LEARN PYTHON
THE RIGHT _-

c’

Learn Python the right way
How to think like a computer scientist

Ritza

© 2021 - 2022 Ritza

Contents

Copyright Notice 1
Foreword 2
Preface 4
How and why [came touse Python 4
Finding a textbook 5
Introducing programming with Python o o L. 6
Building a community 7
Contributor List 8
Second Edition 8
First Edition 9
Chapter 1: The way of the program 11
1.1. The Python programming language 11
1.2. What is a program? 13
1.3. What is debugging? 13
1.4, SYNtax @ITOTS . . o . v v it et e e e e e e e e 14
1.5.Runtime errors L e e 14
1.6. Semantic €rrors 14
1.7. Experimental debugging 14
1.8. Formal and natural languages 15
1.9. The first program 17
1.10. Comments oo e e e e e e e 18
LA GIOSSAIY . . o o 18
112, EXEICiSes . . . o v ot 20
Chapter 2: Variables, expressions and statements 23
2.1.Valuesand data types 23
2.2.Variables 25
2.3. Variable names and keywords o 27
2.4.Statements 28
2.5. Evaluating expressions 28

2.6. Operators and operands 29

CONTENTS

2.7. Type converter functions 30
2.8. Order of operations 31
2.9. Operations on Stringso 32
200 I0PUL . o o oo 33
2.11. Composition 34
2.12. The modulus operator 35
213.Glossary 35
214 Exercises 38
Chapter 3: Hello, little turtles! 40
3.1. Our first turtle program 40
3.2.Instances —a herd of turtles. L L 43
3.3. Theforloop. 45
3.4. Flow of Execution of theforloop 46
3.5. The loop simplifies our turtle program 47
3.6. A few more turtle methodsand tricks o oL 49
3.7.Glossary 52
3.8.Exercises 53
Chapter 4: Functions 56
4.1.Functions 56
4.2. Functions can call other functions 59
43. Flowof execution 60
4.4. Functions that require arguments 63
4.5. Functions that return values L L 63
4.6. Variables and parametersarelocal oL 65
4.7. Turtles Revisited 66
4.8.GloSsary 67
4.9.EXEICISES o i 69
Chapter 5: Conditionals 73
5.1. Boolean values and expressions. 73
5.2. Logical operators 74
53. Truth Tables e 75
5.4. Simplifying Boolean Expressions o 75
5.5. Conditional execution 76
5.6. Omitting the else clause L 78
5.7. Chained conditionals 79
5.8. Nested conditionals 81
5.9. Thereturn statement 82
5.10. Logical opposites 82
5.11. Type conversionttt 84
5.12. ATurtle Bar Chart 85

5.13. GloSSary 89

CONTENTS

5.14. EXEICISES . . . o o ot it e 90
Chapter 6: Fruitful functions 93
6.1.Return values 93
6.2. Program development 95
6.3. Debugging with print 98
6.4. Composition 99
6.5. Boolean functions L 100
6.6. Programming with style 101
6.7. Unit testing e 102
6.8. GloSsary 104
6.9. Exercises 105
Chapter 7:Iteration. 110
70 Assignment 110
7.2. Updating variables 111
7.3. The for loop revisited 112
7.4. Thewhile statement 112
7.5. The Collatz 3n + 1 SEQUENCE o o o ittt e e e e 114
7.6. Tracing a programot tee 116
7.7.Counting digits. 117
7.8. Abbreviated assignment 118
7.9. Help and meta-notation 119
7.10. Tables o o o 121
7.11. Two-dimensional tables L 122
7.12. Encapsulation and generalization Lo o oo 123
7.13. More encapsulation 124
7.14. Local variables 124
7.15. The break statement 125
7.16. Other flavours of loops L 126
7.07. Anexampleo 128
7.18. The continue statement L 129
7.19. More generalization 130
7.20. Functions 131
7.21.Paired Data 132
7.22. Nested Loops for Nested Data 133
7.23. Newton’s method for finding squareroots 134
7.24. Algorithms 135
7.25.GlOSSArY 136
7.26. EXEICISES o o ot e 138
Chapter 8:Strings 143
8.1. Acompound datatype 143

8.2. Working with strings as single things L. 143

CONTENTS

8.3. Working with the partsof astring 145
BA4.Length 146
8.5. Traversal and the for loop 146
8.6.8Slices 147
8.7.String comparison 148
8.8. Strings are immutable 149
8.9. Theinandnot inoperators 149
8.10. Afind function. 150
8.11. Looping and counting 151
8.12. Optional parameters 151
8.13. The built-in find method 153
8.14. Thesplit method 153
8.15. Cleaning up your strings e 154
8.16. The string format method 155
8.17.5ummary 158
8.18. GloSSary 159
8.19.EXEICISES o o o e 160
Chapter 9: Tuples 165
9.1. Tuples are used for grouping data 165
9.2. Tuple assignment 166
9.3. Tuplesasreturn values 167
9.4. Composability of Data Structures 168
0.5. GloSSATY 168
9.6. Exercises 169
Chapter 10: Event handling 170
10.1. Event-driven programming 170
10.2. Keypress events oo o e e e 170
103. Mouse events 171
10.4. Automatic events fromatimer L L L. 173
10.5. An example: state machines L 174
10.6. Glossary o 177
10.7. EXEICISES o oot e 177
Chapter 11: Lists 180
1L Listvalueso 180
11.2. Accessing elements 180
11.3. Listlength o 181
11.4. Listmembership 182
11.5. List operations e 183
11.6. List slices.o oo 183
11.7. Listsare mutable 183

11.8. List deletion o o 185

CONTENTS

11.9. Objects and references 185
11.10. Aliasing oo 186
1L1L. Cloning lists o 187
11.12. Lists and for loops o oo 188
11.13. List parameters L e 189
11.14. List methods 190
11.15. Pure functions and modifiers L o o 191
11.16. Functions that produce lists 192
11.17. Strings and lists L 193
11.18. list and range o oo e 194
11.19. Nested lists o oo 195
11.20. Matrices o o o e 196
1121 GloSsary 196
11.22. EXEICISES oo e 198
Chapter 12: Modules 202
12.1. Random numbers 202
122. Thetimemodule 205
123. Themath module 206
12.4. Creating yourownmodules 207
12.5.Namespaces 208
12.6. Scope and lookup rules 210
12.7. Attributes and the dot operator L 211
12.8. Three import statement variants 212
12.9. Turn your unit tester intoamodule 213
12.10. GloSSary 213
1211 EXEICiSes oo o 214
Chapter 13: Files. 219
13.1. Aboutfiles 219
13.2. Writing our firstfile 219
13.3. Reading a file line-at-a-time 220
13.4. Turning a file into a listof lines L. 221
13.5. Reading the whole fileatonce 222
13.6. Working with binary files L o 222
13.7. Anexample 223
13.8. Directories 224
13.9. What about fetching something from the web? 225
13.10. GloSsary 226
1311 ExXercises oo 227
Chapter 14: List Algorithms 228
14.1. Test-driven development L 228

14.2. The linear search algorithm 228

CONTENTS

14.3. A more realistic problem L 230
14.4. Binary Search L 234
14.5. Removing adjacent duplicates fromalist 238
14.6. Merging sorted lists 239
14.7. Alice in Wonderland, again! 241
14.8. Eight Queens puzzle, part 1 243
14.9. Eight Queens puzzle, part 2 L 247
14.10. Glossary o 249
1411 EXEICISes o oo 250
Chapter 15: Classes and Objects —the Basics 254
15.1. Object-oriented programming L 254
15.2. User-defined compound datatypes 254
15.3. Attributes L 256
15.4. Improving our initializer L 257
15.5. Adding other methodstoourclass 258
15.6. Instances as arguments and parameters 260
15.7. Converting an instance toastring L. L L oL 260
15.8. Instances as return values 261
15.9. A change of perspective 263
15.10. Objects can have state 263
15.11. Glossary 264
15.12. EXEICISes o o 265
Chapter 16: Classes and Objects — Digging a littledeeper 267
16.1. Rectangles 267
16.2. Objectsare mutable 268
16.3. SAMENESS . « . . o vt e e e e e e e e e 269
16.4. COPYING o oot e 271
16.5. GlOSSAIY o o 272
16.6. EXEICISes 273
Chapter 17: PyGame 275
17.. The game loop 275
17.2. Displaying images and text. 279
17.3. Drawing a board for the N queenspuzzle 282
17.4.SPrites o o 288
17.5. Bvents L 292
17.6. A wave of animation 295
17.7. Aliens -acasestudy 300
17.8. Reflections 301
17.9. Glossary 301

17.10. EXEICISES . . . o o o o o e e e e e e e e 302

CONTENTS

Chapter 18: Recursion 303
18.1. Drawing Fractals 303
18.2. Recursive data structures 306
18.3. Processing recursive number lists L 307
18.4. Case study: Fibonacci numbers L 309
18.5. Example with recursive directories and files o 0L 310
18.6. An animated fractal, using PyGame 311
18.7. GlOSSAIY . . . o o 314
18.8. EXEICISeS oo 315

Chapter 19: Exceptions 319
19.1. Catching exceptions 319
19.2. Raising our own exceptions L L o 321
19.3. Revisiting an earlier example 322
19.4. The finally clause of the try statement. 322
19.5. GlOSSATY . . . o v o 323
19.6. EXEICISes o e 324

Chapter 20: Dictionaries 325
20.1. Dictionary operations L 326
20.2. Dictionary methods 327
20.3. Aliasing and copying 329
20.4. Sparse matrices 330
20.5. Memoization 331
20.6. Counting letters 332
20.7. GloSSary 333
20.8. Exercises 334

Chapter 21: A Case Study: Indexing your files 337
21.1. The Crawler 337
21.2. Saving the dictionary todisk 340
21.3. The Query Program 340
21.4. Compressing the serialized dictionary L 342
21.5. GloSsary 343

Chapter 22: Even more OOP 344
2221 MyTime 344
22.2. Pure functions 344
223. Modifiers. 346
22.4. Converting increment toamethod L. 347
22.5. An “Ahal” insight 347
22.6. Generalization 349
22.7. Another example 350

22.8.

Operator overloading 351

CONTENTS

22.9. Polymorphism 353
22.10. GlOSSATY . . . o o 354
22.11.EXEICises 355
Chapter 23: Collections of objects 357
23.1. Composition. 357
23.2.Card Objects 357
23.3. Class attributes and the __str__method 358
23.4. Comparing cards 360
235.DeCKks . .. 362
23.6. Printing thedeck L 362
23.7. Shuffling thedeck 364
23.8.Removing and dealing cards o 365
23.9.GloSSary 366
23.10. EXEICises o o i 366
Chapter 24: Inheritance 367
24.1. Inheritance 367
242. Ahandofcards. 367
243.Dealing cards 368
244.PrintingaHand L 369
24.5. TheCardGame class 370
24.6.0l1dMaidHand class 371
24.7.01dMaidCame class 372
24.8.GloSSary 376
24.9.EXErcises 377
Chapter 25: Linked lists 378
25.1. Embedded references 378
25.2.TheNode class. 378
25.3. Listsas collections L 379
25.4. Listsand recursion 380
255. Infinite lists 381
25.6. The fundamental ambiguity theorem, 382
25.7. Modifying lists e 383
25.8. Wrappers and helpers 384
25.9. TheLinkedList class 384
25.10. Invariants. L e e 386
25.11. GlOSSATY . . o o o 386
25.12.EXercises 387
Chapter 26: Stacks L 388
26.1. Abstract data types 388

26.2. The Stack ADT e, 388

CONTENTS

26.3. Implementing stacks with Pythonlists, 389
26.4. Pushing and popping 390
26.5. Using a stack to evaluate postfix 390
26.6. Parsing 391
26.7. Evaluating postfix 391
26.8. Clients and providers 392
269.Glossary 393
26.10. Exercises 394
Chapter 27: QUEUES 395
27.1. The Queue ADT 395
27.2.Linked Queue 395
27.3. Performance characteristics L 397
27.4. Improved Linked Queue 397
27.5. Priority queue 398
27.6. TheGolfer class 400
27.7.GlOSSary 401
27.8.EXEICiSes 402
Chapter 28:Trees 403
28.1. Building trees 404
28.2. Traversing trees 404
28.3. EXPression trees 405
28.4. Tree traversal e 406
28.5. Building an expressiontree. 407
28.6. Handling errors 411
28.7. Theanimaltree e 412
28.8.Glossary 414
28.9.Exercises 415
Appendix A: Debugging 416
AL SYyntax €ITOTS v it e e e e e e e 416
A.2.1can’t get my program to run no matter whatIdo. 417
A3.Runtime errors 417
A.4. My program does absolutely nothing. 418
A5 . Myprogram hangs. 418
A6 Infinite Loopo 418
A7.Infinite Recursion 419
A8 . Flow of Execution 419
A.9. When I run the program I get an exception. 420
A.10. I added so many print statements I get inundated with output. 421
A.11.Semantic €ITOIS 421
A.12. My program doesn’t work. 422

A.13. I've got a big hairy expression and it doesn’t do what I expect. 423

CONTENTS

A.14. T've got a function or method that doesn’t return what I expect. 423
A.15. I'm really, really stuck and Ineed help. 424
A.16.No,Treallyneed help. 424
Appendix B: An odds-and-ends Workbook0 o 0 L. 426
B.1. The Five Strands of Proficiency 426
B.2.Sending Email 427
B.3. Write your own Web Server 428
B.4. UsingaDatabase e 430
Appendix C: Configuring Ubuntu for Python Development. 433
C.L.VIM ..o 433
C.2. $HOME environment 434
C.3. Making a Python script executable and runnable from anywhere 435
Appendix D: Customizing and Contributing tothe Book 436
D.1. Getting the Source L 436
D.2. Making the HTML Version 437
Appendix E: Some Tips, Tricks, and Common Errors 438
E.l.Functions e 438
E.2. Problems with logic and flow of control 439
E3.Local variables 441
E.4. Event handler functions 442
E5. String handling 442

E.6. Loopingand lists 444

Copyright Notice

Copyright (C) Peter Wentworth, Jeffrey Elkner, Allen B. Downey and Chris Meyers. Permission
is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with Invariant Sections being Foreword, Preface, and Contributor List, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation

License”.

Foreword

By David Beazley

As an educator, researcher, and book author, I am delighted to see the completion of this book. Python
is a fun and extremely easy-to-use programming language that has steadily gained in popularity
over the last few years. Developed over ten years ago by Guido van Rossum, Python’s simple syntax
and overall feel is largely derived from ABC, a teaching language that was developed in the 1980’s.
However, Python was also created to solve real problems and it borrows a wide variety of features
from programming languages such as C++, Java, Modula-3, and Scheme. Because of this, one of
Python’s most remarkable features is its broad appeal to professional software developers, scientists,
researchers, artists, and educators.

Despite Python’s appeal to many different communities, you may still wonder why Python? or why
teach programming with Python? Answering these questions is no simple task—especially when
popular opinion is on the side of more masochistic alternatives such as C++ and Java. However,
I think the most direct answer is that programming in Python is simply a lot of fun and more
productive.

When I teach computer science courses, I want to cover important concepts in addition to making the
material interesting and engaging to students. Unfortunately, there is a tendency for introductory
programming courses to focus far too much attention on mathematical abstraction and for students
to become frustrated with annoying problems related to low-level details of syntax, compilation, and
the enforcement of seemingly arcane rules. Although such abstraction and formalism is important
to professional software engineers and students who plan to continue their study of computer
science, taking such an approach in an introductory course mostly succeeds in making computer
science boring. When I teach a course, I don’t want to have a room of uninspired students. I would
much rather see them trying to solve interesting problems by exploring different ideas, taking
unconventional approaches, breaking the rules, and learning from their mistakes. In doing so, I
don’t want to waste half of the semester trying to sort out obscure syntax problems, unintelligible
compiler error messages, or the several hundred ways that a program might generate a general
protection fault.

One of the reasons why I like Python is that it provides a really nice balance between the practical
and the conceptual. Since Python is interpreted, beginners can pick up the language and start doing
neat things almost immediately without getting lost in the problems of compilation and linking.
Furthermore, Python comes with a large library of modules that can be used to do all sorts of tasks
ranging from web-programming to graphics. Having such a practical focus is a great way to engage
students and it allows them to complete significant projects. However, Python can also serve as
an excellent foundation for introducing important computer science concepts. Since Python fully
supports procedures and classes, students can be gradually introduced to topics such as procedural
abstraction, data structures, and object-oriented programming — all of which are applicable to later

Foreword 3

courses on Java or C++. Python even borrows a number of features from functional programming
languages and can be used to introduce concepts that would be covered in more detail in courses on
Scheme and Lisp.

In reading Jeffrey’s preface, I am struck by his comments that Python allowed him to see a higher
level of success and a lower level of frustration and that he was able to move faster with better
results. Although these comments refer to his introductory course, I sometimes use Python for
these exact same reasons in advanced graduate level computer science courses at the University of
Chicago. In these courses, I am constantly faced with the daunting task of covering a lot of difficult
course material in a blistering nine week quarter. Although it is certainly possible for me to inflict
a lot of pain and suffering by using a language like C++, I have often found this approach to be
counterproductive—especially when the course is about a topic unrelated to just programming. I
find that using Python allows me to better focus on the actual topic at hand while allowing students
to complete substantial class projects.

Although Python is still a young and evolving language, I believe that it has a bright future in
education. This book is an important step in that direction. David Beazley University of Chicago
Author of the Python Essential Reference

Preface

By Jeffrey Elkner

This book owes its existence to the collaboration made possible by the Internet and the free
software movement. Its three authors—a college professor, a high school teacher, and a professional
programmer—never met face to face to work on it, but we have been able to collaborate closely,
aided by many other folks who have taken the time and energy to send us their feedback.

We think this book is a testament to the benefits and future possibilities of this kind of collaboration,
the framework for which has been put in place by Richard Stallman and the Free Software
Foundation.

How and why | came to use Python

In 1999, the College Board’s Advanced Placement (AP) Computer Science exam was given in C++ for
the first time. As in many high schools throughout the country, the decision to change languages had
a direct impact on the computer science curriculum at Yorktown High School in Arlington, Virginia,
where [teach. Up to this point, Pascal was the language of instruction in both our first-year and AP
courses. In keeping with past practice of giving students two years of exposure to the same language,
we made the decision to switch to C++ in the first year course for the 1997-98 school year so that
we would be in step with the College Board’s change for the AP course the following year.

Two years later, I was convinced that C++ was a poor choice to use for introducing students
to computer science. While it is certainly a very powerful programming language, it is also an
extremely difficult language to learn and teach. I found myself constantly fighting with C++’s
difficult syntax and multiple ways of doing things, and I was losing many students unnecessarily as
a result. Convinced there had to be a better language choice for our first-year class, I went looking
for an alternative to C++.

I needed a language that would run on the machines in our GNU/Linux lab as well as on the
Windows and Macintosh platforms most students have at home. I wanted it to be free software,
so that students could use it at home regardless of their income. I wanted a language that was used
by professional programmers, and one that had an active developer community around it. It had to
support both procedural and object-oriented programming. And most importantly, it had to be easy
to learn and teach. When I investigated the choices with these goals in mind, Python stood out as
the best candidate for the job.

I asked one of Yorktown’s talented students, Matt Ahrens, to give Python a try. In two months he not
only learned the language but wrote an application called pyTicket that enabled our staff to report
technology problems via the Web. I knew that Matt could not have finished an application of that

Preface 5

scale in so short a time in C++, and this accomplishment, combined with Matt’s positive assessment
of Python, suggested that Python was the solution I was looking for.

Finding a textbook

Having decided to use Python in both of my introductory computer science classes the following
year, the most pressing problem was the lack of an available textbook.

Free documents came to the rescue. Earlier in the year, Richard Stallman had introduced me to Allen
Downey. Both of us had written to Richard expressing an interest in developing free educational
materials. Allen had already written a first-year computer science textbook, How to Think Like a
Computer Scientist. When I read this book, I knew immediately that I wanted to use it in my class.
It was the clearest and most helpful computer science text I had seen. It emphasized the processes
of thought involved in programming rather than the features of a particular language. Reading it
immediately made me a better teacher.

How to Think Like a Computer Scientist was not just an excellent book, but it had been released
under the GNU public license, which meant it could be used freely and modified to meet the needs
of its user. Once I decided to use Python, it occurred to me that I could translate Allen’s original Java
version of the book into the new language. While I would not have been able to write a textbook
on my own, having Allen’s book to work from made it possible for me to do so, at the same time
demonstrating that the cooperative development model used so well in software could also work for
educational materials.

Working on this book for the last two years has been rewarding for both my students and me, and
my students played a big part in the process. Since I could make instant changes whenever someone
found a spelling error or difficult passage, I encouraged them to look for mistakes in the book by
giving them a bonus point each time they made a suggestion that resulted in a change in the text.
This had the double benefit of encouraging them to read the text more carefully and of getting the
text thoroughly reviewed by its most important critics, students using it to learn computer science.

For the second half of the book on object-oriented programming, I knew that someone with more
real programming experience than I had would be needed to do it right. The book sat in an unfinished
state for the better part of a year until the open source community once again provided the needed
means for its completion.

I received an email from Chris Meyers expressing interest in the book. Chris is a professional
programmer who started teaching a programming course last year using Python at Lane Community
College in Eugene, Oregon. The prospect of teaching the course had led Chris to the book, and he
started helping out with it immediately. By the end of the school year he had created a companion
project on our Website at http://openbookproject.net called Python for Fun and was working with
some of my most advanced students as a master teacher, guiding them beyond where I could take
them.

O O B W N

Preface 6

Introducing programming with Python

The process of translating and using How to Think Like a Computer Scientist for the past two
years has confirmed Python’s suitability for teaching beginning students. Python greatly simplifies
programming examples and makes important programming ideas easier to teach.

The first example from the text illustrates this point. It is the traditional hello, world program,
which in the Java version of the book looks like this:

class Hello {

public static void main (String[] args) {
System.out.println ("Hello, world.");

in the Python version it becomes:
print("Hello, World!")

Even though this is a trivial example, the advantages of Python stand out. Yorktown’s Computer
Science I course has no prerequisites, so many of the students seeing this example are looking at
their first program. Some of them are undoubtedly a little nervous, having heard that computer
programming is difficult to learn. The Java version has always forced me to choose between
two unsatisfying options: either to explain the class Hello, public static void main, String[] args,,
statements and risk confusing or intimidating some of the students right at the start, or to tell them,
Just don’t worry about all of that stuff now; we will talk about it later, and risk the same thing.
The educational objectives at this point in the course are to introduce students to the idea of a
programming statement and to get them to write their first program, thereby introducing them to
the programming environment. The Python program has exactly what is needed to do these things,
and nothing more.

Comparing the explanatory text of the program in each version of the book further illustrates what
this means to the beginning student. There are seven paragraphs of explanation of Hello, world! in
the Java version; in the Python version, there are only a few sentences. More importantly, the missing
six paragraphs do not deal with the big ideas in computer programming but with the minutia of Java
syntax. I found this same thing happening throughout the book. Whole paragraphs simply disappear
from the Python version of the text because Python’s much clearer syntax renders them unnecessary.

Using a very high-level language like Python allows a teacher to postpone talking about low-level
details of the machine until students have the background that they need to better make sense of
the details. It thus creates the ability to put first things first pedagogically. One of the best examples
of this is the way in which Python handles variables. In Java a variable is a name for a place that

Preface 7

holds a value if it is a built-in type, and a reference to an object if it is not. Explaining this distinction
requires a discussion of how the computer stores data. Thus, the idea of a variable is bound up with
the hardware of the machine. The powerful and fundamental concept of a variable is already difficult
enough for beginning students (in both computer science and algebra). Bytes and addresses do not
help the matter. In Python a variable is a name that refers to a thing. This is a far more intuitive
concept for beginning students and is much closer to the meaning of variable that they learned in
their math courses. I had much less difficulty teaching variables this year than I did in the past, and
I spent less time helping students with problems using them.

Another example of how Python aids in the teaching and learning of programming is in its syntax
for functions. My students have always had a great deal of difficulty understanding functions. The
main problem centers around the difference between a function definition and a function call, and
the related distinction between a parameter and an argument. Python comes to the rescue with
syntax that is nothing short of beautiful. Function definitions begin with the keyword def, so I
simply tell my students, When you define a function, begin with def, followed by the name of the
function that you are defining; when you call a function, simply call (type) out its name. Parameters
go with definitions; arguments go with calls. There are no return types, parameter types, or reference
and value parameters to get in the way, so I am now able to teach functions in less than half the
time that it previously took me, with better comprehension.

Using Python improved the effectiveness of our computer science program for all students. I saw
a higher general level of success and a lower level of frustration than I experienced teaching with
either C++ or Java. moved faster with better results. More students left the course with the ability to
create meaningful programs and with the positive attitude toward the experience of programming
that this engenders.

Building a community

I have received emails from all over the globe from people using this book to learn or to teach pro-
gramming. A user community has begun to emerge, and many people have been contributing to the
project by sending in materials for the companion Website at http://openbookproject.net/pybiblio.

With the continued growth of Python, I expect the growth in the user community to continue
and accelerate. The emergence of this user community and the possibility it suggests for similar
collaboration among educators have been the most exciting parts of working on this project for me.
By working together, we can increase the quality of materials available for our use and save valuable
time. I invite you to join our community and look forward to hearing from you. Please write to me
at jeff@elkner.net.

Jettrey Elkner
Governor’s Career and Technical Academy in Arlington
Arlington, Virginia

Contributor List

To paraphrase the philosophy of the Free Software Foundation, this book is free like free speech, but
not necessarily free like free pizza. It came about because of a collaboration that would not have
been possible without the GNU Free Documentation License. So we would like to thank the Free
Software Foundation for developing this license and, of course, making it available to us.

We would also like to thank the more than 100 sharp-eyed and thoughtful readers who have sent
us suggestions and corrections over the past few years. In the spirit of free software, we decided to
express our gratitude in the form of a contributor list. Unfortunately, this list is not complete, but we
are doing our best to keep it up to date. It was also getting too large to include everyone who sends
in a typo or two. You have our gratitude, and you have the personal satisfaction of making a book
you found useful better for you and everyone else who uses it. New additions to the list for the 2nd
edition will be those who have made on-going contributions.

If you have a chance to look through the list, you should realize that each person here has spared
you and all subsequent readers from the confusion of a technical error or a less-than-transparent
explanation, just by sending us a note.

Impossible as it may seem after so many corrections, there may still be errors in this book. If you
should stumble across one, we hope you will take a minute to contact us. The email address (for
the Python 3 version of the book) is p.wentworth@ru.ac.za . Substantial changes made due to your
suggestions will add you to the next version of the contributor list (unless you ask to be omitted).
Thank you!

Second Edition

+ An email from Mike MacHenry set me straight on tail recursion. He not only pointed out an
error in the presentation, but suggested how to correct it.

« It wasn’t until 5th Grade student Owen Davies came to me in a Saturday morning Python
enrichment class and said he wanted to write the card game, Gin Rummy, in Python that
[finally knew what I wanted to use as the case study for the object oriented programming
chapters.

« A special thanks to pioneering students in Jeff’s Python Programming class at GCTAA during
the 2009-2010 school year: Safath Ahmed, Howard Batiste, Louis Elkner-Alfaro, and Rachel
Hancock. Your continual and thoughtfull feedback led to changes in most of the chapters of
the book. You set the standard for the active and engaged learners that will help make the new
Governor’s Academy what it is to become. Thanks to you this is truly a student tested text.

« Thanks in a similar vein to the students in Jeff’s Computer Science class at the HB-Woodlawn
program during the 2007-2008 school year: James Crowley, Joshua Eddy, Eric Larson, Brian
McGrail, and Iliana Vazuka.

Contributor List 9

Ammar Nabulsi sent in numerous corrections from Chapters 1 and 2.

Aldric Giacomoni pointed out an error in our definition of the Fibonacci sequence in Chapter
5.

Roger Sperberg sent in several spelling corrections and pointed out a twisted piece of logic in
Chapter 3.

Adele Goldberg sat down with Jeff at PyCon 2007 and gave him a list of suggestions and
corrections from throughout the book.

Ben Bruno sent in corrections for chapters 4, 5, 6, and 7.

Carl LaCombe pointed out that we incorrectly used the term commutative in chapter 6 where
symmetric was the correct term.

Alessandro Montanile sent in corrections for errors in the code examples and text in chapters
3, 12, 15, 17, 18, 19, and 20.

Emanuele Rusconi found errors in chapters 4, 8, and 15.

Michael Vogt reported an indentation error in an example in chapter 6, and sent in a suggestion
for improving the clarity of the shell vs. script section in chapter 1.

First Edition

Lloyd Hugh Allen sent in a correction to Section 8.4.

Yvon Boulianne sent in a correction of a semantic error in Chapter 5.

Fred Bremmer submitted a correction in Section 2.1.

Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book into beautiful
HTML.

Michael Conlon sent in a grammar correction in Chapter 2 and an improvement in style in
Chapter 1, and he initiated discussion on the technical aspects of interpreters.

Benoit Girard sent in a correction to a humorous mistake in Section 5.6.

Courtney Gleason and Katherine Smith wrote horsebet.py, which was used as a case study in
an earlier version of the book. Their program can now be found on the website.

Lee Harr submitted more corrections than we have room to list here, and indeed he should be
listed as one of the principal editors of the text.

James Kaylin is a student using the text. He has submitted numerous corrections.

David Kershaw fixed the broken catTwice function in Section 3.10.

Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also fixed the Makefile
so that it creates an index the first time it is run and helped us set up a versioning scheme.
Man-Yong Lee sent in a correction to the example code in Section 2.4.

David Mayo pointed out that the word unconsciously in Chapter 1 needed to be changed to
subconsciously .

Chris McAloon sent in several corrections to Sections 3.9 and 3.10.

Matthew J. Moelter has been a long-time contributor who sent in numerous corrections and
suggestions to the book.

Simon Dicon Montford reported a missing function definition and several typos in Chapter 3.
He also found errors in the increment function in Chapter 13.

Contributor List 10

« John Ouzts corrected the definition of return value in Chapter 3.

« Kevin Parks sent in valuable comments and suggestions as to how to improve the distribution
of the book.

« David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of encouragement.

« Michael Schmitt sent in a correction to the chapter on files and exceptions.

« Robin Shaw pointed out an error in Section 13.1, where the printTime function was used in an
example without being defined.

« Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script that generates
HTML from LaTeX.

« Craig T. Snydal is testing the text in a course at Drew University. He has contributed several
valuable suggestions and corrections.

« Jan Thomas and his students are using the text in a programming course. They are the first ones
to test the chapters in the latter half of the book, and they have make numerous corrections
and suggestions.

« Keith Verheyden sent in a correction in Chapter 3.

« Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3.

« Chris Wrobel made corrections to the code in the chapter on file I/O and exceptions.

« Moshe Zadka has made invaluable contributions to this project. In addition to writing the first
draft of the chapter on Dictionaries, he provided continual guidance in the early stages of the
book.

« Christoph Zwerschke sent several corrections and pedagogic suggestions, and explained the
difference between gleich and selbe.

« James Mayer sent us a whole slew of spelling and typographical errors, including two in the
contributor list.

« Hayden McAfee caught a potentially confusing inconsistency between two examples.

« Angel Arnal is part of an international team of translators working on the Spanish version of
the text. He has also found several errors in the English version.

« Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and improved many
of the other illustrations.

« Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting pedagogic comments
and suggestions about Fibonacci and Old Maid.

« Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.

« Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.

o Christopher P. Smith caught several typos and is helping us prepare to update the book for
Python 2.2.

« David Hutchins caught a typo in the Foreword.

« Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working on a German
translation of the book, and he caught a couple of bad errors in Chapter 5.

« Julie Peters caught a typo in the Preface.

Chapter 1: The way of the program

(Watch a video based on this chapter here on YouTube'.)

The goal of this book is to teach you to think like a computer scientist. This way of thinking combines
some of the best features of mathematics, engineering, and natural science. Like mathematicians,
computer scientists use formal languages to denote ideas (specifically computations). Like engi-
neers, they design things, assembling components into systems and evaluating tradeoffs among
alternatives. Like scientists, they observe the behavior of complex systems, form hypotheses, and
test predictions.

The single most important skill for a computer scientist is problem solving. Problem solving means
the ability to formulate problems, think creatively about solutions, and express a solution clearly
and accurately. As it turns out, the process of learning to program is an excellent opportunity to
practice problem-solving skills. That’s why this chapter is called, The way of the program.

On one level, you will be learning to program, a useful skill by itself. On another level, you will use
programming as a means to an end. As we go along, that end will become clearer.

1.1. The Python programming language

The programming language you will be learning is Python. Python is an example of a high-level
language; other high-level languages you might have heard of are C++, PHP, Pascal, C#, and Java.

As you might infer from the name high-level language, there are also low-level languages,
sometimes referred to as machine languages or assembly languages. Loosely speaking, computers
can only execute programs written in low-level languages. Thus, programs written in a high-level
language have to be translated into something more suitable before they can run.

Almost all programs are written in high-level languages because of their advantages. It is much
easier to program in a high-level language so programs take less time to write, they are shorter and
easier to read, and they are more likely to be correct. Second, high-level languages are portable,
meaning that they can run on different kinds of computers with few or no modifications.

In this edition of the textbook, we use an online programming environment called Replit. To follow
along with the examples and complete the exercises, all you need is a free account - just navigate to
https://replit.com and complete the sign up process.

Once you have an account, create a new repl and choose Python as the language from the dropdown.
You’ll see it automatically creates a file called main.py. By convention, files that contain Python
programs have names that end with . py.

'https://youtu.be/IhtUREG6VAg

https://youtu.be/lhtUREG6vAg
https://youtu.be/lhtUREG6vAg

Chapter 1: The way of the program 12

The engine that translates and runs Python is called the Python Interpreter: There are two ways to
use it: immediate mode and script mode. In immediate mode, you type Python expressions into the
Python Interpreter window, and the interpreter immediately shows the result:

= (:/) @ ritza / chapter-1-demo @ Run » [m] a S+ Invite Q

[Files o main.py 8 Console Shell

1 examples

Running code in the interpreter (immediate mode)

The >>> or > is called the Python prompt. The interpreter uses the prompt to indicate that it is ready
for instructions. We typed 2 + 2, and the interpreter evaluated our expression, and replied 4, and
on the next line it gave a new prompt, indicating that it is ready for more input.

Working directly in the interpreter is convenient for testing short bits of code because you get
immediate feedback. Think of it as scratch paper used to help you work out problems. Anything
longer than a few lines should be put into a script. Scripts have the advantage that they can be saved
to disk, printed, and so on. To create a script, you can enter the code into the middle pane, as shown
below

=@ @ i/ cenerivomo 2 [5@ s o
[Files ® main-py 8 Console Shell

1 print("My first program adds two numbers")

My first program adds two numbers

Running code from a file (script mode)

print("My first program adds two numbers")
print(2+3)

To execute the program, click the Run button in Replit. You’re now a computer programmer! Let’s
take a look at some more theory before we start writing more advanced programs.

Chapter 1: The way of the program 13

1.2. What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The
computation might be something mathematical, such as solving a system of equations or finding the
roots of a polynomial, but it can also be a symbolic computation, such as searching and replacing
text in a document or (strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions appear in just about
every language:

input

« Get data from the keyboard, a file, or some other device.
output

« Display data on the screen or send data to a file or other device.
math

« Perform basic mathematical operations like addition and multiplication.
conditional execution

« Check for certain conditions and execute the appropriate sequence of statements.
repetition

« Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used, no matter
how complicated, is made up of instructions that look more or less like these. Thus, we can describe
programming as the process of breaking a large, complex task into smaller and smaller subtasks until
the subtasks are simple enough to be performed with sequences of these basic instructions.

That may be a little vague, but we will come back to this topic later when we talk about algorithms.
1.3. What is debugging?

Programming is a complex process, and because it is done by human beings, it often leads to errors.
Programming errors are called bugs and the process of tracking them down and correcting them
is called debugging. Use of the term bug to describe small engineering difficulties dates back to at
least 1889, when Thomas Edison had a bug with his phonograph.

Three kinds of errors can occur in a program: syntax errors?, runtime errors’®, and semantic errors®.

*https://en.wikipedia.org/wiki/Syntax_error
*https://en.wikipedia.org/wiki/Runtime_(program_lifecycle_phase)
“https://en.wikipedia.org/wiki/Logic_error

https://en.wikipedia.org/wiki/Syntax_error
https://en.wikipedia.org/wiki/Runtime_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Logic_error
https://en.wikipedia.org/wiki/Syntax_error
https://en.wikipedia.org/wiki/Runtime_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Logic_error

Chapter 1: The way of the program 14

It is useful to distinguish between them in order to track them down more quickly.

1.4. Syntax errors

Python can only execute a program if the program is syntactically correct; otherwise, the process
fails and returns an error message. Syntax refers to the structure of a program and the rules about
that structure. For example, in English, a sentence must begin with a capital letter and end with a
period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why we can read the
poetry of E. E. Cummings without problems. Python is not so forgiving. If there is a single syntax
error anywhere in your program, Python will display an error message and quit, and you will not
be able to run your program. During the first few weeks of your programming career, you will
probably spend a lot of time tracking down syntax errors. As you gain experience, though, you will
make fewer errors and find them faster.

1.5. Runtime errors

The second type of error is a runtime error, so called because the error does not appear until you run
the program. These errors are also called exceptions because they usually indicate that something
exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chapters, so it might be
a while before you encounter one.

1.6. Semantic errors

The third type of error is the semantic error. If there is a semantic error in your program, it will
run successfully, in the sense that the computer will not generate any error messages, but it will not
do the right thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write. The meaning of
the program (its semantics) is wrong. Identifying semantic errors can be tricky because it requires
you to work backward by looking at the output of the program and trying to figure out what it is
doing.

1.7. Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be frustrating,
debugging is one of the most intellectually rich, challenging, and interesting parts of programming.

Chapter 1: The way of the program 15

In some ways, debugging is like detective work. You are confronted with clues, and you have to
infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea what is going wrong, you
modify your program and try again. If your hypothesis was correct, then you can predict the result
of the modification, and you take a step closer to a working program. If your hypothesis was wrong,
you have to come up with a new one. As Sherlock Holmes pointed out, When you have eliminated
the impossible, whatever remains, however improbable, must be the truth. (A. Conan Doyle, The
Sign of Four)

For some people, programming and debugging are the same thing. That is, programming is the
process of gradually debugging a program until it does what you want. The idea is that you should
start with a program that does something and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system kernel that contains millions of lines of code, but it started
out as a simple program Linus Torvalds used to explore the Intel 80386 chip. According to Larry
Greenfield, one of Linus’s earlier projects was a program that would switch between displaying
AAAA and BBBB. This later evolved to Linux (The Linux Users’ Guide Beta Version 1).

Later chapters will make more suggestions about debugging and other programming practices.

1.8. Formal and natural languages

Natural languages are the languages that people speak, such as English, Spanish, and French. They
were not designed by people (although people try to impose some order on them); they evolved
naturally.

Formal languages are languages that are designed by people for specific applications. For example,
the notation that mathematicians use is a formal language that is particularly good at denoting
relationships among numbers and symbols. Chemists use a formal language to represent the
chemical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to express computations.

Formal languages tend to have strict rules about syntax. For example, 3+3=6 is a syntactically correct
mathematical statement, but 3=+6$ is not. H20 is a syntactically correct chemical name, but 27z is
not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic elements
of the language, such as words, numbers, parentheses, commas, and so on. In Python, a statement
like print("Happy New Year for ",2013) has 6 tokens: a function name, an open parenthesis (round
bracket), a string, a comma, a number, and a close parenthesis.

It is possible to make errors in the way one constructs tokens. One of the problems with 3=+6$ is
that $ is not a legal token in mathematics (at least as far as we know). Similarly, 22z is not a legal
token in chemistry notation because there is no element with the abbreviation zz.

Chapter 1: The way of the program 16

The second type of syntax rule pertains to the structure of a statement— that is, the way the
tokens are arranged. The statement 3=+6$ is structurally illegal because you can’t place a plus sign
immediately after an equal sign. Similarly, molecular formulas have to have subscripts after the
element name, not before. And in our Python example, if we omitted the comma, or if we changed
the two parentheses around to say print)"Happy New Year for ",2013(our statement would still
have six legal and valid tokens, but the structure is illegal.

When you read a sentence in English or a statement in a formal language, you have to figure out
what the structure of the sentence is (although in a natural language you do this subconsciously).
This process is called parsing.

For example, when you hear the sentence, “The other shoe fell”, you understand that the other shoe
is the subject and fell is the verb. Once you have parsed a sentence, you can figure out what it means,
or the semantics of the sentence. Assuming that you know what a shoe is and what it means to fall,
you will understand the general implication of this sentence.

Although formal and natural languages have many features in common — tokens, structure, syntax,
and semantics — there are many differences:

ambiguity

« Natural languages are full of ambiguity, which people deal with by using contextual clues and
other information. Formal languages are designed to be nearly or completely unambiguous,
which means that any statement has exactly one meaning, regardless of context.

redundancy

« In order to make up for ambiguity and reduce misunderstandings, natural languages employ
lots of redundancy. As a result, they are often verbose. Formal languages are less redundant
and more concise.

literalness

« Formal languages mean exactly what they say. On the other hand, natural languages are full
of idiom and metaphor. If someone says, “The other shoe fell”, there is probably no shoe and
nothing falling. You’ll need to find the original joke to understand the idiomatic meaning of
the other shoe falling. Yahoo! Answers thinks it knows!

People who grow up speaking a natural language—everyone—often have a hard time adjusting to
formal languages. In some ways, the difference between formal and natural language is like the
difference between poetry and prose, but more so:

poetry

« Words are used for their sounds as well as for their meaning, and the whole poem together
creates an effect or emotional response. Ambiguity is not only common but often deliberate.

Chapter 1: The way of the program 17
prose

+ The literal meaning of words is more important, and the structure contributes more meaning.
Prose is more amenable to analysis than poetry but still often ambiguous.

program

« The meaning of a computer program is unambiguous and literal, and can be understood entirely
by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages). First, remember that
formal languages are much more dense than natural languages, so it takes longer to read them. Also,
the structure is very important, so it is usually not a good idea to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens and interpreting the
structure. Finally, the details matter. Little things like spelling errors and bad punctuation, which
you can get away with in natural languages, can make a big difference in a formal language.

1.9. The first program

Traditionally, the first program written in a new language is called Hello, World! because all it does
is display the words, Hello, World! In Python, the script looks like this: (For scripts, we’ll show line
numbers to the left of the Python statements.)

print("Hello, World!")

This is an example of using the print function, which doesn’t actually print anything on paper. It
displays a value on the screen. In this case, the result shown is

Hello, World!

The quotation marks in the program mark the beginning and end of the value; they don’t appear in
the result.

Some people judge the quality of a programming language by the simplicity of the Hello, World!
program. By this standard, Python does about as well as possible.

=~ O O s W N

Chapter 1: The way of the program 18

1.10. Comments

As programs get bigger and more complicated, they get more difficult to read. Formal languages are
dense, and it is often difficult to look at a piece of code and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural language what
the program is doing.

A comment in a computer program is text that is intended only for the human reader — it is
completely ignored by the interpreter.

In Python, the # token starts a comment. The rest of the line is ignored. Here is a new version of
Hello, World!.

This demo program shows off how elegant Python is!
Written by Joe Soap, December 2010.

Anyone may freely copy or modify this program.

print("Hello, World!") # Isn't this easy!

You'll also notice that we’ve left a blank line in the program. Blank lines are also ignored by the
interpreter, but comments and blank lines can make your programs much easier for humans to
parse. Use them liberally!

1.11. Glossary

algorithm

A set of specific steps for solving a category of problems.
bug

An error in a program.

comment

Information in a program that is meant for other programmers (or anyone reading the source code)
and has no effect on the execution of the program.

debugging
The process of finding and removing any of the three kinds of programming errors.
exception

Another name for a runtime error.

