§ + (2Nj + 2Ny + nf
and P’s balance account (0)p.
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Proof: We will prove that V will eventually claim the coins in
the multisignature by following the protocol specifications. We will
also show that this is the dominant strategy for V.

CommitInstruction is published on-chain which means that V
initiated the dispute bisection game. That is because
CommitInstruction spends TraceChallengey; which can only be
published on chain if the set of transactions {KickOff} U
{TraceChallengei}ie{lwﬁl_l}U{TraceResponsei}iE{LMNl} is
already on-chain. Since follows the protocol specifications, V holds
a sequence consisting of the correct execution trace elements during
the dispute bisection game, i.e., EY =E;, Vi€ {1,.., final}.

By assumption, P and V agree on the initial execution trace,
ie., EOP = E(‘)/ = Eo, and disagree in the execution trace of the
final step, i.e., E;inal * E}/mal
the Identify Disagreement phase outputs a step N for which the
following condition holds: for the VM execution steps N and N +1,
P has committed to the execution trace elements Ei/ = Ex =Epn

and EZH # EX/+1 =Eng1-

Since Ei/ = En and Ei/+1 # Epnq1, P has executed the state
transition of the VM at step N + 1 (Algorithm 6, line 5) incorrectly.
The possible ways that P has run incorrectly Algorithm 5 at step

N +1, are the following:

= Efina- According to Lemma D.7,

e Using incorrect inputs:

— P uses an incorrect program counter: Since Ei, =
(MRE | pcfv) = E , the program counter to which P com-
mitted during the dispute bisection game, i.e., pci/, is cor-
rect. However, P can use a different program counter at
step N + 1 in lines 3 6. P commits to the program counter
of the program at step N in CommitInstruction, so P
can commit to pcg # pcfv. Then, according to Lemma D.8,
it is a dominant strategy for V to claim the coins in the
multisignature. P’s balance account will be (0)p, and V’s

balance account (& + f + (2N; + 4N, + 9f)v.

— P sets a program instruction which is either invalid or does
not correspond to the instruction of I1 at the program counter
pcp: P can set an incorrect program instruction in line 3.
However, in that case, P commits to a program instruction
such that II(pcy) # (insTypeg, addrAg, addrBy, addrCy)
in CommitInstruction. Following from Lemma D.9, if
P commits such an invalid program instruction, it is a
dominant strategy for V to claim the coins in the mul-
tisignature. P’s balance account is (0)p, and V’s balance
account (a + f + (2Nj + 4Ny +9) )y

— P reads incorrect values from the memory: P can read incor-
rect values (valy or valg) from the memory (MN [addrA]
or MN[addrB]) at step N (lines 4, 5). However, P has
committed to the correct memory root at step N (mem-
ory output by executing Algorithm 6 correctly), MRi/ =
MRy of the dispute bisection game (since Ei/ =Epn). In
Lemma D.10 we show that if P remains inactive in the Read
bisection game, it is a dominant strategy V to claim the
coins in the multisignature. Similarly, in Lemma D.11, we
show that if valy # M[addry] or valg # M[addrg] and
the Read bisection game completes, it is again a dominant
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strategy for V to claim the coins. Moreover, P’s balance
account is {0)p, and V’s balance account is in the worst
case (a + f + (2Ni + 2Ny + Nv.

o Using correct inputs but executing incorrectly the algorithm.
Here we assume that P has provided the correct inputs
i.e., the inputs when executing Algorithm 6 correctly. Since
CommitInstruction is successfully published on-chain it
must be that (pcgr,valCy) = insTypeg(pcg,valAg,valBy)
since this is a necessary condition to unlock the script of
TraceChallenges;. Therefore the values related to the exe-
cution of step N'+1 that P committed in CommitInstruction
are correct. However, since P has committed to a wrong exe-
cution trace element for step AV + 1 in the dispute bisection
game, ie., EZH = (MRi/H,pc/Pi/H) # Ep1, one of the
following conditions hold:

- pcg, # pci( +1: Then, according to Lemma D.8, it is a domi-
nant strategy for V to claim the coins in the multisignature.
P’s balance account will be (0)p, and V’s balance account
(a+ B+ (2Ny + 4Ny +9) f)y.

- P has committed to all the correct wvalues in
CommitInstruction but Ei/+1 # En41 or is inactive dur-
ing the Write bisection game: according to

Lemmas D.13,D.12, V can show that P has written a wrong

value in the memory and claim the coins in the multisigna-

ture. P’s balance account is {0)p, and V’s balance account

is in the worst case (& + f + (2Nj + 2Nj + D).