Chapter 1: The way of the program 19

formal language

Any one of the languages that people have designed for specific purposes, such as representing
mathematical ideas or computer programs; all programming languages are formal
languages.

high-level language
A programming language like Python that is designed to be easy for humans to read and write.
immediate mode

A style of using Python where we type expressions at the command prompt, and the results are
shown immediately. Contrast with script, and see the entry under Python shell.

interpreter
The engine that executes your Python scripts or expressions.
low-level language

A programming language that is designed to be easy for a computer to execute; also called machine
language or assembly language.

natural language

Any one of the languages that people speak that evolved naturally.

object code

The output of the compiler after it translates the program.

parse

To examine a program and analyze the syntactic structure.

portability

A property of a program that can run on more than one kind of computer.
print function

A function used in a program or script that causes the Python interpreter to display a value on its
output device.

problem solving

The process of formulating a problem, finding a solution, and expressing the solution.

program

a sequence of instructions that specifies to a computer actions and computations to be performed.
Python shell

An interactive user interface to the Python interpreter. The user of a Python shell types commands at
the prompt (>>>), and presses the return key to send these commands immediately to the interpreter

Chapter 1: The way of the program 20

for processing. The word shell comes from Unix. In the PyScripter used in this RLE version of the
book, the Interpreter Window is where we’d do the immediate mode interaction.

runtime error

An error that does not occur until the program has started to execute but that prevents the program
from continuing.

script

A program stored in a file (usually one that will be interpreted).

semantic error

An error in a program that makes it do something other than what the programmer intended.
semantics

The meaning of a program.

source code

A program in a high-level language before being compiled.

syntax

The structure of a program.

syntax error

An error in a program that makes it impossible to parse — and therefore impossible to interpret.
token

One of the basic elements of the syntactic structure of a program, analogous to a word in a natural
language.

1.12. Exercises

1. Write an English sentence with understandable semantics but incorrect syntax. Write another
English sentence which has correct syntax but has semantic errors.

2. Using the Python interpreter, type1 + 2 and then hit return. Python evaluates this expression,
displays the result, and then shows another prompt. * is the multiplication operator, and ** is
the exponentiation operator. Experiment by entering different expressions and recording what
is displayed by the Python interpreter.

3. Type 1 2 and then hit return. Python tries to evaluate the expression, but it can’t because the
expression is not syntactically legal. Instead, it shows the error message:

Chapter 1: The way of the program 21

Bw N -

W N =

File "<interactive input>", line 1
1 2

A

SyntaxError: invalid syntax

In many cases, Python indicates where the syntax error occurred, but it is not always right,
and it doesn’t give you much information about what is wrong.

So, for the most part, the burden is on you to learn the syntax rules.
In this case, Python is complaining because there is no operator between the numbers.

See if you can find a few more examples of things that will produce error messages when you
enter them at the Python prompt. Write down what you enter at the prompt and the last line
of the error message that Python reports back to you.

. Type print("hello"). Python executes this, which has the effect of printing the letters h-e-1-1-

o. Notice that the quotation marks that you used to enclose the string are not part of the output.
Now type "hello" and describe your result. Make notes of when you see the quotation marks
and when you don’t.

. Type cheese without the quotation marks. The output will look something like this:

Traceback (most recent call last):
File "<interactive input>", line 1, in ?

NameError: name 'cheese' is not defined

This is a run-time error; specifically, it is a NameError, and even more specifically, it is an error
because the name cheese is not defined. If you don’t know what that means yet, you will soon.

. Type 6 + 4 ™ 9 at the Python prompt and hit enter. Record what happens.

Now create a Python script with the following contents:
6 +4 %09

What happens when you run this script? Now change the script contents to:

print(6 + 4 * 9)

and run it again.

What happened this time?

Whenever an expression is typed at the Python prompt, it is evaluated and the result is automatically
shown on the line below. (Like on your calculator, if you type this expression you’ll get the result 42.)

Chapter 1: The way of the program 22

A script is different, however. Evaluations of expressions are not automatically displayed, so it is
necessary to use the print function to make the answer show up.

It is hardly ever necessary to use the print function in immediate mode at the command prompt.

W N

Chapter 2: Variables, expressions and
statements

(Watch a video based on this chapter here on YouTube’.)

2.1. Values and data types

A value is one of the fundamental things — like a letter or a number — that a program manipulates.
The values we have seen so far are 4 (the result when we added 2 + 2), and "Hello, World!".

These values are classified into different classes, or data types: 4 is an integer, and "Hello, World!"
is a string, so-called because it contains a string of letters. You (and the interpreter) can identify
strings because they are enclosed in quotation marks.

If you are not sure what class a value falls into, Python has a function called type which can tell
you.

>>> type("Hello, World!")
<class 'str'>
>>> type(17)
<class 'int'>

Not surprisingly, strings belong to the class str and integers belong to the class int. Less obviously,
numbers with a decimal point belong to a class called float, because these numbers are represented in
a format called floating-point. At this stage, you can treat the words class and type interchangeably.
We'll come back to a deeper understanding of what a class is in later chapters.

>>> type(3.2)
<class 'float'>

What about values like "17" and "3.2"? They look like numbers, but they are in quotation marks
like strings.

*https://youtu.be/glvstR16col

https://youtu.be/gIvstR16coI
https://youtu.be/gIvstR16coI

Bw N

O N O O b W N =

o I O O b W N =

Chapter 2: Variables, expressions and statements 24

>>> type("1T")
<class 'str'>
>>> type("3.2")
<class 'str'>

They’re strings!

Strings in Python can be enclosed in either single quotes () or double quotes (“), or three of each (*”

€9
r7)

>>> type('This is a string."')
<class 'str'>

>>> type("And so is this.")
<class 'str'>

>>> type("""and this.""")

<class 'str'>

>>> type('''and even this...''")
<class 'str'>

Double quoted strings can contain single quotes inside them, as in "Bruce's beard", and single
quoted strings can have double quotes inside them, as in 'The knights who say "Ni!"'.

Strings enclosed with three occurrences of either quote symbol are called triple quoted strings. They
can contain either single or double quotes:

>>> print('''"Oh no", she exclaimed, "Ben's bike is broken!"''")
"Oh no", she exclaimed, "Ben's bike is broken!"
>

Triple quoted strings can even span multiple lines:

>>> message = """This message will
. span several

lines."""
>>> print(message)
This message will
span several
lines.
>

Python doesn’t care whether you use single or double quotes or the three-of-a-kind quotes to
surround your strings: once it has parsed the text of your program or command, the way it stores
the value is identical in all cases, and the surrounding quotes are not part of the value. But when
the interpreter wants to display a string, it has to decide which quotes to use to make it look like a
string.

Bw N

BSwWw N

Chapter 2: Variables, expressions and statements 25

>>> 'This is a string.'
'This is a string.'
>>> """And so is this."""

'"And so is this.'

So the Python language designers usually chose to surround their strings by single quotes. What do
you think would happen if the string already contained single quotes?

When you type a large integer, you might be tempted to use commas between groups of three digits,
as in 42,000. This is not a legal integer in Python, but it does mean something else, which is legal:

>>> 42000
42000

>>> 42,000
(42, 0)

Well, that’s not what we expected at all! Because of the comma, Python chose to treat this as a pair
of values. We’ll come back to learn about pairs later. But, for the moment, remember not to put
commas or spaces in your integers, no matter how big they are. Also revisit what we said in the
previous chapter: formal languages are strict, the notation is concise, and even the smallest change
might mean something quite different from what you intended.

2.2. Variables

One of the most powerful features of a programming language is the ability to manipulate variables.
A variable is a name that refers to a value.

The assignment statement gives a value to a variable:

>>> message = "What's up, Doc?"
>>> n = 17
>>> pi = 3.14159

This example makes three assignments. The first assigns the string value "What's up, Doc?" to a
variable named message. The second gives the integer17 to n, and the third assigns the floating-point
number 3.14159 to a variable called pi.

The assignment token, =, should not be confused with equals, which uses the token ==. The
assignment statement binds a name, on the left-hand side of the operator, to a value, on the right-
hand side. This is why you will get an error if you enter:

O O B W N

Chapter 2: Variables, expressions and statements 26

>>> A7 = n
File "<interactive input>", line 1

SyntaxError: can't assign to literal

Tip:
When reading or writing code, say to yourself “n is assigned 17” or “n gets the value 17”. Don’t say
“n equals 17”.

A common way to represent variables on paper is to write the name with an arrow pointing to the
variable’s value. This kind of figure is called a state snapshot because it shows what state each of
the variables is in at a particular instant in time. (Think of it as the variable’s state of mind). This
diagram shows the result of executing the assignment statements:

message ~ "What's up, Doc?"
n - 17
o] -~ 3.14159

State Snapshot

If you ask the interpreter to evaluate a variable, it will produce the value that is currently linked to
the variable:

>>> message
"What's up, Doc?"
>>> n

17

>>> pi

3.14159

We use variables in a program to “remember” things, perhaps the current score at the football game.
But variables are variable. This means they can change over time, just like the scoreboard at a football
game. You can assign a value to a variable, and later assign a different value to the same variable.
(This is different from maths. In maths, if you givex the value 3, it cannot change to link to a different
value half-way through your calculations!)

O© 00 I O O b W N =

O O b W N =

Chapter 2: Variables, expressions and statements 27

>>> day = "Thursday"
>>> day

'Thursday'

>>> day = "Friday"
>>> day

'Friday’

>>> day = 21

>>> day

21

You’ll notice we changed the value of day three times, and on the third assignment we even made
it refer to a value that was of a different type.

A great deal of programming is about having the computer remember things, e.g. The number of
missed calls on your phone, and then arranging to update or change the variable when you miss
another call.

2.3. Variable names and keywords

Variable names can be arbitrarily long. They can contain both letters and digits, but they have to
begin with a letter or an underscore. Although it is legal to use uppercase letters, by convention we
don’t. If you do, remember that case matters. Bruce and bruce are different variables.

The underscore character (_) can appear in a name. It is often used in names with multiple words,
such as my_name or price_of_tea_in_china.

There are some situations in which names beginning with an underscore have special meaning, so
a safe rule for beginners is to start all names with a letter.

If you give a variable an illegal name, you get a syntax error:

>>> T6trombones = "big parade"
SyntaxError: invalid syntax

>>> more$ = 1000000

SyntaxError: invalid syntax

>>> class = "Computer Science 101"

SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letter. more$ is illegal because it contains an
illegal character, the dollar sign. But what’s wrong with class?

It turns out that class is one of the Python keywords. Keywords define the language’s syntax rules
and structure, and they cannot be used as variable names.

Python has thirty-something keywords (and every now and again improvements to Python intro-
duce or eliminate one or two):

W N

Chapter 2: Variables, expressions and statements 28

and as assert break class continue
def del elif else except exec
finally for from global if import
in is lambda nonlocal not or

pass raise return try while with
yield True False None

You might want to keep this list handy. If the interpreter complains about one of your variable names
and you don’t know why, see if it is on this list.

Programmers generally choose names for their variables that are meaningful to the human readers
of the program — they help the programmer document, or remember, what the variable is used for.

Caution

Beginners sometimes confuse “meaningful to the human readers” with “meaningful to the computer”.
So they’ll wrongly think that because they’ve called some variable average or pi, it will somehow
magically calculate an average, or magically know that the variable pi should have a value like
3.14159. No! The computer doesn’t understand what you intend the variable to mean.

So you’ll find some instructors who deliberately don’t choose meaningful names when they teach
beginners — not because we don’t think it is a good habit, but because we’re trying to reinforce the
message that you — the programmer — must write the program code to calculate the average, and
you must write an assignment statement to give the variable pi the value you want it to have.

2.4. Statements

A statement is an instruction that the Python interpreter can execute. We have only seen the
assignment statement so far. Some other kinds of statements that we’ll see shortly are while
statements, for statements, i f statements, and import statements. (There are other kinds too!)

When you type a statement on the command line, Python executes it. Statements don’t produce any
result.

2.5. Evaluating expressions

An expression is a combination of values, variables, operators, and calls to functions. If you type
an expression at the Python prompt, the interpreter evaluates it and displays the result:

5> 1 + 1

2

>>> len("hello")
5

o N O O b W N =

W N

Chapter 2: Variables, expressions and statements 29

In this example len is a built-in Python function that returns the number of characters in a string.
We’ve previously seen the print and the type functions, so this is our third example of a function!

The evaluation of an expression produces a value, which is why expressions can appear on the right
hand side of assignment statements. A value all by itself is a simple expression, and so is a variable.

>>> 17
17
>0y

3.14
>>> x = len("hello")
>35> X

)
o>y

3.14

2.6. Operators and operands

Operators are special tokens that represent computations like addition, multiplication and division.
The values the operator uses are called operands.

The following are all legal Python expressions whose meaning is more or less clear:
20+32 hour-1 hour*60+minute minute/60 5%*2 (5+9)*(15-7)

The tokens +, -, and *, and the use of parenthesis for grouping, mean in Python what they mean in
mathematics. The asterisk (*) is the token for multiplication, and ** is the token for exponentiation.

>>> 2 k% 3
8
>>> 3 k%
9

When a variable name appears in the place of an operand, it is replaced with its value before the
operation is performed.

Addition, subtraction, multiplication, and exponentiation all do what you expect.

Example: so let us convert 645 minutes into hours:

Bw N

o N O O b W N =

Chapter 2: Variables, expressions and statements 30

>>> minutes = 645

>>> hours = minutes / 60
>>> hours

10.75

Oops! In Python 3, the division operator /always yields a floating point result. What we might have
wanted to know was how many whole hours there are, and how many minutes remain. Python
gives us two different flavors of the division operator. The second, called floor division uses the
token //. Its result is always a whole number — and if it has to adjust the number it always moves
it to the left on the number line. So6 // 4 yields1, but -6 // 4 might surprise you!

>>> 7 /4

1.75

> 7 /) 4

1

>>> minutes = 645

>>> hours = minutes // 60
>>> hours

10

Take care that you choose the correct flavor of the division operator. If you're working with
expressions where you need floating point values, use the division operator that does the division
accurately.

2.7. Type converter functions

Here we’ll look at three more Python functions, int, float and str, which will (attempt to) convert
their arguments into types int, float and str respectively. We call these type converter functions.

The int function can take a floating point number or a string, and turn it into an int. For floating
point numbers, it discards the decimal portion of the number — a process we call truncation towards
zero on the number line. Let us see this in action:

O© 00 I O O b W N =

N S
g b 0w N =~

W N

W N

Chapter 2: Variables, expressions and statements 31

>>> int(3.14)
>>> int(3.9999) # This doesn't round to the closest int!
>>> int(3.0)
>>> int(-3.999) # Note that the result is closer to zero

>>> int(minutes / 60)

10

>>> int("2345") # Parse a string to produce an int

2345

>>> int(47) # It even works if arg is already an int
17

>>> int("23 bottles")

This last case doesn’t look like a number — what do we expect?
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '23 bottles'

The type converter float can turn an integer, a float, or a syntactically legal string into a float:

>>> float(417)

17.0

>>> float("123.45")
123.45

The type converter str turns its argument into a string:

>>> str(17)

|17|
>>> str(123.45)
'123.45"

2.8. Order of operations

When more than one operator appears in an expression, the order of evaluation depends on the
rules of precedence. Python follows the same precedence rules for its mathematical operators that
mathematics does. The acronym PEMDAS is a useful way to remember the order of operations:

W N

W N

Chapter 2: Variables, expressions and statements 32

1. Parentheses have the highest precedence and can be used to force an expression to evaluate in
the order you want. Since expressions in parentheses are evaluated first,2 * (3-1) is 4, and
(1+1)**(5-2) is 8. You can also use parentheses to make an expression easier to read, as in
(minute * 100) / 60, even though it doesn’t change the result.

2. Exponentiation has the next highest precedence, so 2**1+1 is 3 and not 4, and 3*1**3 is 3 and
not 27.

3. Multiplication and both Division operators have the same precedence, which is higher than
Addition and Subtraction, which also have the same precedence. So 2*3-1 yields 5 rather than
4, and 5-2%2 is 1, not 6.

Operators with the same precedence are evaluated from left-to-right. In algebra we say they are
left-associative. So in the expression 6-3+2, the subtraction happens first, yielding 3. We then add
2 to get the result 5. If the operations had been evaluated from right to left, the result would have
been 6-(3+2), which is 1. (The acronym PEDMAS could mislead you to thinking that division has
higher precedence than multiplication, and addition is done ahead of subtraction - don’t be misled.
Subtraction and addition are at the same precedence, and the left-to-right rule applies.)

Due to some historical quirk, an exception to the left-to-right left-associative rule is the exponenti-
ation operator **, so a useful hint is to always use parentheses to force exactly the order you want
when exponentiation is involved:

>>> 2 k% 3 xk 2 # The right-most ** operator gets done first!
512
>>> (2 *¥% 3) Kk 2 # Use parentheses to force the order you want!
64

The immediate mode command prompt of Python is great for exploring and experimenting with
expressions like this.

2.9. Operations on strings

In general, you cannot perform mathematical operations on strings, even if the strings look like
numbers. The following are illegal (assuming that message has type string):

>>> message - 1 # Error

>>> "Hello" / 123 # Error

>>> message * "Hello" # Error

>>> "B" + 2 # Error

Interestingly, the + operator does work with strings, but for strings, the + operator represents
concatenation, not addition. Concatenation means joining the two operands by linking them end-
to-end. For example:

Chapter 2: Variables, expressions and statements 33

fruit = "banana"

baked_good = nut bread"

print(fruit + baked_good)

The output of this program is banana nut bread. The space before the word nut is part of the string,
and is necessary to produce the space between the concatenated strings.

The * operator also works on strings; it performs repetition. For example, 'Fun'*3 is 'FunFunFun'.
One of the operands has to be a string; the other has to be an integer.

On one hand, this interpretation of + and * makes sense by analogy with addition and multiplication.
Just as 4*3 is equivalent to 4+4+4, we expect "Fun"*3 to be the same as "Fun"+"Fun"+"Fun", and it
is. On the other hand, there is a significant way in which string concatenation and repetition are
different from integer addition and multiplication. Can you think of a property that addition and
multiplication have that string concatenation and repetition do not?

2.10. Input

There is a built-in function in Python for getting input from the user:
n = input("Please enter your name: ")

A sample run of this script in Replit would populate your input question in the console to the left
like this:

-2 A Stop B [} B 2 Invite Q

main.py 8 Console Shell

1 n = input("Please enter your name: ")
2

Please enter your name: ||

Input Prompt

The user of the program can enter the name and press enter, and when this happens the text that
has been entered is returned from the input function, and in this case assigned to the variable n.

Even if you asked the user to enter their age, you would get back a string like "17". It would be your
job, as the programmer, to convert that string into a int or a float, using the int or float converter
functions we saw earlier.

W N

Chapter 2: Variables, expressions and statements 34

2.11. Composition

So far, we have looked at the elements of a program — variables, expressions, statements, and
function calls — in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small building
blocks and compose them into larger chunks.

For example, we know how to get the user to enter some input, we know how to convert the string
we get into a float, we know how to write a complex expression, and we know how to print values.
Let’s put these together in a small four-step program that asks the user to input a value for the radius
of a circle, and then computes the area of the circle from the formula

A = 7r?

Area of a circle

Firstly, we’ll do the four steps one at a time:

response = input("What is your radius? ")
r = float(response)
area = 3.14159 * r**2

print("The area is ", area)

Now let’s compose the first two lines into a single line of code, and compose the second two lines
into another line of code.

r = float(input("What is your radius? "))
print("The area is ", 3.14159 * r**2)

If we really wanted to be tricky, we could write it all in one statement:
print("The area is ", 3.14159*float(input("What is your radius?"))**2)

Such compact code may not be most understandable for humans, but it does illustrate how we can
compose bigger chunks from our building blocks.

O O b W N =

o N O O b W N =

Chapter 2: Variables, expressions and statements 35

If you’re ever in doubt about whether to compose code or fragment it into smaller steps, try to make
it as simple as you can for the human to follow. My choice would be the first case above, with four
separate steps.

2.12. The modulus operator

The modulus operator works on integers (and integer expressions) and gives the remainder when
the first number is divided by the second. In Python, the modulus operator is a percent sign (%). The
syntax is the same as for other operators. It has the same precedence as the multiplication operator.

>>>q=171//3 # This is integer division operator
>>> print(q)
2

>»>r =T7T%3
>>> print(r)
1

So 7 divided by 3 is 2 with a remainder of 1.

The modulus operator turns out to be surprisingly useful. For example, you can check whether one
number is divisible by another—if x % vy is zero, then x is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example, x % 10 yields the
right-most digit of x (in base 10). Similarly x % 100 yields the last two digits.

It is also extremely useful for doing conversions, say from seconds, to hours, minutes and seconds.
So let’s write a program to ask the user to enter some seconds, and we’ll convert them into hours,
minutes, and remaining seconds.

total_secs = int(input("How many seconds, in total?"))
hours = total_secs // 3600

secs_still_remaining = total_secs % 3600

minutes = secs_still_remaining // 60
secs_finally_remaining = secs_still_remaining 7% 60

"

print("Hrs=", hours, mins=", minutes,

"secs=", secs_finally_remaining)

2.13. Glossary

assignment statement

Chapter 2: Variables, expressions and statements 36

A statement that assigns a value to a name (variable). To the left of the assignment operator, =, is
a name. To the right of the assignment token is an expression which is evaluated by the Python
interpreter and then assigned to the name. The difference between the left and right hand sides of
the assignment statement is often confusing to new programmers. In the following assignment:

n plays a very different role on each side of the =. On the right it is a value and makes up part of the
expression which will be evaluated by the Python interpreter before assigning it to the name on the

left.
assignment token

= is Python’s assignment token. Do not confuse it with equals, which is an operator for comparing
values.

composition

The ability to combine simple expressions and statements into compound statements and expressions
in order to represent complex computations concisely.

concatenate
To join two strings end-to-end.
data type

A set of values. The type of a value determines how it can be used in expressions. So far, the types
you have seen are integers (int), floating-point numbers (float), and strings (str).

evaluate

To simplify an expression by performing the operations in order to yield a single value.
expression

A combination of variables, operators, and values that represents a single result value.
float

A Python data type which stores floating-point numbers. Floating-point numbers are stored
internally in two parts: a base and an exponent. When printed in the standard format, they look
like decimal numbers. Beware of rounding errors when you use floats, and remember that they are
only approximate values.

floor division

An operator (denoted by the token //) that divides one number by another and yields an integer, or,
if the result is not already an integer, it yields the next smallest integer.

int

A Python data type that holds positive and negative whole numbers.

Chapter 2: Variables, expressions and statements 37

keyword

A reserved word that is used by the compiler to parse programs; you cannot use keywords like i f,
def, and while as variable names.

modulus operator

An operator, denoted with a percent sign (%), that works on integers and yields the remainder when
one number is divided by another.

operand
One of the values on which an operator operates.
operator

A special symbol that represents a simple computation like addition, multiplication, or string
concatenation.

rules of precedence

The set of rules governing the order in which expressions involving multiple operators and operands
are evaluated.

state snapshot

A graphical representation of a set of variables and the values to which they refer, taken at a
particular instant during the program’s execution.

statement

An instruction that the Python interpreter can execute. So far we have only seen the assignment
statement, but we will soon meet the import statement and the for statement.

str
A Python data type that holds a string of characters.
value

A number or string (or other things to be named later) that can be stored in a variable or computed
in an expression.

variable
A name that refers to a value.
variable name

A name given to a variable. Variable names in Python consist of a sequence of letters (a. .z, A. .Z,
and _) and digits (0..9) that begins with a letter. In best programming practice, variable names should
be chosen so that they describe their use in the program, making the program self documenting.

Chapter 2: Variables, expressions and statements 38

2.14. Exercises

. Take the sentence: All work and no play makes Jack a dull boy. Store each word in a separate

variable, then print out the sentence on one line using print.

. Add parenthesis to the expression 6 * 1 - 2 to change its value from 4 to -6.
3. Place a comment before a line of code that previously worked, and record what happens when

you rerun the program.

. Start the Python interpreter and enter bruce + 4 at the prompt. This will give you an error:

NameError: name 'bruce' is not defined

Assign a value to bruce so that bruce + 4 evaluates to 10.

. The formula for computing the final amount if one is earning compound interest is given on

Wikipedia as

Compounded Interest Formula

P =P(1+ %)”t

where:

<N O O s~ WN

P is the original principal sum

P'is the new principal sum

ris the nominal annual interest rate
nis the compounding frequency

tis the overall length of time the interest is applied (expressed using the same time units as r, usually years).

Compounded Interest Formula

Write a Python program that assigns the principal amount of $10000 to variable P, assign to n
the value 12, and assign to r the interest rate of 8%. Then have the program prompt the user

for the number of years t that the money will be compounded for. Calculate and print the final
amount after t years.

. Evaluate the following numerical expressions in your head, then use the Python interpreter to

check your results:

>>> 5 % 2
>>> 9% 5
>>> 15 % 12
>>> 12 % 15
>>> 6 % 6
>»>> 0 % T
5> 7 % 0

What happened with the last example? Why? If you were able to correctly anticipate the
computer’s response in all but the last one, it is time to move on. If not, take time now to

Chapter 2: Variables, expressions and statements 39

make up examples of your own. Explore the modulus operator until you are confident you
understand how it works.

7. You look at the clock and it is exactly 2pm. You set an alarm to go off in 51 hours. At what time
does the alarm go oft? (Hint: you could count on your fingers, but this is not what we’re after.
If you are tempted to count on your fingers, change the 51 to 5100.)

8. Write a Python program to solve the general version of the above problem. Ask the user for
the time now (in hours), and ask for the number of hours to wait. Your program should output
what the time will be on the clock when the alarm goes off.

© 00 1 O O b W N =

Chapter 3: Hello, little turtles!

There are many modules in Python that provide very powerful features that we can use in our own
programs. Some of these can send email, or fetch web pages. The one we’ll look at in this chapter
allows us to create turtles and get them to draw shapes and patterns.

The turtles are fun, but the real purpose of the chapter is to teach ourselves a little more Python, and
to develop our theme of computational thinking, or thinking like a computer scientist. Most of the
Python covered here will be explored in more depth later.

3.1. Our first turtle program

Let’s write a couple of lines of Python program to create a new turtle and start drawing a rectangle.
(We'll call the variable that refers to our first turtle alex, but we can choose another name if we
follow the naming rules from the previous chapter).

import turtle # Allows us to use turtles

wn = turtle.Screen() # Creates a playground for turtles

alex = turtle.Turtle() # Create a turtle, assign to alex

alex. forward(50) # Tell alex to move forward by 50 units
alex.left(90) # Tell alex to turn by 90 degrees

#

alex. forward(30) Complete the second side of a rectangle

wn.mainloop() # Wait for user to close window

When we run this program, a new window pops up:

Chapter 3: Hello, little turtles! 41

[Files® ™mane 8
import turtle

1
u 2 wn = turtle.Screen()

alex = turtle.Turtle()
alex.forward(50)

alex.left(90)
alex.forward(30)

9 wn.mainloop()

Nousw

o

Console Shell

Turtle Window

Here are a couple of things we’ll need to understand about this program.

The first line tells Python to load a module named turtle. That module brings us two new types
that we can use: the Turtle type, and the Screen type. The dot notation turtle.Turtle means “The
Turtle type that is defined within the turtle module”. (Remember that Python is case sensitive, so the
module name, with a lowercase t, is different from the type Turtle.)

We then create and open what it calls a screen (we would prefer to call it a window), which we
assign to variable wn. Every window contains a canvas, which is the area inside the window on
which we can draw.

In line 3 we create a turtle. The variable alex is made to refer to this turtle.
So these first three lines have set things up, we’re ready to get our turtle to draw on our canvas.

In lines 5-7, we instruct the object alex to move, and to turn. We do this by invoking, or activating,
alex’s methods — these are the instructions that all turtles know how to respond to.

The last line plays a part too: the wn variable refers to the window shown above. When we invoke
itsmainloop method, it enters a state where it waits for events (like keypresses, or mouse movement
and clicks). The program will terminate when the user closes the window.

An object can have various methods — things it can do — and it can also have attributes —
(sometimes called properties). For example, each turtle has a color attribute. The method invocation
alex.color("red") will make alex red, and drawing will be red too. (Note the word color is spelled
the American way!)

The color of the turtle, the width of its pen, the position of the turtle within the window, which way
it is facing, and so on are all part of its current state. Similarly, the window object has a background

© 00 N O O & W N =

T = U =N
W N s,

Chapter 3: Hello, little turtles! 42

color, and some text in the title bar, and a size and position on the screen. These are all part of the
state of the window object.

Quite a number of methods exist that allow us to modify the turtle and the window objects. We’ll
just show a couple. In this program we’ve only commented those lines that are different from the
previous example (and we've used a different variable name for this turtle):

import turtle

wn = turtle.Screen()

wn.bgcolor("lightgreen") # Set the window background color
wn.title("Hello, Tess!") # Set the window title

tess = turtle.Turtle()

tess.color("blue") # Tell tess to change her color

#

tess.pensize(3) Tell tess to set her pen width

tess. forward(50)
tess.left(120)

tess. forward(50)

wn.mainloop()

When we run this program, this new window pops up, and will remain on the screen until we close
it.

= (O) . ritza / Iptrw-chapter-3 @ Stop @ [m] ﬂ S+ Invite Q
[Files ® : main.py 8
1 import turtle
3 wn.bgcolor("lightgreen")
W
4 wn.title("Hello, Tess!")
a 5
6 tess = turtle.Turtle()
o 7 tess.color("blue")
8 tess.pensize(3) :
8
v : "

10 tess.forward(50)
11 tess.left(120)
12 tess.forward(50)

14 wn.mainloop()

T I P

Console Shell

1 Q x

tess mainloop

Extend this program ...

Chapter 3: Hello, little turtles!

43

1. Modify this program so that before it creates the window, it prompts the user to enter the
desired background color. It should store the user’s responses in a variable, and modify the
color of the window according to the user’s wishes. (Hint: you can find a list of permitted color
names at http://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm. It includes some quite unusual ones,
like “peach puff” and “HotPink”)

2. Do similar changes to allow the user, at runtime, to set tess’ color.
3. Do the same for the width of tess’ pen. Hint: your dialog with the user will return a string,
but tess’ pensize method expects its argument to be an int. So you’ll need to convert the string
to an int before you pass it to pensize.

3.2. Instances — a herd of turtles

Just like we can have many different integers in a program, we can have many turtles. Each of them
is called an instance. Each instance has its own attributes and methods — so alex might draw with
a thin black pen and be at some position, while tess might be going in her own direction with a fat

pink pen.

import turtle

wn = turtle.Screen() # Set up the window and its attributes
wn.bgcolor("lightgreen")

wn.title("Tess & Alex")

tess = turtle.Turtle() # Create tess and set some attributes

tess.color("hotpink™)

© 00 N O O & W N =

NN NN N N P R 1 s s Ly
g b W0 N P 0 O 00 N O O b W N »~ O

tess.

alex

tess.
tess.
tess.
tess.

tess

tess

tess

tess.

alex.
alex.
alex.

alex.

pensize(5)

= turtle.Turtle()

forward(80)
left(120)
forward(80)
left(120)

. forward(80)
left(120)

.right(180)

forward(80)

forward(50)
left(90)
forward(50)
left(90)

Create alex

Make tess draw equilateral triangle

Complete the triangle

Turn tess around

Move her away from the origin

Make alex draw a square

26
27
28
29
30
31

Chapter 3: Hello, little turtles! 44

alex. forward(50)
alex.left(90)
alex. forward(50)
alex.left(90)

wn.mainloop()

Here is what happens when alex completes his rectangle, and tess completes her triangle:

-]

-1 st
Alex and Tess

Here are some How to think like a computer scientist observations:

« There are 360 degrees in a full circle. If we add up all the turns that a turtle makes, no matter
what steps occurred between the turns, we can easily figure out if they add up to some multiple
of 360. This should convince us that alex is facing in exactly the same direction as he was when
he was first created. (Geometry conventions have 0 degrees facing East, and that is the case
here too!)

« We could have left out the last turn for alex, but that would not have been as satistying. If
we're asked to draw a closed shape like a square or a rectangle, it is a good idea to complete all
the turns and to leave the turtle back where it started, facing the same direction as it started in.
This makes reasoning about the program and composing chunks of code into bigger programs
easier for us humans!

s W N

=~ O U s W N

Chapter 3: Hello, little turtles! 45

« We did the same with tess: she drew her triangle, and turned through a full 360 degrees. Then
we turned her around and moved her aside. Even the blank line 18 is a hint about how the
programmer’s mental chunking is working: in big terms, tess’ movements were chunked as
“draw the triangle” (lines 12-17) and then “move away from the origin” (lines 19 and 20).

« One of the key uses for comments is to record our mental chunking, and big ideas. They’re not
always explicit in the code.

« And, uh-huh, two turtles may not be enough for a herd. But the important idea is that the turtle
module gives us a kind of factory that lets us create as many turtles as we need. Each instance
has its own state and behaviour.

3.3. The for loop

When we drew the square, it was quite tedious. We had to explicitly repeat the steps of moving
and turning four times. If we were drawing a hexagon, or an octagon, or a polygon with 42 sides, it
would have been worse.

So a basic building block of all programs is to be able to repeat some code, over and over again.

Python’s for loop solves this for us. Let’s say we have some friends, and we’d like to send them each
an email inviting them to our party. We don’t quite know how to send email yet, so for the moment
we’ll just print a message for each friend:

for f in ["Joe","Zoe","Brad","Angelina","Zuki","Thandi", "Paris"]:
invite = "Hi " + £ + ". Please come to my party on Saturday!"
print(invite)

more code can follow here ...
When we run this, the output looks like this:

Hi Joe. Please come to my party on Saturday!

Hi Zoe. Please come to my party on Saturday!

Hi Brad. Please come to my party on Saturday!

Hi Angelina. Please come to my party on Saturday!
Hi Zuki. Please come to my party on Saturday!

Hi Thandi. Please come to my party on Saturday!
Hi Paris. Please come to my party on Saturday!

« The variable f in the for statement at line 1 is called the loop variable. We could have chosen
any other variable name instead.

Lines 2 and 3 are the loop body. The loop body is always indented. The indentation determines
exactly what statements are “in the body of the loop”.

Chapter 3: Hello, little turtles! 46

« On each iteration or pass of the loop, first a check is done to see if there are still more items to
be processed. If there are none left (this is called the terminating condition of the loop), the
loop has finished. Program execution continues at the next statement after the loop body, (e.g.
in this case the next statement below the comment in line 4).

« If there are items still to be processed, the loop variable is updated to refer to the next item in
the list. This means, in this case, that the loop body is executed here 7 times, and each time £
will refer to a different friend.

« At the end of each execution of the body of the loop, Python returns to the for statement, to
see if there are more items to be handled, and to assign the next one to f.

3.4. Flow of Execution of the for loop

As a program executes, the interpreter always keeps track of which statement is about to be executed.
We call this the control flow, of the flow of execution of the program. When humans execute
programs, they often use their finger to point to each statement in turn. So we could think of control
flow as “Python’s moving finger”.

Control flow until now has been strictly top to bottom, one statement at a time. The for loop changes
this.

Flowchart of a for loop

Control flow is often easy to visualize and understand if we draw a flowchart. This shows the exact
steps and logic of how the for statement executes.

Chapter 3: Hello, little turtles! 47

Yes

\
No

E

For loop flowchart

3.5. The loop simplifies our turtle program

To draw a square we’d like to do the same thing four times — move the turtle, and turn. We previously
used 8 lines to have alex draw the four sides of a square. This does exactly the same, but using just
three lines:

for i in [0,1,2,3]:
alex. forward(50)
alex.left(90)

Some observations:

« While “saving some lines of code” might be convenient, it is not the big deal here. What is
much more important is that we’ve found a “repeating pattern” of statements, and reorganized
our program to repeat the pattern. Finding the chunks and somehow getting our programs
arranged around those chunks is a vital skill in computational thinking.

W N

W N

Chapter 3: Hello, little turtles! 48

« The values [@,1,2,3] were provided to make the loop body execute 4 times. We could have
used any four values, but these are the conventional ones to use. In fact, they are so popular
that Python gives us special built-in range objects:

for i in range(4):

Fxecutes the body with 1 = O, then 1, then 2, then 3
for x in range(10):

Sets x to each of ... [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

« Computer scientists like to count from 0!

« range can deliver a sequence of values to the loop variable in the for loop. They start at 0, and
in these cases do not include the 4 or the 10.

« Our little trick earlier to make sure that alex did the final turn to complete 360 degrees has paid
off: if we had not done that, then we would not have been able to use a loop for the fourth
side of the square. It would have become a “special case”, different from the other sides. When
possible, we’d much prefer to make our code fit a general pattern, rather than have to create a
special case.

So to repeat something four times, a good Python programmer would do this:

for i in range(4):
alex . forward(50)
alex.left(90)

By now you should be able to see how to change our previous program so that tess can also use a
for loop to draw her equilateral triangle.

But now, what would happen if we made this change?

for ¢ in ["yellow", "red", "purple", "blue"]:
alex.color(c)
alex . forward(50)
alex.left(90)

A variable can also be assigned a value that is a list. So lists can also be used in more general
situations, not only in the for loop. The code above could be rewritten like this:

O O B W N

Chapter 3: Hello, little turtles! 49

Assign a list to a variable
clrs = ["yellow", "red", "purple", "blue"]
for ¢ in clrs:

alex.color(c)

alex . forward(50)

alex.left(90)

3.6. A few more turtle methods and tricks

Turtle methods can use negative angles or distances. So tess.forward(-100) will move tess
backwards, and tess.left(-3@) turns her to the right. Additionally, because there are 360 degrees
in a circle, turning 30 to the left will get tess facing in the same direction as turning 330 to the right!
(The on-screen animation will differ, though — you will be able to tell if tess is turning clockwise or
counter-clockwise!)

This suggests that we don’t need both a left and a right turn method — we could be minimalists, and
just have one method. There is also a backward method. (If you are very nerdy, you might enjoy
saying alex.backward(-100) to move alex forward!)

Part of thinking like a scientist is to understand more of the structure and rich relationships in our
field. So revising a few basic facts about geometry and number lines, and spotting the relationships
between left, right, backward, forward, negative and positive distances or angles values is a good
start if we’re going to play with turtles.

A turtle’s pen can be picked up or put down. This allows us to move a turtle to a different place
without drawing a line. The methods are

alex.penup()
alex. forward(100) # This moves alex, but no line is drawn
alex.pendown()

Every turtle can have its own shape. The ones available “out of the box” are arrow, blank, circle,
classic, square, triangle, turtle.

alex.shape("turtle")

© 00 =N O O & W N =

I =S =N
W N,

Chapter 3: Hello, little turtles! 50

Pythnn Turtle Graphics _ O

b -t

Turtle Shape

We can speed up or slow down the turtle’s animation speed. (Animation controls how quickly the
turtle turns and moves forward). Speed settings can be set between 1 (slowest) to 10 (fastest). But if
we set the speed to 0, it has a special meaning — turn off animation and go as fast as possible.

alex.speed(10)

A turtle can “stamp” its footprint onto the canvas, and this will remain after the turtle has moved
somewhere else. Stamping works, even when the pen is up.

Let’s do an example that shows off some of these new features:

import turtle

wn = turtle.Screen()
wn.bgcolor("lightgreen")
tess = turtle.Turtle()
tess.shape("turtle")
tess.color("blue")

#

tess.penup() This is new

size = 20

for i in range(30):
tess.stamp() Leave an impression on the canvas

size = size + 3 Increase the size on every iteration

tess. forward(size)

tess.right(24)

Move tess along

and turn her

Chapter 3: Hello, little turtles! 51

15
16 wn.mainloop()

Python Turtle Graphics

Turtle Spiral

Be careful now! How many times was the body of the loop executed? How many turtle images do
we see on the screen? All except one of the shapes we see on the screen here are footprints created
by stamp. But the program still only has one turtle instance — can you figure out which one here is
the real tess? (Hint: if you’re not sure, write a new line of code after the for loop to change tess’ color,
or to put her pen down and draw a line, or to change her shape, etc.)

Chapter 3: Hello, little turtles! 52

3.7. Glossary

attribute

Some state or value that belongs to a particular object. For example, tess has a color.
canvas

A surface within a window where drawing takes place.

control flow

See flow of execution in the next chapter.

for loop

A statement in Python for convenient repetition of statements in the body of the loop.
loop body

Any number of statements nested inside a loop. The nesting is indicated by the fact that the
statements are indented under the for loop statement.

loop variable

A variable used as part of a for loop. It is assigned a different value on each iteration of the loop.
instance

An object of a certain type, or class. tess and alex are different instances of the class Turtle.
method

A function that is attached to an object. Invoking or activating the method causes the object to
respond in some way, e.g. forward is the method when we say tess. forward(100).

invoke

An object has methods. We use the verb invoke to mean activate the method. Invoking a
method is done by putting parentheses after the method name, with some possible arguments. So
tess. forward() is an invocation of the forward method.

module

A file containing Python definitions and statements intended for use in other Python programs. The
contents of a module are made available to the other program by using the import statement.

object

A “thing” to which a variable can refer. This could be a screen window, or one of the turtles we have
created.

range

A built-in function in Python for generating sequences of integers. It is especially useful when we
need to write a for loop that executes a fixed number of times.

Chapter 3: Hello, little turtles! 53

terminating condition

A condition that occurs which causes a loop to stop repeating its body. In the for loops we saw in
this chapter, the terminating condition has been when there are no more elements to assign to the
loop variable.

3.8. Exercises

7.

10.

Write a program that prints We like Python's turtles! 1000 times.
Give three attributes of your cellphone object. Give three methods of your cellphone.
Write a program that uses a for loop to print

One of the months of the year is January
One of the months of the year is February

Suppose our turtle tess is at heading @ — facing east. We execute the statement tess . left(3645).
What does tess do, and what is her final heading?

. Assume you have the assignment xs = [12, 10, 32, 3, 66, 17, 42, 99, 20]

a. Write a loop that prints each of the numbers on a new line.
b. Write a loop that prints each number and its square on a new line.

c. Write a loop that adds all the numbers from the list into a variable called total. You should
set the total variable to have the value @ before you start adding them up, and print the value
in total after the loop has completed.

d. Print the product of all the numbers in the list. (product means all multiplied together)
Use for loops to make a turtle draw these regular polygons (regular means all sides the same
lengths, all angles the same):

- An equilateral triangle

- A square

- A hexagon (six sides)

- An octagon (eight sides)

A drunk pirate makes a random turn and then takes 100 steps forward, makes another random
turn, takes another 100 steps, turns another random amount, etc. A social science student
records the angle of each turn before the next 100 steps are taken. Her experimental data is
[160, -43, 270, -97, -43, 200, -940, 17, -86]. (Positive angles are counter-clockwise.)
Use a turtle to draw the path taken by our drunk friend.

Enhance your program above to also tell us what the drunk pirate’s heading is after he has
finished stumbling around. (Assume he begins at heading 0).

If you were going to draw a regular polygon with 18 sides, what angle would you need to turn
the turtle at each corner?

At the interactive prompt, anticipate what each of the following lines will do, and then record
what happens. Score yourself, giving yourself one point for each one you anticipate correctly:

O© 00 I O O b W N =

NN
= o

Chapter 3: Hello, little turtles! 54

>>> import turtle

>>> wn = turtle.Screen()
>>> tess = turtle.Turtle()
>>> tess.right(90)

>>> tess.left(3600)

>>> tess.right(-90)

>>> tess.speed(10)

>>> tess.left(3600)

>>> tess.speed(Q)

>>> tess.left(3645)

>>> tess. forward(-100)

11. Write a program to draw a shape like this:

A

Star
Hints:

- Try this on a piece of paper, moving and turning your cellphone as if it was a turtle. Watch how
many complete rotations your cellphone makes before you complete the star. Since each full rotation
is 360 degrees, you can figure out the total number of degrees that your phone was rotated through.
If you divide that by 5, because there are five points to the star, you’ll know how many degrees to
turn the turtle at each point.

« You can hide a turtle behind its invisibility cloak if you don’t want it shown. It will still draw
its lines if its pen is down. The method is invoked as tess.hideturtle(). To make the turtle
visible again, use tess.showturtle().

12. Write a program to draw a face of a clock that looks something like this:

Chapter 3: Hello, little turtles!

Clock face

13. Create a turtle, and assign it to a variable. When you ask for its type, what do you get?
14. What is the collective noun for turtles? (Hint: they don’t come in herds.)
15. What the collective noun for pythons? Is a python a viper? Is a python venomous?

55

Chapter 4: Functions

4.1. Functions

In Python, a function is a named sequence of statements that belong together. Their primary purpose
is to help us organize programs into chunks that match how we think about the problem.

The syntax for a function definition is:

def NAME(PARAMETERS):
STATEMENTS

We can make up any names we want for the functions we create, except that we can’t use a name
that is a Python keyword, and the names must follow the rules for legal identifiers.

There can be any number of statements inside the function, but they have to be indented from the
def. In the examples in this book, we will use the standard indentation of four spaces. Function
definitions are the second of several compound statements we will see, all of which have the same
pattern:

1. A header line which begins with a keyword and ends with a colon.
2. A body consisting of one or more Python statements, each indented the same amount — the
Python style guide recommends 4 spaces — from the header line.

We’ve already seen the for loop which follows this pattern.

So looking again at the function definition, the keyword in the header is def, which is followed
by the name of the function and some parameters enclosed in parentheses. The parameter list may
be empty, or it may contain any number of parameters separated from one another by commas. In
either case, the parentheses are required. The parameters specifies what information, if any, we have
to provide in order to use the new function.

Suppose we’re working with turtles, and a common operation we need is to draw squares. “Draw a
square” is an abstraction, or a mental chunk, of a number of smaller steps. So let’s write a function
to capture the pattern of this “building block:

O© 00 9 O U b W N =~

T = =Y
O O B W N~

Chapter 4: Functions 57

import turtle

def draw_square(t, sz):

"""Make turtle t draw a square of sz."""
for i in range(4):

t. forward(sz)

t.left(90)

wn = turtle.Screen() # Set up the window and its attributes
wn.bgcolor("lightgreen")

wn.title("Alex meets a function")

alex = turtle.Turtle() # Create alex
draw_square(alex, 50) # Call the function to draw the square
wn.mainloop()

Alex meets a function __[|

alex function

This function is named draw_square. It has two parameters: one to tell the function which turtle to
move around, and the other to tell it the size of the square we want drawn. Make sure you know
where the body of the function ends — it depends on the indentation, and the blank lines don’t count
for this purpose!

Docstrings for documentation

If the first thing after the function header is a string, it is treated as a docstring and gets special
treatment in Python and in some programming tools. For example, when we type a built-in function
name with an unclosed parenthesis in Repl.it, a tooltip pops up, telling us what arguments the
function takes, and it shows us any other text contained in the docstring.

© 00 1 O O b W N =

T = U =N
© 00 N O O b W N =~ O

Chapter 4: Functions 58

Docstrings are the key way to document our functions in Python and the documentation part is
important. Because whoever calls our function shouldn’t have to need to know what is going on in
the function or how it works; they just need to know what arguments our function takes, what it
does, and what the expected result is. Enough to be able to use the function without having to look
underneath. This goes back to the concept of abstraction of which we’ll talk more about.

Docstrings are usually formed using triple-quoted strings as they allow us to easily expand the
docstring later on should we want to write more than a one-liner.

Just to differentiate from comments, a string at the start of a function (a docstring) is retrievable
by Python tools at runtime. By contrast, comments are completely eliminated when the program is
parsed.

Defining a new function does not make the function run. To do that we need a function call. We’ve
already seen how to call some built-in functions like print, range and int. Function calls contain
the name of the function being executed followed by a list of values, called arguments, which are
assigned to the parameters in the function definition. So in the second last line of the program, we
call the function, and pass alex as the turtle to be manipulated, and 50 as the size of the square we
want. While the function is executing, then, the variable sz refers to the value 50, and the variable
t refers to the same turtle instance that the variable alex refers to.

Once we've defined a function, we can call it as often as we like, and its statements will be executed
each time we call it. And we could use it to get any of our turtles to draw a square. In the next
example, we’ve changed the draw_square function a little, and we get tess to draw 15 squares, with
some variations.

import turtle

def draw_multicolor_square(t, sz):
"""Make turtle t draw a multi-color square of sz."""
for i in ["red", "purple", "hotpink", "blue"]:
t.color(i)
t. forward(sz)

t. left(90)

wn = turtle.Screen() # Set up the window and its attributes
wn.bgcolor("lightgreen")

tess = turtle.Turtle() # Create tess and set some attributes

tess.pensize(3)

size = 20 # Size of the smallest square
for i in range(15):
draw_multicolor_square(tess, size)
size = size + 10 # Increase the size for next time

20
21
22
23

<~ O O b W N =~

Chapter 4: Functions 59

tess. forward(10) # Move tess along a little

tess.right(18) # and give her some turn

wn.mainloop()

Draw multicolor square

4.2. Functions can call other functions

Let’s assume now we want a function to draw a rectangle. We need to be able to call the function
with different arguments for width and height. And, unlike the case of the square, we cannot repeat
the same thing 4 times, because the four sides are not equal.

So we eventually come up with this rather nice code that can draw a rectangle.

def draw_rectangle(t, w, h):
"""Get turtle t to draw a rectangle of width w and height h."""
for i in range(2):
t. forward(w)
t. left(90)
t. forward(h)
t.left(90)

The parameter names are deliberately chosen as single letters to ensure they’re not misunderstood.
In real programs, once we’'ve had more experience, we will insist on better variable names than this.
But the point is that the program doesn’t “understand” that we’re drawing a rectangle, or that the
parameters represent the width and the height. Concepts like rectangle, width, and height are the
meaning we humans have, not concepts that the program or the computer understands.

Thinking like a scientist involves looking for patterns and relationships. In the code above, we've
done that to some extent. We did not just draw four sides. Instead, we spotted that we could draw
the rectangle as two halves, and used a loop to repeat that pattern twice.

But now we might spot that a square is a special kind of rectangle. We already have a function that
draws a rectangle, so we can use that to draw our square.

1
2

Chapter 4: Functions 60

def draw_square(tx, sz): # A new version of draw_square

draw_rectangle(tx, sz, sz)
There are some points worth noting here:

« Functions can call other functions.

« Rewriting draw_square like this captures the relationship that we've spotted between squares

and rectangles.

A caller of this function might say draw_square(tess, 50). The parameters of this function,

tx and sz, are assigned the values of the tess object, and the int 50 respectively.

« In the body of the function they are just like any other variable.

« When the call is made to draw_rectangle, the values in variables tx and sz are fetched first,
then the call happens. So as we enter the top of function draw_rectangle, its variable t is
assigned the tess object, and w and h in that function are both given the value 5e.

So far, it may not be clear why it is worth the trouble to create all of these new functions. Actually,
there are a lot of reasons, but this example demonstrates two:

1. Creating a new function gives us an opportunity to name a group of statements. Functions can
simplify a program by hiding a complex computation behind a single command. The function
(including its name) can capture our mental chunking, or abstraction, of the problem.

2. Creating a new function can make a program smaller by eliminating repetitive code.

As we might expect, we have to create a function before we can execute it. In other words, the
function definition has to be executed before the function is called.

4.3. Flow of execution

In order to ensure that a function is defined before its first use, we have to know the order in which
statements are executed, which is called the flow of execution. We’ve already talked about this a
little in the previous chapter.

Execution always begins at the first statement of the program. Statements are executed one at a time,
in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that statements
inside the function are not executed until the function is called. Although it is not common, we can
define one function inside another. In this case, the inner definition isn’t executed until the outer
function is called.

Function calls are like a detour in the flow of execution. Instead of going to the next statement, the
flow jumps to the first line of the called function, executes all the statements there, and then comes
back to pick up where it left off.

Chapter 4: Functions 61

That sounds simple enough, until we remember that one function can call another. While in the
middle of one function, the program might have to execute the statements in another function. But
while executing that new function, the program might have to execute yet another function!

Fortunately, Python is adept at keeping track of where it is, so each time a function completes, the
program picks up where it left off in the function that called it. When it gets to the end of the program,
it terminates.

What’s the moral of this sordid tale? When we read a program, don’t read from top to bottom.
Instead, follow the flow of execution.

Watch the flow of execution in action

Repl.it does not have “single-stepping” functionality. For this we would recommend a different IDE
like PyScripter®.

In PyScripter, we can watch the flow of execution by “single-stepping” through any program.
PyScripter will highlight each line of code just before it is about to be executed.

PyScripter also lets us hover the mouse over any variable in the program, and it will pop up the
current value of that variable. So this makes it easy to inspect the “state snapshot” of the program —
the current values that are assigned to the program’s variables.

This is a powerful mechanism for building a deep and thorough understanding of what is happening
at each step of the way. Learn to use the single-stepping feature well, and be mentally proactive: as
you work through the code, challenge yourself before each step: “What changes will this line make
to any variables in the program?” and “Where will flow of execution go next?”

Let us go back and see how this works with the program above that draws 15 multicolor squares.
First, we're going to add one line of magic below the import statement — not strictly necessary, but
it will make our lives much simpler, because it prevents stepping into the module containing the
turtle code.

import turtle

__import__("turtle").__traceable__ = False

Now we’re ready to begin. Put the mouse cursor on the line of the program where we create the
turtle screen, and press the F4 key. This will run the Python program up to, but not including, the
line where we have the cursor. Our program will “break” now, and provide a highlight on the next
line to be executed, something like this:

“https://sourceforge.net/projects/pyscripter/

https://sourceforge.net/projects/pyscripter/
https://sourceforge.net/projects/pyscripter/

Chapter 4: Functions 62

+ 1import turtle

+ 2 dmport_ ("turtle").__traceable__ = False
3
4 def draw_multicolor_square(t, sz):
+ = """Make turtle t draw a multi-color square of sz."""
s+ @& for 1 in ["red”, "purple", "hotpink", "blue"]:
t.color(i)
o t.forward(sz)
- t.left(20)
an = turtle.Screen() # Set up the window and its attributes
+ 12 wn.bgcolor("lightgreen™)
13
+ 14 tess = turtle.Turtle() # Create tess and set some attributes
+ 15 tess.pensize(3)
1l
+ 17 size = 20 # Size of the smallest square
+ 18 for 1 in range(15):
+ 139 draw_multicolor square(tess, size)
+ 20 size = size + 160 # Increase the size for next time
+ 21 tess.forward(18) # Move tess along a Llittle
+ 22 tess.right(18) # ... and give her some extra turn
23
+ 24 wn.mainloop()
25
PyScripter Breakpoint

At this point we can press the F7 key (step into) repeatedly to single step through the code. Observe
as we execute lines 10, 11, 12, ... how the turtle window gets created, how its canvas color is changed,
how the title gets changed, how the turtle is created on the canvas, and then how the flow of
execution gets into the loop, and from there into the function, and into the function’s loop, and
then repeatedly through the body of that loop.

While we do this, we can also hover our mouse over some of the variables in the program, and
confirm that their values match our conceptual model of what is happening.

After a few loops, when we’re about to execute line 20 and we’re starting to get bored, we can use
the key F8 to “step over” the function we are calling. This executes all the statements in the function,
but without having to step through each one. We always have the choice to either “go for the detail”,
or to “take the high-level view” and execute the function as a single chunk.

There are some other options, including one that allow us to resume execution without further
stepping. Find them under the Run menu of PyScripter.

B wWw N

W N

O U kW N

Chapter 4: Functions 63

4.4. Functions that require arguments

Most functions require arguments: the arguments provide for generalization. For example, if we
want to find the absolute value of a number, we have to indicate what the number is. Python has a
built-in function for computing the absolute value:

>>> abs(5)
5
>>> abs(-5)
5

In this example, the arguments to the abs function are 5 and -5.

Some functions take more than one argument. For example the built-in function pow takes two
arguments, the base and the exponent. Inside the function, the values that are passed get assigned
to variables called parameters.

>>> pow(2, 3)
8

>>> pow(7, 4)
2401

Another built-in function that takes more than one argument is max.

>>> max(7, 11)

11

>>> max(4, 1, 17, 2, 12)

17

>>> max(3 * 11, 5%*3, 512 - O, 1024%*Q)
503

max can be passed any number of arguments, separated by commas, and will return the largest value
passed. The arguments can be either simple values or expressions. In the last example, 503 is returned,
since it is larger than 33, 125, and 1.

4.5. Functions that return values

All the functions in the previous section return values. Furthermore, functions like range, int, abs
all return values that can be used to build more complex expressions.

So an important difference between these functions and one like draw_square is that draw_square
was not executed because we wanted it to compute a value — on the contrary, we wrote draw_square
because we wanted it to execute a sequence of steps that caused the turtle to draw.

O© 00 1 O O b W N =

[=N
w N =~ O

Chapter 4: Functions 64

A function that returns a value is called a fruitful function in this book. The opposite of a fruitful
function is void function — one that is not executed for its resulting value, but is executed because
it does something useful. (Languages like Java, C#, C and C++ use the term “void function”, other
languages like Pascal call it a procedure.) Even though void functions are not executed for their
resulting value, Python always wants to return something. So if the programmer doesn’t arrange to
return a value, Python will automatically return the value None.

How do we write our own fruitful function? In the exercises at the end of chapter 2 we saw the
standard formula for compound interest, which we’ll now write as a fruitful function:

nt
. P<1 + 1)
n
where:

P is the original principal sum

P'is the new principal sum

ris the nominal annual interest rate
nis the compounding frequency

tis the overall length of time the interest is applied (expressed using the same time units as r, usually years).

Compound interest

def final_amt(p, r, n, t):
Apply the compound interest formula to p
to produce the final amount.

mn

a=p* (1 +1r/n) * (n¥t)

return a # This is new, and makes the function fruitful.

now that we have the function above, let us call it.
tolnvest = float(input("How much do you want to invest?"))
fnl = final_amt(tolnvest, ©.08, 12, 5)

print("At the end of the period you'll have", fnl)

« The return statement is followed by an expression (a in this case). This expression will be
evaluated and returned to the caller as the “fruit” of calling this function.

« We prompted the user for the principal amount. The type of toInvest is a string, but we need a
number before we can work with it. Because it is money, and could have decimal places, we’ve
used the float type converter function to parse the string and return a float.

« Notice how we entered the arguments for 8% interest, compounded 12 times per year, for 5
years.

« When we run this, we get the output

© 00 1 O O b W N =

Chapter 4: Functions 65

1 At the end of the period you’ll have 14898.457083

This is a bit messy with all these decimal places, but remember that Python doesn’t understand
that we’re working with money: it just does the calculation to the best of its ability, without
rounding. Later we’ll see how to format the string that is printed in such a way that it does get
nicely rounded to two decimal places before printing.

« The line toInvest = float(input("How much do you want to invest?")) also shows yet
another example of composition — we can call a function like float, and its arguments can be
the results of other function calls (like input) that we’ve called along the way.

Notice something else very important here. The name of the variable we pass as an argument —
toInvest — has nothing to do with the name of the parameter — p. It is as if p = tolInvest is
executed when final_amt is called. It doesn’t matter what the value was named in the caller, in
final_amt its name is p.

These short variable names are getting quite tricky, so perhaps we’d prefer one of these versions
instead:

def final_amt_v2(principalAmount, nominalPercentageRate,
numTimesPerYear, years):
a = principalAmount * (1 + nominalPercentageRate /
numTimesPerYear) ** (numTimesPerYear*years)
return a

def final_amt_v3(amt, rate, compounded, years):
a = amt * (1 + rate/compounded) ** (compounded*years)
return a

They all do the same thing. Use your judgement to write code that can be best understood by other
humans! Short variable names are more economical and sometimes make code easier to read:E = mc2
would not be nearly so memorable if Einstein had used longer variable names! If you do prefer short
names, make sure you also have some comments to enlighten the reader about what the variables
are used for.

4.6. Variables and parameters are local

When we create a local variable inside a function, it only exists inside the function, and we cannot
use it outside. For example, consider again this function:

© 00 N O O b W N =

N
N O

Chapter 4: Functions 66

def final_amt(p, r, n, t):
a=p* (1 +1r/n) ** (n¥t)

return a
If we try to use a, outside the function, we’ll get an error:

>>> a

[1

NameError: name 'a' is not defined

The variable a is local to final_amt, and is not visible outside the function.

Additionally, a only exists while the function is being executed — we call this its lifetime. When the
execution of the function terminates, the local variables are destroyed.

Parameters are also local, and act like local variables. For example, the lifetimes of p, r, n, t begin
when final_amt is called, and the lifetime ends when the function completes its execution.

So it is not possible for a function to set some local variable to a value, complete its execution, and
then when it is called again next time, recover the local variable. Each call of the function creates
new local variables, and their lifetimes expire when the function returns to the caller.

4.7. Turtles Revisited

Now that we have fruitful functions, we can focus our attention on reorganizing our code so that
it fits more nicely into our mental chunks. This process of rearrangement is called refactoring the
code.

Two things we're always going to want to do when working with turtles is to create the window
for the turtle, and to create one or more turtles. We could write some functions to make these tasks
easier in future:

def make_window(colr, ttle):
Set up the window with the given background color and title.
Returns the new window.
w = turtle.Screen()
w.bgcolor(colr)
w.title(ttle)
return w

def make_turtle(colr, sz):

13
14
15
16
17
18
19
20
21
22
23
24
25
26

Chapter 4: Functions 67

mn

Set up a turtle with the given color and pensize.
Returns the new turtle.

t = turtle.Turtle()

t.color(colr)

t.pensize(sz)

return t

wn = make_window("lightgreen", "Tess and Alex dancing")
tess = make_turtle("hotpink", 5)

make_turtle("black", 1)

make_turtle("yellow", 2)

alex

dave

The trick about refactoring code is to anticipate which things we are likely to want to change each
time we call the function: these should become the parameters, or changeable parts, of the functions
we write.

4.8. Glossary

argument

A value provided to a function when the function is called. This value is assigned to the correspond-
ing parameter in the function. The argument can be the result of an expression which may involve
operators, operands and calls to other fruitful functions.

body

The second part of a compound statement. The body consists of a sequence of statements all indented
the same amount from the beginning of the header. The standard amount of indentation used within
the Python community is 4 spaces.

compound statement

A statement that consists of two parts:

1. header - which begins with a keyword determining the statement type, and ends with a colon.
2. body - containing one or more statements indented the same amount from the header.

The syntax of a compound statement looks like this:

Chapter 4: Functions 68

keyword ...
statement
statement ...

docstring

A special string that is attached to a function as its __doc__ attribute. Tools like Repl.it can use
docstrings to provide documentation or hints for the programmer. When we get to modules, classes,
and methods, we’ll see that docstrings can also be used there.

flow of execution
The order in which statements are executed during a program run.
frame

Abox in a stack diagram that represents a function call. It contains the local variables and parameters
of the function.

function

A named sequence of statements that performs some useful operation. Functions may or may not
take parameters and may or may not produce a result.

function call

A statement that executes a function. It consists of the name of the function followed by a list of
arguments enclosed in parentheses.

function composition
Using the output from one function call as the input to another.
function definition

A statement that creates a new function, specifying its name, parameters, and the statements it
executes.

fruitful function
A function that returns a value when it is called.
header line

The first part of a compound statement. A header line begins with a keyword and ends with a colon
()
import statement

A statement which permits functions and variables defined in another Python module to be brought
into the environment of another script. To use the features of the turtle, we need to first import the
turtle module.

lifetime

Chapter 4: Functions 69

Variables and objects have lifetimes — they are created at some point during program execution,
and will be destroyed at some time.

local variable

A variable defined inside a function. A local variable can only be used inside its function. Parameters
of a function are also a special kind of local variable.

parameter
A name used inside a function to refer to the value which was passed to it as an argument.
refactor

A fancy word to describe reorganizing our program code, usually to make it more understandable.
Typically, we have a program that is already working, then we go back to “tidy it up”. It often involves
choosing better variable names, or spotting repeated patterns and moving that code into a function.

stack diagram
A graphical representation of a stack of functions, their variables, and the values to which they refer.
traceback

A list of the functions that are executing, printed when a runtime error occurs. A traceback is also
commonly referred to as a stack trace, since it lists the functions in the order in which they are
stored in the runtime stack.’

void function

The opposite of a fruitful function: one that does not return a value. It is executed for the work it
does, rather than for the value it returns.

4.9. Exercises

1. Write a void (non-fruitful) function to draw a square. Use it in a program to draw the image
shown below. Assume each side is 20 units. (Hint: notice that the turtle has already moved away
from the ending point of the last square when the program ends.)

Five Squares

"http://en.wikipedia.org/wiki/Runtime_stack

http://en.wikipedia.org/wiki/Runtime_stack
http://en.wikipedia.org/wiki/Runtime_stack

Chapter 4: Functions 70

2. Write a program to draw this. Assume the innermost square is 20 units per side, and each
successive square is 20 units bigger, per side, than the one inside it.

Nested Squares

3. Write a void function draw_poly(t, n, sz) which makes a turtle draw a regular polygon.
When called with draw_poly(tess, 8, 50), it will draw a shape like this:

Regular polygon

4. Draw this pretty pattern.

Regular Polygon

Chapter 4: Functions 71

5. The two spirals in this picture differ only by the turn angle. Draw both.

i

Spirals

6. Write a void function draw_equitriangle(t, sz) which calls draw_poly from the previous
question to have its turtle draw a equilateral triangle.

7. Write a fruitful function sum_to(n) that returns the sum of all integer numbers up to and
including n. So sum_to(10) would be 1+2+3..+10 which would return the value 55.

8. Write a function area_of_circle(r) which returns the area of a circle of radius r.

9. Write a void function to draw a star, where the length of each side is 100 units. (Hint: You
should turn the turtle by 144 degrees at each point.)

A

Star

10. Extend your program above. Draw five stars, but between each, pick up the pen, move forward
by 350 units, turn right by 144, put the pen down, and draw the next star. You’ll get something like
this:

Chapter 4: Functions

Five Stars

What would it look like if you didn’t pick up the pen?

72

O O W N

= O O s W N

Chapter 5: Conditionals

Programs get really interesting when we can test conditions and change the program behaviour
depending on the outcome of the tests. That’s what this chapter is about.

5.1. Boolean values and expressions

A Boolean value is either true or false. It is named after the British mathematician, George Boole,
who first formulated Boolean algebra — some rules for reasoning about and combining these values.
This is the basis of all modern computer logic.

In Python, the two Boolean values are True and False (the capitalization must be exactly as shown),
and the Python type is bool.

>>> type(True)
<class 'bool'>
>>> type(true)
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

NameError: name 'true' is not defined

A Boolean expression is an expression that evaluates to produce a result which is a Boolean value.
For example, the operator == tests if two values are equal. It produces (or yields) a Boolean value:

>>> 5 == (8 + 2) # Js 5 equal to the result of 3 + 27
True

>>> 5 ==

False

>>> j = "hel"

>>> j + "lo" == "hello"

True

In the first statement, the two operands evaluate to equal values, so the expression evaluates to True;
in the second statement, 5 is not equal to 6, so we get False.

The == operator is one of six common comparison operators which all produce a bool result; here
are all six:

O O B W N

O Uk W N

Chapter 5: Conditionals 74

X ==y # Produce True if ... x is equal to y
x =y # . x is not equal to y

X >y # x Is greater than y

x <y # ... x is less than y

X >=y # X Is greater than or equal to y
X {<=y # x 1s less than or equal to y

Although these operations are probably familiar, the Python symbols are different from the
mathematical symbols. A common error is to use a single equal sign (=) instead of a double equal
sign (==). Remember that= is an assignment operator and == is a comparison operator. Also, there is
no such thing as =< or =>.

Like any other types we’ve seen so far, Boolean values can be assigned to variables, printed, etc.

>>> age = 18

>>> old_enough_to_get_driving_licence = age >= 17
>>> print(old_enough_to_get_driving_licence)

True

>>> type(old_enough_to_get_driving_licence)
<class 'bool'>

5.2. Logical operators

There are three logical operators, and, or, and not, that allow us to build more complex Boolean
expressions from simpler Boolean expressions. The semantics (meaning) of these operators is similar
to their meaning in English. For example,x > @ and x < 10 produces True only if x is greater than
0 and at the same time, x is less than 10.

n%2==0or n% 3 == 0is True if either of the conditions is True, that is, if the number n is
divisible by 2 or it is divisible by 3. (What do you think happens if n is divisible by both 2 and by 3
at the same time? Will the expression yield True or False? Try it in your Python interpreter.)

Finally, the not operator negates a Boolean value, so not (x > y) is True if (x > y) isFalse, that
is, if x is less than or equal to y.

The expression on the left of the or operator is evaluated first: if the result is True, Python does
not (and need not) evaluate the expression on the right — this is called short-circuit evaluation.
Similarly, for the and operator, if the expression on the left yields False, Python does not evaluate
the expression on the right.

So there are no unnecessary evaluations.

Chapter 5: Conditionals 75

5.3. Truth Tables

A truth table is a small table that allows us to list all the possible inputs, and to give the results for
the logical operators. Because the and and or operators each have two operands, there are only four
rows in a truth table that describes the semantics of and.

a b aandb
False False False
False True False
True False False
True True True

In a Truth Table, we sometimes use T and F as shorthand for the two Boolean values: here is the
truth table describing or:

a b aorb
F F F
F T T
T F T
T T T

The third logical operator, not, only takes a single operand, so its truth table only has two rows:

a not a
F T
T F

5.4. Simplifying Boolean Expressions

A set of rules for simplifying and rearranging expressions is called an algebra. For example, we are
all familiar with school algebra rules, such as:

n*o===20

Here we see a different algebra — the Boolean algebra — which provides rules for working with
Boolean values.

First, the and operator:

O O B W N

O O B W N

=~ O U b W N

Chapter 5: Conditionals 76

x and False == False
False and x == False
y and x == x and y

x and True ==

True and x == x

X and x == x

Here are some corresponding rules for the or operator:

x or False == x

False or x ==

y Or X == X or y
x or True == True
True or x == True
X Oor X == X

Two not operators cancel each other:

not (not x) ==

5.5. Conditional execution

In order to write useful programs, we almost always need the ability to check conditions and change
the behavior of the program accordingly. Conditional statements give us this ability. The simplest
form is the if statement:

if x % 2 ==0:
print(x, "
print("Did
else:

"

print(x,
print("Did

is even.")

you know that 2 is the only even number that is prime?")

is odd.")
you know that multiplying two odd numbers " +
"always gives an odd result?")

The Boolean expression after the if statement is called the condition. If it is true, then all the
indented statements get executed. If not, then all the statements indented under the else clause get

executed.

Flowchart of an i f statement with an else clause

W N

Chapter 5: Conditionals 77

False_ True

Flowchart - if else

The syntax for an if statement looks like this:

if BOOLEAN EXPRESSION:

STATEMENTS_1 # Fxecuted if condition evaluates to True
else:

STATEMENTS_2 # Executed if condition evaluates to False

As with the function definition from the last chapter and other compound statements like for, the i f
statement consists of a header line and a body. The header line begins with the keyword i f followed
by a Boolean expression and ends with a colon (:).

The indented statements that follow are called a block. The first unindented statement marks the

end of the block.

Each of the statements inside the first block of statements are executed in order if the Boolean
expression evaluates to True. The entire first block of statements is skipped if the Boolean expression
evaluates to False, and instead all the statements indented under the else clause are executed.

There is no limit on the number of statements that can appear under the two clauses of an if
statement, but there has to be at least one statement in each block. Occasionally, it is useful to have
a section with no statements (usually as a place keeper, or scaffolding, for code we haven’t written
yet). In that case, we can use the pass statement, which does nothing except act as a placeholder.

Bw N

Chapter 5: Conditionals 78

if True: # This is always True,

pass # so this is always executed, but it does nothing
else:

pass

5.6. Omitting the else clause

Flowchart of an i f statement with no else clause

True

FbJSe_

Flowchart - if only

Another form of the if statement is one in which the else clause is omitted entirely. In this case,
when the condition evaluates to True, the statements are executed, otherwise the flow of execution
continues to the statement after the if.

O O B W N

O Uk wWw N

Chapter 5: Conditionals 79

if x < 0:
print("The negative number
x = 42
print("I've decided to use the number 42 instead.")

" n

. is not valid here.")

print("The square root of ", x, "is", math.sqrt(x))

In this case, the print function that outputs the square root is the one after the i f — not because
we left a blank line, but because of the way the code is indented. Note too that the function call
math.sqrt(x) will give an error unless we have an import math statement, usually placed near the
top of our script.

Python terminology

Python documentation sometimes uses the term suite of statements to mean what we have called a
block here. They mean the same thing, and since most other languages and computer scientists use
the word block, we’ll stick with that.

Notice too that else is not a statement. The if statement has two clauses, one of which is the
(optional) else clause.

5.7. Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches. One way to
express a computation like that is a chained conditional:

if x <y:
STATEMENTS_A

elif x > y:
STATEMENTS_B

else:
STATEMENTS_C

Flowchart of this chained conditional

0w N O U b~ W N

Chapter 5: Conditionals 80

Flowchart - chained conditional

elif is an abbreviation of else if. Again, exactly one branch will be executed. There is no limit of
the number of eli f statements but only a single (and optional) final else statement is allowed and
it must be the last branch in the statement:

if choice == "a":
function_one()
elif choice == "b":
function_two()
elif choice == "c":
function_three()
else:

print("Invalid choice.")

Each condition is checked in order. If the first is false, the next is checked, and so on. If one of them
is true, the corresponding branch executes, and the statement ends. Even if more than one condition
is true, only the first true branch executes.

=~ O U b W N

Chapter 5: Conditionals 81

5.8. Nested conditionals

One conditional can also be nested within another. (It is the same theme of composability, again!)
We could have written the previous example as follows:

Flowchart of this nested conditional

Trve

FoJSe_

Trve

Flowchart - nested conditional

if x <y:
STATEMENTS_A
else:
if x > y:
STATEMENTS_B
else:
STATEMENTS_C

The outer conditional contains two branches. The second branch contains another if statement,
which has two branches of its own. Those two branches could contain conditional statements as
well.

=~ O O s W N~

Chapter 5: Conditionals 82

Although the indentation of the statements makes the structure apparent, nested conditionals very
quickly become difficult to read. In general, it is a good idea to avoid them when we can.

Logical operators often provide a way to simplify nested conditional statements. For example, we
can rewrite the following code using a single conditional:

if 0 < x: # Assume x is an int here
if x < 10:

print("x is a positive single digit.")

The print function is called only if we make it past both the conditionals, so instead of the above
which uses two if statements each with a simple condition, we could make a more complex
condition using the and operator. Now we only need a single i f statement:

if @ < x and x < 10:

print("x is a positive single digit.")

5.9. The return statement

The return statement, with or without a value, depending on whether the function is fruitful or void,
allows us to terminate the execution of a function before (or when) we reach the end. One reason
to use an early return is if we detect an error condition:

def print_square_root(x):
if x <= 0:
print("Positive numbers only, please.")
return

result = x**0.5

print("The square root of", x,

n n

is", result)

The function print_square_root has a parameter named x. The first thing it does is check whether
x is less than or equal to 0, in which case it displays an error message and then uses return to exit
the function. The flow of execution immediately returns to the caller, and the remaining lines of the
function are not executed.

5.10. Logical opposites

Each of the six relational operators has a logical opposite: for example, suppose we can get a driving
licence when our age is greater or equal to 17, we can not get the driving licence when we are less
than 17.

Notice that the opposite of >= is <.

W N

Chapter 5: Conditionals 83

operator logical opposite
== =

|= ==

< >=

<= >

> <=

>= <

Understanding these logical opposites allows us to sometimes get rid of not operators. not operators
are often quite difficult to read in computer code, and our intentions will usually be clearer if we
can eliminate them.

For example, if we wrote this Python:

if not (age >= 17):
print("Hey, you're too young to get a driving licence!")

it would probably be clearer to use the simplification laws, and to write instead:

if age < 17:

print("Hey, you're too young to get a driving licence!")

Two powerful simplification laws (called de Morgan’s laws) that are often helpful when dealing with
complicated Boolean expressions are:

not (x and y) == (not x) or (not y)
not (x or y) == (not x) and (not y)

For example, suppose we can slay the dragon only if our magic lightsabre sword is charged to 90%
or higher, and we have 100 or more energy units in our protective shield. We find this fragment of
Python code in the game:

if not ((sword_charge >= 0.990) and (shield_energy >= 100)):

print("Your attack has no effect, the dragon fries you to a crisp!")
else:

print("The dragon crumples in a heap. You rescue the gorgeous princess!")

de Morgan’s laws together with the logical opposites would let us rework the condition in a (perhaps)
easier to understand way like this:

Bw N

Bw N

W N

Chapter 5: Conditionals 84

if (sword_charge < ©0.90) or (shield_energy < 100):

print("Your attack has no effect, the dragon fries you to a crisp!")
else:

print("The dragon crumples in a heap. You rescue the gorgeous princess!")

We could also get rid of the not by swapping around the then and else parts of the conditional. So
here is a third version, also equivalent:

if (sword_charge >= ©0.90) and (shield_energy >= 100):
print("The dragon crumples in a heap. You rescue the gorgeous princess!")
else:

print("Your attack has no effect, the dragon fries you to a crisp!")

This version is probably the best of the three, because it very closely matches the initial English
statement. Clarity of our code (for other humans), and making it easy to see that the code does what
was expected should always be a high priority.

As our programming skills develop we’ll find we have more than one way to solve any problem. So
good programs are designed. We make choices that favour clarity, simplicity, and elegance. The job
title software architect says a lot about what we do — we are architects who engineer our products
to balance beauty, functionality, simplicity and clarity in our creations.

Tip
Once our program works, we should play around a bit trying to polish it up. Write good comments.

Think about whether the code would be clearer with different variable names. Could we have done
it more elegantly? Should we rather use a function? Can we simplify the conditionals?

We think of our code as our creation, our work of art! We make it great.

5.11. Type conversion

We've had a first look at this in an earlier chapter. Seeing it again won’t hurt!

Many Python types come with a built-in function that attempts to convert values of another type
into its own type. The int function, for example, takes any value and converts it to an integer, if
possible, or complains otherwise:

>>> int("32")

32

>>> int("Hello")

ValueError: invalid literal for int() with base 10: 'Hello'

int can also convert floating-point values to integers, but remember that it truncates the fractional
part:

o N O O b W N =

O O b W N =

© 00 N O O b W N =

N
()

Chapter 5: Conditionals 85

>>> int(-2.3)

-2

>>> int(3.99999)
3

>>> int("42")

42

>>> int(1.0)

1

The float function converts integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float("3.14159")
3.14159

>>> float(1)

1.0

It may seem odd that Python distinguishes the integer value 1 from the floating-point value 1.0.
They may represent the same number, but they belong to different types. The reason is that they are
represented differently inside the computer.

The str function converts any argument given to it to type string:

>>> str(32)
1390
>>> str(3.14149)
'3.14149'
>>> str(True)
'True’
>>> str(true)
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

NameError: name 'true' is not defined

str will work with any value and convert it into a string. As mentioned earlier, True is a Boolean
value; true is just an ordinary variable name, and is not defined here, so we get an error.

5.12. A Turtle Bar Chart

The turtle has a lot more power than we’ve seen so far. The full documentation can be found at
http://docs.python.org/py3k/library/turtle.html.

Here are a couple of new tricks for our turtles:

© 00 N O O & W N =

I == U
W N s,

Chapter 5: Conditionals 86

« We can get a turtle to display text on the canvas at the turtle’s current position. The method to
do that isalex.write("Hello").

« We can fill a shape (circle, semicircle, triangle, etc.) with a color. It is a two-step process. First
we call the method alex.begin_fil1(), then we draw the shape, then we callalex.end_fi11().

« We’ve previously set the color of our turtle — we can now also set its fill color, which need not
be the same as the turtle and the pen color. We use alex.color("blue", "red") to set the turtle
to draw in blue, and fill in red.

Ok, so can we get tess to draw a bar chart? Let us start with some data to be charted,
xs = [48, 117, 200, 240, 160, 260, 220]

Corresponding to each data measurement, we’ll draw a simple rectangle of that height, with a fixed
width.

def draw_bar(t, height):
""" Get turtle t to draw one bar, of height.

mn

t.left(90)
t. forward(height) # Draw up the left side
t.right(90)
t.forward(40) # Width of bar, along the top
t.right(90)
t. forward(height) # And down again!
t.left(90) # Put the turtle facing the way we found it.
t. forward(10) # | eave small gap after each bar
for v in xs: # Assume xs and tess are ready

draw_bar(tess, v)

Chapter 5: Conditionals 87

Simple bar chart

Ok, not fantastically impressive, but it is a nice start! The important thing here was the mental
chunking, or how we broke the problem into smaller pieces. Our chunk is to draw one bar, and we
wrote a function to do that. Then, for the whole chart, we repeatedly called our function.

Next, at the top of each bar, we’ll print the value of the data. We’'ll do this in the body of draw_bar,
by adding t.write(' ' + str(height)) as the new third line of the body. We've put a little space
in front of the number, and turned the number into a string. Without this extra space we tend to
cramp our text awkwardly against the bar to the left. The result looks a lot better now:

250

240

220

200

180

117

43

Numbered bar chart

O© 00 N O O b= W N =

NN NN N NN NN RS R R R s 1 s s
© 0 9 O O & W N~ O © W 31 O U b Ww N~

Chapter 5: Conditionals

And now we’ll add two lines to fill each bar. Our final program now looks like this:

import turtle

def draw_bar(t, height):

""" Get turtle t to draw one bar, of height.
.begin_fill() # Added this line
left(90)

. forward(height)

write(" "+ str(height))

.right(90)

. forward(40)

.right(90)

. forward(height)

left(90)

.end_f£fill() # Added this line
. forward(10)

mn

ct ct & & t & F

wn = turtle.Screen() # Set up the window and its attributes
wn.bgcolor("lightgreen")

tess = turtle.Turtle() # Create tess and set some attributes
tess.color("blue", "red")
tess.pensize(3)

xs = [48,117,200,240,160,260,220]

for a in xs:

draw_bar(tess, a)

wn.mainloop()

It produces the following, which is more satisfying:

88

Chapter 5: Conditionals 89

Filled bar chart

Mmm. Perhaps the bars should not be joined to each other at the bottom. We’ll need to pick up the
pen while making the gap between the bars. We’ll leave that (and a few more tweaks) as exercises
for you!

5.13. Glossary

block

A group of consecutive statements with the same indentation.

body

The block of statements in a compound statement that follows the header.
Boolean algebra

Some rules for rearranging and reasoning about Boolean expressions.
Boolean expression

An expression that is either true or false.

Boolean value

There are exactly two Boolean values: True and False. Boolean values result when a Boolean
expression is evaluated by the Python interpreter. They have type bool.

branch

One of the possible paths of the flow of execution determined by conditional execution.

Chapter 5: Conditionals 90

chained conditional

A conditional branch with more than two possible flows of execution. In Python chained condition-
als are written with if ... elif ... else statements.

comparison operator

One of the six operators that compares two values: ==, !=, >, <, >=, and <=.

condition

The Boolean expression in a conditional statement that determines which branch is executed.
conditional statement

A statement that controls the flow of execution depending on some condition. In Python the
keywords i f, elif, and else are used for conditional statements.

logical operator
One of the operators that combines Boolean expressions: and, or, and not.
nesting

One program structure within another, such as a conditional statement inside a branch of another
conditional statement.

prompt

A visual cue that tells the user that the system is ready to accept input data.
truth table

A concise table of Boolean values that can describe the semantics of an operator.
type conversion

An explicit function call that takes a value of one type and computes a corresponding value of
another type.

wrapping code in a function

The process of adding a function header and parameters to a sequence of program statements is often
referred to as “wrapping the code in a function”. This process is very useful whenever the program
statements in question are going to be used multiple times. It is even more useful when it allows
the programmer to express their mental chunking, and how they’ve broken a complex problem into
pieces.

5.14. Exercises

1. Assume the days of the week are numbered 0,1,2,3,4,5,6 from Sunday to Saturday. Write a
function which is given the day number, and it returns the day name (a string).

Chapter 5: Conditionals 91

2. You go on a wonderful holiday (perhaps to jail, if you don’t like happy exercises) leaving on
day number 3 (a Wednesday). You return home after 137 sleeps. Write a general version of the
program which asks for the starting day number, and the length of your stay, and it will tell
you the name of day of the week you will return on.

3. Give the logical opposites of these conditions

a>b
a>=b
a >= 18 and day ==
a >»> 18 and day !'= 3

W N -

4. What do these expressions evaluate to?

1 3 ==3
2 3 1=3
3 3 >=4
4 not (3 < 4)

5. Complete this truth table:

(not (pand q)) orr

444 ===
Hmm A AT THe
e e M B B B Mol
NN N D D N))

—

6. Write a function which is given an exam mark, and it returns a string — the grade for that
mark — according to this scheme:

Mark Grade

>=75 First

[70-75) Upper Second
[60-70) Second
[50-60) Third

[45-50) F1 Supp
[40-45) F2

<40 F3

The square and round brackets denote closed and open intervals. A closed interval includes the
number, and open interval excludes it. So 39.99999 gets grade F3, but 4@ gets grade F2. Assume

Chapter 5: Conditionals 92

10.

11.

12.
13.

B W N -

xs = [83, 75, T4.9, 70, 69.9, 65, 60, 59.9, 55, 50,
49.9, 45, 44.9, 40, 39.9, 2, 0]

Test your function by printing the mark and the grade for all the elements in this list.

. Modify the turtle bar chart program so that the pen is up for the small gaps between each bar.
. Modity the turtle bar chart program so that the bar for any value of 200 or more is filled with

red, values between [100 and 200) are filled with yellow, and bars representing values less than
100 are filled with green.

. In the turtle bar chart program, what do you expect to happen if one or more of the data values

in the list is negative? Try it out. Change the program so that when it prints the text value for
the negative bars, it puts the text below the bottom of the bar.

Write a function find_hypot which, given the length of two sides of a right-angled triangle,
returns the length of the hypotenuse. (Hint: x ** 0.5 will return the square root.)

Write a function is_rightangled which, given the length of three sides of a triangle, will
determine whether the triangle is right-angled. Assume that the third argument to the function
is always the longest side. It will return True if the triangle is right-angled, or False otherwise.

Hint: Floating point arithmetic is not always exactly accurate, so it is not safe to test floating
point numbers for equality. If a good programmer wants to know whether x is equal or close
enough toy, they would probably code it up as:

if abs(x-y) < 0.000001 : # If x is approximately equal to y

Extend the above program so that the sides can be given to the function in any order.

If you're intrigued by why floating point arithmetic is sometimes inaccurate, on a piece of
paper, divide 10 by 3 and write down the decimal result. You'll find it does not terminate,
so you'll need an infinitely long sheet of paper. The representation of numbers in computer
memory or on your calculator has similar problems: memory is finite, and some digits may
have to be discarded. So small inaccuracies creep in. Try this script:

import math

a = math.sqrt(2.0)
print(a, a*a)
print(a*a == 2.0)

Chapter 6: Fruitful functions

6.1. Return values

The built-in functions we have used, such as abs, pow, int, max, and range, have produced results.
Calling each of these functions generates a value, which we usually assign to a variable or use as
part of an expression.

biggest = max(3, 7, 2, 5)
X = abs(3 - 11) + 10

We also wrote our own function to return the final amount for a compound interest calculation.

In this chapter, we are going to write more functions that return values, which we will call fruitful
functions, for want of a better name. The first example is area, which returns the area of a circle
with the given radius:

def area(radius):
b = 3.14159 * radius**2

return b

We have seen the return statement before, but in a fruitful function the return statement includes a
return value. This statement means: evaluate the return expression, and then return it immediately
as the result (the fruit) of this function. The expression provided can be arbitrarily complicated, so
we could have written this function like this:

def area(radius):
return 3.14159 * radius * radius

On the other hand, temporary variables like b above often make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of a conditional. We
have already seen the built-in abs, now we see how to write our own:

a b W N -

BwWw N

g b W N =

Chapter 6: Fruitful functions 94

def absolute_value(x):
if x < @:
return -x
else:

return x

Another way to write the above function is to leave out the else and just follow the if condition
by the second return statement.

def absolute_value(x):
if x < @:
return -x

return x

Think about this version and convince yourself it works the same as the first one.

Code that appears after a return statement, or any other place the flow of execution can never reach,
is called dead code, or unreachable code.

In a fruitful function, it is a good idea to ensure that every possible path through the program hits a
return statement. The following version of absolute_value fails to do this:

def bad_absolute_value(x):
if x < 0:
return -x
elif x > 0:

return x

This version is not correct because if x happens to be 0, neither condition is true, and the function
ends without hitting a return statement. In this case, the return value is a special value called None:

>>> print(bad_absolute_value(Q))
None

All Python functions return None whenever they do not return another value.

It is also possible to use a return statement in the middle of a for loop, in which case control
immediately returns from the function. Let us assume that we want a function which looks through
a list of words. It should return the first 2-letter word. If there is not one, it should return the empty
string:

a b W N -

Bw N -

Chapter 6: Fruitful functions 95

def find_first_2_letter_word(xs):
for wd in xs:
if len(wd) == 2:

return wd

return ""
>>> find_first_2_letter_word(["This", "is", "a", "dead", "parrot"])
Ligt
>>> find_first_2_letter_word(["I", "like", '"cheese"])

[

Single-step through this code and convince yourself that in the first test case that we’ve provided,
the function returns while processing the second element in the list: it does not have to traverse the
whole list.

6.2. Program development

At this point, you should be able to look at complete functions and tell what they do. Also, if you
have been doing the exercises, you have written some small functions. As you write larger functions,
you might start to have more difficulty, especially with runtime and semantic errors.

To deal with increasingly complex programs, we are going to suggest a technique called incremental
development. The goal of incremental development is to avoid long debugging sessions by adding
and testing only a small amount of code at a time.