In any case, it is a dominant strategy for V to prove P’s misbe-
havior and claim the coins in the multisig. As a result, V’s balance

account is (u)y, whereu > a+f+ (2N; +2N; +7)f and P’s balance
account is in any case (0)p. O

LEmMMA D.15 (P FOLLOWS THE PROTOCOL SPECIFICATIONS AND
CommitInstruction 1S PUBLISHED ON-CHAIN). Assume that P has
published on-chain CommitInstruction committing to the values
peg, pegr, insTypeg, addrBy, addrCy, valAg, valBy, valCy. If P fol-
lows the protocol specifications, P will eventually claim the coins in the
multisignature. As a result, P’s balance account will be (u)p, where

u>a+f+ (2N; + 2N, + 8)f and V'’s balance account (0)p.

Proof: CommitInstruction is posted on-chain which means that
V initiated the dispute bisection game (as explained in D.14). Since
P follows the protocol specifications, P has executed the VM al-
gorithm (Algorithm 6) correctly. Therefore, for any step i s.t. P
committed to an execution trace element during the dispute bisec-
tion game it holds that Ef = E;. Moreover, the values that P has
committed in CommitInstruction are correct (they are derived by
executing Algorithm 6 correctly).

The possible ways for V to spend CommitInstruction is pub-
lishing on-chain one of the following transactions:

e V publishes on-chain PunishFaultyProgramCounter claim-
ing that pcg # pci (or peyr # pciﬁl):By assumption, pcy =
pcz and pcyr = pcilﬂ, and according to Lemma D.8, it is a
dominant strategy for P to claim the deposits. P’s balance

account will be in the worst case (a+ f+ (2N; + 4Ny + 8)f)p,
and V’s balance account (0)y.
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o V publishes on-chain ChallengeRead to claim that valAy #
MN [addrAg) (or valBy # MN[addrBy]): Then, if i) V re-
mains inactive, or ii) the Read Bisection game finishes, it is a
dominant strategy for V to claim the deposits as we prove

Lemmas D.10, D.11 accordingly. (& + f + (2N7 +2N; + 8)f)p,
and V’s balance account (0)y.

o V publishes ChallengeWrite to claim that P has written an
incorrect value in the memory: either 1) V remains inactive,
or ii) the Write bisection game completes, we show in Lem-
mas D.12, D.13 that V will eventually claim the coins in the
multisignature. Therefore, P’s balance account is in the worst

case (a + f + (2Ny + 4N, + 8)f)p, and V’s balance account
0}y
To summarize, P’s balance account is (u)y, where u > (2Nj +

2Nj + 8) f and V’s balance account is in any case {u)y. O

D.6 Theorems

To prove that BitVM satisfies Rational Validity and Balance Security,
we first represent BitVM as an EFG which we illustrate in Figs. 5
and 6.

BitVM as an EFG. We represent BitVM as an extensive-form game,
where the players are P and V. The state of a node in the game
tree is defined by the pair (A, B), where A represents the balance
account of P and B represents the balance account of V.

The game begins after Setup is posted on-chain. The action set
is the following. Initially, P has the possible actions: i) not post a
CommitComputation transaction on-chain, 1ii) post a
CommitComputation and commit to the correct result, or iii) post
a CommitComputation but commit to an incorrect result. In case i),
it is a dominant strategy for V to claim the funds after the timelock
expires (cf. Lemma D.2). In the other cases (ii and iii), V must de-
cide whether to post a KickOff transaction, initiating the dispute
phase, or remain inactive. If V' does not respond, P has the follow-
ing actions: i) post a Close transaction corresponding to the result
committed to CommitComputation, ii) remain inactive, or iii) post
a Close transaction that does not match the result P committed
to CommitComputation. In the latter two cases (ii and iii), it is a
dominant strategy for V to claim the funds once the timelock ex-
pires or to prove the equivocation made by P (cf. Lemma D.3). For
convenience, and due to similarity, we combine cases i), ii) in the
same node.

On the other side, if V initiates the dispute phase by posting
KickOff, the game enters the Identify Disagreement phase. During
this phase, if either player remains inactive, it is a dominant strategy
for the other party to claim the funds (cf. Lemmas D.4, D.5). If the
dispute completes, the outcome depends on the correctness of the
result to which P committed in CommitInstruction. More specifi-
cally, we have the following scenarios, i) Dispute A: if P committed
to an incorrect result, V will claim the funds in the Punishment
subtree A (cf. Lemma D.14), ii) Dispute B: if P committed to the
correct result in CommitComputation, P will eventually claim the
funds in the Punishment subtree B (cf. Lemma D.15).