As an example, suppose we want to find the distance between two points, given by the coordinates
(x1, y1) and (x2, y2).By the Pythagorean theorem, the distance is:

Chapter 6: Fruitful functions 96

d = (332 — 331)2 T (3/2 — y1)2

Distance formula

The first step is to consider what a distance function should look like in Python. In other words,
what are the inputs (parameters) and what is the output (return value)?

In this case, the two points are the inputs, which we can represent using four parameters. The return
value is the distance, which is a floating-point value.

Already we can write an outline of the function that captures our thinking so far:

def distance(x1, y1, x2, y2):

return 0.0

Obviously, this version of the function doesn’t compute distances; it always returns zero. But it
is syntactically correct, and it will run, which means that we can test it before we make it more
complicated.

To test the new function, we call it with sample values:

>>> distance(1, 2, 4, 6)
0.0

We chose these values so that the horizontal distance equals 3 and the vertical distance equals 4;
that way, the result is 5 (the hypotenuse of a 3-4-5 triangle). When testing a function, it is useful to
know the right answer.

Bw N

a s W N -

O O b W N~

Chapter 6: Fruitful functions 97

At this point we have confirmed that the function is syntactically correct, and we can start adding
lines of code. After each incremental change, we test the function again. If an error occurs at any
point, we know where it must be — in the last line we added.

A logical first step in the computation is to find the differences x2- x1 and y2- y1. We will refer to
those values using temporary variables named dx and dy.

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
return 0.0

If we call the function with the arguments shown above, when the flow of execution gets to the
return statement, dx should be 3 and dy should be 4. We can check that this is the case in PyScripter
by putting the cursor on the return statement, and running the program to break execution when it
gets to the cursor (using the F4 key). Then we inspect the variables dx and dy by hovering the mouse
above them, to confirm that the function is getting the right parameters and performing the first
computation correctly. If not, there are only a few lines to check.

Next we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx*dx + dy*dy
return 0.0

Again, we could run the program at this stage and check the value of dsquared (which should be
25).

Finally, using the fractional exponent @.5 to find the square root, we compute and return the result:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx*dx + dy*dy
result = dsquared**0.5

return result

If that works correctly, you are done. Otherwise, you might want to inspect the value of result
before the return statement.

When you start out, you might add only a line or two of code at a time. As you gain more experience,
you might find yourself writing and debugging bigger conceptual chunks. Either way, stepping

Bw N

Chapter 6: Fruitful functions 98

through your code one line at a time and verifying that each step matches your expectations can
save you a lot of debugging time. As you improve your programming skills you should find yourself
managing bigger and bigger chunks: this is very similar to the way we learned to read letters,
syllables, words, phrases, sentences, paragraphs, etc., or the way we learn to chunk music — from
individual notes to chords, bars, phrases, and so on.

The key aspects of the process are:

1. Start with a working skeleton program and make small incremental changes. At any point, if
there is an error, you will know exactly where it is.

2. Use temporary variables to refer to intermediate values so that you can easily inspect and check
them.

3. Once the program is working, relax, sit back, and play around with your options. (There is
interesting research that links “playfulness” to better understanding, better learning, more
enjoyment, and a more positive mindset about what you can achieve — so spend some time
fiddling around!) You might want to consolidate multiple statements into one bigger compound
expression, or rename the variables you’ve used, or see if you can make the function shorter.
A good guideline is to aim for making code as easy as possible for others to read.

Here is another version of the function. It makes use of a square root function that is in the math
module (we’ll learn about modules shortly). Which do you prefer? Which looks “closer” to the
Pythagorean formula we started out with?

import math
def distance(x1, y1, x2, y2):
return math.sqrt((x2-x1)**2 + (y2-y1)**2)
>>> distance(1, 2, 4, 6)
5.0

6.3. Debugging with print

Another powerful technique for debugging (an alternative to single-stepping and inspection of
program variables), is to insert extra print functions in carefully selected places in your code. Then,
by inspecting the output of the program, you can check whether the algorithm is doing what you
expect it to. Be clear about the following, however:

« You must have a clear solution to the problem, and must know what should happen before
you can debug a program. Work on solving the problem on a piece of paper (perhaps using a
flowchart to record the steps you take) before you concern yourself with writing code. Writing

Chapter 6: Fruitful functions 99

a program doesn’t solve the problem — it simply automates the manual steps you would take.
So first make sure you have a pen-and-paper manual solution that works. Programming then
is about making those manual steps happen automatically.

« Do not write chatterbox functions. A chatterbox is a fruitful function that, in addition to its
primary task, also asks the user for input, or prints output, when it would be more useful if it
simply shut up and did its work quietly.

For example, we’ve seen built-in functions like range, max and abs. None of these would be useful
building blocks for other programs if they prompted the user for input, or printed their results while
they performed their tasks.

So a good tip is to avoid calling print and input functions inside fruitful functions, unless the
primary purpose of your function is to perform input and output. The one exception to this rule
might be to temporarily sprinkle some calls to print into your code to help debug and understand
what is happening when the code runs, but these will then be removed once you get things working.

6.4. Composition

As you should expect by now, you can call one function from within another. This ability is called
composition.

As an example, we’ll write a function that takes two points, the center of the circle and a point on
the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter point is in xp
and yp. The first step is to find the radius of the circle, which is the distance between the two points.
Fortunately, we’ve just written a function, distance, that does just that, so now all we have to do is
use it:

radius = distance(xc, yc, xp, yp)

The second step is to find the area of a circle with that radius and return it. Again we will use one
of our earlier functions:

result = area(radius)

return result

Wrapping that up in a function, we get:

Bw N

O O B W N

Chapter 6: Fruitful functions 100

def area2(xc, yc, xXp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)

return result

We called this function area2 to distinguish it from the area function defined earlier.

The temporary variables radius and result are useful for development, debugging, and single-
stepping through the code to inspect what is happening, but once the program is working, we can
make it more concise by composing the function calls:

def area2(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

6.5. Boolean functions

Functions can return Boolean values, which is often convenient for hiding complicated tests inside
functions. For example:

def is_divisible(x, y):

""" Test if x iIs exactly divisible by y """
if x %y == 0:

return True
else:

return False

It is common to give Boolean functions names that sound like yes/no questions. is_divisible
returns either True or False to indicate whether the x is or is not divisible by y.

We can make the function more concise by taking advantage of the fact that the condition of the
if statement is itself a Boolean expression. We can return it directly, avoiding the if statement
altogether:

def is_divisible(x, y):

return x % y == 0

This session shows the new function in action:

Bw N

W N

Chapter 6: Fruitful functions 101

>>> is_divisible(6, 4)
False
>>> is_divisible(6, 3)

True
Boolean functions are often used in conditional statements:

if is_divisible(x, y):
. # Do something ...
else:

. # Do something else ...
It might be tempting to write something like:
if is_divisible(x, y) == True:

but the extra comparison is unnecessary.

6.6. Programming with style

Readability is very important to programmers, since in practice programs are read and modified far
more often then they are written. But, like most rules, we occasionally break them. Most of the code
examples in this book will be consistent with the Python Enhancement Proposal 8 (PEP 8°), a style
guide developed by the Python community.

We'll have more to say about style as our programs become more complex, but a few pointers will

be helpful already:

« use 4 spaces (instead of tabs) for indentation

« limit line length to 78 characters

« when naming identifiers, use CamelCase for classes (we’ll get to those) and lowercase_with_-
underscores for functons and variables

« place imports at the top of the file

« keep function definitions together

« use docstrings to document functions

« use two blank lines to separate function definitions from each other

« keep top level statements, including function calls, together at the bottom of the program

*http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

Chapter 6: Fruitful functions 102

6.7. Unit testing

It is a common best practice in software development to include automatic unit testing of source
code. Unit testing provides a way to automatically verify that individual pieces of code, such as
functions, are working properly. This makes it possible to change the implementation of a function
at a later time and quickly test that it still does what it was intended to do.

Some years back organizations had the view that their valuable asset was the program code and
documentation. Organizations will now spend a large portion of their software budgets on crafting
(and preserving) their tests.

Unit testing also forces the programmer to think about the different cases that the function needs to
handle. You also only have to type the tests once into the script, rather than having to keep entering
the same test data over and over as you develop your code.

Extra code in your program which is there because it makes debugging or testing easier is called

scaffolding.
A collection of tests for some code is called its test suite.

There are a few different ways to do unit testing in Python — but at this stage we’re going to ignore
what the Python community usually does, and we’re going to start with two functions that we’ll
write ourselves. We’ll use these for writing our unit tests.

Let’s start with the absolute_value function that we wrote earlier in this chapter. Recall that we
wrote a few different versions, the last of which was incorrect, and had a bug. Would tests have

caught this bug?

First we plan our tests. We’d like to know if the function returns the correct value when its argument
is negative, or when its argument is positive, or when its argument is zero. When planning your
tests, you’ll always want to think carefully about the “edge” cases — here, an argument of @ to
absolute_value is on the edge of where the function behaviour changes, and as we saw at the
beginning of the chapter, it is an easy spot for the programmer to make a mistake! So it is a good
case to include in our test suite.

We’re going to write a helper function for checking the results of one test. It takes a boolean argument
and will either print a message telling us that the test passed, or it will print a message to inform us
that the test failed. The first line of the body (after the function’s docstring) magically determines
the line number in the script where the call was made from. This allows us to print the line number
of the test, which will help when we want to identify which tests have passed or failed.

O© 00 I O O b W N =

10

© 00 N O O b W N =

-~
(Y

a b w N

Chapter 6: Fruitful functions 103

impo

def

rt sys

test(did_pass):

mn mn

Print the result of a test.
linenum = sys._getframe(1).f_lineno # Get the caller's line number.

if did_pass:

msg = "Test at line {0} ok.".format(linenum)
else:

msg = "Test at line {@} FAILED.".format(linenum)
print(msg)

There is also some slightly tricky string formatting using the format method which we will gloss

over
proc

def

test

for the moment, and cover in detail in a future chapter. But with this function written, we can
eed to construct our test suite:

test_suite():

""" Run the suite of tests for code in this module (this file).
test(absolute_value(17) == 17)

test(absolute_value(-17) == 17)

test(absolute_value(0) == 0)

test(absolute_value(3.14) == 3.14)

test(absolute_value(-3.14) == 3.14)

_suite() # Here is the call to run the tests

Here you’ll see that we've constructed five tests in our test suite. We could run this against the

first
follo

Test
Test
Test
Test
Test

or second versions (the correct versions) of absolute_value, and we’d get output similar to the
wing:

at line 25 ok.
at line 26 ok.
at line 27 ok.
at line 28 ok.
at line 29 ok.

But let’s say you change the function to an incorrect version like this:

O O B W N

g b W N =~

Chapter 6: Fruitful functions 104

def absolute_value(n): # Buggy version

mn

""" Compute the absolute value of n
if n < O:

return 1
elif n > O:

return n
Can you find at least two mistakes in this code? Our test suite can! We get:

Test at line 25 ok.
Test at line 26 FAILED.
Test at line 27 FAILED.
Test at line 28 ok.
Test at line 29 FAILED.

These are three examples of failing tests.

There is a built-in Python statement called assert that does almost the same as our test function
(except the program stops when the first assertion fails). You may want to read about it, and use it
instead of our test function.

6.8. Glossary

Boolean function

A function that returns a Boolean value. The only possible values of the bool type are False and
True.

chatterbox function

A function which interacts with the user (using input or print) when it should not. Silent functions
that just convert their input arguments into their output results are usually the most useful ones.

composition (of functions)

Calling one function from within the body of another, or using the return value of one function as
an argument to the call of another.

dead code

Part of a program that can never be executed, often because it appears after a return statement.
fruitful function

A function that yields a return value instead of None.

incremental development

Chapter 6: Fruitful functions 105

A program development plan intended to simplify debugging by adding and testing only a small
amount of code at a time.

None

A special Python value. One use in Python is that it is returned by functions that do not execute a
return statement with a return argument.

return value
The value provided as the result of a function call.
scaffolding

Code that is used during program development to assist with development and debugging. The unit
test code that we added in this chapter are examples of scaffolding.

temporary variable

A variable used to store an intermediate value in a complex calculation.
test suite

A collection of tests for some code you have written.

unit testing

An automatic procedure used to validate that individual units of code are working properly. Having
a test suite is extremely useful when somebody modifies or extends the code: it provides a safety net
against going backwards by putting new bugs into previously working code. The term regression
testing is often used to capture this idea that we don’t want to go backwards!

6.9. Exercises

All of the exercises below should be added to a single file. In that file, you should also add the test
and test_suite scaffolding functions shown above, and then, as you work through the exercises,
add the new tests to your test suite. (If you open the online version of the textbook, you can easily
copy and paste the tests and the fragments of code into your Python editor.)

After completing each exercise, confirm that all the tests pass.

1. The four compass points can be abbreviated by single-letter strings as “N, «“E”, <S>, and “w”.
Write a function turn_clockwise that takes one of these four compass points as its parameter,
and returns the next compass point in the clockwise direction. Here are some tests that should
pass:

1 test(turn_clockwise("N") == "E")

2 test(turn_clockwise("W") == "N")

You might ask “What if the argument to the function is some other value?” For all other cases,
the function should return the value None:

Chapter 6: Fruitful functions 106

1
2

W N -

B W N -

test(turn_clockwise(42) == None)
test(turn_clockwise("rubbish") == None)

2. Write a function day_name that converts an integer number @ to 6 into the name of a day.

Assume day @ is “Sunday”. Once again, return None if the arguments to the function are not
valid. Here are some tests that should pass:

test(day_name(3) == "Wednesday")
test(day_name(6) == "Saturday")
test(day_name(42) == None)

. Write the inverse function day_num which is given a day name, and returns its number:

test(day_num("Friday") == 5)
test(day_num("Sunday") == 0)
test(day_num(day_name(3)) == 3)
test(day_name(day_num("Thursday")) == "Thursday")

Once again, if this function is given an invalid argument, it should return None:

test(day_num("Halloween") == None)

Write a function that helps answer questions like “Today is Wednesday. I leave on holiday
in 19 days time. What day will that be?”” So the function must take a day name and a delta
argument — the number of days to add — and should return the resulting day name:

test(day_add("Monday", 4) == "Friday")

test(day_add("Tuesday", 0) == "Tuesday")
test(day_add("Tuesday", 14) == "Tuesday")
test(day_add("Sunday", 100) == "Tuesday")

Hint: use the first two functions written above to help you write this one.
Can your day_add function already work with negative deltas? For example, -1 would be
yesterday, or -7 would be a week ago:

test(day_add("Sunday", -1) == "Saturday")
test(day_add("Sunday", -7) == "Sunday")
test(day_add("Tuesday", -100) == "Sunday")

If your function already works, explain why. If it does not work, make it work.

Hint: Play with some cases of using the modulus function % (introduced at the beginning of the
previous chapter). Specifically, explore what happens tox % 7 when x is negative.

Write a function days_in_month which takes the name of a month, and returns the number of
days in the month. Ignore leap years:

Chapter 6: Fruitful functions 107

1
2

g b W N =

3

test(days_in_month("February") == 28)
test(days_in_month("December") == 31)

If the function is given invalid arguments, it should return None.

. Write a function to_secs that converts hours, minutes and seconds to a total number of seconds.

Here are some tests that should pass:

test(to_secs(2, 30, 10) == 9010)
test(to_secs(2, 9, 0) == 7200)
test(to_secs(0, 2, 0) == 120)
test(to_secs(0, 0, 42) == 42)
test(to_secs(0, -10, 10) == -590)

. Extend to_secs so that it can cope with real values as inputs. It should always return an integer

number of seconds (truncated towards zero):
test(to_secs(2.5, 0, 10.71) == 9010)
test(to_secs(2.433,0,0) == 8758)

Write three functions that are the “inverses” of to_secs:

1. hours_in returns the whole integer number of hours represented by a total number of
seconds.

2. minutes_in returns the whole integer number of left over minutes in a total number of
seconds, once the hours have been taken out.

3. seconds_in returns the left over seconds represented by a total number of seconds.

You may assume that the total number of seconds passed to these functions is an integer. Here
are some test cases:

test(hours_in(9010) == 2)
test(minutes_in(9010) == 30)
test(seconds_in(9010) == 10)

It won’t always be obvious what is wanted ...

In the third case above, the requirement seems quite ambiguous and fuzzy. But the test clarifies what
we actually need to do.

Unit tests often have this secondary benefit of clarifying the specifications. If you write your own
test suites, consider it part of the problem-solving process as you ask questions about what you really
expect to happen, and whether you’ve considered all the possible cases.

Given our emphasis on thinking like a computer scientist, you might enjoy reading at least one
reference about thinking, and about fun ideas like fluid intelligence, a key ingredient in problem
solving. See, for example, http://psychology.about.com/od/cognitivepsychology/a/fluid-crystal.htm.
Learning Computer Science requires a good mix of both fluid and crystallized kinds of intelligence.

10. Which of these tests fail? Explain why.

Chapter 6: Fruitful functions

N O O s W N -

B W N -

14.

15.

16.

108

test(3 % 4 == 0)

test(3 % 4 == 3)
test(3 / 4 == 0)
test(3 // 4 == 0)
test(3+4 * 2 == 14)
test(4-2+2 == 0)

test(len("hello, world!") == 13)

. Write a compare function that returns1 if a > b,0if a == b,and -1 ifa < b

test(compare(5, 4) == 1)
test(compare(7, 7) == 0)
== _’_I_)

1)

test(compare(2, 3)

test(compare(42, 1)

. Write a function called hypotenuse that returns the length of the hypotenuse of a right triangle

given the lengths of the two legs as parameters:

test(hypotenuse(3, 4) == 5.0)

test(hypotenuse(12, 5) == 13.0)
test(hypotenuse(24, 7) == 25.0)
test(hypotenuse(9, 12) == 15.0)

. Write a function slope(x1, y1, x2, y2) that returns the slope of the line through the points

(x1, y1) and (x2, y2).Be sure your implementation of slope can pass the following tests:

test(slope(5, 3, 4, 2) == 1.0)
test(slope(1, 2, 3, 2) == 0.0)
test(slope(1, 2, 3, 3) == 0.5)
test(slope(2, 4, 1, 2) == 2.0)

Then use a call to slope in a new function named intercept(x1, yi, x2, y2) that returns
the y-intercept of the line through the points (x1, y1) and (x2, y2)

test(intercept(1, 6, 3, 12) == 3.0)
test(intercept(6, 1, 1, 6) 7.9)
test(intercept(4, 6, 12, 8) 5.0)

Write a function called is_even(n) that takes an integer as an argument and returns True if
the argument is an even number and False if it is odd.

Add your own tests to the test suite.
Now write the function is_odd(n) that returns True whenn is odd and False otherwise. Include
unit tests for this function too.

Finally, modify it so that it uses a call to is_even to determine if its argument is an odd integer,
and ensure that its test still pass.
Write a function is_factor(f, n) that passes these tests:

Chapter 6: Fruitful functions 109

N O O s W N -

17.

g b W N =

18.

N O O B~ WN

o O B W N -

test(is_factor(3, 12))
test(not is_factor(5, 12))
test(is_factor(7, 14))
test(not is_factor(7, 15))
test(is_factor(1, 15))
test(is_factor(15, 15))
test(not is_factor(25, 15))

An important role of unit tests is that they can also act as unambiguous “specifications” of
what is expected. These test cases answer the question “Do we treat 1 and 15 as factors of 1572
Write is_multiple to satisfy these unit tests:

test(is_multiple(12, 3))
test(is_multiple(12, 4))
test(not is_multiple(12, 5))
test(is_multiple(12, 6))
test(not is_multiple(12, 7))

Can you find a way to use is_factor in your definition of is_multiple?

Write the function f2c(t) designed to return the integer value of the nearest degree Celsius
for given temperature in Fahrenheit. (hint: you may want to make use of the built-in function,
round. Try printing round.__doc__ in a Python shell or looking up help for the round function,
and experimenting with it until you are comfortable with how it works.)

test(f2c(212) == 100) # Boiling point of water
test(f2c(32) == 0) # freezing point of water
test(f2c(-40) == -40) # Wow, what an interesting case!

test(f2c(36) == 2)
test(f2c(37) == 3)
test(f2c(38) == 3)
test(f2c(39) == 4)

. Now do the opposite: write the function c2f which converts Celsius to Fahrenheit:

test(c2f(0) == 32)
test(c2f(100) == 212)
test(c2f(-40) == -40)
test(c2f(12) == 54)
test(c2f(18) == 64)
test(c2f(-48) == -54)

Bw N -

Chapter 7: Iteration

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks without
making errors is something that computers do well and people do poorly.

Repeated execution of a set of statements is called iteration. Because iteration is so common, Python
provides several language features to make it easier. We’ve already seen the for statement in chapter
3. This the the form of iteration you’ll likely be using most often. But in this chapter we’ve going
to look at the while statement — another way to have your program do iteration, useful in slightly
different circumstances.

Before we do that, let’s just review a few ideas...

7.1. Assignment

As we have mentioned previously, it is legal to make more than one assignment to the same variable.
A new assignment makes an existing variable refer to a new value (and stop referring to the old
value).

airtime_remaining = 15
print(airtime_remaining)
airtime_remaining = 7

print(airtime_remaining)
The output of this program is:

15
7

because the first time airtime_remaining is printed, its value is 15, and the second time, its value is
T.

It is especially important to distinguish between an assignment statement and a Boolean expression
that tests for equality. Because Python uses the equal token (=) for assignment, it is tempting to
interpret a statement like a = b as a Boolean test. Unlike mathematics, it is not! Remember that the
Python token for the equality operator is ==.

Note too that an equality test is symmetric, but assignment is not. For example, if a == 7 then 7 ==
a. But in Python, the statementa = 7 islegal and 7 = a is not.

In Python, an assignment statement can make two variables equal, but because further assignments
can change either of them, they don’t have to stay that way:

W N

Chapter 7: Iteration 111

a)
b=a # After executing this line, a and b are now equal
a 3

After executing this line, a and b are no longer equal

The third line changes the value of a but does not change the value of b, so they are no longer
equal. (In some programming languages, a different symbol is used for assignment, such as <- or : =,
to avoid confusion. Some people also think that variable was an unfortunate word to choose, and
instead we should have called them assignables. Python chooses to follow common terminology and
token usage, also found in languages like C, C++, Java, and C#, so we use the tokens = for assignment,
== for equality, and we talk of variables.

7.2. Updating variables

When an assignment statement is executed, the right-hand side expression (i.e. the expression that
comes after the assignment token) is evaluated first. This produces a value. Then the assignment is
made, so that the variable on the left-hand side now refers to the new value.

One of the most common forms of assignment is an update, where the new value of the variable
depends on its old value. Deduct 40 cents from my airtime balance, or add one run to the scoreboard.

n=2>5

n=3%*n+1

Line 2 means get the current value of n, multiply it by three and add one, and assign the answer to
n, thus making n refer to the value. So after executing the two lines above, n will point/refer to the
integer 16.

If you try to get the value of a variable that has never been assigned to, you’ll get an error:

> > w =x + 1
Traceback (most recent call last):
File "<interactive input>", line 1, in

1 1

NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it to some starting value, usually with a
simple assignment:

runs_scored %]

runs_scored = runs_scored + 1

Line 3 — updating a variable by adding 1 to it — is very common. It is called an increment of the
variable; subtracting 1 is called a decrement. Sometimes programmers also talk about bumping a
variable, which means the same as incrementing it by 1.

© 00 1 O O b W N =

[=N
w N =~ O

Chapter 7: Iteration 112

7.3. The for loop revisited

Recall that the for loop processes each item in a list. Each item in turn is (re-)assigned to the loop
variable, and the body of the loop is executed. We saw this example in an earlier chapter:

for f in ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]:
invitation = "Hi " + f + ". Please come to my party on Saturday!"

print(invitation)

Running through all the items in a list is called traversing the list, or traversal.

Let us write a function now to sum up all the elements in a list of numbers. Do this by hand first, and
try to isolate exactly what steps you take. You’ll find you need to keep some “running total” of the
sum so far, either on a piece of paper, in your head, or in your calculator. Remembering things from
one step to the next is precisely why we have variables in a program: so we’ll need some variable
to remember the “running total”. It should be initialized with a value of zero, and then we need to
traverse the items in the list. For each item, we’ll want to update the running total by adding the
next number to it.

def mysum(xs):

"t Sum all the numbers in the list xs, and return the total. """
running_total = 0
for x in xs:

running_total = running_total + x

return running_total

Add tests like these to your test suite ...

test(mysum([1, 2, 3, 4]) == 10)

test(mysum([1.25, 2.5, 1.75]) == 5.5)

test(mysum([1, -2, 3]) == 2)

test(mysum([]) == 0)

test(mysum(range(11)) == 55) # 441 is not included in the list.

7.4. The while statement

Here is a fragment of code that demonstrates the use of the while statement:

O© 00 I O O b W N =

10
11
12

Chapter 7: Iteration 113

def sum_to(n):
""" Return the sum of 1+2+3 ... n """
ss =20
v =1
while v <= n:
SS = ss + Vv
v=v+1

return ss

For your test suite
test(sum_to(4) == 10)
test(sum_to(1000) == 500500)

You can almost read the while statement as if it were English. It means, while v is less than or equal
to n, continue executing the body of the loop. Within the body, each time, increment v. When v
passes n, return your accumulated sum.

More formally, here is precise flow of execution for a while statement:

« Evaluate the condition at line 5, yielding a value which is either False or True.

« If the value is False, exit the while statement and continue execution at the next statement (line
8 in this case).

« If the value is True, execute each of the statements in the body (lines 6 and 7) and then go back
to the while statement at line 5.

The body consists of all of the statements indented below the while keyword.

Notice that if the loop condition is False the first time we get loop, the statements in the body of the
loop are never executed.

The body of the loop should change the value of one or more variables so that eventually the
condition becomes false and the loop terminates. Otherwise the loop will repeat forever, which is
called an infinite loop. An endless source of amusement for computer scientists is the observation
that the directions on shampoo, “lather, rinse, repeat”, are an infinite loop.

In the case here, we can prove that the loop terminates because we know that the value of n is finite,
and we can see that the value of v increments each time through the loop, so eventually it will have
to exceed n. In other cases, it is not so easy, even impossible in some cases, to tell if the loop will
ever terminate.

What you will notice here is that the while loop is more work for you — the programmer — than the
equivalent for loop. When using a while loop one has to manage the loop variable yourself: give it
an initial value, test for completion, and then make sure you change something in the body so that
the loop terminates. By comparison, here is an equivalent function that uses for instead:

O O B W N

© 00 N O O b W N =

RGN
= o

Chapter 7: Iteration 114

def sum_to(n):
""" Return the sum of 1+2+3 ... n """
ss =20
for v in range(n+1):
Ss = ss + Vv

return ss

Notice the slightly tricky call to the range function — we had to add one onto n, because range
generates its list up to but excluding the value you give it. It would be easy to make a programming
mistake and overlook this, but because we’ve made the investment of writing some unit tests, our
test suite would have caught our error.

So why have two kinds of loop if for looks easier? This next example shows a case where we need
the extra power that we get from the while loop.

7.5. The Collatz 3n + 1 sequence

Let’s look at a simple sequence that has fascinated and foxed mathematicians for many years. They
still cannot answer even quite simple questions about this.

The “computational rule” for creating the sequence is to start from some given n, and to generate the
next term of the sequence from n, either by halving n, (whenever n is even), or else by multiplying
it by three and adding 1. The sequence terminates when n reaches 1.

This Python function captures that algorithm:

def seq3npi(n):
""" print the 3n+1 sequence from n,

terminating when it reaches 1.

mn

while n != 1:
print(n, end=", ")
ifn% 2 == 0: # n is even
n=n//2
else: # n is odd

n=ns*3+1

print(n, end=".\n")

Notice first that the print function on line 6 has an extra argument end=", . This tells the print
function to follow the printed string with whatever the programmer chooses (in this case, a comma
followed by a space), instead of ending the line. So each time something is printed in the loop, it
is printed on the same output line, with the numbers separated by commas. The call to print(n,
end=".\n") at line 11 after the loop terminates will then print the final value of n followed by a
period and a newline character. (You’ll cover the \n (newline character) in the next chapter).

O© 00 I O O b W N =~

.
(N

Chapter 7: Iteration 115

The condition for continuing with this loop isn != 1, so the loop will continue running until it
reaches its termination condition, (i.e.n == 1).

Each time through the loop, the program outputs the value of n and then checks whether it is even
or odd. If it is even, the value of n is divided by 2 using integer division. If it is odd, the value is
replaced by n * 3 + 1. Here are some examples:

>>> seq3np1(3)

3, 10, 5, 16, 8, 4, 2, 1.

>>> seq3np1(19)

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13,
40, 20, 10, 5, 16, 8, 4, 2, 1.

>>> seq3np1(21)

21, 64, 32, 16, 8, 4, 2, 1.

>>> seq3np1(16)

16, 8, 4, 2, 1.

>>>

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will ever
reach 1, or that the program terminates. For some particular values of n, we can prove termination.
For example, if the starting value is a power of two, then the value of n will be even each time
through the loop until it reaches 1. The previous example ends with such a sequence, starting with
16.

See if you can find a small starting number that needs more than a hundred steps before it terminates.

Particular values aside, the interesting question was first posed by a German mathematician called
Lothar Collatz: the Collatz conjecture (also known as the 3n + 1 conjecture), is that this sequence
terminates for all positive values of n. So far, no one has been able to prove it or disprove it! (A
conjecture is a statement that might be true, but nobody knows for sure.)

Think carefully about what would be needed for a proof or disproof of the conjecture “All positive
integers will eventually converge to 1 using the Collatz rules”. With fast computers we have been
able to test every integer up to very large values, and so far, they have all eventually ended up at1.
But who knows? Perhaps there is some as-yet untested number which does not reduce to 1.

You’ll notice that if you don’t stop when you reach 1, the sequence gets into its own cyclic loop: 1, 4,
2,1,4,2,1,4 ... So one possibility is that there might be other cycles that we just haven’t found yet.

Wikipedia has an informative article about the Collatz conjecture. The sequence also goes under
other names (Hailstone sequence, Wonderous numbers, etc.), and you’ll find out just how many
integers have already been tested by computer, and found to converge!

Choosing between for and while

Use a for loop if you know, before you start looping, the maximum number of times that you’ll
need to execute the body. For example, if you're traversing a list of elements, you know that the

s W N

Chapter 7: Iteration 116

maximum number of loop iterations you can possibly need is “all the elements in the list”. Or if you
need to print the 12 times table, we know right away how many times the loop will need to run.

So any problem like “iterate this weather model for 1000 cycles”, or “search this list of words”, “find
all prime numbers up to 10000” suggest that a for loop is best.

By contrast, if you are required to repeat some computation until some condition is met, and you
cannot calculate in advance when (or if) this will happen, as we did in this 3n + 1 problem, you’ll
need a while loop.

We call the first case definite iteration — we know ahead of time some definite bounds for what
is needed. The latter case is called indefinite iteration — we’re not sure how many iterations we’ll
need — we cannot even establish an upper bound!

7.6. Tracing a program

To write effective computer programs, and to build a good conceptual model of program execution,
a programmer needs to develop the ability to trace the execution of a computer program. Tracing
involves becoming the computer and following the flow of execution through a sample program
run, recording the state of all variables and any output the program generates after each instruction
is executed.

To understand this process, let’s trace the call to seq3np1(3) from the previous section. At the start
of the trace, we have a variable, n (the parameter), with an initial value of 3. Since 3 is not equal to
1, the while loop body is executed. 3 is printed and 3 % 2 == @ is evaluated. Since it evaluates to
False, the else branch is executed and 3 * 3 + 1 is evaluated and assigned to n.

To keep track of all this as you hand trace a program, make a column heading on a piece of paper
for each variable created as the program runs and another one for output. Our trace so far would
look something like this:

n output printed so far

3 3,

10

Since 1@ !'= 1 evaluates to True, the loop body is again executed, and 1@ is printed. 10 % 2 == 0 is

True, so the i f branch is executed and n becomes 5. By the end of the trace we have:

O© 00 I O O b W N =

N
[~

Chapter 7: Iteration 117

n output printed so far

3 3,

10 3, 10,

5 3, 10, 5,

16 3, 10, 5, 16,

8 3, 10, 5, 16, 8,

4 3, 10, 5, 16, 8, 4,

2 3, 10, 5, 16, 8, 4, 2,

1 3, 10, 5, 16, 8, 4, 2, 1.

Tracing can be a bit tedious and error prone (that’s why we get computers to do this stuff in the first
place!), but it is an essential skill for a programmer to have. From this trace we can learn a lot about
the way our code works. We can observe that as soon as n becomes a power of 2, for example, the
program will require 1og2(n) executions of the loop body to complete. We can also see that the final
1 will not be printed as output within the body of the loop, which is why we put the special print
function at the end.

Tracing a program is, of course, related to single-stepping through your code and being able to
inspect the variables. Using the computer to single-step for you is less error prone and more
convenient. Also, as your programs get more complex, they might execute many millions of steps
before they get to the code that you’re really interested in, so manual tracing becomes impossible.
Being able to set a breakpoint where you need one is far more powerful. So we strongly encourage
you to invest time in learning using to use your programming environment to full effect.

There are also some great visualization tools becoming available to help you trace and understand
small fragments of Python code. The one we recommend is at http://pythontutor.com/

We’ve cautioned against chatterbox functions, but used them here. As we learn a bit more Python,
we’ll be able to show you how to generate a list of values to hold the sequence, rather than having
the function print them. Doing this would remove the need to have all these pesky print functions
in the middle of our logic, and will make the function more useful.

7.7. Counting digits

The following function counts the number of decimal digits in a positive integer:

O O B W N

o I O O b W N =

Chapter 7: Iteration 118

def num_digits(n):
count = @
while n = O:
count = count + 1
n=n// 10
return count

A call to print(num_digits(71@)) will print 3. Trace the execution of this function call (perhaps
using the single step function in PyScripter, or the Python visualizer, or on some paper) to convince
yourself that it works.

This function demonstrates an important pattern of computation called a counter. The variable
count is initialized to @ and then incremented each time the loop body is executed. When the loop
exits, count contains the result — the total number of times the loop body was executed, which is
the same as the number of digits.

If we wanted to only count digits that are either 0 or 5, adding a conditional before incrementing
the counter will do the trick:

def num_zero_and_five_digits(n):
count = 0
while n > O:
digit = n % 10

if digit == 0 or digit == 5:
count = count + 1
n=n// 10

return count

Confirm that test(num_zero_and_five_digits(1055030250) == 7) passes.

Notice, however, that test(num_digits(@) == 1) fails. Explain why. Do you think this is a bug in
the code, or a bug in the specifications, or our expectations, or the tests?

7.8. Abbreviated assignment

Incrementing a variable is so common that Python provides an abbreviated syntax for it:

W N - N O O s W N

© 0O N O O b W N =

[==Y
W N =~ o

Chapter 7: Iteration 119

>>> count = 0
>>> count += 1

>>> count

>>> count += 1

>>> count

count += 1 is an abbreviation for count = count + 1. We pronounce the operator as “plus-equals”.
The increment value does not have to be 1:

> > n = 2
>>> n += 5

>>> n

There are similar abbreviations for -=, *=, /=, //= and %=:

v
v
v

)
~
~
I
N

7.9. Help and meta-notation

Python comes with extensive documentation for all its built-in functions, and its libraries. Different
systems have different ways of accessing this help. In PyScripter, click on the Help menu item, and
select Python Manuals. Then search for help on the built-in function range. You’ll get something
like this:

Chapter 7: Iteration 120

r B " =)
E—Q Python v3.1.2 documentation [g— —_p - . a e S
;8 & o & & O
Hide Back Home Font Print Options
range (|start | stop|, ste, 1
(o] oo 5o Fovaaed ge ([start] stopl, step]) | o |
Type in the keyword to find: _Th|5 is a versatile fu_ncﬂon to create iterables yielding anthm_etlc progressions. It
= is most often used in for loops. The arguments must be integers. If the step
(buittin functi .) i . })
|' nge{) fuitin function) argument is omitted, it defaults to 1. If the starf argument is omitted, it defaults to
p— n 0. The full form returns an iterable of integers [start, start + step, start
bE@hinunction + 2 * step, ...].Ifstepis positive, the last element is the largest start + I
‘anged bubnfunction)] i * step less than sfop; if step is negative, the last element is the smallest
ratecv() {in module audicop) =
oD (il oL aher met start + i * step greater than stop. step must not be zero (or else
Rational (class in numbers) ValueError IS ralsed}_ Example:
raw {jio.Buffered|OBase attribute)
raw string
raw() {in module curses) =3 list(r 10
raw_decode() [json JSONDecoder m 1st(range (10))
raw_input (2to3 fiker) [o, 1, 2, 3, 4, 5, &, 7, &, 9]
raw_input() {code. InteractiveConsole >>> list(range(l, 11))
RawAmay() (in module muttiprocessin
RawCorfigParser (class in configpan [, 2, 3, 4, 5, 6, 7, 8, 9, 10]
RawlOBase (class in io) »>»> list(range (0, 30, 5))
RawPen (class in turtle)
RawTurtle (class in turtle) [0, 5, 10, 15, 20, 25] il
RawWalue() in module muttiprocessit >»> list(range (0, 10, 3)) n
e
module [0, 3{ 6, 9]
re {module) »»» list({range (0, -10, -1})
ire. MatchObject attribute) _ _ _ _ _ _ _ _ _
read() (b22.5Z2File method) o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
{chunk Chunk method) »>»»> list{range(0))
(codecs. StreamReader method) [1
{corfigparser. RawCorfigParser me _ ; .
it clinet UTTODnanamnn ot »»» list(range (1, 0))
g]
q ™ [T] or

Notice the square brackets in the description of the arguments. These are examples of meta-
notation — notation that describes Python syntax, but is not part of it. The square brackets in
this documentation mean that the argument is optional — the programmer can omit it. So what
this first line of help tells us is that range must always have a stop argument, but it may have an
optional start argument (which must be followed by a comma if it is present), and it can also have
an optional step argument, preceded by a comma if it is present.

The examples from help show that range can have either 1, 2 or 3 arguments. The list can start at

any starting value, and go up or down in increments other than 1. The documentation here also says
that the arguments must be integers.

Other meta-notation you’ll frequently encounter is the use of bold and italics. The bold means that
these are tokens — keywords or symbols — typed into your Python code exactly as they are, whereas
the italic terms stand for “something of this type”. So the syntax description

for variable in list:
means you can substitute any legal variable and any legal list when you write your Python code.

This (simplified) description of the print function, shows another example of meta-notation in

which the ellipses (...) mean that you can have as many objects as you like (even zero), separated by
commas:

print([object, ...])

Chapter 7: Iteration 121

Meta-notation gives us a concise and powerful way to describe the pattern of some syntax or feature.

7.10. Tables

One of the things loops are good for is generating tables. Before computers were readily available,
people had to calculate logarithms, sines and cosines, and other mathematical functions by hand.
To make that easier, mathematics books contained long tables listing the values of these functions.
Creating the tables was slow and boring, and they tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This is great! We can use the
computers to generate the tables, so there will be no errors.” That turned out to be true (mostly) but
shortsighted. Soon thereafter, computers and calculators were so pervasive that the tables became
obsolete.

Well, almost. For some operations, computers use tables of values to get an approximate answer and
then perform computations to improve the approximation. In some cases, there have been errors in
the underlying tables, most famously in the table the Intel Pentium processor chip used to perform
floating-point division.

Although a log table is not as useful as it once was, it still makes a good example of iteration. The
following program outputs a sequence of values in the left column and 2 raised to the power of that
value in the right column:

for x in range(13): # Generate numbers © to 12
print(x, "\t", 2%*x)

The string "\t" represents a tab character. The backslash character in "\t" indicates the beginning
of an escape sequence. Escape sequences are used to represent invisible characters like tabs and
newlines. The sequence \n represents a newline.

An escape sequence can appear anywhere in a string; in this example, the tab escape sequence is the
only thing in the string. How do you think you represent a backslash in a string?

As characters and strings are displayed on the screen, an invisible marker called the cursor keeps
track of where the next character will go. After a print function, the cursor normally goes to the
beginning of the next line.

The tab character shifts the cursor to the right until it reaches one of the tab stops. Tabs are useful
for making columns of text line up, as in the output of the previous program:

O© 00 I O O b W N =

[=N
w N =~ O

Chapter 7: Iteration 122

© 00 < O O b W N~ O
w
N

512

1024
2048
4096

(SN
N O

Because of the tab characters between the columns, the position of the second column does not
depend on the number of digits in the first column.

7.11. Two-dimensional tables

A two-dimensional table is a table where you read the value at the intersection of a row and a
column. A multiplication table is a good example. Let’s say you want to print a multiplication table
for the values from 1 to 6.

A good way to start is to write a loop that prints the multiples of 2, all on one line:

for i in range(1, 7):
print(2 * i, end=" ")
print()

Here we’ve used the range function, but made it start its sequence at 1. As the loop executes, the
value of i changes from 1 to 6. When all the elements of the range have been assigned to i, the loop
terminates. Each time through the loop, it displays the value of 2 * i, followed by three spaces.

Again, the extra end=" " argument in the print function suppresses the newline, and uses three
spaces instead. After the loop completes, the call to print at line 3 finishes the current line, and
starts a new line.

The output of the program is:
2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

W N

Chapter 7: Iteration 123

7.12. Encapsulation and generalization

Encapsulation is the process of wrapping a piece of code in a function, allowing you to take advantage
of all the things functions are good for. You have already seen some examples of encapsulation,
including is_divisible in a previous chapter.

Generalization means taking something specific, such as printing the multiples of 2, and making it
more general, such as printing the multiples of any integer.

This function encapsulates the previous loop and generalizes it to print multiples of n:

def print_multiples(n):
for i in range(1, 7):
print(n * i, end=" ")
print()

To encapsulate, all we had to do was add the first line, which declares the name of the function and
the parameter list. To generalize, all we had to do was replace the value 2 with the parameter n.

If we call this function with the argument 2, we get the same output as before. With the argument
3, the output is:

3 6 9 12 15 18
With the argument 4, the output is:
4 8 12 16 20 24

By now you can probably guess how to print a multiplication table — by calling print_multiples
repeatedly with different arguments. In fact, we can use another loop:

for i in range(1, 7):
print_multiples(i)

Notice how similar this loop is to the one inside print_multiples. All we did was replace the print
function with a function call.

The output of this program is a multiplication table:

O O B W N

Chapter 7: Iteration 124

1 2 3 4) 6

2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

7.13. More encapsulation

To demonstrate encapsulation again, let’s take the code from the last section and wrap it up in a
function:

def print_mult_table():
for i in range(1, 7):

print_multiples(i)

This process is a common development plan. We develop code by writing lines of code outside any
function, or typing them in to the interpreter. When we get the code working, we extract it and wrap
it up in a function.

This development plan is particularly useful if you don’t know how to divide the program into
functions when you start writing. This approach lets you design as you go along.

7.14. Local variables

You might be wondering how we can use the same variable, i, in both print_multiples and print_-
mult_table. Doesn’t it cause problems when one of the functions changes the value of the variable?

The answer is no, because the i inprint_multiples and the i in print_mult_table are not the same
variable.

Variables created inside a function definition are local; you can’t access a local variable from outside
its home function. That means you are free to have multiple variables with the same name as long
as they are not in the same function.

Python examines all the statements in a function — if any of them assign a value to a variable, that
is the clue that Python uses to make the variable a local variable.

The stack diagram for this program shows that the two variables named i are not the same variable.
They can refer to different values, and changing one does not affect the other.

Chapter 7: Iteration 125

print_mult_table

print_multiples

Stack 2 diagram

The value of i inprint_mult_table goesfrom1 to6. In the diagram it happens to be 3. The next time
through the loop it will be 4. Each time through the loop, print_mult_table calls print_multiples
with the current value of i as an argument. That value gets assigned to the parameter n.

Inside print_multiples, the value of i goes from1 to 6. In the diagram, it happens to be 2. Changing
this variable has no effect on the value of i in print_mult_table.

It is common and perfectly legal to have different local variables with the same name. In particular,
names like i and j are used frequently as loop variables. If you avoid using them in one function
just because you used them somewhere else, you will probably make the program harder to read.

The visualizer at http://pythontutor.com/ shows very clearly how the two variables i are distinct
variables, and how they have independent values.

7.15. The break statement

The break statement is used to immediately leave the body of its loop. The next statement to be
executed is the first one after the body:

a b W N -

Chapter 7: Iteration 126

for i in [12, 16, 17, 24, 29]:
if i % 2==1: # If the number is odd
break # ... Immediately exit the loop
print(i)
print("done")

This prints:

12
16
done

The pre-test loop — standard loop behaviour

for and while loops do their tests at the start, before executing any part of the body. They’re called
pre-test loops, because the test happens before (pre) the body. break and return are our tools for
adapting this standard behaviour.

7.16. Other flavours of loops

Sometimes we’d like to have the middle-test loop with the exit test in the middle of the body, rather
than at the beginning or at the end. Or a post-test loop that puts its exit test as the last thing in the
body. Other languages have different syntax and keywords for these different flavours, but Python
just uses a combination of while and i f condition: break to get the job done.

A typical example is a problem where the user has to input numbers to be summed. To indicate that
there are no more inputs, the user enters a special value, often the value -1, or the empty string. This
needs a middle-exit loop pattern: input the next number, then test whether to exit, or else process
the number:

The middle-test loop flowchart

<~ O O b W N~

Chapter 7: Iteration 127

=
=
.

total = 0
while True:
response = input("Enter the next number. (Leave blank to end)")
if response == "":
break
total += int(response)
print("The total of the numbers you entered is ", total)

Convince yourself that this fits the middle-exit loop flowchart: line 3 does some useful work, lines
4 and 5 can exit the loop, and if they don’t line 6 does more useful work before the next iteration
starts.

The while bool-expr: uses the Boolean expression to determine whether to iterate again. True is a
trivial Boolean expression, sowhile True: means always do the loop body again. This is a language
idiom — a convention that most programmers will recognize immediately. Since the expression on
line 2 will never terminate the loop, (it is a dummy test) the programmer must arrange to break (or
return) out of the loop body elsewhere, in some other way (i.e. in lines 4 and 5 in this sample). A
clever compiler or interpreter will understand that line 2 is a fake test that must always succeed, so
it won’t even generate a test, and our flowchart never even put the diamond-shape dummy test box
at the top of the loop!

Similarly, by just moving the if condition: break to the end of the loop body we create a pattern
for a post-test loop. Post-test loops are used when you want to be sure that the loop body always
executes at least once (because the first test only happens at the end of the execution of the first
loop body). This is useful, for example, if we want to play an interactive game against the user —
we always want to play at least one game:

O O B W N

© 00 N O O b W N =

T S = =
W N O O b W N =~ O

Chapter 7: Iteration 128

while True:
play_the_game_once()
response = input("Play again? (yes or no)")
if response != "yes":
break

print("Goodbye!")

Hint: Think about where you want the exit test to happen.

Once you’ve recognized that you need a loop to repeat something, think about its terminating
condition — when will I want to stop iterating? Then figure out whether you need to do the test
before starting the first (and every other) iteration, or at the end of the first (and every other) iteration,
or perhaps in the middle of each iteration. Interactive programs that require input from the user or
read from files often need to exit their loops in the middle or at the end of an iteration, when it
becomes clear that there is no more data to process, or the user doesn’t want to play our game
anymore.

7.17. An example

The following program implements a simple guessing game:

import random # We cover random numbers in the
rng = random.Random() # modules chapter, so peek ahead.
number = rng.randrange(1, 1000) # Get random number between [1 and 1000).

guesses = 0

msg = wn

while True:
guess = int(input(msg + "\nGuess my number between 1 and 1000: "))
guesses += 1
if guess > number:

"

msg += str(guess) + " is too high.\n"
elif guess < number:

msg += str(guess) + " is too low.\n"
else:

break

input("\n\nGreat, you got it in {0} guesses!\n\n".format(guesses))

This program makes use of the mathematical law of trichotomy (given real numbers a and b, exactly
one of these three must be true:a > b,a < b,ora == b).

g b W N -

a b W N -

Chapter 7: Iteration 129

At line 18 there is a call to the input function, but we don’t do anything with the result, not even
assign it to a variable. This is legal in Python. Here it has the effect of popping up the input dialog
window and waiting for the user to respond before the program terminates. Programmers often use
the trick of doing some extra input at the end of a script, just to keep the window open.

Also notice the use of the msg variable, initially an empty string, on lines 6, 12 and 14. Each time
through the loop we extend the message being displayed: this allows us to display the program’s
feedback right at the same place as we’re asking for the next guess.

Python input @

500 is too high,
250 is too high.
125is too low.
187 is too low.

Guess my number between 1 and 1000;

[Ok, H Cancel]

7.18. The continue statement

This is a control flow statement that causes the program to immediately skip the processing of the
rest of the body of the loop, for the current iteration. But the loop still carries on running for its
remaining iterations:

for i in [12, 16, 17, 24, 29, 30]:

ifi%2==1: # If the number is odd
continue # Don't process it
print(i)

print("done")
This prints:

12
16
24
30
done

N O O s W N~

o N O O b W N =

Chapter 7: Iteration 130

7.19. More generalization

As another example of generalization, imagine you wanted a program that would print a multiplica-
tion table of any size, not just the six-by-six table. You could add a parameter to print_mult_table:

def print_mult_table(high):
for i in range(1, high+1):
print_multiples(i)

We replaced the value 7 with the expression high+1. If we call print_mult_table with the argument
7, it displays:

1 2 3 4 5 6

2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36
7 14 21 28 35 42

This is fine, except that we probably want the table to be square — with the same number of rows and

columns. To do that, we add another parameter to print_multiples to specify how many columns
the table should have.

Just to be annoying, we call this parameter high, demonstrating that different functions can have
parameters with the same name (just like local variables). Here’s the whole program:

def print_multiples(n, high):
for i in range(1, high+1):
print(n * i, end=" ")
print()

def print_mult_table(high):
for i in range(1, high+1):
print_multiples(i, high)

Notice that when we added a new parameter, we had to change the first line of the function (the
function heading), and we also had to change the place where the function is called in print_mult_-
table.

Now, when we call print_mult_table(7):

=~ O O b W N =

<~ O O s W N~

Chapter 7: Iteration 131

1 2 3 4) 6 I

2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
T 14 21 28 35 42 49

When you generalize a function appropriately, you often get a program with capabilities you didn’t
plan. For example, you might notice that, because ab = ba, all the entries in the table appear twice.
You could save ink by printing only half the table. To do that, you only have to change one line of
print_mult_table. Change

print_multiples(i, high+1)
to

print_multiples(i, i+1)

and you get:

1

2 4

3 6 9

4 8 12 16

) 10 15 20 25

6 12 18 24 30 36

7 14 21 28 35 42 49

7.20. Functions

A few times now, we have mentioned all the things functions are good for. By now, you might be
wondering what exactly those things are. Here are some of them:

1. Capturing your mental chunking. Breaking your complex tasks into sub-tasks, and giving the
sub-tasks a meaningful name is a powerful mental technique. Look back at the example that
illustrated the post-test loop: we assumed that we had a function called play_the_game_once.
This chunking allowed us to put aside the details of the particular game — is it a card game,
or noughts and crosses, or a role playing game — and simply focus on one isolated part of our
program logic — letting the player choose whether they want to play again.

B wWw N

Chapter 7: Iteration 132

2. Dividing a long program into functions allows you to separate parts of the program, debug
them in isolation, and then compose them into a whole.

3. Functions facilitate the use of iteration.

4. Well-designed functions are often useful for many programs. Once you write and debug one,
you can reuse it.

7.21. Paired Data

We've already seen lists of names and lists of numbers in Python. We’re going to peek ahead in the
textbook a little, and show a more advanced way of representing our data. Making a pair of things
in Python is as simple as putting them into parentheses, like this:

year_born = ("Paris Hilton", 1981)
We can put many pairs into a list of pairs:

celebs = [("Brad Pitt", 1963), ("Jack Nicholson", 1937),
("Justin Bieber", 1994)]

Here is a quick sample of things we can do with structured data like this. First, print all the celebs:

print(celebs)

print(len(celebs))

[("Brad Pitt", 1963), ("Jack Nicholson", 1937), ("Justin Bieber", 1994)]
3

Notice that the celebs list has just 3 elements, each of them pairs.

Now we print the names of those celebrities born before 1980:

for (nm, yr) in celebs:
if yr < 1980:
print(nm)

Brad Pitt
Jack Nicholson

This demonstrates something we have not seen yet in the for loop: instead of using a single loop
control variable, we’ve used a pair of variable names, (nm, yr), instead. The loop is executed three
times — once for each pair in the list, and on each iteration both the variables are assigned values
from the pair of data that is being handled.

O O B W N

g b W N -

o I O O b W N =

Chapter 7: Iteration 133

7.22. Nested Loops for Nested Data

Now we’ll come up with an even more adventurous list of structured data. In this case, we have a
list of students. Each student has a name which is paired up with another list of subjects that they
are enrolled for:

students = [
("John", ["CompSci", "Physics"]),
("Vusi", ["Maths", "CompSci", "Stats"]),

("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),
("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

Here we've assigned a list of five elements to the variable students. Let’s print out each student
name, and the number of subjects they are enrolled for:

Print all students with a count of their courses.
for (name, subjects) in students:
print(name, "takes", len(subjects), "courses"

Python agreeably responds with the following output:

John takes 2 courses
Vusi takes 3 courses
Jess takes 4 courses
Sarah takes 4 courses
Zuki takes 5 courses

Now we’d like to ask how many students are taking CompSci. This needs a counter, and for each
student we need a second loop that tests each of the subjects in turn:

Count how many students are taking CompSci
counter = 0
for (name, subjects) in students:
for s in subjects: # A nested loop!
if s == "CompSci":
counter += 1

print("The number of students taking CompSci is", counter)

Chapter 7: Iteration 134

The number of students taking CompSci is 3

You should set up a list of your own data that interests you — perhaps a list of your CDs, each
containing a list of song titles on the CD, or a list of movie titles, each with a list of movie stars who
acted in the movie. You could then ask questions like “Which movies starred Angelina Jolie?”

7.23. Newton’s method for finding square roots

Loops are often used in programs that compute numerical results by starting with an approximate
answer and iteratively improving it.

For example, before we had calculators or computers, people needed to calculate square roots
manually. Newton used a particularly good method (there is some evidence that this method was
known many years before). Suppose that you want to know the square root of n. If you start with
almost any approximation, you can compute a better approximation (closer to the actual answer)
with the following formula:

better = (approx + n/approx)/2

Repeat this calculation a few times using your calculator. Can you see why each iteration brings your
estimate a little closer? One of the amazing properties of this particular algorithm is how quickly it
converges to an accurate answer — a great advantage for doing it manually.

By using a loop and repeating this formula until the better approximation gets close enough to the
previous one, we can write a function for computing the square root. (In fact, this is how your
calculator finds square roots — it may have a slightly different formula and method, but it is also
based on repeatedly improving its guesses.)

This is an example of an indefinite iteration problem: we cannot predict in advance how many times
we’ll want to improve our guess — we just want to keep getting closer and closer. Our stopping
condition for the loop will be when our old guess and our improved guess are “close enough” to
each other.

Ideally, we’d like the old and new guess to be exactly equal to each other when we stop. But exact
equality is a tricky notion in computer arithmetic when real numbers are involved. Because real
numbers are not represented absolutely accurately (after all, a number like pi or the square root
of two has an infinite number of decimal places because it is irrational), we need to formulate the
stopping test for the loop by asking “is a close enough to b*? This stopping condition can be coded
like this:

if abs(a-b) < 0.001: # Make this smaller for better accuracy
break

Notice that we take the absolute value of the difference between a and b!

This problem is also a good example of when a middle-exit loop is appropriate:

O© 00 I O O b W N =

1
1
12

]

Chapter 7: Iteration 135

def sqgrt(n):
approx = n/2.0 # Start with some or other guess at the answer
while True:
better = (approx + n/approx)/2.0
if abs(approx - better) < 0.001:
return better

approx = better

Test cases

print(sqrt(25.0))
print(sqrt(49.0))
print(sqrt(81.0))

The output is:

5. 00000000002
7.0
9.0

See if you can improve the approximations by changing the stopping condition. Also, step through
the algorithm (perhaps by hand, using your calculator) to see how many iterations were needed
before it achieved this level of accuracy for sqrt(25).

7.24. Algorithms

Newton’s method is an example of an algorithm: it is a mechanical process for solving a category of
problems (in this case, computing square roots).

Some kinds of knowledge are not algorithmic. For example, learning dates from history or your
multiplication tables involves memorization of specific solutions.

But the techniques you learned for addition with carrying, subtraction with borrowing, and long
division are all algorithms. Or if you are an avid Sudoku puzzle solver, you might have some specific
set of steps that you always follow.

One of the characteristics of algorithms is that they do not require any intelligence to carry out. They
are mechanical processes in which each step follows from the last according to a simple set of rules.
And they’re designed to solve a general class or category of problems, not just a single problem.

Understanding that hard problems can be solved by step-by-step algorithmic processes (and having
technology to execute these algorithms for us) is one of the major breakthroughs that has had
enormous benefits. So while the execution of the algorithm may be boring and may require no
intelligence, algorithmic or computational thinking — i.e. using algorithms and automation as the
basis for approaching problems — is rapidly transforming our society. Some claim that this shift

Chapter 7: Iteration 136

towards algorithmic thinking and processes is going to have even more impact on our society
than the invention of the printing press. And the process of designing algorithms is interesting,
intellectually challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought, are the hardest
to express algorithmically. Understanding natural language is a good example. We all do it, but so far
no one has been able to explain how we do it, at least not in the form of a step-by-step mechanical
algorithm.

7.25. Glossary

algorithm

A step-by-step process for solving a category of problems.
body

The statements inside a loop.

breakpoint

A place in your program code where program execution will pause (or break), allowing you to inspect
the state of the program’s variables, or single-step through individual statements, executing them
one at a time.

bump
Programmer slang. Synonym for increment.
continue statement

A statement that causes the remainder of the current iteration of a loop to be skipped. The flow
of execution goes back to the top of the loop, evaluates the condition, and if this is true the next
iteration of the loop will begin.

counter

A variable used to count something, usually initialized to zero and incremented in the body of a
loop.

cursor

An invisible marker that keeps track of where the next character will be printed.
decrement

Decrease by 1.

definite iteration

A loop where we have an upper bound on the number of times the body will be executed. Definite
iteration is usually best coded as a for loop.

Chapter 7: Iteration 137

development plan

A process for developing a program. In this chapter, we demonstrated a style of development based
on developing code to do simple, specific things and then encapsulating and generalizing.

encapsulate

To divide a large complex program into components (like functions) and isolate the components
from each other (by using local variables, for example).

€scape€ sequence

An escape character,\, followed by one or more printable characters used to designate a non printable
character.

generalize

To replace something unnecessarily specific (like a constant value) with something appropriately
general (like a variable or parameter). Generalization makes code more versatile, more likely to be
reused, and sometimes even easier to write.

increment

Both as a noun and as a verb, increment means to increase by 1.
infinite loop

A loop in which the terminating condition is never satisfied.
indefinite iteration

A loop where we just need to keep going until some condition is met. A while statement is used for
this case.

initialization (of a variable)

To initialize a variable is to give it an initial value. Since in Python, variables don’t exist until they
are assigned values, they are initialized when they are created. In other programming languages this
is not the case, and variables can be created without being initialized, in which case they have either
default or garbage values.

iteration
Repeated execution of a set of programming statements.
loop

The construct that allows allows us to repeatedly execute a statement or a group of statements until
a terminating condition is satisfied.

loop variable
A variable used as part of the terminating condition of a loop.

meta-notation

Chapter 7: Iteration 138

Extra symbols or notation that helps describe other notation. Here we introduced square brackets,
ellipses, italics, and bold as meta-notation to help describe optional, repeatable, substitutable and
fixed parts of the Python syntax.

middle-test loop

A loop that executes some of the body, then tests for the exit condition, and then may execute some
more of the body. We don’t have a special Python construct for this case, but can use while and
break together.

nested loop

A loop inside the body of another loop.

newline

A special character that causes the cursor to move to the beginning of the next line.
post-test loop

A loop that executes the body, then tests for the exit condition. We don’t have a special Python
construct for this, but can use while and break together.

pre-test loop
A loop that tests before deciding whether the execute its body. for and while are both pre-test loops.
single-step

A mode of interpreter execution where you are able to execute your program one step at a time,
and inspect the consequences of that step. Useful for debugging and building your internal mental
model of what is going on.

tab
A special character that causes the cursor to move to the next tab stop on the current line.
trichotomy

Given any real numbers a and b, exactly one of the following relations holds:a < b,a > b,ora ==
b. Thus when you can establish that two of the relations are false, you can assume the remaining
one is true.

trace

To follow the flow of execution of a program by hand, recording the change of state of the variables
and any output produced.

7.26. Exercises

This chapter showed us how to sum a list of items, and how to count items. The counting example
also had an i f statement that let us only count some selected items. In the previous chapter we also

Chapter 7: Iteration 139

showed a function find_first_2_letter_word that allowed us an “early exit” from inside a loop by
using return when some condition occurred. We now also have break to exit a loop but not the
enclosing function, and continue to abandon the current iteration of the loop without ending the
loop.

Composition of list traversal, summing, counting, testing conditions and early exit is a rich collection
of building blocks that can be combined in powerful ways to create many functions that are all

slightly different.

The first six questions are typical functions you should be able to write using only these building

blocks.

. Write a function to count how many odd numbers are in a list.

. Sum up all the even numbers in a list.

. Sum up all the negative numbers in a list.

. Count how many words in a list have length 5.

. Sum all the elements in a list up to but not including the first even number. (Write your unit

tests. What if there is no even number?)

6. Count how many words occur in a list up to and including the first occurrence of the word
“sam”. (Write your unit tests for this case too. What if “sam” does not occur?)

7. Add a print function to Newton’s sqrt function that prints out better each time it is calculated.
Call your modified function with 25 as an argument and record the results.

8. Trace the execution of the last version of print_mult_table and figure out how it works.

| I N O N S

9. Write a function print_triangular_numbers(n) that prints out the first n triangular numbers. A
call to print_triangular_numbers(5) would produce the following output:

1 1 1
2 2 3
3 3 6
4 4 10
5) 15

(hint: use a web search to find out what a triangular number is.)
10. Write a function, is_prime, which takes a single integer argument and returns True when the
argument is a prime number and False otherwise. Add tests for cases like this:

1 test(is_prime(11))
2 test(not is_prime(35))
3 test(is_prime(19911121))

The last case could represent your birth date. Were you born on a prime day? In a class of 100
students, how many do you think would have prime birth dates?

Chapter 7: Iteration 140

11.

12.

Revisit the drunk pirate problem from the exercises in chapter 3. This time, the drunk pirate
makes a turn, and then takes some steps forward, and repeats this. Our social science student
now records pairs of data: the angle of each turn, and the number of steps taken after the turn.
Her experimental data is [(160, 20), (-43, 10), (270, 8), (-43, 12)]. Use a turtle to draw the path
taken by our drunk friend.

Many interesting shapes can be drawn by the turtle by giving a list of pairs like we did above,
where the first item of the pair is the angle to turn, and the second item is the distance to move
forward. Set up a list of pairs so that the turtle draws a house with a cross through the centre,
as show here. This should be done without going over any of the lines / edges more than once,
and without lifting your pen.

13. Not all shapes like the one above can be drawn without lifting your pen, or going over an edge
more than once. Which of these can be drawn?

ARNRRGO&

Now read Wikipedia’s article (http://en.wikipedia.org/wiki/Eulerian_path) about Eulerian paths.
Learn how to tell immediately by inspection whether it is possible to find a solution or not. If the
path is possible, you’ll also know where to put your pen to start drawing, and where you should end

up!

14.

15.

What will num_digits(@) return? Modify it to return 1 for this case. Why does a call to num_-
digits(-24) result in an infinite loop? (hint: -1//10 evaluates to -1) Modify num_digits so that
it works correctly with any integer value. Add these tests:

test(num_digits(Q) == 1)
test(num_digits(-12345) == 5)

Write a function num_even_digits(n) that counts the number of even digits in n. These tests
should pass:

Chapter 7: Iteration 141

Bw N -

17.

© 00 N O O & W N =

N N = T O U N
N O O s W N~

test(num_even_digits(123456) == 3)
test(num_even_digits(2468) == 4)
test(num_even_digits(1357) == 0)
test(num_even_digits(0) == 1)

. Write a function sum_of_squares(xs) that computes the sum of the squares of the numbers in

the list xs. For example, sum_of_squares([2, 3, 4]) should return 4+9+16 which is 29:

test(sum_of_squares([2, 3, 4]) == 29)
test(sum_of_squares([]) == 0)
test(sum_of_squares([2, -3, 4]) == 29)

You and your friend are in a team to write a two-player game, human against computer, such
as Tic-Tac-Toe / Noughts and Crosses. Your friend will write the logic to play one round of
the game, while you will write the logic to allow many rounds of play, keep score, decide who
plays, first, etc. The two of you negotiate on how the two parts of the program will fit together,
and you come up with this simple scaffolding (which your friend will improve later):

Your friend will complete this function
def play_once(human_plays_first):
Must play one round of the game. If the parameter
is True, the human gets to play first, else the
computer gets to play first. When the round ends,
the return value of the function is one of
-1 (human wins), © (game drawn), 1 (computer wins).
This is all dummy scaffolding code right at the moment. ..
import random # See Modules chapter ...
rng = random.Random()
Pick a random result between -1 and 1.
result = rng.randrange(-1,2)
print("Human plays first={0}, winner={1} "
. format (human_plays_first, result))

return result

a. Write the main program which repeatedly calls this function to play the game, and after
each round it announces the outcome as “I win!”, “You win!”, or “Game drawn!”. It then
asks the player “Do you want to play again?” and either plays again, or says “Goodbye”,
and terminates.

b. Keep score of how many wins each player has had, and how many draws there have been.
After each round of play, also announce the scores.

c. Add logic so that the players take turns to play first.

d. Compute the percentage of wins for the human, out of all games played. Also announce
this at the end of each round.

Chapter 7: Iteration 142

e. Draw a flowchart of your logic.

W N

Chapter 8: Strings

8.1. A compound data type

So far we have seen built-in types like int, float, bool, str and we’ve seen lists and pairs. Strings,
lists, and pairs are qualitatively different from the others because

they are made up of smaller pieces. In the case of strings, they’re made up of smaller strings each
containing one character

Types that comprise smaller pieces are called compound data types. Depending on what we are
doing, we may want to treat a compound data type as a single thing, or we may want to
access its parts. This ambiguity is useful.

8.2. Working with strings as single things

We previously saw that each turtle instance has its own attributes and a number of methods that can
be applied to the instance. For example, we could set the turtle’s color, and we wrote tess.turn(90).

Just like a turtle, a string is also an object. So each string instance has its own attributes and methods.

For example:

>>> ss = "Hello, World!"
>>> tt = ss.upper()
55> tt

"HELLO, WORLD!'

upper is a method that can be invoked on any string object to create a new string, in which all the
characters are in uppercase. (The original string ss remains unchanged.)

There are also methods such as lower, capitalize, and swapcase that do other interesting stuff.

To learn what methods are available, you can consult the Help documentation, look for string
methods, and read the documentation. Or, if you're a bit lazier, simply type the following into a
PyScripter script:

When you type the period to select one of the methods of ss, PyScripter will pop up a selection
window showing all the methods (there are around 70 of them — thank goodness we’ll only use a
few of those!) that could be used on your string.

Chapter 8: Strings 144

=@pcenter
=fgpoount
=fpencode
= endswith
=pexpandtabs
-';';‘ ﬁl'ld

=4 format
=pindex
=4pisalrum
=4pisalpha
=fpisdecmal
= yisdigit
=dpisidentifier
=fpislower
=pisnumeric
=gpisprintable
=fpisspace
=gpistitle
={pisupper
=pjoin
=gpljust
=dplower
=@lstrip
=@maketrans
=gppartition
=@replace
=dgrfind
=fprindex
=fgrjust
=fgrpartition
=dpraplit
=irstrip
=4psplit

=@ splitines
=gpstartswith
=fpstrip

= swapcase
-';';‘ titlE
=fptranslate
=fpupper

.-:';‘ =il S

b

When you type the name of the method, some further help about its parameter and return type,
and its docstring, will be displayed. This is a good example of a tool — PyScripter — using the
meta-information — the docstrings — provided by the module programmers.

greet = "Hello, World"
xx= greet.swapcase(])

print(xx) ** NofUnknown parameters **
S.swapcase() -= str

Return a copy of 5 with uppercase characters converted to lowercase
and vice versa.

Chapter 8: Strings 145

8.3. Working with the parts of a string

The indexing operator (Python uses square brackets to enclose the index) selects a single character
substring from a string:

>>> fruit = "banana"
>>> m = fruit[1]
>>> print(m)

The expression fruit[1] selects character number 1 from fruit, and creates a new string containing
just this one character. The variable m refers to the result. When we display m, we could get a surprise:

Computer scientists always start counting from zero! The letter at subscript position zero of "banana"
is b. So at position [1] we have the letter a.

If we want to access the zero-eth letter of a string, we just place 0, or any expression that evaluates
to 0, inbetween the brackets:

>>> m = fruit[0]
>>> print(m)
b

The expression in brackets is called an index. An index specifies a member of an ordered collection,
in this case the collection of characters in the string. The index indicates which one you want, hence
the name. It can be any integer expression.

We can use enumerate to visualize the indices:

>>> fruit = "banana"
>>> list(enumerate(fruit))

[(e, 'b"), (1, 'a"), (2, 'n"), (8, 'a"), (4, 'n"), (5, 'a")]

Do not worry about enumerate at this point, we will see more of it in the chapter on lists.

Note that indexing returns a string — Python has no special type for a single character. It is just a
string of length 1.

We’ve also seen lists previously. The same indexing notation works to extract elements from a list:

O O B W N

Chapter 8: Strings 146

>>> prime_nums = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

>>> prime_nums[4]

11

>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
>>> friends[3]

"Angelina’

8.4. Length

The 1en function, when applied to a string, returns the number of characters in a string:

>>> fruit = "banana"
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

That won’t work. It causes the runtime error IndexError: string index out of range. The reason
is that there is no character at index position 6 in "banana". Because we start counting at zero, the
six indexes are numbered 0 to 5. To get the last character, we have to subtract 1 from the length of
fruit:

Alternatively, we can use negative indices, which count backward from the end of the string. The
expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so on.

As you might have guessed, indexing with a negative index also works like this for lists.

We won’t use negative indexes in the rest of these notes — not many computer languages use this
idiom, and you’ll probably be better oft avoiding it. But there is plenty of Python code out on the
Internet that will use this trick, so it is best to know that it exists.

8.5. Traversal and the for loop

A lot of computations involve processing a string one character at a time. Often they start at the
beginning, select each character in turn, do something to it, and continue until the end. This pattern
of processing is called a traversal. One way to encode a traversal is with a while statement:

This loop traverses the string and displays each letter on a line by itself. The loop condition is ix <
len(fruit), so when ix is equal to the length of the string, the condition is false, and the body of
the loop is not executed. The last character accessed is the one with the index 1en(fruit)-1, which
is the last character in the string.

But we’ve previously seen how the for loop can easily iterate over the elements in a list and it can
do so for strings as well:

o N O O b W N =

© 00 N O O b W N =

[N
o

Chapter 8: Strings 147

Each time through the loop, the next character in the string is assigned to the variable c. The loop
continues until no characters are left. Here we can see the expressive power the for loop gives us
compared to the while loop when traversing a string.

The following example shows how to use concatenation and a for loop to generate an abecedarian
series. Abecedarian refers to a series or list in which the elements appear in alphabetical order. For
example, in Robert McCloskey’s book Make Way for Ducklings, the names of the ducklings are Jack,
Kack, Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

The output of this program is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because Ouack and Quack are misspelled. You'll fix this as an exercise
below.

8.6. Slices

A substring of a string is obtained by taking a slice. Similarly, we can slice a list to refer to some
sublist of the items in the list:

>>> s = "Pirates of the Caribbean"

>>> print(s[0:7])

Pirates

>>> print(s[11:14])

the

>>> print(s[15:24])

Caribbean

>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]

>>> print(friends[2:4])
['Brad', 'Angelina']

The operator [n:m] returns the part of the string from the n’th character to the m’th character,
including the first but excluding the last. This behavior makes sense if you imagine the indices
pointing between the characters, as in the following diagram:

N O U s~ W N

Chapter 8: Strings 148

If you imagine this as a piece of paper, the slice operator [n:m] copies out the part of the paper
between the n and m positions. Provided m and n are both within the bounds of the string, your result
will be of length (m-n).

Three tricks are added to this: if you omit the first index (before the colon), the slice starts at the
beginning of the string (or list). If you omit the second index, the slice extends to the end of the
string (or list). Similarly, if you provide value for n that is bigger than the length of the string (or
list), the slice will take all the values up to the end. (It won’t give an “out of range” error like the
normal indexing operation does.) Thus:

>>> fruit = "banana"
>>> fruit[:3]

"ban’

>>> fruit[3:]

'ana'

>>> fruit[3:999]

ana

What do you think s[:] means? What about friends[4:]?

8.7. String comparison

The comparison operators work on strings. To see if two strings are equal:
Other comparison operations are useful for putting words in lexicographical order:

This is similar to the alphabetical order you would use with a dictionary, except that all the uppercase
letters come before all the lowercase letters. As a result:

o N O O b W N =

Chapter 8: Strings 149

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as all
lowercase, before performing the comparison. A more difficult problem is making the program
realize that zebras are not fruit.

8.8. Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the intention of changing
a character in a string. For example:

Instead of producing the output Jello, world!, this code produces the runtime error TypeError:

str' object does not support item assignment.

Strings are immutable, which means you can’t change an existing string. The best you can do is
create a new string that is a variation on the original:

The solution here is to concatenate a new first letter onto a slice of greeting. This operation has no
effect on the original string.

8.9. The in and not in operators

The in operator tests for membership. When both of the arguments to in are strings, in checks
whether the left argument is a substring of the right argument.

>>> "p" in "apple"
True
>>> "i" in "apple"
False
>>> "ap" in "apple"
True
>>> "pa" in "apple"

False

Note that a string is a substring of itself, and the empty string is a substring of any other string. (Also
note that computer scientists like to think about these edge cases quite carefully!)

o N O O b W N =

© 00 N O O b W N =

N
)

© 0O N O O & W N =

Chapter 8: Strings

non

35> nau in a

True

>>> "apple" in "apple"

True

>>> "" in "a"
True

>>> "" in "apple"
True

The not in operator returns the logical opposite results of in:

>>> "x" not in "apple"

True

150

Combining the in operator with string concatenation using +, we can write a function that removes

all the vowels from a string:

def remove_vowels(s):
vowels = "aeiouAEIOU"

s_sans_vowels = ""

for x in s:

if x not in vowels:
s_sans_vowels += x

return s_sans_vowels

test(remove_vowels("compsci") == "cmpsc")
test(remove_vowels("aAbEefIijOopUus") == "bfjps")

8.10. A find function

What does the following function do?

def find(strng, ch):

mn

Find and return the index of ch in strng.
Return -1 if ch does not occur in strng.

mn

ix =0

while ix < len(strng):
if strng[ix] == ch:

return ix

10
11
12
13
14
15
16

o N O O b W N =

Chapter 8: Strings 151

ix += 1

return -1

test(find("Compsci”, "p") == 3)
test(find("Compsci", "C") == 0)
test(find("Compsci", "i") == 6)
test(find("Compsci", "x") == -1)

In a sense, find is the opposite of the indexing operator. Instead of taking an index and extracting
the corresponding character, it takes a character and finds the index where that character appears.
If the character is not found, the function returns -1.

This is another example where we see a return statement inside a loop. If strng[ix] == ch, the
function returns immediately, breaking out of the loop prematurely.

If the character doesn’t appear in the string, then the program exits the loop normally and returns
-1.

This pattern of computation is sometimes called a eureka traversal or short-circuit evaluation,
because as soon as we find what we are looking for, we can cry “Eureka!”, take the short-circuit, and
stop looking.

8.11. Looping and counting

The following program counts the number of times the letter a appears in a string, and is another
example of the counter pattern introduced in counting.

def count_a(text):
count = @
for ¢ in text:
if ¢ == "a":
count += 1
return(count)

test(count_a("banana") == 3)

8.12. Optional parameters

To find the locations of the second or third occurrence of a character in a string, we can modify the
find function, adding a third parameter for the starting position in the search string:

=~ O O b W N =

© 00 N O O & W N =

Chapter 8: Strings 152

def find2(strng, ch, start):
ix = start
while ix < len(strng):
if strng[ix] == ch:
return ix
ix += 1

return -1
test(find2("banana", "a", 2) == 3)

The call find2("banana", "a", 2) now returns 3, the index of the first occurrence of “a” in “banana”
starting the search at index 2. What does find2("banana", "n", 3) return? If you said, 4, there is a
good chance you understand how find2 works.

Better still, we can combine find and find2 using an optional parameter:

def find(strng, ch, start=0):
ix = start
while ix < len(strng):
if strng[ix] == ch:
return ix
ix += 1

return -1

When a function has an optional parameter, the caller may provide a matching argument. If the third
argument is provided to find, it gets assigned to start. But if the caller leaves the argument out,
then start is given a default value indicated by the assignment start=0 in the function definition.

So the call find("banana", "a", 2) to this version of find behaves just like find2, while in the call
find("banana", "a"), start will be set to the default value of 0.

Adding another optional parameter to find makes it search from a starting position, up to but not
including the end position:

def find(strng, ch, start=0, end=None):
ix = start
if end is None:
end = len(strng)

while ix < end:

if strng[ix] == ch:

return ix
ix += 1

return -1

O O B W N

W N

Chapter 8: Strings 153

The optional value for end is interesting: we give it a default value None if the caller does not supply
any argument. In the body of the function we test what end is, and if the caller did not supply any
argument, we reassign end to be the length of the string. If the caller has supplied an argument for
end, however, the caller’s value will be used in the loop.

The semantics of start and end in this function are precisely the same as they are in the range
function.

Here are some test cases that should pass:

ss = "Python strings have some interesting methods."
test(find(ss, "s") == T7)

test(find(ss, "s", T7) == T7)

test(find(ss, "s", 8) == 13)

test(find(ss, "s", 8, 13) == -1)

test(find(ss, ".") == len(ss)-1)

8.13. The built-in find method

Now that we’ve done all this work to write a powerful find function, we can reveal that strings
already have their own built-in find method. It can do everything that our code can do, and more!

The built-in find method is more general than our version. It can find substrings, not just single
characters:

>>> "banana".find("nan")
>>> "banana".find("na", 3)
4

Usually we’d prefer to use the methods that Python provides rather than reinvent our own
equivalents. But many of the built-in functions and methods make good teaching exercises, and
the underlying techniques you learn are your building blocks to becoming a proficient programmer.

8.14. The sp1it method

One of the most useful methods on strings is the split method: it splits a single multi-word string
into a list of individual words, removing all the whitespace between them. (Whitespace means any
tabs, newlines, or spaces.) This allows us to read input as a single string, and split it into words.

Bw N

o I O O b W N =

© 00 N O O b W N =

[==Y
w N =~

Chapter 8: Strings 154

>>> ss = "Well I never did said Alice"
>>> wds = ss.split()
>>> wds

['Well', 'I', 'never', 'did', 'said', 'Alice']

8.15. Cleaning up your strings

We'll often work with strings that contain punctuation, or tab and newline characters, especially,
as we'll see in a future chapter, when we read our text from files or from the Internet. But if we're
writing a program, say, to count word frequencies or check the spelling of each word, we’d prefer
to strip off these unwanted characters.

We’ll show just one example of how to strip punctuation from a string. Remember that strings are
immutable, so we cannot change the string with the punctuation — we need to traverse the original
string and create a new string, omitting any punctuation:

punctuation = "IN"#$%&' ()*+, - ./, <=>20[\\]A_"{|}~"

def remove_punctuation(s):
s_sans_punct = ""
for letter in s:
if letter not in punctuation:
s_sans_punct += letter

return s_sans_punct

Setting up that first assignment is messy and error-prone. Fortunately, the Python string module
already does it for us. So we will make a slight improvement to this program — we’ll import the
string module and use its definition:

import string

def remove_punctuation(s):
s_without_punct = ""
for letter in s:
if letter not in string.punctuation:
s_without_punct += letter
return s_without_punct

test(remove_punctuation('"Well, I never did!", said Alice.') ==
"Well I never did said Alice")
test(remove_punctuation("Are you very, very, sure?") ==

"Are you very very sure")

© 00 N O O & W N =

SN
N =~ O

© 00 N O O b W N =

=Y
N O

Chapter 8: Strings 155

Composing together this function and the split method from the previous section makes a useful
combination — we’ll clean out the punctuation, and split will clean out the newlines and tabs while
turning the string into a list of words:

my_story = """

Pythons are constrictors, which means that they will 'squeeze' the life
out of their prey. They coil themselves around their prey and with

each breath the creature takes the snake will squeeze a little tighter
until they stop breathing completely. Once the heart stops the prey

is swallowed whole. The entire animal is digested in the snake's

stomach except for fur or feathers. What do you think happens to the fur,
feathers, beaks, and eggshells? The 'extra stuff' gets passed out as ---

nnn

you guessed it --- snake POOP!

wds = remove_punctuation(my_story).split()
print(wds)

The output:

1

['"Pythons', 'are', 'constrictors', ... , 'it', 'snake', 'POOP']

There are other useful string methods, but this book isn’t intended to be a reference manual. On
the other hand, the Python Library Reference is. Along with a wealth of other documentation, it is
available at the Python website’.

8.16. The string format method

The easiest and most powerful way to format a string in Python 3 is to use the format method. To
see how this works, let’s start with a few examples:

s1 = "His name is {@}!".format("Arthur")

print(s1)

name = "Alice"

age = 10

s2 = "I am {1} and I am {0} years old.".format(age, name)
print(s2)

nl = 4

n2 =5

s3 = "2%%10 = {0} and {1} * {2} = {3:f}". format(2**10, ni1, n2, ni * n2)
print(s3)

*https://www.python.org/

https://www.python.org/
https://www.python.org/

-
© © 0 N O O & W N =

W N

Chapter 8: Strings 156

Running the script produces:

His name is Arthur!
I am Alice and I am 10 years old.
2*%*1Q = 1024 and 4 * 5 = 20.000000

The template string contains place holders, ... {0} ... {1} ... {2} ... etc. The format method
substitutes its arguments into the place holders. The numbers in the place holders are indexes that
determine which argument gets substituted — make sure you understand line 6 above!

But there’s more! Each of the replacement fields can also contain a format specification — it is
always introduced by the : symbol (Line 11 above uses one.) This modifies how the substitutions
are made into the template, and can control things like:

« whether the field is aligned to the left <, center *, or right >

« the width allocated to the field within the result string (a number like 10)

« the type of conversion (we’ll initially only force conversion to float, f, as we did in line 11 of
the code above, or perhaps we’ll ask integer numbers to be converted to hexadecimal using x)

- if the type conversion is a float, you can also specify how many decimal places are wanted
(typically, .2f is useful for working with currencies to two decimal places.)

Let’s do a few simple and common examples that should be enough for most needs. If you need to
do anything more esoteric, use help and read all the powerful, gory details.

nl = "Paris"
n2 = "Whitney"
n3 = "Hilton"

print("Pi to three decimal places is {0:.3f}".format(3.1415926))
print("123456789 123456789 123456789 123456789 123456789 123456789")
print("[[1{@:<15}[|[{1:75}|[]1{2:>15}||[Born in {3}[I["
.format(n1,n2,n3,1981))
print("The decimal value {@} converts to hex value {0:x}"
.format (123456))

This script produces the output:

Pi to three decimal places is 3.142

123456789 123456789 123456789 123456789 123456789 123456789

|| |Paris [1] Whitney [] Hilton| | |Born in 1981|| |
The decimal value 123456 converts to hex value 1e240

You can have multiple placeholders indexing the same argument, or perhaps even have extra
arguments that are not referenced at all:

O© 00 I O O b W N =

© 00 1 O O b W N =

-
W N N

W N e

Chapter 8: Strings

letter = """
Dear {0} {2}.
{0}, I have an interesting money-making proposition for you!
If you deposit $10 million into my bank account, I can
double your money ...

nmun

print(letter. format("Paris", "Whitney", "Hilton"))
print(letter.format("Bill", "Henry", "Gates"))

This produces the following:

Dear Paris Hilton.

Paris, I have an interesting money-making proposition for you!
If you deposit $10 million into my bank account, I can

double your money ...

Dear Bill Gates.

Bill, I have an interesting money-making proposition for you!
If you deposit $10 million into my bank account I can

double your money ...

157

As you might expect, you'll get an index error if your placeholders refer to arguments that you do

not provide:

>>> "hello {3}".format("Dave")
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

IndexError: tuple index out of range

The following example illustrates the real utility of string formatting. First, we’ll try to print a table

without using string formatting:

print("i\ti**2\ti**3\ti**5\ti**10\ti**20")
for i in range(1, 11):
print(i, "\t", i**¥2, "\t", i¥*3, "\t", i**5, "\t",
i¥¥10, "\t", i**20)

This program prints out a table of various powers of the numbers from 1 to 10. (This assumes that
the tab width is 8. You might see something even worse than this if you tab width is set to 4.) In its
current form it relies on the tab character (\t) to align the columns of values, but this breaks down

when the values in the table get larger than the tab width:

© 00 =N O O & W N =~

(SN
= o

g b W N

O© 00 N O O b W N =~

NN
= o

Chapter 8: Strings 158

i k%2 1%%3 i**5 1+*+10 1**20

1 1 1 1 1 1

2 4 8 32 1024 1048576

3 9 27 243 59049 3486784401

4 16 64 1024 1048576 1099511627776

) 25 125 3125 9765625 95367431640625

6 36 216 7776 60466176 3656158440062976

T 49 343 16807 282475249 79792266297612001

8 64 512 32768 1073741824 1152921504606846976
9 81 729 59049 3486784401 12157665459056928801
10 100 1000 100000 100000V 1000000000V

One possible solution would be to change the tab width, but the first column already has more space
than it needs. The best solution would be to set the width of each column independently. As you may
have guessed by now, string formatting provides a much nicer solution. We can also right-justify

each field:

layout = "{@:>4}{1:>6}{2:>6}{3:>8}{4:>13}{5:>24}"
print(layout. format("i", "i%k2", "ikk3", Tikk5" ikx4Q", "i%k20"))
for i in range(1, 11):

print(layout.format(i, i**2, i**3, i**5, i**10, i*%20))

Running this version produces the following (much more satisfying) output:

1 i#k2 1k%3 k%5 1+%10 1#%20
1 1 1 1 1
2 4 8 32 1024 1048576
3 9 27 243 59049 3486784401
4 16 64 1024 1048576 1099511627776
) 25 125 3125 9765625 95367431640625
6 36 216 7776 60466176 3656158440062976
7 49 343 16807 282475249 79792266297612001
8 64 512 32768 1073741824 1152921504606846976
9 81 729 59049 3486784401 12157665459056928801

10 100 1000 100000 10000VVVVY 100VVVVVVYYLVVYVYVVVVYD

8.17. Summary

This chapter introduced a lot of new ideas. The following summary may prove helpful in remem-
bering what you learned.

Chapter 8: Strings 159

indexing ([1)
Access a single character in a string using its position (starting from
0). Example: "This" [2] evaluates to "i".

length function (1en)
Returns the number of characters in a string. Example:
len("happy") evaluates to 5.

for loop traversal (for)
Traversing a string means accessing each character in the string, one
at a time. For example, the following for loop:

for ch in "Example":

executes the body of the loop 7 times with different values of ch each time.

slicing ([:])
A slice is a substring of a string. Example: 'bananas and cream'[3:6] evaluates to ana (so does

'bananas and cream'[1:4]).

string comparison (>, <, >=, <=, ==, I=

The six common comparison operators work with strings, evaluating according to
lexicographical order. Examples:

"apple" < "banana" evaluates to True. "Zeta" < "Appricot"

evaluates to False. "Zebra" <= "aardvark" evaluates to

True because all upper case letters precede lower case letters.

in and not in operator (in, not in)

The in operator tests for membership. In the case of

strings, it tests whether one string is contained inside another

string. Examples: "heck" in "I'll be checking for you."

evaluates to True. "cheese" in "I'll be checking for you." evaluates to False.

8.18. Glossary

compound data type
A data type in which the values are made up of components, or elements, that are themselves values.

default value
The value given to an optional parameter if no argument for it is
provided in the function call.

docstring
A string constant on the first line of a function or module definition
(and as we will see later, in class and method definitions as well).