THEOREM D.16. The strategy profile representing the honest exe-
cution of BitVM forms a Subgame Perfect Nash Equilibrium.
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Proof: We prove that by backward induction on I' depicted in
Figs. 5 and 6.

If P does not post CommitComputation on-chain, V will claim
the funds after the timelock expires. If P posts CommitComputation
committing to an incorrect result of the computation, V will pub-
lish KickOff and eventually claim the funds in the multisigna-
ture. If P commits to the correct result of the computation in
CommitComputation but does not post the respective Close trans-
action, V will again claim the funds. On the other side, if P posts
the correct result of the computation in CommitComputation and
V posts KickOff on-chain, P will eventually claim the coins. O

THEOREM D.17. (Balance Security) BitVM satisfies Balance Secu-
rity.

Proof: Let us fix one party A € {P,V} and assume that p fol-
lows the protocol specifications. We prove that no matter what
strategy the other party p’ chooses, p will eventually claim at least
fA(S}imal) coins, i.e., the coins which A should receive according

to the outcome mapping function taking as input the correct result
of the computation.

To prove that, we only consider the subtree y C I', which gives a
comprehensive description of BitVM given that party A follows the
protocol specification. Below, we consider the respective scenarios
where P or V follow the protocol specifications.

o Case 1: P follows the protocol specifications. We consider the
subtree y C T', which we derive as follows. First, consider the
subtree y’ derived by I' with the following changes. After P
posts Setup on-chain, the only possible action is to commit to
the correct final result (by posting CommitComputation on-
chain). Moreover, after P has posted the correct result, in the
case where V has not disputed the result, the only possible
action for P is to publish on-chain the corresponding Close
transaction. Then, we derive y by deleting any action (or
edge) in y’ where P remains inactive. The subtree y gives a
comprehensive description of BitVM given that P follows
the protocol specification. For any node u € y, there is a path
leading to a leaf node where P claims at least (a + §+ (2N; +
2N, +8)f) > fp by assumption.

e Case 2: V follows the protocol specifications. Now consider
the subtree y C T, which we derive as follows. First, if P has
posted the correct final result, V' does not publish dispute.
Moreover, we delete the actions where V remains inactive.
The subtree y gives a comprehensive description of BitVM
given that V follows the protocol specification. For any node
u €y, there is a path leading to a leaf node where V claims

at least (a + f+ (2Ny +2N; +5.5)f) > fi by assumption. O

E TRANSACTION COMPUTATION

In this section, we provide a detailed overview of how we compute
the size of transactions published on the Bitcoin blockchain during
the execution of the BitVM-based bridge protocol.

As shown in [1], computing the size of a SegWit [24] transaction
requires computing both its non-witness and witness components.
For the non-witness portion, each Byte counts as a vByte, whereas
in the witness, 4 Bytes count as a vByte.
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Figure 5: Tree representation I' of the EFG describing BitVM. We underline with red the actions each parties takes at each step.
The subtrees dispute A and dispute B are depicted in Fig. 6.

The non-witness portion consists of three main parts(for fields

with variable sizes, we fix the vByte count based on the transaction
that we have in our protocol):

n-of-n multisignature, 3vB for the size of a relative time-
lock.

We can distinguish between two kinds of witnesses, according
) ) to which scriptPubKey they unlock:
Overhead o AThe transaction version number (405). e PayToWitnessPublicKeyHash(P2WPKH): witness size is ap-
e The input count (1vB) and the output count (1vB). . 1
B ; . R proximately 270B.
o The timestamp until which the transaction is locked (4vB). o PayToTaproot: includes a control block, a script, and the
* SegWit tr.ansactlon ﬂgg (10B). ) ) script data. The witness size varies, for a witness of a n-of-n
Input e The previous transaction ID and index of the output being
spent in the previous transaction (36vB)
Output e The amount of B being transferred (8vB).

multisignature, the size of the control block is 33B, the size
of the script is (35 - n + 2)B and the size of the script data is
. (65 - n)B, resulting in vByte size equal to ((100 - n) +35)/4vB
e The length of the scriptPubKey field (1vB).
o The scriptPubKey (it varies. In our protocol, it can be
up to 37vB: 34vB the size of the scriptPubKey for the

PayToTaproot(P2TR)), which we use to implement the
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Figure 6: The tree I’ illustrates Subtree A and Subtree B as depicted in Fig. 5. Subtree A, initiated by an honest V to disprove a
malicious P, consists of the "Common Subtree" and "Punishment subtree P ". Subtree B, initiated by a malicious V trying to a
correct P, consists of the "Common Subtree" and "Punishment subtree V ".
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