Chapter 8: Strings 160

Docstrings provide a convenient way to associate documentation with
code. Docstrings are also used by programming tools to provide interactive help.

dot notation
Use of the dot operator, ., to access methods and attributes of an object.

immutable data value
A data value which cannot be modified. Assignments to elements or
slices (sub-parts) of immutable values cause a runtime error.

index
A variable or value used to select a member of an ordered collection, such as
a character from a string, or an element from a list.

mutable data value

A data value which can be modified. The types of all mutable values
are compound types. Lists and dictionaries are mutable; strings

and tuples are not.

optional parameter

A parameter written in a function header with an assignment to a
default value which it will receive if no corresponding argument is
given for it in the function call.

short-circuit evaluation

A style of programming that shortcuts extra work as soon as the
outcome is know with certainty. In this chapter our find
function returned as soon as it found what it was looking for; it
didn’t traverse all the rest of the items in the string.

slice

A part of a string (substring) specified by a range of indices. More
generally, a subsequence of any sequence type in Python can be created
using the slice operator (sequence[start:stop]).

traverse
To iterate through the elements of a collection, performing a similar
operation on each.

whitespace

Any of the characters that move the cursor without printing visible
characters. The constant string.whitespace contains all the
white-space characters.

8.19. Exercises

We suggest you create a single file containing the test scaffolding from our previous chapters, and
put all functions that require tests into that file.

a W N © 00 N O O & W N =

O O b W N =

Chapter 8: Strings

1. What is the result of each of the following:

>>> "Python"[1]

>>> "Strings are sequences of characters."[5]
>>> len("wonderful")

>>> "Mystery"[:4]

>>> "p" in "Pineapple"

>>> "apple" in "Pineapple"

>>> "pear" not in "Pineapple"

>>> "apple" > "pineapple"

>>> "pineapple" < "Peach"

2. Modity:

prefixes = "JKLMNOPQ"

suffix = "ack"

for letter in prefixes:

print(letter + suffix)

so that Ouack and Quack are spelled correctly.

3. Encapsulate

fruit = "banana"

count = 0

for char in fruit:

"o,

if char == "a
count += 1

print(count)

161

in a function named count_letters, and generalize it so that it accepts the string and the letter as
arguments. Make the function return the number of characters, rather than print the answer. The
caller should do the printing.

4. Now rewrite the count_letters function so that instead of traversing the string, it repeatedly
calls the find method, with the optional third parameter to locate new occurrences of the letter

being counted.

. Assign to a variable in your program a triple-quoted string that contains your favourite

paragraph of text — perhaps a poem, a speech, instructions to bake a cake, some inspirational

verses, etc.

Write a function which removes all punctuation from the string, breaks the string into a list of
words, and counts the number of words in your text that contain the letter “e”. Your program

should print an analysis of the text like this:

O 0 =N O O & W N =~

== U N
W N o

W N

W N

Chapter 8: Strings

Your text contains 243 words, of which 109 (44.8%) contain an "e".

6. Print a neat looking multiplication table like this:

12 16 20 24
15 20 25 30
12 18 24 30 36
14 21 28 35 42
16 24 32 40 48
18 27 36 45 54
30 40 50 60
11 22 33 44 55 66
12: 12 24 36 48 60 72

© 00 39 O O b W N -~
©O© 00 N O O b» W N =
-
S

NN
= o
-
(]
N
(]

7. Write a function that reverses its string argument, and satisfies these tests:

test(reverse("happy") == "yppah")
test(reverse("Python") == "nohtyP")
test(reverse("") == "")
test(reverse("a") == "a")

72 81

90

99

80 90 100 110
88 99 110 121
96 108 120 132

8. Write a function that mirrors its argument:

test(mirror("good") == "gooddoog")
test(mirror("Python") == "PythonnohtyP")
test(mirror("") == "")

test(mirror("a") == "aa")

9. Write a function that removes all occurrences of a given letter from a string:

96
108
120
132
144

162

<N O O s~ W N O O B W N

O O B W N =

W N

Chapter 8: Strings 163

test(remove_letter("a", "apple") == "pple")
test(remove_letter("a", "banana") == "bnn")
test(remove_letter("z", "banana") == "banana")
test(remove_letter("i", "Mississippi") == "Msssspp")
test(remove_letter("b", "") = "")
test(remove_letter("b", "c") = "c"

10. Write a function that recognizes palindromes. (Hint: use your reverse function to make this
easy!):

test(is_palindrome("abba"))

test(not is_palindrome("abab"))

test(is_palindrome("tenet"))

test(not is_palindrome("banana"))

test(is_palindrome("straw warts"))

test(is_palindrome("a"))

test(is_palindrome("")) # s an empty string a palindrome?

11. Write a function that counts how many times a substring occurs in a string:

test(count("is", "Mississippi") == 2)
test(count("an", "banana") == 2)
test(count("ana", "banana") == 2)
test(count("nana", "banana") == 1)
test(count("nanan", "banana") == 0)
test(count("aaa", "aaaaaa") == 4)

12. Write a function that removes the first occurrence of a string from another string:

test(remove("an", "banana") == "bana")
test(remove("cyc", "bicycle") == "bile")
test(remove("iss", "Mississippi") == "Missippi")
test(remove("eggs", "bicycle") == "bicycle")

13. Write a function that removes all occurrences of a string from another string:

Bw N

Chapter 8: Strings

test(remove_all("an", "banana") == "ba")
test(remove_all("cyc", "bicycle") == "bile")
test(remove_all("iss", "Mississippi") == "Mippi")

test(remove_all("eggs", "bicycle") == "bicycle")

164

Chapter 9: Tuples

9.1. Tuples are used for grouping data

We saw earlier that we could group together pairs of values by surrounding with parentheses. Recall
this example:

>>> year_born = ("Paris Hilton", 1981)

This is an example of a data structure - a mechanism for grouping and organizing data to make it
easier to use.

The pair is an example of a tuple. Generalizing this, a tuple can be used to group any number of
items into a single compound value. Syntactically, a tuple is a comma-separated sequence of values.
Although it is not necessary, it is conventional to enclose tuples in parentheses:

>>> julia = ("Julia", "Roberts", 1967, "Duplicity", 2009, "Actress", "Atlanta, Georg\

sn

ia")

Tuples are useful for representing what other languages often call records -some related information
that belongs together, like your student record. There is no description of what each of these fields
means, but we can guess. A tuple lets us “chunk” together related information and use it as a single
thing.

Tuples support the same sequence operations as strings. The index operator selects an element from
a tuple.

>>> julia[2]
1967

But if we try to use item assignment to modify one of the elements of the tuple, we get an error:

>>> julia[@] = "X"
TypeError: 'tuple' object does not support item assignment

So like strings, tuples are immutable. Once Python has created a tuple in memory, it cannot be
changed.

Of course, even if we can’t modify the elements of a tuple, we can always make the julia variable
reference a new tuple holding different information. To construct the new tuple, it is convenient that
we can slice parts of the old tuple and join up the bits to make the new tuple. So if julia has a new
recent film, we could change her variable to

reference a new tuple that used some information from the old one:

O O B W N -

Chapter 9: Tuples 166

>>> julia = julia[:3] + ("Eat Pray Love", 2010) + julia[5:]
>>> julia
("Julia", "Roberts", 1967, "Eat Pray Love", 2010, "Actress", "Atlanta, Georgia")

To create a tuple with a single element (but you’re probably not likely to do that too often), we have
to include the final comma, because without the final comma, Python treats the (5) below as an
integer in parentheses:

>>> tup = (5,)
>>> type(tup)
<class 'tuple'>
>>> x = (5)

>>> type(x)
<class 'int'>

9.2. Tuple assignment

Python has a very powerful tuple assignment feature that allows a tuple of variables on the left of
an assignment to be assigned values from a tuple on the right of the assignment. (We already saw
this used for pairs, but it generalizes.)

(name, surname, b_year, movie, m_year, profession, b_place) = julia

This does the equivalent of seven assignment statements, all on one easy line. One requirement is
that the number of variables on the left must match the number of elements in the tuple.

One way to think of tuple assignment is as tuple packing/unpacking.

In tuple packing, the values on the left are "packed’ together in a tuple:
>>> b = ("Bob", 19, "CS") # tuple packing

In tuple unpacking, the values in a tuple on the right are "unpacked’ into the variables/names on the
left:

o N O O b W N =

Chapter 9: Tuples 167

>>> b = ("Bob", 19, "CS")

>>> (name, age, studies) = b # tuple unpacking
22> name

'Bob'

>>> age

19

>>> studies

oS

Once in a while, it is useful to swap the values of two variables. With conventional assignment
statements, we have to use a temporary variable. For example, to swap a and b:

temp = a
a=»b
b = temp

Tuple assignment solves this problem neatly:
(a, b) = (b, a)

The left side is a tuple of variables; the right side is a tuple of values. Each value is assigned to its
respective variable. All the expressions on the right side are evaluated before any of the assignments.
This feature makes tuple assignment quite versatile.

Naturally, the number of variables on the left and the number of values on the right have to be the
same:

>>> (a, b, ¢, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack

9.3. Tuples as return values

Functions can always only return a single value, but by making that value a tuple, we can effectively
group together as many values as we like, and return them together. This is very useful - we often
want to know some batsman’s highest and lowest score, or we want to find the mean and the
standard deviation, or we want to know the year, the month,

and the day, or if we're doing some some ecological modelling we may want to know the number
of rabbits and the number of wolves on an island at a given time.

For example, we could write a function that returns both the area and the circumference of a circle
of radius r:

a b W N -

Chapter 9: Tuples 168

def f(r):

mn mn

Return (circumference, area) of a circle of radius r
2 * math.pi * r

math.pi * r * r

C

a
return (c, a)

9.4. Composability of Data Structures

We saw in an earlier chapter that we could make a list of pairs, and we had an example where one
of the items in the tuple was itself a list:

students = |
("John", ["CompSci", "Physics"]),
("Vusi", ["Maths", "CompSci", "Stats"]),
("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),
("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

Tuples items can themselves be other tuples. For example, we could improve the information about
our movie stars to hold the full date of birth rather than just the year, and we could have a list of
some of her movies and dates that they were made, and so on:

julia_more_info = (("Julia", "Roberts"), (8, "October", 1967),
"Actress", ("Atlanta", "Georgia"),
[("Duplicity", 2009),
("Notting Hill", 1999),
("Pretty Woman", 1990),
("Erin Brockovich", 2000),
("Eat Pray Love", 2010),
("Mona Lisa Smile", 2003),
("Oceans Twelve", 2004)])

Notice in this case that the tuple has just five elements - but each of those in turn can be another tuple,
a list, a string, or any other kind of Python value. This property is known as being heterogeneous,
meaning that it can be composed of elements of different types.

9.5. Glossary

data structure
An organization of data for the purpose of making it easier to use.

Chapter 9: Tuples 169

immutable data value
A data value which cannot be modified. Assignments to elements or
slices (sub-parts) of immutable values cause a runtime error.

mutable data value

A data value which can be modified. The types of all mutable values
are compound types. Lists and dictionaries are mutable; strings

and tuples are not.

tuple

An immutable data value that contains related elements. Tuples are used
to group together related data, such as a person’s name, their age,

and their gender.

tuple assignment

An assignment to all of the elements in a tuple using a single

assignment statement. Tuple assignment occurs simultaneously rather than
in sequence, making it useful for swapping values.

9.6. Exercises

1. We've said nothing in this chapter about whether you can pass tuples as arguments to a function.
Construct a small Python example to test whether this is possible, and write up your findings.

2. Is a pair a generalization of a tuple, or is a tuple a generalization of a pair?

3. Is a pair a kind of tuple, or is a tuple a kind of pair?

© 00 N O O & W N =

NN N N S R R N L Ly s s
W N O © 0N 0O O b Ww N =~ O

Chapter 10: Event handling

10.1. Event-driven programming

Most programs and devices like a cellphone respond to events — things that happen. For example, you
might move your mouse, and the computer responds. Or you click a button, and the program does
something interesting. In this chapter we’ll touch very briefly on how event-driven programming
works.

10.2. Keypress events

Here’s a program with some new features. Copy it into your workspace, run it. When the turtle
window opens, press the arrow keys and make tess move about!

import turtle

turtle.setup(400,500) # Determine the window size

wn = turtle.Screen() # Cet a reference to the window
wn.title("Handling keypresses!") # Change the window title
wn.bgcolor("lightgreen") # Set the background color

tess = turtle.Turtle() # Create our favorite turtle

The next four functions are our "event handlers".
def h1():
tess. forward(30)

def h2():
tess.left(45)

def h3():
tess.right(45)

def ha():
wn.bye() # Close down the turtle window

These lines "wire up" keypresses to the handlers we've defined.

wn.onkey(h1, "Up")

24
25
26
27
28
29
30
31
32

© 00 N O O & W N =

SN
N =~ O

Chapter 10: Event handling 171

wn.onkey(h2, "Left")
wn.onkey(h3, "Right")
wn.onkey(h4, "gq")

Now we need to tell the window to start listening for events,
If any of the keys that we're monitoring is pressed, its

handler will be called.

wn.listen()

wn.mainloop()

Here are some points to note:

- We need the call to the window’s 1 isten method at line 31, otherwise it won’t notice our keypresses.
- We named our handler functions h1, h2 and so on, but we can choose better names. The handlers
can be arbitrarily complex functions that call other functions, etc.

- Pressing the q key on the keyboard calls function h4 (because we bound the q key to h4 on line 26).
While executing h4, the window’s bye method (line 20) closes the turtle window, which causes the
window’s mainloop call (line 31) to end its execution. Since we did not write any more statements
after line 32, this means that our program has completed everything, so it too will terminate.

- We can refer to keys on the keyboard by their character code (as we did in line 26), or by their
symbolic names. Some of the symbolic names to try are Cancel (the Break key), BackSpace, Tab,
Return(the Enter key), Shift_L (any Shift key), Control_L (any Control key), Alt_L (any Alt key),
Pause, Caps_Lock, Escape, Prior (Page Up), Next (Page Down), End, Home, Left, Up, Right, Down,
Print, Insert, Delete, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Num_Lock, and Scroll Lock.

10.3. Mouse events

A mouse event is a bit different from a keypress event because its handler needs two parameters to
receive X,y coordinate information telling us where the mouse was when the event occurred.

import turtle

turtle.setup(400,500)
wn = turtle.Screen()
wn.title("How to handle mouse clicks on the window!")

wn.bgcolor("lightgreen")

tess = turtle.Turtle()
tess.color("purple")
tess.pensize(3)

tess.shape('circle")

13
14
15
16
17

© 00 N O O b W N =

T = = =
0 N O O b W N =~ O

Chapter 10: Event handling 172

def hi(x, y):
tess.goto(x, vy)

wn.onclick(h1l) # Wire up a click on the window.
wn.mainloop()

There is a new turtle method used at line 14 - this allows us to move the turtle to an absolute
coordinate position. (Most of the examples that we’ve seen so far move the turtle relative to where it
currently is). So what this program does is move the turtle (and draw a line) to wherever the mouse
is clicked. Try it out!

If we add this line before line 14, we’ll learn a useful debugging trick too:
wn.title("Got click at coords {0}, {1}".format(x, y))

Because we can easily change the text in the window’s title bar, it is a useful place to display
occasional debugging or status information. (Of course, this is not the real purpose of the window
title!)

But there is more!

Not only can the window receive mouse events: individual turtles can also have their own handlers
for mouse clicks. The turtle that “receives” the click event will be the one under the mouse. So we’ll
create two turtles. Each will bind a handler to its own onclick event. And the two handlers can do
different things for their turtles.

import turtle
turtle.setup(400,500) Determine the window size
wn = turtle.Screen() Get a reference to the window
wn.title("Handling mouse clicks!") Change the window title
wn.bgcolor("lightgreen")
tess = turtle.Turtle()
tess.color("purple")
alex = turtle.Turtle()
alex.color("blue")

alex. forward(100)

Set the background color

¥ O# O #

Create two turtles

#

Move them apart

def handler_for_tess(x, y):
wn.title("Tess clicked at {@}, {1}".format(x, y))
tess.left(42)
tess. forward(30)

def handler_for_alex(x, y):

19
20
21
22
23
24
25
26

© 00 N O O & W N =

N N = U=
G4 0 O R W N RO

Chapter 10: Event handling 173

wn.title("Alex clicked at {0}, {1}".format(x, y))
alex.right(84)
alex. forward(50)

tess.onclick(handler_for_tess)
alex.onclick(handler_for_alex)

wn.mainloop()

Run this, click on the turtles, see what happens!

10.4. Automatic events from a timer

Alarm clocks, kitchen timers, and thermonuclear bombs in James Bond movies are set to create an
“automatic” event after a certain interval. The turtle module in Python has a timer that can cause
an event when its time is up.

import turtle

turtle.setup(400,500)
wn = turtle.Screen()
wn.title("Using a timer")
wn.bgcolor("lightgreen")

tess = turtle.Turtle()
tess.color("purple")
tess.pensize(3)

def h1():
tess. forward(100)
tess.left(56)

wn.ontimer(h1l, 2000)

wn.mainloop()

On line 16 the timer is started and set to explode in 2000 milliseconds (2 seconds). When the event
does occur, the handler is called, and tess springs into action.

Unfortunately, when one sets a timer, it only goes off once. So a common idiom, or style, is to restart
the timer inside the handler. In this way the timer will keep on giving new events. Try this program:

O© 00 I O O b W N =

T O SN
N O O 0N~

Chapter 10: Event handling 174

import turtle

turtle.setup(400,500)

wn = turtle.Screen()

wn.title("Using a timer to get events!")
wn.bgcolor("lightgreen")

tess = turtle.Turtle()
tess.color("purple")

def h1():
tess. forward(100)
tess.left(56)
wn.ontimer(h1, 60)

h1()
wn.mainloop()

10.5. An example: state machines

A state machine is a system that can be in one of a few different states. We draw a state diagram
to represent the machine, where each state is drawn as a circle or an ellipse. Certain events occur
which cause the system to leave one state and transition into a different state. These state transitions
are usually drawn as an arrow on the diagram.

This idea is not new: when first turning on a cellphone, it goes into a state which we could call
“Awaiting PIN”. When the correct PIN is entered, it transitions into a different state — say “Ready”.
Then we could lock the phone, and it would enter a “Locked” state, and so on.

A simple state machine that we encounter often is a traffic light. Here is a state diagram which
shows that the machine continually cycles through three different states, which we’ve numbered 0,
1and 2.

O© 00 N9 O U b W N =~

I = S =N
B W N,

Chapter 10: Event handling 175

—

We’re going to build a program that uses a turtle to simulate the traffic lights. There are three lessons
here. The first shows off some different ways to use our turtles. The second demonstrates how we
would program a state machine in Python, by using a variable to keep track of the current state, and
a number of different i f statements to inspect

the current state, and take the actions as we change to a different state. The third lesson is to use
events from the keyboard to trigger the state changes.

Copy and run this program. Make sure you understand what each line does, consulting the
documentation as you need to.

import turtle # Tess becomes a traffic light.

turtle.setup(400,500)

wn = turtle.Screen()

wn.title("Tess becomes a traffic light!")
wn.bgcolor("lightgreen")

tess = turtle.Turtle()

def draw_housing():

""" Draw a nice housing to hold the traffic lights """
tess.pensize(3)
tess.color("black", "darkgrey")

tess.begin_fill()

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Chapter 10:

tess
tess
tess
tess
tess
tess
tess

draw_hou

tess.pen

Event handling

. forward(80)
left(90)

. forward(200)
.circle(40, 180)
. forward(200)
left(90)
.end_£fill()

sing()

up()

Position tess onto the place where the green light should be

tess. for
tess. lef
tess. for
Turn t
tess.sha
tess.sha
tess. fil

ward(40)

£(90)

ward(50)

ess into a big green circle
pe("circle")

pesize(3)

lcolor("green")

A traffic light is a kind of state machine with three states,

Green,
When t
her fi

Orange, Red. We number these states

9, 1, 2

7/ 7/

he machine changes state, we change tess' position and

llcolor.

This variable holds the current state of the

state_nu

def adva
glob
if s

elif

else

m=20

nce_state_machine():

al state_num

tate_num == 0: # Transition from
tess. forward(70)
tess.fillcolor("orange")

state_num = 1

state_num == 1: # Transition from
tess. forward(70)

tess.fillcolor("red")

state_num = 2

: # Transition from
tess.back(140)

tess.fillcolor("green")

machine

state 0 to state 1

state 1 to state 2

state 2 to state ©

176

58
59
60
61
62
63
64

Chapter 10: Event handling 177

state_num = 0

Bind the event handler to the space key.
wn .onkey(advance_state_machine, "space")

wn.listen() # | isten for events

wn.mainloop()

The new Python statement is at line 46. The global keyword tells Python not to create a new local
variable for state_num (in spite of the fact that the function assigns to this variable at lines 50, 54,
and 58). Instead, in this function, state_num always refers to the variable that was created at line 42.

What the code in advance_state_machine does is advance from whatever the current state is, to the
next state. On the state change we move tess to her new position, change her color, and, of course,
we assign to state_num the number of the new state we’ve just entered.

Each time the space bar is pressed, the event handler causes the traffic light machine to move to its
new state.

10.6. Glossary

bind
We bind a function (or associate it) with an event, meaning that when the event occurs,
the function is called to handle it.

event

Something that happens “outside” the normal control flow of our program, usually from some
user action. Typical events are mouse operations and keypresses. We’ve also seen that a

timer can be primed to create an event.

handler

A function that is called in response to an event.

10.7. Exercises

1. Add some new key bindings to the first sample program:

- Pressing keys R, G or B should change tess’s color to Red, Green or Blue.

- Pressing keys + or - should increase or decrease the width of tess’s pen. Ensure that the pen size
stays between 1 and 20 (inclusive).

- Handle some other keys to change some attributes of tess, or attributes of the window, or to give
her new behaviour that can be controlled from the keyboard.

Chapter 10: Event handling 178

2. Change the traffic light program so that changes occur automatically, driven by a timer.

3.In an earlier chapter we saw two turtle methods, hideturtle and showturtle that can hide or show
a turtle. This suggests that we could take a different approach to the traffic lights program. Add to
your program above as follows: draw a second housing for another set of traffic lights. Create three
separate turtles to represent each of the green, orange and red lights, and position them appropriately
within your new housing. As your state changes occur, just make one of the three turtles visible at
any time. Once you’ve made the changes, sit back and ponder some deep thoughts: you've now got
two different ways to use turtles to simulate the traffic lights, and both seem to work. Is one approach
somehow preferable to the other? Which one more closely resembles reality — i.e. the traffic lights
in your town?

4. Now that you’ve got a traffic light program with different turtles for each light, perhaps the
visibility / invisibility trick wasn’t such a great idea. If we watch traffic lights, they turn on and off
- but when they’re off they are still there, perhaps just a darker color. Modify the program now so
that the lights don’t

disappear: they are either on, or off. But when they’re off, they’re still visible.

5. Your traffic light controller program has been patented, and you’re about to become seriously rich.
But your new client needs a change. They want four states in their state machine: Green, then Green
and Orange together, then Orange only, and then Red. Additionally, they want different times spent
in each state. The machine should spend 3

seconds in the Green state, followed by one second in the Green+Orange state, then one second in
the Orange state, and then 2 seconds in the Red state. Change the logic in the state machine.

6. If you don’t know how tennis scoring works, ask a friend or consult Wikipedia. A single game
in tennis between player A and player B always has a score. We want to think about the “state of
the score” as a state machine. The game starts in state (0, 0), meaning neither player has any score
yet. We'll assume the first element in this pair is the score for player A. If player A wins the first
point, the score becomes (15, 0). If B wins the first point, the state becomes (0, 15). Below are the first
few states and transitions for a state diagram. In this diagram, each state has two possible outcomes
(A wins the next point, or B does), and the uppermost arrow is always the transition that happens
when A wins the point. Complete the diagram, showing all transitions and all states. (Hint: there
are twenty states, if you include the duece state, the advantage states, and the “A wins” and “B wins”
states in your diagram.)

Chapter 10: Event handling 179

(0, 0) (15, 15)

a b w N

Chapter 11: Lists

A list is an ordered collection of values. The values that make up a list are called its elements, or
its items. We will use the term element or item to mean the same thing. Lists are similar to strings,
which are ordered collections of characters, except that the elements of a list can be of any type. Lists
and strings — and other collections that maintain the order of their items — are called sequences.

11.1. List values

There are several ways to create a new list; the simplest is to enclose the elements in square brackets

([and]):

ps = [10, 20, 30, 40]

gs = ["spam", "bungee", "swallow"]

The first example is a list of four integers. The second is a list of three strings. The elements of
a list don’t have to be the same type. The following list contains a string, a float, an integer, and
(amazingly) another list:

zs = ["hello", 2.0, 5, [10, 20]]

A list within another list is said to be nested.
Finally, a list with no elements is called an empty list, and is denoted [].

We have already seen that we can assign list values to variables or pass lists as parameters to
functions:

>>> vocabulary = ["apple", "cheese", "dog"]
>>> numbers = [17, 123]

>>> an_empty_list = []

>>> print(vocabulary, numbers, an_empty_list)
["apple", "cheese", "dog"] [17, 123] []

11.2. Accessing elements

The syntax for accessing the elements of a list is the same as the syntax for accessing the characters
of a string — the index operator: [] (not to be confused with an empty list). The expression inside
the

brackets specifies the index. Remember that the indices start at 0:

W N O O B W N -

Bw N

W N

Chapter 11: Lists 181

>>> numbers[Q]
17

Any expression evaluating to an integer can be used as an index:

>>> numbers[9-8]
5
>>> numbers[1.0]
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

TypeError: list indices must be integers, not float
If you try to access or assign to an element that does not exist, you get a runtime error:

>>> numbers[2]
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

IndexError: list index out of range
It is common to use a loop variable as a list index.
horsemen = ["war", "famine", "pestilence", "death"]

for i in [0, 1, 2, 3]:
print(horsemen([i])

Each time through the loop, the variable i is used as an index into the list, printing the i ‘th element.
This pattern of computation is called a list traversal.

The above sample doesn’t need or use the index i for anything besides getting the items from the
list, so this more direct version — where the for loop gets the items — might be preferred:

horsemen = ["war", "famine", "pestilence", "death"]

for h in horsemen:
print(h)

11.3. List length

The function len returns the length of a list, which is equal to the number of its elements. If you
are going to use an integer index to access the list, it is a good idea to use this value as the upper
bound of a loop instead of a constant. That way, if the size of the list changes, you won’t have to go
through the program changing all the loops; they will work correctly for any size list:

Bw N

<~ O O b W N =~

© 0O N O O & W N =

I =V
W N s,

Chapter 11: Lists 182

horsemen = ["war", "famine", "pestilence", "death"]

for i in range(len(horsemen)):

print(horsemen([i])

The last time the body of the loop is executed, i is 1en(horsemen) - 1, which is the index of the last
element. (But the version without the index looks even better now!)

Although a list can contain another list, the nested list still counts as a single element in its parent
list. The length of this list is 4:

>>> len(["car makers", 1, ["Ford", "Toyota", "BMW"], [1, 2, 3]])
4

11.4. List membership

in and not in are Boolean operators that test membership in a sequence. We used them previously
with strings, but they also work with lists and other sequences:

>>> horsemen = ["war", "famine", "pestilence", "death"]
>>> "pestilence" in horsemen

True

>>> "debauchery" in horsemen

False

>>> "debauchery" not in horsemen

True

Using this produces a more elegant version of the nested loop program we previously used to count
the number of students doing Computer Science in the section nested_data:

students = [
("John", ["CompSci", "Physics"]),
("Vusi", ["Maths", "CompSci", "Stats"]),

("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),
("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

Count how many students are taking CompSci
counter = 0
for (name, subjects) in students:

if "CompSci" in subjects:

counter += 1

print("The number of students taking CompSci is", counter)

g b W N -

s W N

© 00 N O O b W N =

Chapter 11: Lists 183

11.5. List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> ¢c=a+b

>>> C

[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, Q]

>>> [1, 2, 3] * 3

1, 2, 3, 1, 2, 8, 1, 2, 3]

The first example repeats [0] four times. The second example repeats the list [1, 2, 3] three times.

11.6. List slices

The slice operations we saw previously with strings let us work with sublists:

>>> a_list = ["a", "b", "c¢", "d", "e", "f"]
>>> a_list[1:3]

['b', 'c']

>>> a_list[:4]

['a', 'b', 'c', 'd']

>>> a_list[3:]

['d", 'e', '"f']

>>> a_list[:]

['a', 'b', '¢c', 'd", 'e', 'f']

11.7. Lists are mutable

Unlike strings, lists are mutable, which means we can change their elements. Using the index
operator on the left side of an assignment, we can update one of the elements:

a b W N -

B W N = Bw N O b W N

W N

Chapter 11: Lists 184

>>> fruit = ["banana", "apple", "quince"]

>>> fruit[Q] = "pear"
>>> fruit[2] = "orange"
>>> fruit

['pear', 'apple', 'orange']

The bracket operator applied to a list can appear anywhere in an expression. When it appears on the
left side of an assignment, it changes one of the elements in the list, so the first element of fruit has
been changed from "banana" to "pear", and the last from "quince" to "orange". An assignment to
an element of a list is called item assignment. Item assignment does not work for strings:

>>> my_string = "TEST"
>>> my_string[2] = "X"
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

TypeError: 'str' object does not support item assignment

but it does for lists:

>>> my_list = ["T", "E", "S", "T"]
>>> my_list[2] = "X"

>>> my_list

[T, e, XY, T

With the slice operator we can update a whole sublist at once:

>>> a_list = ["a", "b", "c",
55 a_liSt[ifg] — [nXuI uyn]
>>> a_list

[va, X, ‘y', 'd', lel’ lf']

”d”, ”e", "f”]

We can also remove elements from a list by assigning an empty list to them:

>>> a_list = ["a", "b", "c", "d", "e", "f"]
>>> a_list[1:3] = []

>>> a_list

['a', 'd", 'e', "f']

And we can add elements to a list by squeezing them into an empty slice at the desired location:

=~ O O b W N =

Bw N

Bw N

Chapter 11: Lists 185

>>> a_list = ["a", "d", "f"]
>>> a_list[1:1] = ["b", "c"]
>>> a_list

['a', 'b', '¢c', 'd", '"f']

>>> a_list[4:4] = ["e"]

>>> a_list

['a', 'b', 'c¢', 'd', 'e', 'f']

11.8. List deletion

Using slices to delete list elements can be error-prone. Python provides an alternative that is more
readable. The del statement removes an element from a list:

55> a = ["one", ”tWO", "three"]
>>> del a[1]
>>> a

['one', 'three']

As you might expect, del causes a runtime error if the index is out of range.
You can also use del with a slice to delete a sublist:

S>> a_llSt — ["a”, ”b", "C”, ”d”, ”e”, ”f”]

>>> del a_list[1:5]

>>> a_list
[vaul 'f']

As usual, the sublist selected by slice contains all the elements up to, but not including, the second
index.

11.9. Objects and references

After we execute these assignment statements

a = "banana"

b = "banana"

we know that a and b will refer to a string object with the letters "banana". But we don’t know yet
whether they point to the same string object.

There are two possible ways the Python interpreter could arrange its memory:

O O B W N

Chapter 11: Lists 186

a—="bhanam" a -

5 S — "banana’

In one case, a and b refer to two different objects that have the same value. In the second case, they
refer to the same object.

We can test whether two names refer to the same object using the is operator:

>>> ais b

True

This tells us that both a and b refer to the same object, and that it is the second of the two state
snapshots that accurately describes the relationship.

Since strings are immutable, Python optimizes resources by making two names that refer to the same
string value refer to the same object.

This is not the case with lists:

>»>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a == b

True

>>> a is b

False

The state snapshot here looks like this:

a—=[1, 2, 3]

b—=[1, 2, 3]

a and b have the same value but do not refer to the same object.

11.10. Aliasing

Since variables refer to objects, if we assign one variable to another, both variables refer to the same
object:

Bw N

W N -

Chapter 11: Lists 187

>>> a=[1, 2, 3]
>>> b = a
>>> a is b

True

In this case, the state snapshot looks like this:

Because the same list has two different names, a and b, we say that it is aliased. Changes made with
one alias affect the other:

>>> b[@] =5
>>> a
[5, 2, 8]

Although this behavior can be useful, it is sometimes unexpected or undesirable. In general, it is
safer to avoid aliasing when you are working with mutable objects (i.e. lists at this point in our
textbook, but we’ll meet more mutable objects as we cover classes and objects, dictionaries and sets).
Of course, for immutable objects (i.e. strings, tuples), there’s no problem — it is just not possible to
change something and get a surprise when you access an alias name. That’s why Python is free to
alias strings (and any other immutable kinds of data) when it sees an opportunity to economize.

11.11. Cloning lists

If we want to modify a list and also keep a copy of the original, we need to be able to make a copy of
the list itself, not just the reference. This process is sometimes called cloning, to avoid the ambiguity
of the word copy.

The easiest way to clone a list is to use the slice operator:

[1, 2, 3]
= al:]

v
v
v

N T T O

, 3]

Taking any slice of a creates a new list. In this case the slice happens to consist of the whole list. So
now the relationship is like this:

O O B W N

Chapter 11: Lists 188

a—=[1, 2, 3]

b—=[1, 2, 3]

Now we are free to make changes to b without worrying that we’ll inadvertently be changing a:

>>> b[@] =5
>>> a
(1, 2, 3]

11.12. Lists and for loops

The for loop also works with lists, as we’ve already seen. The generalized syntax of a for loop is:

for VARIABLE in LIST:
BODY

So, as we’ve seen

friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
for friend in friends:
print(friend)

It almost reads like English: For (every) friend in (the list of) friends, print (the name of the) friend.

Any list expression can be used in a for loop:

for number in range(20):
if number % 3 ==
print(number)

for fruit in ["banana", "apple", "quince"]:

print("I like to eat " + fruit + "s!")

The first example prints all the multiples of 3 between 0 and 19. The second example expresses
enthusiasm for various fruits.

Since lists are mutable, we often want to traverse a list, changing each of its elements. The following
squares all the numbers in the list xs:

Bw N

oW N

Bw N

Bw N

Chapter 11: Lists 189

xs = [1, 2, 3, 4, 5]

for i in range(len(xs)):

xs[i] = xs[i]**2

Take a moment to think about range(len(xs)) until you understand how it works.

In this example we are interested in both the value of an item, (we want to square that value), and
its index (so that we can assign the new value to that position). This pattern is common enough that
Python

provides a nicer way to implement it:

xs = [1, 2, 8, 4, 5]

for (i, val) in enumerate(xs):
xs[i] = val**2

enumerate generates pairs of both (index, value) during the list traversal. Try this next example to
see more clearly how enumerate works:

for (i, v) in enumerate(["banana", "apple", "pear", "lemon"]):
print(i, v)

© banana
1 apple
2 pear
3 lemon

11.13. List parameters

Passing a list as an argument actually passes a reference to the list, not a copy or clone of the list. So
parameter passing creates an alias for you: the caller has one variable referencing the list, and the
called function has an alias, but there is only one underlying list object. For example, the function
below takes a list as an argument and multiplies each element in the list by 2:

def double_stuff(a_list):

""" Overwrite each element in a_list with double its value.

mn

for (idx, val) in enumerate(a_list):
a_list[idx] = 2 * val

If we add the following onto our script:

Chapter 11: Lists 190

things = [2, 5, 9]
double_stuff(things)
print(things)

When we run it we’ll get:
[4, 10, 18]

In the function above, the parameter a_list and the variable things are aliases for the same object.
So before any changes to the elements in the list, the state snapshot looks like this:

[2, 5, 9]

double_stuff /

Since the list object is shared by two frames, we drew it between them.
If a function modifies the items of a list parameter, the caller sees the change.
Use the Python visualizer!

We’ve already mentioned the Python visualizer at http://pythontutor.com. It is a very useful tool
for building a good understanding of references, aliases, assignments, and passing arguments to
functions. Pay special attention to cases where you clone a list or have two separate lists, and cases
where there is only one underlying list, but more than one variable is aliased to reference the list.

11.14. List methods

The dot operator can also be used to access built-in methods of list objects. We’ll start with the most
useful method for adding something onto the end of an existing list:

=~ O O b W N =

© 00 N O O b W N =

= =Y
© 00 N O O b Ww N =~ O

Chapter 11: Lists 191

>>> mylist = []

>>> mylist.append(5)
>>> mylist.append(27)
>>> mylist.append(3)
>>> mylist.append(12)
>>> mylist

(5, 27, 3, 12]

append is a list method which adds the argument passed to it to the end of the list. We’ll use it heavily
when we’re creating new lists. Continuing with this example, we show several other list methods:

>>> mylist.insert(1, 12) # Insert 12 at pos 1, shift other items up
>>> mylist

[5, 12, 27, 3, 12]

>>> mylist.count(12) # How many times is 12 in mylist?

2

>>> mylist.extend([5, 9, 5, 11]) # Put whole list onto end of mylist
>>> mylist

[5, 12, 27, 3, 12, 5, 9, 5, 11])

>>> mylist.index(9) # Find index of first 9 in mylist
6

>>> mylist.reverse()

>>> mylist

[11, 5, 9, 5, 12, 3, 27, 12, 5]

>>> mylist.sort()

>>> mylist

[3, 5,5, 5, 9, 11, 12, 12, 27]

>>> mylist.remove(12) # Remove the first 12 in the list
>>> mylist

[3, 5,5, 5, 9, 11, 12, 27]

Experiment and play with the list methods shown here, and read their documentation until you feel
confident that you understand how they work.

11.15. Pure functions and modifiers

Functions which take lists as arguments and change them during execution are called modifiers
and the changes they make are called side effects.

A pure function does not produce side effects. It communicates with the calling program only
through parameters, which it does not modify, and a return value. Here is double_stuff written as
a pure function:

O U W N

W N

Chapter 11: Lists 192

def double_stuff(a_list):
""" Return a new list which contains
doubles of the elements in a_list.
new_list = []
for value in a_list:
new_elem = 2 * value

new_list.append(new_elem)

return new_list
This version of double_stuff does not change its arguments:

>>> things = [2, 5, 9]
>>> xs = double_stuff(things)
>>> things

[2, 5, 9]
>>> XS
[4, 10, 18]

An early rule we saw for assignment said “first evaluate the right hand side, then assign the resulting
value to the variable”. So it is quite safe to assign the function result to the same variable that was
passed to the function:

>>> things = [2, 5, 9]

>>> things = double_stuff(things)
>>> things

[4, 10, 18]

Which style is better?

Anything that can be done with modifiers can also be done with pure functions. In fact, some
programming languages only allow pure functions. There is some evidence that programs that
use pure functions are faster to develop and less error-prone than programs that use modifiers.
Nevertheless, modifiers are convenient at times, and in some cases, functional programs are less
efficient.

In general, we recommend that you write pure functions whenever it is reasonable to do so and resort
to modifiers only if there is a compelling advantage. This approach might be called a functional
programming style.

11.16. Functions that produce lists

The pure version of double_stuff above made use of an important pattern for your toolbox.
Whenever you need to write a function that creates and returns a list, the pattern is usually:

a b W N -

<~ O O b W N =~

W N -

Chapter 11: Lists 193

initialize a result variable to be an empty list
loop

create a new element

append it to result
return the result

Let us show another use of this pattern. Assume you already have a function is_prime(x) that can
test if x is prime. Write a function to return a list of all prime numbers less than n:

def primes_lessthan(n):
""" Return a list of all prime numbers less than n. """
result = []
for i in range(2, n):
if is_prime(i):
result.append(i)

return result

11.17. Strings and lists

Two of the most useful methods on strings involve conversion to and from lists of substrings. The
split method (which we’ve already seen) breaks a string into a list of words. By default, any number
of whitespace characters is considered a word boundary:

n

>>> song = "The rain in Spain. ..
>>> wds = song.split()
>>> wds

1

['The', 'rain', 'in', 'Spain...']

An optional argument called a delimiter can be used to specify which string to use as the boundary
marker between substrings. The following example uses the string ai as the delimiter:

>>> song.split("ai"

['"The r', 'n in Sp', 'n..."]

Notice that the delimiter doesn’t appear in the result.

The inverse of the split method is join. You choose a desired separator string, (often called the
glue) and join the list with the glue between each of the elements:

Bw N

W N

g b W N~

© 00 N O O b W N =

]

Chapter 11: Lists 194

n.n

>>> glue = ",
>>> s = glue. join(wds)
53> s

'The;rain;in;Spain..."'

The list that you glue together (wds in this example) is not modified. Also, as these next examples
show, you can use empty glue or multi-character strings as glue:

>>> " —-- " join(wds)

'The --- rain --- in --- Spain...'
>>> """ join(wds)
'TheraininSpain..."

11.18. 1ist and range

Python has a built-in type conversion function called 1ist that tries to turn whatever you give it
into a list.

>>> xs = list("Crunchy Frog")

55> Xs
[”C", |lrll’ "U", "n", "C”, ”h”, ”y", " ll, |IFI|’ ”r”, ”O”, |lgll]
>>> """ join(xs)

'Crunchy Frog'

One particular feature of range is that it doesn’t instantly compute all its values: it “puts off” the
computation, and does it on demand, or “lazily”. We’ll say that it gives a promise to produce the
values

when they are needed. This is very convenient if your computation short-circuits a search and
returns early, as in this case:

def f(n):
""" Find the first positive integer between 101 and less
than n that is divisible by 21
for i in range(101, n):
if (i % 21 == 0):

return i

test(£(110) == 105)
test(£(1000000000) == 105)

W N

Chapter 11: Lists 195

In the second test, if range were to eagerly go about building a list with all those elements, you
would soon exhaust your computer’s available memory and crash the program. But it is cleverer
than that! This computation works just fine, because the range object is just a promise to produce
the elements if and when they are needed. Once the condition in the if becomes true, no further
elements are generated, and the function returns. (Note: Before Python 3, range was not lazy. If you
use an earlier versions of Python, YMMV!)

YMMV: Your Mileage May Vary

The acronym YMMV stands for your mileage may vary. American car advertisements often quoted
fuel consumption figures for cars, e.g. that they would get 28 miles per gallon. But this always had
to be accompanied by legal small-print warning the reader that they might not get the same. The
term YMMYV is now used idiomatically to mean “your results may differ”, e.g. The battery life on
this phone is 3 days, but YMMV.

You’ll sometimes find the lazy range wrapped in a call to 1ist. This forces Python to turn the lazy
promise into an actual list:

>>> range(10) # Create a lazy promise
range(@, 10)
>>> list(range(10)) # Call in the promise, to produce a list.

[®I 1I 2I SI 4I 5/ 6/ 7/ 8/ 9]

11.19. Nested lists

A nested list is a list that appears as an element in another list. In this list, the element with index 3
is a nested list:

>>> nested = ["hello", 2.0, 5, [10, 20]]
If we output the element at index 3, we get:

>>> print(nested[3])
[10, 20]

To extract an element from the nested list, we can proceed in two steps:

>>> elem = nested[3]
>>> elem[0]
10

Or we can combine them:

Chapter 11: Lists 196

>>> nested[3][1]
20

Bracket operators evaluate from left to right, so this expression gets the 3’th element of nested and
extracts the 1°th element from it.

11.20. Matrices

Nested lists are often used to represent matrices. For example, the matrix:

ST N
o R
W m W

might be represented as:
»>oomx = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

mx is a list with three elements, where each element is a row of the matrix. We can select an entire
row from the matrix in the usual way:

>>> mx[1]
[4, 5, 6]

Or we can extract a single element from the matrix using the double-index form:

>>> mx[1][2]
6

The first index selects the row, and the second index selects the column. Although this way of
representing matrices is common, it is not the only possibility. A small variation is to use a list of
columns instead of a list of rows. Later we will see a more radical alternative using a dictionary.

11.21. Glossary

aliases
Multiple variables that contain references to the same object.

clone
To create a new object that has the same value as an existing object.

Chapter 11: Lists 197

Copying a reference to an object creates an alias but doesn’t clone the
object.

delimiter
A character or string used to indicate where a string should be split.

element
One of the values in a list (or other sequence). The bracket operator
selects elements of a list. Also called item.

immutable data value
A data value which cannot be modified. Assignments to elements or slices
(sub-parts) of immutable values cause a runtime error.

index
An integer value that indicates the position of an item in a list.
Indexes start from 0.

item
See element.

list

A collection of values, each in a fixed position within the list. Like

other types str, int, float, etc. there is also a 1ist

type-converter function that tries to turn whatever argument you give it
into a list.

list traversal
The sequential accessing of each element in a list.

modifier
A function which changes its arguments inside the function body. Only
mutable types can be changed by modifiers.

mutable data value

A data value which can be modified. The types of all mutable values are
compound types. Lists and dictionaries are mutable; strings and tuples
are not.

nested list
A list that is an element of another list.

object
A thing to which a variable can refer.

pattern

A sequence of statements, or a style of coding something that has
general applicability in a number of different situations. Part of
becoming a mature Computer Scientist is to learn and establish the

a s W N -

Chapter 11: Lists 198

patterns and algorithms that form your toolkit. Patterns often
correspond to your “mental chunking”.

promise

An object that promises to do some work or deliver some values if
they’re eventually needed, but it lazily puts off doing the work
immediately. Calling range produces a promise.

pure function
A function which has no side effects. Pure functions only make changes
to the calling program through their return values.

sequence
Any of the data types that consist of an ordered collection of elements,
with each element identified by an index.

side effect
A change in the state of a program made by calling a function. Side
effects can only be produced by modifiers.

step size

The interval between successive elements of a linear sequence. The third
(and optional argument) to the range function is called the step size.

If not specified, it defaults to 1.

11.22. Exercises

1. What is the Python interpreter’s response to the following?
>>> list(range(10, 0, -2))
The three arguments to the range function are start, stop, and step, respectively. In this example,

start is greater than stop. What happens if start < stop and step < 0? Write a rule
for the relationships among start, stop, and step.

2. Consider this fragment of code:

import turtle

tess = turtle.Turtle()
alex = tess
alex.color("hotpink™)

a b w N

Chapter 11: Lists 199

Does this fragment create one or two turtle instances? Does setting the color of alex also change
the color of tess? Explain in detail.

3. Draw a state snapshot for a and b before and after the third line of the following Python code is

executed:

4. What will be the output of the following program?

this = ["I", "am", "not", "a", "crook"]
that = ["I", "am", "not", "a", "crook"]
print("Test 1: {@}".format(this is that))
that = this

print("Test 2: {0}".format(this is that))

Provide a detailed explanation of the results.
5. Lists can be used to represent mathematical vectors. In this exercise and several that follow you
will

write functions to perform standard operations on vectors. Create a script named vectors.py and
write Python code to pass the tests in each case.

Write a function add_vectors(u, v) that takes two lists of numbers of the same length, and returns
a new list containing the sums of the corresponding elements of each:

test(add_vectors([1, 1], [1, 1]) == [2, 2])
test(add_vectors([1, 2], [1, 4]) == [2, 6])
test(add_vectors([1, 2, 1], [1, 4, 3]) == [2, 6, 4])

6. Write a function scalar_mult(s, v) that takes a number, s, and a list, v and returns the scalar
multiple'® of v by s:

'%http://en.wikipedia.org/wiki/Scalar_multiple

http://en.wikipedia.org/wiki/Scalar_multiple
http://en.wikipedia.org/wiki/Scalar_multiple
http://en.wikipedia.org/wiki/Scalar_multiple

o N O O b W N =

Chapter 11: Lists 200

test(scalar_mult(5, [1, 2]) == [5, 10])
test(scalar_mult(3, [1, @, -1]) == [3, 0, -3])
test(scalar_mult(7, [3, @, 5, 11, 2]) == [21, 0, 35, 77, 14])

7. Write a function dot_product(u, v) that takes two lists of numbers of the same length, and returns

the

sum of the products of the corresponding elements of each (the dot_product™).

test(dot_product([1, 1], [1, 1]) == 2)
test(dot_product([1, 2], [1, 4]) == 9)
test(dot_product([1, 2, 1], [1, 4, 3]) == 12)

8. Extra challenge for the mathematically inclined: Write a function cross_product(u, v) that
takes two

lists of numbers of length 3 and returns their cross product'®. You should write your own tests.

9. Describe the relationship between " ".join(song.split()) and song in the fragment of code
below. Are

they the same for all strings assigned to song? When would they be different?

"

song = "The rain in Spain...

10. Write a function replace(s, old, new) that replaces all occurrences of o1d with new in a string

S:
test(replace("Mississippi", "i", "I") == "MIsslIsslppl")
s = "I love spom! Spom is my favorite food. Spom, spom, yum!"
test(replace(s, "om", "am") ==

"I love spam! Spam is my favorite food. Spam, spam, yum!")

test(replace(s, "o", "a") ==

"I lave spam! Spam is my favarite faad. Spam, spam, yum!")

http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

O© 00 1 O O b W N =

N
[~

Chapter 11: Lists 201

Hint: use the split and join methods.

11. Suppose you want to swap around the values in two variables. You decide to factor this out into
a

reusable function, and write this code:

def swap(x, y): # Incorrect version
print("before swap statement: x:", x, "y:", y)
(x, y) = (y, x)
print("after swap statement: x:", x, "y:", y)

a = ["This", "is", "fun"]

b = [2,3,4]

print("before swap function call: a:", a, "b:", b)

swap(a, b)

print("after swap function call: a:", a, "b:", b)

Run this program and describe the results. Oops! So it didn’t do what you intended! Explain why
not. Using a Python visualizer like the one at http://pythontutor.com may help you build a good
conceptual model of what is going on. What will be the values of a and b after the call to swap?

=~ O O b W N =~

Chapter 12: Modules

A module is a file containing Python definitions and statements intended for use in other Python
programs. There are many Python modules that come with Python as part of the standard library.
We have seen at least two of these already, the turtle module and the string module.

We have also shown you how to access help. The help system contains a listing of all the standard
modules that are available with Python. Play with help!

12.1. Random numbers

We often want to use random numbers in programs, here are a few typical uses:

- To play a game of chance where the computer needs to throw some dice, pick a number, or flip a
coin

- To shuffle a deck of playing cards randomly,

- To allow/make an enemy spaceship appear at a random location and start shooting at the player

- To simulate possible rainfall when we make a computerized model for estimating the environmental
impact

of building a dam,
- For encrypting banking sessions on the Internet.

Python provides a module random that helps with tasks like this. You can look it up using help, but
here are the key things we’ll do with it:

import random

Create a black box object that generates random numbers

rng = random.Random()

dice_throw = rng.randrange(1,7) # Return an int, one of 1,2,3,4,5,6
delay_in_seconds = rng.random() * 5.0

The randrange method call generates an integer between its lower and upper argument, using the
same semantics as range — so the lower bound is included, but the upper bound is excluded. All the
values have

an equal probability of occurring (i.e. the results are uniformly distributed). Like range, randrange
can also take an optional step argument. So let’s assume we needed a random odd number less than
100, we could say:

Chapter 12: Modules 203

r_odd = rng.randrange(1, 100, 2)

Other methods can also generate other distributions e.g. a bell-shaped, or “normal” distribution
might be more appropriate for estimating seasonal rainfall, or the concentration of a compound in
the body after taking a dose of medicine.

The random method returns a floating point number in the interval [0.0, 1.0) — the square bracket
means “closed interval on the left” and the round parenthesis means “open interval on the right”. In
other words, 0.0 is possible, but all returned numbers will be strictly less than 1.0. It is usual to scale
the results after calling this method, to get them into an interval suitable for your application. In the
case shown here, we've converted the result of the method call to a number in the interval [0.0, 5.0).
Once more, these are uniformly distributed numbers — numbers close to 0 are just as likely to occur
as numbers close to 0.5, or numbers close to 1.0.

This example shows how to shuffle a list. (shuffle cannot work directly with a lazy promise, so
notice that we had to convert the range object using the 1ist type converter first.)

cards = list(range(52)) # Generate ints [0 .. 51]
representing a pack of cards.
rng.shuffle(cards) # Shuffle the pack

12.1.1. Repeatability and Testing

Random number generators are based on a deterministic algorithm — repeatable and predictable.
So they’re called pseudo-random generators — they are not genuinely random. They start with a
seed value. Each time you ask for another random number, you’ll get one based on the current seed
attribute, and the state of the seed (which is one of the attributes of the generator) will be updated.

For debugging and for writing unit tests, it is convenient to have repeatability — programs that
do the same thing every time they are run. We can arrange this by forcing the random number
generator to be initialized with a known seed every time. (Often this is only wanted during testing
— playing a game of cards where the shuffled deck was always in the same order as last time you
played would get boring very

rapidly!)

drng = random.Random(123) # Create generator with known starting state

This alternative way of creating a random number generator gives an explicit seed value to the
object. Without this argument, the system probably uses something based on the time. So grabbing
some random numbers from drng today will give you precisely the same random sequence as it will
tomorrow!

12.1.2. Picking balls from bags, throwing dice, shuffling a pack of
cards

Here is an example to generate a list containing n random ints between a lower and an upper bound:

O© 00 I O O b W N =

10
11
12

W N

Chapter 12: Modules 204

import random

def make_random_ints(num, lower_bound, upper_bound):
Generate a list containing num random ints between lower_bound
and upper_bound. upper_bound is an open bound.
rng = random.Random() # Create a random number generator
result = []
for i in range(num):
result.append(rng.randrange(lower_bound, upper_bound))

return result

>>> make_random_ints(5, 1, 13) # Pick 5 random month numbers
(8, 1, 8, 5, 6]

Notice that we got a duplicate in the result. Often this is wanted, e.g. if we throw a die five times,
we would expect some duplicates.

But what if you don’t want duplicates? If you wanted 5 distinct months, then this algorithm is wrong.
In this case a good algorithm is to generate the list of possibilities, shuffle it, and slice off the number
of elements you want:
xs = list(range(1,13)) # Make list 1..12 (there are no duplicates)

rng = random.Random() # Make a random number generator

rng.shuffle(xs) # Shuffle the list

result = xs[:5] # Take the first five elements

In statistics courses, the first case — allowing duplicates — is usually described as pulling balls out of
a bag with replacement — you put the drawn ball back in each time, so it can occur again. The latter
case, with no duplicates, is usually described as pulling balls out of the bag without replacement.
Once the ball is drawn, it doesn’t go back to be drawn again. TV lotto games work like this.

The second “shuffle and slice” algorithm would not be so great if you only wanted a few elements,
but from a very large domain. Suppose I wanted five numbers between one and ten million, without
duplicates. Generating a list of ten million items, shuffling it, and then slicing off the first five would
be a performance disaster! So let us have another try:

O© 00 I O O b W N =

10
11
12
13
14
15
16
17
18
19
20

Chapter 12: Modules 205

import random

def make_random_ints_no_dups(num, lower_bound, upper_bound):
Generate a list containing num random ints between
lower_bound and upper_bound. upper_bound is an open bound.
The result list cannot contain duplicates.
result = []
rng = random.Random()
for i in range(num):
while True:
candidate = rng.randrange(lower_bound, upper_bound)
if candidate not in result:
break
result.append(candidate)
return result

Xs = make_random_ints_no_dups(5, 1, 10000000)
print(xs)

This agreeably produces 5 random numbers, without duplicates:
[3344629, 1735163, 9433892, 1081511, 4923270Q]
Even this function has its pitfalls. Can you spot what is going to happen in this case?

Xs = make_random_ints_no_dups(10, 1, 6)

12.2. The time module

As we start to work with more sophisticated algorithms and bigger programs, a natural concern is
“is our code efficient?” One way to experiment is to time how long various operations take. The
time module has a function called process_time that is recommended for this purpose. Whenever
process_time is called, it returns a floating point number representing how many seconds have
elapsed since your program started running.

The way to use it is to call process_time assign the result to a variable, say to, just before you start
executing the code you want to measure. Then after execution, call process_time again, (this time
we’ll save

the result in variable t1). The difference t1-t@ is the time elapsed, and is a measure of how fast your
program is running.

© 00 N O O & W N =

NN N RN S R 1 N Ly vy
N »~ © © 0 1 O O & W N =~ ©

Chapter 12: Modules 206

Let’s try a small example. Python has a built-in sum function that can sum the elements in a list.
We can also write our own. How do we think they would compare for speed? We'll try to do the
summation of a list

[0, 1, 2 ...] in both cases, and compare the results:

import time

def do_my_sum(xs):
sum = @
for v in xs:
sum += v

return sum

sz = 10000000 # |ets have 10 million elements in the list
testdata = range(sz)

t@ = time.process_time()
my_result = do_my_sum(testdata)
t1 = time.process_time()

print("my_result = {0} (time taken {1:.4f} seconds)"

.format(my_result, t1-t@))

t2 = time.process_time()

their_result = sum(testdata)

t3 = time.process_time()

print("their_result = {0} (time taken = {1:.4f} seconds)"
.format(their_result, t3-t2))

On a reasonably modest laptop, we get these results:

49999995000000 (time taken = 1.5567 seconds)
49999995000000 (time taken = ©.9897 seconds)

my_sum

their_sum

So our function runs about 57% slower than the built-in one. Generating and summing up ten million
elements in under a second is not too shabby!

12.3. The math module

The math module contains the kinds of mathematical functions you’d typically find on your
calculator (sin, cos, sqrt, asin, log, log10) and some mathematical constants like pi and e:

O© 00 I O O b W N =

[=N
w N =~ O

Chapter 12: Modules 207

>>> import math
>>> math.pi
3.141592653589793
>>> math.e
2.718281828459045

H#

Constant pi

#

Constant natural log base

>>> math.sqrt(2.0) # Square root function
1.4142135623730951
>>> math.radians(90) # Convert 90 degrees to radians

1.5707963267948966

>>> math.sin(math.radians(90)) # Find sin of 90 degrees

1.0

>>> math.asin(1.0) * 2 # Double the arcsin of 1.0 to get pi
3.141592653589793

Like almost all other programming languages, angles are expressed in radians rather than degrees.
There are two functions radians and degrees to convert between these two popular ways of
measuring angles.

Notice another difference between this module and our use of random and turtle: in random and
turtle we create objects and we call methods on the object. This is because objects have state — a
turtle has a color, a position, a heading, etc., and every random number generator has a seed value
that determines its next result.

Mathematical functions are “pure” and don’t have any state — calculating the square root of 2.0
doesn’t depend on any kind of state or history about what happened in the past. So the functions
are not methods of an object — they are simply functions that are grouped together in a module
called math.

12.4. Creating your own modules

All we need to do to create our own modules is to save our script as a file with a .py extension.
Suppose, for example, this script is saved as a file named seqtools.py:

def remove_at(pos, seq):
return seq[:pos] + seq[pos+1:]

We can now use our module, both in scripts we write, or in the interactive Python interpreter. To do
50, we must first import the module.

Bw N

W N

W N -

~N O O b W N =~

Chapter 12: Modules 208

>>> import seqtools

>>> s = "A string!"

>>> seqtools.remove_at(4, s)
'"A sting!'

We do not include the .py file extension when importing. Python expects the file names of Python
modules to end in . py, so the file extension is not included in the import statement.

The use of modules makes it possible to break up very large programs into manageable sized parts,
and to keep related parts together.

12.5. Namespaces

A namespace is a collection of identifiers that belong to a module, or to a function, (and as we will
see soon, in classes too). Generally, we like a namespace to hold “related” things, e.g. all the math
functions, or all the typical things we’d do with random numbers.

Each module has its own namespace, so we can use the same identifier name in multiple modules
without causing an identification problem.

Modulel.py

question = "What is the meaning of Life, the Universe, and Everything?"
answer = 42

ModuleZ.py

question = "What is your quest?"

answer = "To seek the holy grail."
We can now import both modules and access question and answer in each:

import modulel

import module2

print(modulel.question)
print(module2.question)
print(modulel.answer)

print(module2.answer)

will output the following:

Bw N

O 00 I O O b W N =

I =S =N
B w N s,

g b W N -

Chapter 12: Modules 209

What is the meaning of Life, the Universe, and Everything?
What is your quest?

42

To seek the holy grail.

Functions also have their own namespaces:

def f():

n=="1

print("printing n inside of f:", n)
def g():

n = 42

print("printing n inside of g:", n)
n =11
print("printing n before calling f:", n)
£()
print("printing n after calling f:", n)
a()

print("printing n after calling g:", n)

Running this program produces the following output:

printing n before calling f: 11
printing n inside of f: 7
printing n after calling f: 11
printing n inside of g: 42
printing n after calling g: 11

The three n’s here do not collide since they are each in a different namespace — they are three names
for three different variables, just like there might be three different instances of people, all called
“Bruce”.

Namespaces permit several programmers to work on the same project without having naming
collisions.

How are namespaces, files and modules related?

Python has a convenient and simplifying one-to-one mapping, one module per file, giving rise to
one namespace. Also, Python takes the module name from the file name, and this becomes the name
of the namespace.

math.py is a filename, the module is called math, and its namespace ismath. So in Python the concepts
are more or less interchangeable.

W N

Chapter 12: Modules 210

But you will encounter other languages (e.g. C#), that allow one module to span multiple files, or
one file to have multiple namespaces, or many files to all share the same namespace. So the name
of the file doesn’t need to be the same as the namespace.

So a good idea is to try to keep the concepts distinct in your mind.

Files and directories organize where things are stored in our computer. On the other hand,
namespaces and modules are a programming concept: they help us organize how we want to group
related functions and attributes. They are not about “where” to store things, and should not have to
coincide with the file and directory structures.

So in Python, if you rename the file math. py, its module name also changes, your import statements
would need to change, and your code that refers to functions or attributes inside that namespace
would also need to change.

In other languages this is not necessarily the case. So don’t blur the concepts, just because Python
blurs them!

12.6. Scope and lookup rules

The scope of an identifier is the region of program code in which the identifier can be accessed, or
used.

There are three important scopes in Python:
- Local scope refers to identifiers declared within a function. These identifiers are kept in the

namespace that belongs to the function, and each function has its own namespace.
- Global scope refers to all the identifiers declared within the current module, or file.
- Built-in scope refers to all the identifiers built into Python — those like range and min that

can be used without having to import anything, and are (almost) always available.

Python (like most other computer languages) uses precedence rules: the same name could occur in
more than one of these scopes, but the innermost, or local scope, will always take precedence over
the global scope, and the global scope always gets used in preference to the built-in scope. Let’s start
with a simple example:

def range(n):

return 123*n
print(range(10))

What gets printed? We’ve defined our own function called range, so there is now a potential
ambiguity. When we use range, do we mean our own one, or the built-in one? Using the scope

=~ O U s W N

Chapter 12: Modules 211

lookup rules determines this: our own range function, not the built-in one, is called, because our
function range is in the global namespace, which takes precedence over the built-in names.

So although names likes range and min are built-in, they can be “hidden” from your use if you
choose to define your own variables or functions that reuse those names. (It is a confusing practice
to redefine built-in names — so to be a good programmer you need to understand the scope rules
and understand that you can do nasty things that will cause confusion, and then you avoid doing
them!)

Now, a slightly more complex example:

n =10

m = 3

def f(n):
m=717

return 2*n+m
print(£f(5), n, m)

This prints 17 10 3. The reason is that the two variablesm and n in lines 1 and 2 are outside the function
in the global namespace. Inside the function, new variables called n and m are created just for the
duration of the execution of f. These are created in the local namespace of function f. Within the
body of £, the scope lookup rules determine that we use the local variablesm and n. By contrast, after
we’ve returned from f, the n and m arguments to the print function refer to the original variables
on lines 1 and 2, and these have not been changed in any way by executing function f.

Notice too that the def puts name f into the global namespace here. So it can be called on line 7.

What is the scope of the variable n on line 1? Its scope — the region in which it is visible — is lines
1, 2, 6, 7. It is hidden from view in lines 3, 4, 5 because of the local variable n.

12.7. Attributes and the dot operator

Variables defined inside a module are called attributes of the module. We’ve seen that objects
have attributes too: for example, most objects have a _ _doc__ attribute, some functions have
a __annotations__ attribute. Attributes are accessed using the dot operator (.). The question
attribute of module1 and module2 is accessed using modulel.question and module2.question.

Modules contain functions as well as attributes, and the dot operator is used to access them in the
same way. seqtools.remove_at refers to the remove_at function in the seqtools module.

When we use a dotted name, we often refer to it as a fully qualified name, because we’re saying
exactly which question attribute we mean.

g b w N =

Chapter 12: Modules 212

12.8. Three import statement variants

Here are three different ways to import names into the current namespace, and to use them:

import math
X = math.sqrt(10)

Here just the single identifier math is added to the current namespace. If you want to access one of
the functions in the module, you need to use the dot notation to get to it.

Here is a different arrangement:

from math import cos, sin, sqrt
X = sqrt(10)

The names are added directly to the current namespace, and can be used without qualification. The
name math is not itself imported, so trying to use the qualified form math.sqrt would give an error.

Then we have a convenient shorthand:

from math import * # Import all the identifiers from math,
adding them to the current namespace.
X = sqrt(10) # Use them without qualification.

Of these three, the first method is generally preferred, even though it means a little more typing
each time. Although, we can make things shorter by importing a module under a different name:

>>> import math as m
>>> m.pi
3.141592653589793

But hey, with nice editors that do auto-completion, and fast fingers, that’s a small price!

Finally, observe this case:
def area(radius):
import math
return math.pi * radius * radius

x = math.sqrt(10) # This gives an error

Here we imported math, but we imported it into the local namespace of area. So the name is usable
within the function body, but not in the enclosing script, because it is not in the global namespace.

Chapter 12: Modules 213

12.9. Turn your unit tester into a module

Near the end of Chapter 6 (Fruitful functions) we introduced unit testing, and our own test function,
and you’ve had to copy this into each module for which you wrote tests. Now we can put that
definition into a module of its own, say unit_tester.py, and simply use one line in each new script
instead:

from unit_tester import test

12.10. Glossary

attribute
A variable defined inside a module (or class or instance — as we will
see later). Module attributes are accessed by using the dot operator

().
dot operator
The dot operator (.) permits access to attributes and functions of a

module (or attributes and methods of a class or instance — as we have
seen elsewhere).

fully qualified name

A name that is prefixed by some namespace identifier and the dot
operator, or by an instance object, e.g. math.sqrt or

tess. forward(10).

import statement

A statement which makes the objects contained in a module available for
use within another module. There are two forms for the import statement.
Using hypothetical modules named mymod1 and mymod2 each containing
functions £1 and f2, and variables v1 and v2, examples of these

two forms include:

import mymod1

from mymod2 import f1, f2, vi, v2

The second form brings the imported objects into the namespace of the
importing module, while the first form preserves a separate namespace
for the imported module, requiring mymod1 .v1 to access the v1

variable from that module.

method
Function-like attribute of an object. Methods are invoked (called) on
an object using the dot operator. For example:

Bw N

Chapter 12: Modules

>>> s = "this is a string."
>>> s.upper()

"THIS IS A STRING.'

>>>

We say that the method, upper is invoked on the string, s. s is
implicitely the first argument to upper.

module

A file containing Python definitions and statements intended for use in
other Python programs. The contents of a module are made available to
the other program by using the import statement.

namespace

A syntactic container providing a context for names so that the same
name can reside in different namespaces without ambiguity. In Python,
modules, classes, functions and methods all form namespaces.

naming collision
A situation in which two or more names in a given namespace cannot be
unambiguously resolved. Using

import string
instead of
from string import *

prevents naming collisions.

standard library
A library is a collection of software used as tools in

the development of other software. The standard library of a programming

language is the set of such tools that are distributed with the core
programming language. Python comes with an extensive standard library.

12.11. Exercises

1. Open help for the calendar module.

1. Try the following:

214

Bsw N

Chapter 12: Modules 215

import calendar
cal = calendar.TextCalendar() # Create an instance

cal .pryear(2012) # What happens here?

2. Observe that the week starts on Monday. An adventurous CompSci student believes that it is
better

mental chunking to have his week start on Thursday, because then there are only two working
days to the weekend, and every week has a break in the middle. Read the documentation for
TextCalendar, and see how you can help him print a calendar that suits his needs.

3. Find a function to print just the month in which your birthday occurs this year.

4. Try this:

d = calendar.LocaleTextCalendar (6, "SPANISH")
d.pryear(2012)

Try a few other languages, including one that doesn't work, and see what happens.

5. Experiment with calendar . isleap. What does it expect as an argument? What does it return as a
result? What kind of a function is this?

Make detailed notes about what you learned from these exercises.

2. Open help for the math module.

1. How many functions are in the math module?

2. What does math.ceil do? What about math. floor? (hint: both floor and ceil expect floating
point arguments.)

3. Describe how we have been computing the same value as math.sqrt without using the math
module.

4. What are the two data constants in the math module?

Record detailed notes of your investigation in this exercise.

3. Investigate the copy module. What does deepcopy do? In which exercises from last chapter would

deepcopy have come in handy?

4. Create a module named mymodule1 .py. Add attributes myage set to your current age, and year set
to

the current year. Create another module named mymodule2.py. Add attributes myage set to 0, and
year set to the year you were born. Now create a file named namespace_test.py. Import both of

Chapter 12: Modules 216

the modules above and write the following statement:
print((mymodule2.myage - mymodulel.myage) ==
(mymodule2.year - mymodulel.year))

When you will run namespace_test.py you will see either True or False as output depending on
whether or not you’ve already had your birthday this year.

What this example illustrates is that out different modules can both have attributes named myage
and year. Because they’re in different namespaces, they don’t clash with one another. When we
write namespace_test.py, we fully qualify exactly which variable year or myage we are referring
to.

5. Add the following statement to mymodulel .py, mymodule2.py, and namespace_test.py from the
previous

exercise:

print("My name is", __name__)

Run namespace_test.py. What happens? Why? Now add the following to the bottom of
mymodulel .py:

"

if __name__ == "_main__":
print("This won't run if I'm imported.")

Run mymodulet . py and namespace_test .py again. In which case do you see the new print statement?

6. In a Python shell / interactive interpreter, try the following:
>>> import this

What does Tim Peters have to say about namespaces?

7. Give the Python interpreter’s response to each of the following from a continuous interpreter
session:

O O s~ W N

O 0O N O O & W N =

,_\
()

O© 0O =N O O & W N =

I =V
W N o

Chapter 12: Modules 217

>>> s = "If we took the bones out, it wouldn't be crunchy, would it?"
>>> s.split()

>>> type(s.split())

>>> s.split("o")

>>> s.split("i"

>>> "Q" . join(s.split("o0"))

Be sure you understand why you get each result. Then apply what you have learned to fill in the
body of the function below using the split and join methods of str objects:

def myreplace(old, new, s):

mn

""" Replace all occurrences of old with new in s.

non n.n

test(myreplace(",", ";", "this, that, and some other thing") ==
"this; that; and some other thing")

test(myreplace(" ", "¥*",
"Words will now be separated by stars.

"Words**will**now**be**separated**by**stars.")

Your solution should pass the tests.

8. Create a module named wordtools.py with our test scaffolding in place.

Now add functions to these tests pass:

test(cleanword("what?") == "what")
test(cleanword(" 'now!'") == "now"
test(cleanword("?+="'w-o-r-d!,@$()'") == "word")

test(has_dashdash("distance--but"))
test(not has_dashdash("several"))
test(has_dashdash("spoke--"))
test(has_dashdash("distance--but"))
test(not has_dashdash("-yo-yo-"))

test(extract_words("Now is the time! 'Now', is the time? Yes, now.") == ['now', '"is'\
,'the', 'time', 'now','is"', 'the', 'time"','yes', 'now'])
test(extract_words("she tried to curtsey as she spoke--fancy") == ['she', 'tried', 'to\

','curtsey','as', 'she', 'spoke', ' fancy'])

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Chapter 12: Modules 218

test(wordcount("now", ["now","is","time","is","now","is","is"]) == 2)
test(wordcount("is", ["now","is","time","is","now","the","is"]) == 3)
test(wordcount("time", ["now","is","time","is","now","is","is"]) == 1)
test(wordcount("frog", ["now","is","time","is","now","is","is"]) == Q)
teSt(WOTdSGt(["ﬂOW", "iS", "time”, "iS", unOWu, "iS”, ”iS”]) e ["iS", "HOW", "time"\

D)

test(wordset(["I", "a", "a", "is", "a

, "iS", HIH/ Hamu) - ["I", "a", "am", "iS"])

test(wordset(["or", "a", "am", "is", "are", "be", "but", "am"]) == ["a", "am", "are"\
, "be", "but”, "iS", norn])

test(longestword(["a", "apple", "pear", "grape"]) == 5)
test(longestword(["a", "am", "I", "be"]) == 2)
test(longestword(["this", "supercalifragilisticexpialidocious"]) == 34)
test(longestword([]) == 0)

Save this module so you can use the tools it contains in future
programs.

a ok w N

Chapter 13: Files

13.1. About files

While a program is running, its data is stored in random access memory (RAM). RAM is fast and
inexpensive, but it is also volatile, which means that when the program ends, or the computer shuts
down, data in

RAM disappears. To make data available the next time the computer is turned on and the program
is started, it has to be written to a non-volatile storage medium, such a hard drive, usb drive, or
CD-RW.

Data on non-volatile storage media is stored in named locations on the media called files. By reading
and writing files, programs can save information between program runs.

Working with files is a lot like working with a notebook. To use a notebook, it has to be opened.
When done, it has to be closed. While the notebook is open, it can either be read from or written to.
In either case, the notebook holder knows where they are. They can read the whole notebook in its
natural order or they can skip around.

All of this applies to files as well. To open a file, we specify its name and indicate whether we want
to read or write.

13.2. Writing our first file

Let’s begin with a simple program that writes three lines of text into a file:

myfile = open("test.txt", "w")

myfile.write("My first file written from Python\n")
myfile.write("--------------~ - \n")
myfile.write("Hello, world!\n")

myfile.close()

Opening a file creates what we call a file handle. In this example, the variable myfile refers to the
new handle object. Our program calls methods on the handle, and this makes changes to the actual
file which

is usually located on our disk.

On line 1, the open function takes two arguments. The first is the name of the file, and the second
is the mode. Mode "w" means that we are opening the file for writing.

© 00 N O O b W N =

N
[y

Chapter 13: Files 220

With mode "w", if there is no file named test.txt on the disk, it will be created. If there already is
one, it will be replaced by the file we are writing.

To put data in the file we invoke the write method on the handle, shown in lines 2, 3 and 4 above.
In bigger programs, lines 2—4 will usually be replaced by a loop that writes many more lines into
the file.

Closing the file handle (line 5) tells the system that we are done writing and makes the disk file
available for reading by other programs (or by our own program).

A handle is somewhat like a TV remote control

We're all familiar with a remote control for a TV. We perform operations on the remote control
— switch channels, change the volume, etc. But the real action happens on the TV. So, by simple
analogy, we’d call the remote control our handle to the underlying TV.

Sometimes we want to emphasize the difference — the file handle is not the same as the file, and
the remote control is not the same as the TV. But at other times we prefer to treat them as a single
mental chunk, or abstraction, and we’ll just say “close the file”, or “flip the TV channel”.

13.3. Reading a file line-at-a-time

Now that the file exists on our disk, we can open it, this time for reading, and read all the lines in
the file, one at a time. This time, the mode argument is "r" for reading:

nwon

mynewhandle = open("test.txt", "r")
while True: Keep reading forever
theline = mynewhandle.readline()
if len(theline) == 0:

break

Try to read next line

If there are no more lines

O #

leave the loop

Now process the line we've just read
print(theline, end="")

mynewhandle.close()

This is a handy pattern for our toolbox. In bigger programs, we’d squeeze more extensive logic into
the body of the loop at line 8 —for example, if each line of the file contained the name and email
address of one of our friends, perhaps we’d split the line into some pieces and call a function to send
the friend a party invitation.

On line 8 we suppress the newline character that print usually appends to our strings. Why? This
is because the string already has its own newline: the readline method in line 3 returns everything
up to and including the newline character. This also explains the end-of-file detection logic: when

© 00 N O O b W N =

N
()

Chapter 13: Files 221

there are no more lines to be read from the file, readline returns an empty string — one that does
not even have a newline at the end, hence its length is 0.

Fail first ...

In our sample case here, we have three lines in the file, yet we enter the loop four times. In
Python, you only learn that the file has no more lines by failure to read another line. In some other
programming languages (e.g. Pascal), things are different: there you read three lines, but you have
what is called look ahead — after reading the third line you already know that there are no more
lines in the file. You're not even allowed to try to read the fourth line.

So the templates for working line-at-a-time in Pascal and Python are subtly different!

When you transfer your Python skills to your next computer language, be sure to ask how you’ll

know when the file has ended: is the style in the language “try, and after you fail you’ll know”, or is
it “look ahead”?

If we try to open a file that doesn’t exist, we get an error:

>>> mynewhandle = open("wharrah.txt", "r")
I0Error: [Errno 2] No such file or directory: "wharrah.txt"

13.4. Turning a file into a list of lines

It is often useful to fetch data from a disk file and turn it into a list of lines. Suppose we have a
file containing our friends and their email addresses, one per line in the file. But we’d like the lines
sorted into alphabetical order. A good plan is to read everything into a list of lines, then sort the list,
and then write the sorted list back to another file:

f = open("friends.txt", "r")
xs = f.readlines()
f.close()
xs.sort()
g = open("sortedfriends.txt", "w")
for v in xs:
g.write(v)
g.close()

The readlines method in line 2 reads all the lines and returns a list of the strings.

We could have used the template from the previous section to read each line one-at-a-time, and to
build up the list ourselves, but it is a lot easier to use the method that the Python implementors gave
us!

O O B W N

Chapter 13: Files 222

13.5. Reading the whole file at once

Another way of working with text files is to read the complete contents of the file into a string, and
then to use our string-processing skills to work with the contents.

We’d normally use this method of processing files if we were not interested in the line structure of
the file. For example, we’ve seen the split method on strings which can break a string into words.
So here is how we might count the number of words in a file:

f = open("somefile.txt")
content = f.read()
f.close()

words = content.split()
print("There are {0} words in the file.".format(len(words)))

Notice here that we left out the "r" mode in line 1. By default, if we don’t supply the mode, Python
opens the file for reading.

Your file paths may need to be explicitly named.

In the above example, we're assuming that the file somefile.txt is in the same directory as your
Python source code. If this is not the case, you may need to provide a full or a relative path to the
file. On Windows, a full path could look like "C:\\temp\\somefile.txt", while on a Unix system
the full path could be "/home/jimmy/somefile.txt"

We'll return to this later in this chapter.

13.6. Working with binary files

Files that hold photographs, videos, zip files, executable programs, etc. are called binary files: they’re
not organized into lines, and cannot be opened with a normal text editor. Python works just as easily
with binary files, but when we read from the file we're going to get bytes back rather than a string.
Here we’ll copy one binary file to another:

O© 00 I O O b W N =

NN
= o

Chapter 13: Files 223

open("somefile.zip", "rb")

open("thecopy.zip", "wb")

«Q
I

while True:
buf = f.read(1024)
if len(buf) == 0:
break
g.write(buf)

f.close()
g.close()

There are a few new things here. In lines 1 and 2 we added a "b" to the mode to tell Python that the
files are binary rather than text files. In line 5, we see read can take an argument which tells it how
many bytes to attempt to read from the file. Here we chose to read and write up to 1024 bytes on
each iteration of the loop. When we get back an empty buffer from our attempt to read, we know
we can break out of the loop and close both the files.

If we set a breakpoint at line 6, (or print type(buf) there) we’ll see that the type of buf is bytes. We
don’t do any detailed work with bytes objects in this textbook.

13.7. An example

Many useful line-processing programs will read a text file line-at-a-time and do some minor
processing as they write the lines to an output file. They might number the lines in the output
file, or insert extra blank lines after every 60 lines to make it convenient for printing on sheets of
paper, or extract some specific columns only from each line in the source file, or only print lines
that contain a specific substring. We call this kind of program a filter.

Here is a filter that copies one file to another, omitting any lines that begin with #:

def filter(oldfile, newfile):

infile = open(oldfile, "r")
outfile = open(newfile, "w")
while True:

text = infile.readline()

if len(text) == 0:

break
if text[0] == "#":

continue

Put any more processing logic here
outfile.write(text)

13
14
15

Bw N

Chapter 13: Files 224

infile.close()
outfile.close()

The continue statement at line 9 skips over the remaining lines in the current iteration of the loop,
but the loop will still iterate. This style looks a bit contrived here, but it is often useful to say “get
the lines we’re not concerned with out of the way early, so that we have cleaner more focused logic
in the meaty part of the loop that might be written around line 11.”

Thus, if text is the empty string, the loop exits. If the first character of text is a hash mark, the
flow of execution goes to the top of the loop, ready to start processing the next line. Only if both
conditions fail do we fall through to do the processing at line 11, in this example, writing the line
into the new file.

Let’s consider one more case: suppose our original file contained empty lines. At line 6 above,
would this program find the first empty line in the file, and terminate immediately? No! Recall
that readline always includes the newline character in the string it returns. It is only when we try
to read beyond the end of the file that we get back the empty string of length 0.

13.8. Directories

Files on non-volatile storage media are organized by a set of rules known as a file system. File
systems are made up of files and directories, which are containers for both files and other directories.

When we create a new file by opening it and writing, the new file goes in the current directory
(Wherever we were when we ran the program). Similarly, when we open a file for reading, Python
looks for it in the current directory.

If we want to open a file somewhere else, we have to specify the path to the file, which is the name
of the directory (or folder) where the file is located:

>>> wordsfile = open("/usr/share/dict/words", "r")

>>> wordlist = wordsfile.readlines()

>>> print(wordlist[:6])

['\n', '"A\n', "A's\n", 'AOL\n', "AOL's\n", 'Aachen\n']

This (Unix) example opens a file named words that resides in a directory named dict, which resides
in share, which resides in usr, which resides in the top-level directory of the system, called /. It then
reads in each line into a list using readlines, and prints out the first 5 elements from that list.

A Windows path might be "c: /temp/words.txt" or "c:\\temp\\words.txt". Because backslashes
are used to escape things like newlines and tabs, we need to write two backslashes in a literal string
to get one! So the length of these two strings is the same!

O O B W N

© 00 N O O b W N =

Chapter 13: Files 225

We cannot use / or \ as part of a filename; they are reserved as a delimiter between directory and
filenames.

The file /usr/share/dict/words should exist on Unix-based systems, and contains a list of words
in alphabetical order.

13.9. What about fetching something from the web?

The Python libraries are pretty messy in places. But here is a very simple example that copies the
contents at some web URL to a local file.

import urllib.request

url = "https://www.ietf.org/rfc/rfc793.txt"
destination_filename = "rfc793.txt"

urllib.request.urlretrieve(url, destination_filename)

The urlretrieve function — just one call — could be used to download any kind of content from
the Internet.

We'll need to get a few things right before this works:
- The resource we’re trying to fetch must exist! Check this using a browser.
- We'll need permission to write to the destination filename, and the file will be created in the “current

directory” - i.e. the same folder that the Python program is saved in.
- If we are behind a proxy server that requires authentication, (as some students are), this may require

some more special handling to work around our proxy. Use a local resource for the purpose of this
demonstration!

Here is a slightly different example. Rather than save the web resource to our local disk, we read it
directly into a string, and return it:

import urllib.request

def retrieve_page(url):
""" Retrieve the contents of a web page.
The contents is converted to a string before returning it.
my_socket = urllib.request.urlopen(url)
dta = str(my_socket.read())
my_socket.close()

10
11
12
13

Chapter 13: Files 226

return dta

the_text = retrieve_page("https://www.ietf.org/rfc/rfc793.txt")
print(the_text)

Opening the remote url returns what we call a socket. This is a handle to our end of the connection
between our program and the remote web server. We can call read, write, and close methods on the
socket

object in much the same way as we can work with a file handle.

13.10. Glossary

delimiter
A sequence of one or more characters used to specify the boundary
between separate parts of text.

directory

A named collection of files, also called a folder. Directories can
contain files and other directories, which are referred to as
subdirectories of the directory that contains them.

file
A named entity, usually stored on a hard drive, floppy disk, or CD-ROM,
that contains a stream of characters.

file system
A method for naming, accessing, and organizing files and the data they
contain.

handle

An object in our program that is connected to an underlying resource
(e.g. a file). The file handle lets our program
manipulate/read/write/close the actual file that is on our disk.

mode

A distinct method of operation within a computer program. Files in
Python can be opened in one of four modes: read ("r"), write ("w"),
append ("a"), and read and write ("+").

non-volatile memory

Memory that can maintain its state without power. Hard drives, flash
drives, and rewritable compact disks (CD-RW) are each examples of
non-volatile memory.

path
A sequence of directory names that specifies the exact location of a
file.

Chapter 13: Files 227

text file
A file that contains printable characters organized into lines separated
by newline characters.

socket
One end of a connection allowing one to read and write information to or
from another computer.

volatile memory

Memory which requires an electrical current to maintain state. The main
memory or RAM of a computer is volatile. Information stored in RAM is
lost when the computer is turned off.

13.11. Exercises

1. Write a program that reads a file and writes out a new file with the lines in reversed order (i.e. the

first line in the old file becomes the last one in the new file.)
2. Write a program that reads a file and prints only those lines that contain the substring snake.
3. Write a program that reads a text file and produces an output file which is a copy of the file, except

the first five columns of each line contain a four digit line number, followed by a space. Start
numbering the first line in the output file at 1. Ensure that every line number is formatted to the
same width in the output file. Use one of your Python programs as test data for this exercise: your
output should be a printed and numbered listing of the Python program.

4. Write a program that undoes the numbering of the previous exercise: it should read a file with
numbered

lines and produce another file without line numbers.

Chapter 14: List Algorithms

This chapter is a bit different from what we’ve done so far: rather than introduce more new Python
syntax and features, we’re going to focus on the program development process, and some algorithms
that work with lists.

As in all parts of this book, our expectation is that you, the reader, will copy our code into your
Python environment, play and experiment, and work along with us.

Part of this chapter works with the book Alice in Wonderland and a vocabulary file. Download these
two files to your local machine at the following links. https://learnpythontherightway.com/_down-
loads/alice_in_wonderland.txt'* and https://learnpythontherightway.com/_downloads/vocab.txt**.

14.1. Test-driven development

Early in our Fruitful functions chapter we introduced the idea of incremental development, where
we added

small fragments of code to slowly build up the whole, so that we could easily find problems early.
Later in that same chapter we introduced unit testing and gave code for our testing framework so
that we could capture, in code, appropriate tests for the functions we were writing.

Test-driven development (TDD) is a software development practice which takes these practices
one step further. The key idea is that automated tests should be written first. This technique is
called

test-driven because — if we are to believe the extremists — non-testing code should only be written
when there is a failing test to make pass.

We can still retain our mode of working in small incremental steps, but now we’ll define and express
those steps in terms of a sequence of increasingly sophisticated unit tests that demand more from
our code at
each stage.

We'll turn our attention to some standard algorithms that process lists now, but as we proceed
through this chapter we’ll attempt to do so in the spirit envisaged by TDD.

14.2. The linear search algorithm

We’d like to know the index where a specific item occurs within in a list of items. Specifically, we’ll
return the index of the item if it is found, or we’ll return -1 if the item doesn’t occur in the list. Let

https://learnpythontherightway.com/_downloads/alice_in_wonderland.txt
“https://learnpythontherightway.com/_downloads/vocab.txt

https://learnpythontherightway.com/_downloads/alice_in_wonderland.txt
https://learnpythontherightway.com/_downloads/alice_in_wonderland.txt
https://learnpythontherightway.com/_downloads/vocab.txt
https://learnpythontherightway.com/_downloads/alice_in_wonderland.txt
https://learnpythontherightway.com/_downloads/vocab.txt

g b W N~

O U W N

Chapter 14: List Algorithms 229

us
start with some tests:

friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
test(search_linear(friends, "Zoe") == 1)

test(search_linear(friends, "Joe") == 0)

test(search_linear(friends, "Paris") == 6)

test(search_linear(friends, "Bill") == -1)

Motivated by the fact that our tests don’t even run, let alone pass, we now write the function:

def search_linear(xs, target):
""" Find and return the index of target in sequence xs """
for (i, v) in enumerate(xs):
if v == target:
return i

return -1

There are a some points to learn here: We’ve seen a similar algorithm in section 8.10 when we
searched for a character in a string. There we used awhile loop, here we’ve used a for loop, coupled
with enumerate to extract the (i, v) pair on each iteration. There are other variants — for example,
we could have used range and made the loop run only over the indexes, or we could have used the
idiom of returning None when the item was not found in the list. But the essential similarity in all
these variations is that we test every item in the list in turn, from first to last, using the pattern of
the short-circuit eureka

traversal that we introduced earlier —that we return from the function as soon as we find the target
that we’re looking for.

Searching all items of a sequence from first to last is called a linear search. Each time we check
whether v == target we’ll call it a probe. We like to count probes as a measure of how efficient
our algorithm is, and this will be a good enough indication of how long our algorithm will take to
execute.

Linear searching is characterized by the fact that the number of probes needed to find some target
depends directly on the length of the list. So if the list becomes ten times bigger, we can expect to
wait ten times longer when searching for things. Notice too, that if we’re searching for a target that
is not present in the list, we’ll have to go all the way to the end before we can return the negative
value. So this case needs N probes, where N is the length of the list. However, if we're searching for
a target that does exist in the list, we could be lucky and find it immediately in position 0, or we
might have to look further, perhaps even all the way to the last item. On average, when the target
is present, we’re going to need to go about halfway through the list, or N/2 probes.

We say that this search has linear performance (linear meaning straight line) because, if we were
to measure the average search times for different sizes of lists (N), and then plot a graph of time-to-
search against N, we’d get a more-or-less straight line graph.

O O W N

=~ O U b wWw N

Chapter 14: List Algorithms 230

Analysis like this is pretty meaningless for small lists — the computer is quick enough not to bother if
the list only has a handful of items. So generally, we're interested in the scalability of our algorithms
— how do they perform if we throw bigger problems at them. Would this search be a sensible one
to use if we had a million or ten million items (perhaps the catalog of books in your local library) in
our list? What happens for really large datasets, e.g. how does Google search so brilliantly well?

14.3. A more realistic problem

As children learn to read, there are expectations that their vocabulary will grow. So a child of age 14
is expected to know more words than a child of age 8. When prescribing reading books for a grade,
an important question might be “which words in this book are not in the expected vocabulary at this
level?”

Let us assume we can read a vocabulary of words into our program, and read the text of a book,
and split it into words. Let us write some tests for what we need to do next. Test data can usually
be very small, even if we intend to finally use our program for larger cases:

vocab = ["apple", "boy", "dog", "down",
”fe].].”’ ”gir].", "graSS", ”the", lltreen]
book_words = "the apple fell from the tree to the grass".split()

test(find_unknown_words(vocab, book_words) == ["from", "to"])
test(find_unknown_words([], book_words) == book_words)
test(find_unknown_words(vocab, ["the", "boy", "fell"]) == [])

Notice we were a bit lazy, and used split to create our list of words —it is easier than typing out
the list, and very convenient if you want to input a sentence into the program and turn it into a list
of words.

We now need to implement the function for which we’ve written tests, and we’ll make use of our
linear search. The basic strategy is to run through each of the words in the book, look it up in the
vocabulary, and if it is not in the vocabulary, save it into a new resulting list which we return from
the function:

def find_unknown_words(vocab, wds):
""" Return a list of words in wds that do not occur in vocab """
result = []
for w in wds:
if (search_linear(vocab, w) < 0):
result.append(w)
return result

We can happily report now that the tests all pass.

Chapter 14: List Algorithms 231

Now let us look at the scalability. We have more realistic vocabulary in the text file that could be
downloaded at the beginning of this chapter. Upload the vocab.txt file to a new repl so that you
can access it from your code.

E. @ . ritza / upload-examyle @ Run »

[File B : main.py =

Ubload fil 1 examples
. oad file

o2 p

- Upload folder

LT

EI Download as zip

Now let us read in the file (as a single string) and split it into a list of words. For convenience, we’ll
create a function to do this for us, and test it on the vocab file.

def load_words_from_file(filename):
""" Read words from filename, return list of words. """
f = open(filename, "r")
file_content = f.read()
f.close()
wds = file_content.split()

return wds

bigger_vocab = load_words_from_file("vocab.txt")
print("There are {0} words in the vocab, starting with\n {1} "
.format(len(bigger_vocab), bigger_vocab[:6]))

Python responds with:

There are 19469 words in the vocab, starting with
['a', 'aback', 'abacus', 'abandon', 'abandoned', 'abandonment']

So we’ve got a more sensible size vocabulary. Now let us load up a book, once again we’ll use the
one we downloaded at the beginning of this chapter. Loading a book is much like loading words
from a file, but

we're going to do a little extra black magic. Books are full of punctuation, and have mixtures
of lowercase and uppercase letters. We need to clean up the contents of the book. This will
involve removing punctuation, and converting everything to the same case (lowercase, because our
vocabulary is all in lowercase). So we’ll want a more sophisticated way of converting text to words.

© 00 N O O b W N =

[S Y
O b 0w N =~ O

10

Chapter 14: List Algorithms 232

test(text_to_words("My name is Earl!") == ["my", "name", "is", "earl"])
test(text_to_words('"Well, I never!", said Alice.') ==
["We].].", "j.”, "neVel’", "Saj_d”, llalicell])

There is a powerful translate method available for strings. The idea is that one sets up desired
substitutions — for every character, we can give a corresponding replacement character. The
translate method will apply these replacements throughout the whole string. So here we go:

def text_to_words(the_text):

return a list of words with all punctuation removed,

and all in lowercase.

mn

my_substitutions = the_text.maketrans(
If you find any of these
"ABCDEFGHIJKLMNOPQRSTUVWXYZQ123456789 1 \"#$%& () *+,-./:;<=>2@[]A_~{]}~"\\",
Replace them by these
"abcdefghi jklmnopgrstuvwxyz ")

Translate the text now.

cleaned_text = the_text.translate(my_substitutions)
wds = cleaned_text.split()

return wds

The translation turns all uppercase characters into lowercase, and all punctuation characters and
digits into spaces. Then, of course, split will get rid of the spaces as it breaks the text into a list of
words.

The tests pass.

Now we’re ready to read in our book:

def get_words_in_book(filename):
""" Read a book from filename, and return a list of its words. """
f = open(filename, "r")
content = f.read()
f.close()
wds = text_to_words(content)

return wds
book_words = get_words_in_book("alice_in_wonderland.txt")
print("There are {@} words in the book, the first 100 are\n{1}".

format(len(book_words), book_words[:100]))

Python prints the following (all on one line, we’ve cheated a bit for the textbook):

=~ O O b W N =

Chapter 14: List Algorithms

There are 27336 words in the book, the first 100 are

['alice', 's', 'adventures', 'in', 'wonderland',6 'lewis', 'carroll',
'chapter', 'i', 'down', 'the', 'rabbit', 'hole',6 'alice', 'was',
'beginning', 'to', 'get',6 ‘'very', 'tired', 'of', 'sitting', 'by',
'her', 'sister', 'on', 'the', 'bank', 'and', 'of', 'having',
'nothing', 'to', 'do', 'once', 'or', 'twice', 'she', 'had',
'peeped', 'into', 'the', 'book', 'her',6 'sister',6 'was',6 'reading',
'but', 'it', 'had', 'no', 'pictures', 'or', 'conversations',6 'in',
'it', 'and', 'what', 'is', 'the', 'use', 'of', 'a', 'book',
"thought', 'alice', 'without', 'pictures', 'or', 'conversation',
'so', 'she', 'was', 'considering', 'in', 'her', ‘'own',6 'mind',
'as', 'well', 'as', 'she', 'could', 'for', 'the', 'hot', 'day’,
'made', 'her', 'feel', 'very',6 'sleepy', 'and',6 'stupid',
'whether', 'the', 'pleasure', 'of', 'making', 'a']

233

Well now we have all the pieces ready. Let us see what words in this book are not in the vocabulary:

>>> missing_words = find_unknown_words(bigger_vocab, book_words)

We wait a considerable time now, something like a minute, before Python finally works its way
through this, and prints a list of 3398 words in the book that are not in the vocabulary. Mmm... This

is not particularly

scaleable. For a vocabulary that is twenty times larger (you’ll often find school dictionaries with
300 000 words, for example), and longer books, this is going to be slow. So let us make some timing

measurements
while we think about how we can improve this in the next section.

import time

t@ = time.process_time()

missing_words = find_unknown_words(bigger_vocab, book_words)

t1 = time.process_time()

print("There are {0} unknown words.".format(len(missing_words)))
print("That took {@:.4f} seconds.".format(t1-tQ))

We get the results and some timing that we can refer back to later:

There are 3398 unknown words.
That took 49.8014 seconds.

O O B W N

Chapter 14: List Algorithms 234

14.4. Binary Search

If you think about what we’ve just done, it is not how we work in real life. If you were given a
vocabulary and asked to tell if some word was present, you’d probably start in the middle. You can
do this because the

vocabulary is ordered — so you can probe some word in the middle, and immediately realize that
your target was before (or perhaps after) the one you had probed. Applying this principle repeatedly
leads us to a

very much better algorithm for searching in a list of items that are already ordered. (Note that if the
items are not ordered, you have little choice other than to look through all of them. But, if we know
the items are in order, we can improve our searching technique).

Lets start with some tests. Remember, the list needs to be sorted:

xs = [2,3,5,7,11,13,17,23,29,31,37,43,47,53]

test(search_binary(xs, 20) == -1)
test(search_binary(xs, 99) == -1)
test(search_binary(xs, 1) == -1)

for (i, v) in enumerate(xs):

test(search_binary(xs, v) == i)

Even our test cases are interesting this time: notice that we start with items not in the list and look
at boundary conditions — in the middle of the list, less than all items in the list, bigger than the
biggest.

Then we use a loop to use every list item as a target, and to confirm that our binary search returns
the corresponding index of that item in the list.

It is useful to think about having a region-of-interest (ROI) within the list being searched. This ROI
will be the portion of the list in which it is still possible that our target might be found. Our algorithm
will start with the ROI set to all the items in the list. On the first probe in the middle of the ROI,
there are three possible outcomes: either we find the target, or we learn that we can discard the top
half

of the ROL or we learn that we can discard the bottom half of the ROI. And we keep doing this
repeatedly, until we find our target, or until we end up with no more items in our region of interest.
We can code this as follows:

g b W N =

Chapter 14: List Algorithms 235

def search_binary(xs, target):

""" Find and return the index of key in sequence xs """
1b = 0
ub

while True:

len(xs)

if 1b == ub: # If region of interest (ROI) becomes empty
return -1

Next probe should be in the middle of the ROI
mid_index = (1b + ub) // 2

Fetch the item at that position

item_at_mid = xs[mid_index]

print("ROI[{0}:{1}](size={2}), probed='{3}', target='{4}""
. format(1b, ub, ub-1b, item_at_mid, target))

How does the probed item compare to the target?
if item_at_mid == target:
return mid_index # Found it!
if item_at_mid < target:
1b = mid_index + 1 # Use upper half of ROI next time
else:

ub = mid_index # Use lower half of ROI next time

The region of interest is represented by two variables, a lower bound 1b and an upper bound ub. It is
important to be precise about what values these indexes have. We’ll make 1b hold the index of the
first

item in the ROI, and make ub hold the index just beyond the last item of interest. So these semantics
are similar to a Python slice semantics: the region of interest is exactly the slice xs[1b:ub]. (The
algorithm never actually takes any array slices!)

With this code in place, our tests pass. Great. Now if we substitute a call to this search algorithm
instead of calling the search_linear in find_unknown_words, can we improve our performance?
Let’s do that, and

again run this test:

t@ = time.process_time()

missing_words = find_unknown_words(bigger_vocab, book_words)

t1 = time.process_time()

print("There are {0} unknown words.".format(len(missing_words)))
print("That took {@:.4f} seconds.".format(t1-t@))

What a spectacular difference! More than 200 times faster!

© 00 1 O O b W N =

T S =Y
O O B W N~

Chapter 14: List Algorithms 236

There are 3398 unknown words.
That took ©.2262 seconds.

Why is this binary search so much faster than the linear search? If we uncomment the print statement
on lines 15 and 16, we’ll get a trace of the probes done during a search. Let’s go ahead, and try that:

>>> search_binary(bigger_vocab, "magic")

ROI[0:19469] (size=19469), probed='known', target='magic'
ROI[9735:19469] (size=9734), probed='retailer', target='magic'
ROI[9735:14602] (size=4867), probed='overthrow', target='magic'
ROI[9735:12168] (size=2433), probed='mission', target='magic'
ROI[9735:10951] (size=1216), probed='magnificent', target='magic'
ROI[9735:10343] (size=608), probed='liken', target='magic'
ROI[10040:10343] (size=303), probed='looks', target='magic'
ROI[10192:10343] (size=151), probed='lump', target='magic'
ROI[10268:10343] (size=75), probed='machete', target='magic'
ROI[10306:10343] (size=37), probed='mafia', target='magic'
ROI[10325:10343] (size=18), probed='magnanimous', target='magic'
ROI[10325:10334] (size=9), probed='magical', target='magic'
ROI[10325:10329] (size=4), probed= maggot', target='magic'
ROI[10328:10329] (size=1), probed='magic', target='magic'

10328

Here we see that finding the target word “magic” needed just 14 probes before it was found at index
10328. The important thing is that each probe halves (with some truncation) the remaining region
of interest. By

contrast, the linear search would have needed 10329 probes to find the same target word.

The word binary means two. Binary search gets its name from the fact that each probe splits the list
into two pieces and discards the one half from the region of interest.

The beauty of the algorithm is that we could double the size of the vocabulary, and it would only
need one more probe! And after another doubling, just another one probe. So as the vocabulary gets
bigger, this

algorithm’s performance becomes even more impressive.

Can we put a formula to this? If our list size is N, what is the biggest number of probes k we could
need? The maths is a bit easier if we turn the question around: how big a list N could we deal with,
given that we

were only allowed to make k probes?

With 1 probe, we can only search a list of size 1. With two probes we could cope with lists up to size
3 - (test the middle item with the first probe, then test either the left or right sublist with the second
probe). With one more probe, we could cope with 7 items (the middle item, and two sublists of size 3).
With four probes, we can search 15 items, and 5 probes lets us search up to 31 items. So the general
relationship is given by the formula

N O O b W N =~

Chapter 14: List Algorithms 237
N =2 %k k -1

where k is the number of probes we're allowed to make, and N is the maximum size of the list that
can be searched in that many probes. This function is exponential in k (because k occurs in the
exponent part).

If we wanted to turn the formula around and solve for k in terms of N, we need to move the constant
1 to the other side, and take a log (base 2) on each side. (The log is the inverse of an exponent.) So
the formula

for k in terms of N is now:

k = [log,(N + 1)]

The square-only-on-top brackets are called ceiling brackets: this means that you must round the
number up to the next whole integer.

Let us try this on a calculator, or in Python, which is the mother of all calculators: suppose I have
1000 elements to be searched, what is the maximum number of probes I'll need? (There is a pesky
+1 in the formula, so let us not forget to add it on...):

>>> from math import log
>>> log(1000 + 1, 2)
9.967226258835993

Telling us that we’ll need 9.96 probes maximum, to search 1000 items is not quite what we want. We
forgot to take the ceiling. The ceil function in the math module does exactly this. So more accurately,
now:

>>> from math import log, ceil
>>> ceil(log(1000 + 1, 2))

10

>>> ceil(log(1000000 + 1, 2))
20

>>> ceil(log(1000000000 + 1, 2))
30

This tells us that searching 1000 items needs 10 probes. (Well technically, with 10 probes we can
search exactly 1023 items, but the easy and useful stuff to remember here is that “1000 items needs
10 probes, a million needs 20 probes, and a billion items only needs 30 probes”).

You will rarely encounter algorithms that scale to large datasets as beautifully as binary search does!

W N

© 00 N O O b W N =

=Y
N O

Chapter 14: List Algorithms 238

14.5. Removing adjacent duplicates from a list

We often want to get the unique elements in a list, i.e. produce a new list in which each different
element occurs just once. Consider our case of looking for words in Alice in Wonderland that are
not in our vocabulary. We had a report that there are 3398 such words, but there are duplicates in
that list. In fact, the word “alice” occurs 398 times in the book, and it is not in our vocabulary! How
should we remove these

duplicates?

A good approach is to sort the list, then remove all adjacent duplicates. Let us start with removing
adjacent duplicates

test(remove_adjacent_dups([1,2,3,3,3,3,5,6,9,9]) == [1,2,3,5,6,9])

test(remove_adjacent_dups([]) == [])

test(remove_adjacent_dups(["a", "big", "big", "bite", "dog"]) ==
["a", "big", "bite", "dog"])

The algorithm is easy and efficient. We simply have to remember the most recent item that was
inserted into the result, and avoid inserting it again:

def remove_adjacent_dups(xs):
""" Return a new list in which all adjacent
duplicates from xs have been removed.
result = []
most_recent_elem = None
for e in xs:
if e = most_recent_elem:
result.append(e)

most_recent_elem = e

return result

The amount of work done in this algorithm is linear — each item in xs causes the loop to execute
exactly once, and there are no nested loops. So doubling the number of elements in xs should cause
this function to run twice as long: the relationship between the size of the list and the time to run
will be graphed as a straight (linear) line.

Let us go back now to our analysis of Alice in Wonderland. Before checking the words in the book
against the

vocabulary, we’ll sort those words into order, and eliminate duplicates. So our new code looks like
this:

=~ O O b W N =

O 00 N O O & W N =~

T = =y
© 00 N O O b W N =~ o

Chapter 14: List Algorithms 239

all_words = get_words_in_book("alice_in_wonderland.txt")
all_words.sort()
book_words = remove_adjacent_dups(all_words)
print("There are {0} words in the book. Only {1} are unique.".
format(len(all_words), len(book_words)))
print("The first 100 words are\n{@}".
format(book_words[:100]))

Almost magically, we get the following output:

There are 27336 words in the book. Only 2570 are unique.
The first 100 words are

["_i_", 'a', 'abide', 'able', 'about', 'above', 'absence', 'absurd',
'acceptance', 'accident', 'accidentally', ‘'account', 'accounting',
'accounts', 'accusation', ‘'accustomed', 'ache', 'across', ‘'act’',
'actually', 'ada', 'added',6 'adding', 'addressed',6 ‘'addressing',
'adjourn', 'adoption', 'advance',6 'advantage',6 'adventures',
'advice', 'advisable', 'advise', 'affair', 'affectionately',
'afford', 'afore', 'afraid', ‘'after', 'afterwards',6 'again',
'against', 'age', 'ago', 'agony', ‘'agree', 'ah', 'ahem',6 ‘'air',
'airs', 'alarm', 'alarmed',6 ‘'alas', 'alice', 'alive', 'all’,
'allow', 'almost', 'alone', 'along', 'aloud',6 'already',6 'also',
'altered', 'alternately', 'altogether',6 'always', 'am', 'ambition',
'among', 'an', 'ancient', 'and', 'anger',6 ‘'angrily',6 'angry',
'animal', 'animals', 'ann', 'annoy', 'annoyed', 'another',
'answer', 'answered', ‘'answers', 'antipathies', ‘'anxious',
"anxiously', 'any', 'anything', 'anywhere', 'appealed', ‘'appear',
'appearance', 'appeared',6 ‘'appearing', 'applause', ‘'apple',
'apples', 'arch']

Lewis Carroll was able to write a classic piece of literature using only 2570 different words!

14.6. Merging sorted lists

Suppose we have two sorted lists. Devise an algorithm to merge them together into a single sorted
list.

A simple but inefficient algorithm could be to simply append the two lists together, and sort the
result:

O© 00 N O O b W N =~

NN
= o

O© 00 N O O & W N =~

[T N T N T o N - S S G O
N »~ © © 00 1 O O b W N =~ O

Chapter 14: List Algorithms

newlist = (xs + ys)
newlist.sort()

But this doesn’t take advantage of the fact that the two lists are already sorted, and is going to have

poor scalability and performance for very large lists.
Lets get some tests together first:
xs = [1,3,5,7,9,11,13,15,17,19]

ys = [4,8,12,16,20,24]

ZS = XStys

zs.sort()

test(merge(xs, []) == xs)

test(merge([], ys) == ys)

test(merge([], []) == [])

test(merge(xs, ys) == zs)

test(merge([1,2,3], [8,4,5]) == [1,2,3,8,4,5])

teSt(mel’ge(["a", "big", "Cat"], ["big”, ”bite", Ildogll] -
[nan, "big”, ”big”, ”bite", ”Cat”, udogu])

Here is our merge algorithm:

def merge(xs, ys):

mn

merge sorted lists xs and ys. Return a sorted result """

result = []
Xxi =0
yi =0

while True:

#

if xi >= len(xs): If xs list is finished,

result.extend(ys[yi:]) # Add remaining items from ys

#

return result And we 're done.

if yi >= len(ys): # Same again, but swap roles
result.extend(xs[xi:])
return result

Both lists still have items, copy smaller item to result.

if xs[xi] <= ys[yi]:
result.append(xs[xi])
xi += 1

else:
result.append(ys[yi])
yi +=1

Chapter 14: List Algorithms 241

The algorithm works as follows: we create a result list, and keep two indexes, one into each list (lines
3-5). On each iteration of the loop, whichever list item is smaller is copied to the result list, and that
list’s index is advanced. As soon as either index reaches the end of its list, we copy all the remaining
items from the other list into the result, which we return.

14.7. Alice in Wonderland, again!

Underlying the algorithm for merging sorted lists is a deep pattern of computation that is widely
reusable. The pattern essence is “Run through the lists always processing the smallest remaining
items from each, with these cases to consider:”

- What should we do when either list has no more items?
- What should we do if the smallest items from each list are equal to each other?
- What should we do if the smallest item in the first list is smaller than the smallest one the second

list?
- What should we do in the remaining case?

Lets assume we have two sorted lists. Exercise your algorithmic skills by adapting the merging
algorithm pattern for each of these cases:

- Return only those items that are present in both lists.

- Return only those items that are present in the first list, but not in the second.

- Return only those items that are present in the second list, but not in the first.

- Return items that are present in either the first or the second list.

- Return items from the first list that are not eliminated by a matching element in the second list. In

this case, an item in the second list “knocks out” just one matching item in the first list. This
operation is sometimes called bagdiff. For example bagdiff([5,7,11,11,11,12,13], [7,8,11])
would return [5,11,11,12,13]

In the previous section we sorted the words from the book, and eliminated duplicates. Our
vocabulary is also sorted. So third case above — find all items in the second list that are not in
the first list, would be another way to implement find_unknown_words. Instead of searching for
every word in the dictionary (either by linear or binary search), why not use a variant of the merge
to return the words that occur in the book, but not in the vocabulary.

Chapter 14: List Algorithms 242

def find_unknowns_merge_pattern(vocab, wds):
""" Both the vocab and wds must be sorted. Return a new

list of words from wds that do not occur in vocab.

mn

result = []
Xxi =0

yi =0

while True:
if xi >= len(vocab):
result.extend(wds[yi:])

return result

if yi >= len(wds):
return result

if vocab[xi] == wds[yi]: # Good, word exists in vocab
yi +=1

elif vocab[xi] < wds[yi]: # Move past this vocab word,
xi += 1

else: # Got word that is not in vocab
result.append(wds[yi])
yi +=1

Now we put it all together:

Even more stunning performance here:

There are 828 unknown words.
That took ©.0410 seconds.

Let’s review what we’ve done. We started with a word-by-word linear lookup in the vocabulary that
ran in about 50 seconds. We implemented a clever binary search, and got that down to 0.22 seconds,
more than 200

times faster. But then we did something even better: we sorted the words from the book, eliminated
duplicates, and used a merging pattern to find words from the book that were not in the dictionary.
This was about five times faster than even the binary lookup algorithm. At the end of the chapter
our algorithm is more than a 1000 times faster than our first attempt!

That is what we can call a good day at the office!

Chapter 14: List Algorithms 243

14.8. Eight Queens puzzle, part 1

As told by Wikipedia, “The eight queens puzzle is the problem of placing eight chess queens on an
8x8 chesshoard so that no two queens attack each other. Thus, a solution requires that no two queens
share

the same row, column, or diagonal.”

One solution to the eight queens puzzle

Please try this yourself, and find a few more solutions by hand.

We'd like to write a program to find solutions to this puzzle. In fact, the puzzle generalizes to placing
N queens on an NxN board, so we’re going to think about the general case, not just the 8x8 case.
Perhaps we

can find solutions for 12 queens on a 12x12 board, or 20 queens on a 20x20 board.

How do we approach a complex problem like this? A good starting point is to think about our data
structures — how exactly do we plan to represent the state of the chessboard and its queens in our
program? Once we have some handle on what our puzzle is going to look like in memory, we can
begin to think about the functions and logic we’ll need to solve the puzzle, i.e. how do we put another
queen onto the board

somewhere, and to check whether it clashes with any of the queens already on the board.

The steps of finding a good representation, and then finding a good algorithm to operate on the data
cannot always be done independently of each other. As you think about the operations you require,
you may want

to change or reorganize the data somewhat to make it easier to do the operations you need.

This relationship between algorithms and data was elegantly expressed in the title of a book
Algorithms + Data Structures = Programs, written by one of the pioneers in Computer Science,

o N O O b W N =

Chapter 14: List Algorithms 244

Niklaus Wirth, the inventor
of Pascal.

Let’s brainstorm some ideas about how a chessboard and queens could be represented in memory.
- A two dimensional matrix (a list of 8 lists, each containing 8

squares) is one possibility. At each square of the board would like
to know whether it contains a queen or not — just two possible
states for each square — so perhaps each element in the lists
could be True or False, or, more simply, 0 or 1.

Our state for the solution above could then have this data
representation:

bdl = [[90,0,0,1,0,0,0,0],
0,0,0,0,0,0,1,0],
0,0,1,0,0,0,0,0],
0,0,0,0,0,0,0,1],
0,1,0,0,0,0,0,0]
0,0,0,0,1,0,0,0],
1,0,0,0,0,0,0,0]
0,0,0,0,0,1,0,0]

[
[
[
[
[,
[

[,

[]

You should also be able to see how the empty board would be
represented, and you should start to imagine what operations or

changes you’d need to make to the data to place another queen
somewhere on the board.

- Another idea might be to keep a list of coordinates of where the

queens are. Using the notation in the illustration, for example, we
could represent the state of that solution as:

bd2 — ["a6", "b4", "02", I‘d@”, ”85”, ”f’?", ”91”, nhS"]

- We could make other tweaks to this — perhaps each element in this

list should rather be a tuple, with integer coordinates for both
axes. And being good computer scientists, we’d probably start

numbering each axis from 0 instead of at 1. Now our representation
could be:

Chapter 14: List Algorithms 245
bd3 = [(9,6), (1,4), (2,2), (8,0), (4,5), (5,7), (6,1), (7,3)]

- Looking at this representation, we can’t help but notice that the

first coordinates are ©,1,2,3,4,5,6,7 and they correspond exactly
to the index position of the pairs in the list. So we could discard
them, and come up with this really compact alternative
representation of the solution:

bdd = [6, 4, 2, @, 5, 7, 1, 3]

This will be what we’ll use, let’s see where that takes us.

Let us now take some grand insight into the problem. Do you think it is a coincidence that there
are no repeated numbers in the solution? The solution [6,4,2,0,5,7,1,3] contains the numbers
0,1,2,3,4,5,6,7, but none are duplicated! Could other solutions contain duplicate numbers, or
not?

A little thinking should convince you that there can never be duplicate numbers in a solution: the
numbers represent the row on which the queen is placed, and because we are never permitted to
put two queens in the

same row, no solution will ever have duplicate row numbers in it.

Our key insight

In our representation, any solution to the N queens problem musttherefore be a permutation of the
numbers [0 .. N-1].

Note that not all permutations are solutions. For example, [0,1,2,3,4,5,6,7] has all queens on the
same diagonal.

Wow, we seem to be making progress on this problem merely by thinking, rather than coding!

Our algorithm should start taking shape now. We can start with the list [0..N-1], generate various
permutations of that list, and check each permutation to see if it has any clashes (queens that are on
the same diagonal). If it has no clashes, it is a solution, and we can print it.

Let us be precise and clear on this issue: if we only use permutations of the rows, and we’re using
our compact representation, no queens can clash on either rows or columns, and we don’t even have
to concern

ourselves with those cases. So the only clashes we need to test for are clashes on the diagonals.

It sounds like a useful function will be one that can test if two queens share a diagonal. Each queen
is on some (x,y) position. So does the queen at (5,2) share a diagonal with the one at (2,0)? Does (5,2)
clash

with (3,0)?

Bw N

a b w N

© 00 N O O b W N =

N
N O

Chapter 14: List Algorithms 246

test(not share_diagonal(5,2,2,0))
test(share_diagonal(5,2,3,0))
test(share_diagonal(5,2,4,3))
test(share_diagonal(5,2,4,1))

A little geometry will help us here. A diagonal has a slope of either 1 or -1. The question we really
want to ask is is their distance between them the same in the x and the y direction? If it is, they share
a

diagonal. Because diagonals can be to the left or right, it will make sense for this program to use the
absolute distance in each direction:

def share_diagonal(x@, y@, x1, y1):
" Is (x0, y@) on a shared diagonal with (x1, y1)? """

dy = abs(yl - y@) # Calc the absolute y distance
dx = abs(x1 - x0) # CXalc the absolute x distance
return dx == dy # They clash if dx == dy

If you copy the code and run it, you’ll be happy to learn that the tests pass!

Now let’s consider how we construct a solution by hand. We’ll put a queen somewhere in the first
column, then place one in the second column, only if it does not clash with the one already on the
board. And

then we’ll put a third one on, checking it against the two queens already to its left. When we consider
the queen on column 6, we’ll need to check for clashes against those in all the columns to its left, i.e.
in columns 0,1,2,3,4,5.

So the next building block is a function that, given a partially completed puzzle, can check whether
the queen at column c clashes with any of the queens to its left, at columns 0,1,2,..c-1:

Solutions cases that should not have any clashes
test(not col_clashes([6,4,2,0,5], 4))
test(not col_clashes([6,4,2,0,5,7,1,3], 7))

More test cases that should mostly clash
test(col_clashes([0,1], 1))
test(col_clashes([5,6], 1))
test(col_clashes([6,5], 1))
test(col_clashes([0,6,4,3], 3))
test(col_clashes([5,0,7], 2))
test(not col_clashes([2,0,1,3], 1))
test(col_clashes([2,0,1,3], 2))

Here is our function that makes them all pass:

W N

© 00 N O O b W N =

Chapter 14: List Algorithms 247

def col_clashes(bs, c):
""" Return True if the queen at column ¢ clashes
with any queen to its left.
for i in range(c): # | ook at all columns to the left of c
if share_diagonal(i, bs[i], ¢, bs[c]):
return True

return False # No clashes - col ¢ has a safe placement.

Finally, we’re going to give our program one of our permutations — i.e. all queens placed somewhere,
one on each row, one on each column. But does the permutation have any diagonal clashes?

test(not has_clashes([6,4,2,0,5,7,1,3])) # Solution from above

test(has_clashes([4,6,2,0,5,7,1,3])) # Swap rows of first two
test(has_clashes([0,1,2,3])) # Try small 4x4 board
test(not has_clashes([2,0,3,1])) # Solution to 4x4 case

And the code to make the tests pass:

def has_clashes(the_board):

""" Determine whether we have any queens clashing on the diagonals.
We're assuming here that the_board is a permutation of column
numbers, so we're not explicitly checking row or column clashes.

for col in range(1,len(the_board)):
if col_clashes(the_board, col):

return True

return False

Summary of what we’ve done so far: we now have a powerful function called has_clashes that can
tell if a configuration is a solution to the queens puzzle. Let’s get on now with generating lots of
permutations

and finding solutions!

14.9. Eight Queens puzzle, part 2

This is the fun, easy part. We could try to find all permutations of [@,1,2,3,4,5,6,7] — that might
be algorithmically challenging, and would be a brute force way of tackling the problem. We just try
everything, and find all possible solutions.

© 00 N O O B W N =

=Y
O O B W N =~

Chapter 14: List Algorithms 248

Of course we know there are N! permutations of N things, so we can get an early idea of how long
it would take to search all of them for all solutions. Not too long at all, actually -8! is only 40320
different

cases to check out. This is vastly better than starting with 64 places to put eight queens. If you do the
sums for how many ways can you choose 8 of the 64 squares for your queens, the formula (called
N choose k

where you’re choosing k=8 squares of the available N=64) yields a whopping 4426165368, obtained
from (64! / (8! x 56!)).

So our earlier key insight — that we only need to consider permutations — has reduced what we call
the problem space from about 4.4 billion cases to just 40320!

We’re not even going to explore all those, however. When we introduced the random number
module, we learned that it had a shuffle method that randomly permuted a list of items. So we're
going to write a “random”

algorithm to find solutions to the N queens problem. We’ll begin with the permutation
[0,1,2,3,4,5,6,7] and we’ll repeatedly shuffle the list, and test each to see if it works! Along
the way we’ll count how many attempts we need before we find each solution, and we’ll find 10
solutions (we could hit the same solution more than once, because shuffle is random!):

def main():
import random

rng = random.Random() # Instantiate a generator

bd = list(range(8)) # Generate the initial permutation
num_found = 0
tries = 0
while num_found < 10:
rng.shuffle(bd)
tries += 1
if not has_clashes(bd):
print("Found solution {@} in {1} tries.".format(bd, tries))
tries = 0
num_found += 1

main()

Almost magically, and at great speed, we get this:

O© 00 I O O b W N =

N
[~

Chapter 14: List Algorithms 249

Found solution [3, 6, 2, 7, 1, 4, 0, 5] in 693 tries.
Found solution [5, 7, 1, 3, @, 6, 4, 2] in 82 tries.
Found solution [3, @, 4, 7, 1, 6, 2, 5] in T47 tries.
Found solution [1, 6, 4, 7, 0, 3, 5, 2] in 428 tries.
Found solution [6, 1, 3, @, 7, 4, 2, 5] in 376 tries.
Found solution [3, @, 4, 7, 5, 2, 6, 1] in 204 tries.
Found solution [4, 1, 7, ©, 3, 6, 2, 5] in 98 tries.
Found solution [3, 5, 0, 4, 1, 7, 2, 6] in 64 tries.
Found solution [5, 1, 6, @, 3, 7, 4, 2] in 177 tries.
Found solution [1, 6, 2, 5, 7, 4, @, 3] in 478 tries.

Here is an interesting fact. On an 8x8 board, there are known to be 92 different solutions to this
puzzle. We are randomly picking one of 40320 possible permutations of our representation. So our
chances of picking a

solution on each try are 92/40320. Put another way, on average we’ll need 40320/92 tries — about
438.26 — before we stumble across a solution. The number of tries we printed looks like our
experimental data agrees quite nicely with our theory!

Save this code for later.

In the chapter on PyGame we plan to write a module to draw the board with its queens, and integrate
that module with this code.

14.10. Glossary

binary search

A famous algorithm that searches for a target in a sorted list. Each
probe in the list allows us to discard half the remaining items, so the
algorithm is very efficient.

linear

Relating to a straight line. Here, we talk about graphing how the time
taken by an algorithm depends on the size of the data it is processing.
Linear algorithms have straight-line graphs that can describe this
relationship.

linear search

A search that probes each item in a list or sequence, from first, until
it finds what it is looking for. It is used for searching for a target

in unordered lists of items.

Merge algorithm
An efficient algorithm that merges two already sorted lists, to produce
a sorted list result. The merge algorithm is really a pattern of

Chapter 14: List Algorithms 250

computation that can be adapted and reused for various other scenarios,
such as finding words that are in a book, but not in a vocabulary.

probe

Each time we take a look when searching for an item is called a probe.
In our chapter on Iteration we also
played a guessing game where the computer tried to guess the user’s
secret number. Each of those tries would also be called a probe.

test-driven development (TDD)

A software development practice which arrives at a desired feature
through a series of small, iterative steps motivated by automated tests
which are written first that express increasing refinements of the
desired feature. (see the Wikipedia article on Test-driven
development™ for

more information.)

14.11. Exercises

1. The section in this chapter called Alice in Wonderland, again started with the observation that
the merge

algorithm uses a pattern that can be reused in other situations. Adapt the merge algorithm to write
each of these functions, as was suggested there:

1. Return only those items that are present in both lists.

2. Return only those items that are present in the first list,
but not in the second.

3. Return only those items that are present in the second list,
but not in the first.

4. Return items that are present in either the first or the
second list.

5. Return items from the first list that are not eliminated by a
matching element in the second list. In this case, an item in
the second list “knocks out” just one matching item in the
first list. This operation is sometimes called bagdiff. For
example bagdif£([5,7,11,11,11,12,13], [7,8,11]) would return
[5,11,11,12,13]

2. Modify the queens program to solve some boards of size 4, 12, and 16. What is the maximum size
puzzle you

http://en.wikipedia.org/wiki/Test_driven_development

http://en.wikipedia.org/wiki/Test_driven_development
http://en.wikipedia.org/wiki/Test_driven_development
http://en.wikipedia.org/wiki/Test_driven_development

Chapter 14: List Algorithms 251

can usually solve in under a minute?

3. Adapt the queens program so that we keep a list of solutions that have already printed, so that we
don’t

print the same solution more than once.

4. Chess boards are symmetric: if we have a solution to the queens problem, its mirror solution —
either

flipping the board on the X or in the Y axis, is also a solution. And giving the board a 90

degree, 180 degree, or 270 degree rotation is also a solution. In some sense, solutions that are just
mirror images or rotations of other solutions — in the same family —are less interesting than

the unique “core cases”. Of the 92 solutions for the 8 queens problem, there are only 12 unique
families if you take rotations and mirror images into account. Wikipedia has some fascinating stuff
about this.

1. Write a function to mirror a solution in the Y axis,
2. Write a function to mirror a solution in the X axis,

3. Write a function to rotate a solution by 90 degrees
anti-clockwise, and use this to provide 180 and 270 degree
rotations too.

4. Write a function which is given a solution, and it generates
the family of symmetries for that solution. For example, the
symmetries of [0,4,7,5,2,6,1,3] are:

[[0,4,7,5,2,6,1,3],[7,1,3,0,6,4,2,5],

[4,6,1,5,2,0,3,7],(2,5,3,1,7,4,6,0],

(3,1,6,2,5,7,4,0],{0,6,4,7,1,3,5,2],

[7,3,0,2,5,1,6,4],[5,2,4,6,0,3,1,7]]

5. Now adapt the queens program so it won’t list solutions that
are in the same family. It only prints solutions from unique
families.

5. Every week a computer scientist buys four lotto tickets. She always chooses the same prime
numbers, with

Chapter 14: List Algorithms 252

the hope that if she ever hits the jackpot, she will be able to go onto TV and Facebook and tell
everyone her secret. This will suddenly create widespread public interest in prime numbers, and
will be the trigger event that ushers in a new age of enlightenment. She represents her weekly
tickets in

Python as a list of lists:

my_tickets = [[7, 17, 37, 19, 23, 43],
[7,2, 13, 41, 31, 43],

[2,5,7,11, 13, 17],

[13, 17, 37, 19, 23, 43]]

Complete these exercises.

1. Each lotto draw takes six random balls, numbered from 1 to 49.
Write a function to return a lotto draw.

2. Write a function that compares a single ticket and a draw, and
returns the number of correct picks on that ticket:

test(lotto_match([42,4,7,11,1,13], [2,5,7,11,13,17]) == 3)

3. Write a function that takes a list of tickets and a draw, and
returns a list telling how many picks were correct on each
ticket:

test(lotto_matches([42,4,7,11,1,13], my_tickets) == [1,2,3,1])

4. Write a function that takes a list of integers, and returns the
number of primes in the list:

test(primes_in([42, 4, 7, 11, 1, 13]) == 3)

5. Write a function to discover whether the computer scientist has
missed any prime numbers in her selection of the four tickets.
Return a list of all primes that she has missed:

test(prime_misses(my_tickets) == [3, 29, 47])

Chapter 14: List Algorithms 253

6. Write a function that repeatedly makes a new draw, and compares
the draw to the four tickets.

1. Count how many draws are needed until one of the computer
scientist’s tickets has at least 3 correct picks. Try the

experiment twenty times, and average out the number of draws
needed.

2. How many draws are needed, on average, before she gets at
least 4 picks correct?

3. How many draws are needed, on average, before she gets at
least 5 correct? (Hint: this might take a while. It would be

nice if you could print some dots, like a progress bar, to

show when each of the 20 experiments has completed.)

Notice that we have difficulty constructing test cases here,
because our random numbers are not deterministic. Automated
testing only really works if you already know what the answer

should be!

6. Read Alice in Wonderland. You can read the plain text version we have with this textbook, or if
you

have e-book reader software on your PC, or a Kindle, iPhone, Android, etc. you’ll be able to find a
suitable version for your device at http://www.gutenberg.org. They also have html and pdf versions,
with pictures, and thousands of other classic books!

Chapter 15: Classes and Objects —
the Basics

15.1. Object-oriented programming

Python is an object-oriented programming language, which means that it provides features that
support object-oriented programming'® (OOP).

Object-oriented programming has its roots in the 1960s, but it wasn’t until the mid 1980s that it
became the main programming paradigm'” used in the creation of new software. It was developed
as a way to handle the rapidly increasing size and complexity of software systems, and to make it
easier to modify these large and complex systems over time.

Up to now, most of the programs we have been writing use a procedural programming'® paradigm.
In procedural programming the focus is on writing functions or

procedures which operate on data. In object-oriented programming the focus is on the creation of
objects which contain both data and functionality together. (We have seen turtle objects, string
objects,

and random number generators, to name a few places where we’ve already worked with objects.)

Usually, each object definition corresponds to some object or concept in the real world, and the
functions that operate on that object correspond to the ways real-world objects interact.

15.2. User-defined compound data types

We’ve already seen classes like str, int, float and Turtle. We are now ready to create our own
user-defined class: the Point.

Consider the concept of a mathematical point. In two dimensions, a point is two numbers
(coordinates) that are treated collectively as a single object. Points are often written in parentheses
with a comma separating

the coordinates. For example, (@, ©) represents the origin, and (x, y) represents the point x units
to the right and y units up from the origin.

Some of the typical operations that one associates with points might be calculating the distance of
a point from the origin, or from another point, or finding a midpoint of two points, or asking if a

*Shttp://en.wikipedia.org/wiki/Object-oriented_programming
"http://en.wikipedia.org/wiki/Programming_paradigm
®http://en.wikipedia.org/wiki/Procedural_programming

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Procedural_programming

=~ O U s W N

Bw N

Chapter 15: Classes and Objects — the Basics 255

point falls
within a given rectangle or circle. We’'ll shortly see how we can organize these together with the
data.

A natural way to represent a point in Python is with two numeric values. The question, then, is how
to group these two values into a compound object. The quick and dirty solution is to use a tuple,
and for some

applications that might be a good choice.

An alternative is to define a new class. This approach involves a bit more effort, but it has advantages
that will be apparent soon. We’ll want our points to each have an x and a y attribute, so our first
class definition looks like this:

class Point:

"o

""" Point class represents and manipulates x,y coords.

def __init_ (self):
""" Create a new point at the origin
self.x = 0
self.y = 0

mmn

Class definitions can appear anywhere in a program, but they are usually near the beginning (after
the import statements). Some programmers and languages prefer to put every class in a module of
its own — we won’t do that here. The syntax rules for a class definition are the same as for other
compound statements. There is a header which begins with the keyword, class, followed by the
name of the class, and ending with a

colon. Indentation levels tell us where the class ends.

If the first line after the class header is a string, it becomes the docstring of the class, and will be
recognized by various tools. (This is also the way docstrings work in functions.)

Every class should have a method with the special name __init__. This initializer method is
automatically called whenever a new instance of Point is created. It gives the programmer the
opportunity to set up the attributes required within the new instance by giving them their initial
state/values. The self parameter (we could choose any other name, but self is the convention) is
automatically set to reference the newly created object that needs to be initialized.

So let’s use our new Point class now:

p = Point() # Instantiate an object of type Point
g = Point() # Make a second point

print(p.x, p.y, 9.%X, q.y) # Each point object has its own x and y

This program prints:

W N

Chapter 15: Classes and Objects — the Basics 256

©00o0
because during the initialization of the objects, we created two attributes called x and y for each,
and gave them both the value 0.

This should look familiar — we’ve used classes before to create more than one object:

from turtle import Turtle

tess = Turtle() # Instantiate objects of type Turtle
alex = Turtle()

The variables p and q are assigned references to two new Point objects. A function like Turtle or
Point that creates a new object instance is called a constructor, and every class automatically
provides a constructor function which is named the same as the class.

It may be helpful to think of a class as a factory for making objects. The class itself isn’t an instance
of a point, but it contains the machinery to make point instances. Every time we call the constructor,
we're asking the factory to make us a new object. As the object comes off the production line, its
initialization method is executed to get the object properly set up with its factory default settings.

The combined process of “make me a new object” and “get its settings initialized to the factory
default settings” is called instantiation.

15.3. Attributes

Like real world objects, object instances have both attributes and methods.

We can modify the attributes in an instance using dot notation:

>>> p.x = 8

>>> ply

Both modules and instances create their own namespaces, and the syntax for accessing names
contained in each, called attributes, is the same. In this case the attribute we are selecting is a
data item from an

instance.

The following state diagram shows the result of these assignments:

[o= W —m 3

],r—:l--:l-

The variable p refers to a Point object, which contains two attributes. Each attribute refers to a
number.

We can access the value of an attribute using the same syntax:

a b W N -

Chapter 15: Classes and Objects — the Basics 257

>>> print(p.y)
4

>>> x = p.x
>>> print(x)

3

The expression p.x means, “Go to the object p refers to and get the value of x”. In this case, we assign
that value to a variable named x. There is no conflict between the variable x (in the global
namespace here) and the attribute x (in the namespace belonging to the instance). The purpose of
dot notation is to fully qualify which variable we are referring to unambiguously.

We can use dot notation as part of any expression, so the following statements are legal:

print("(x={@}, y={1})" format(p.x, p.y))
distance_squared_from_origin = p.x * p.x + p.y ¥ p.y

The first line outputs (x=3, y=4). The second line calculates the
value 25.

15.4. Improving our initializer

To create a point at position (7, 6) currently needs three lines of code:

p = Point()
p.x =17
p.y =6

We can make our class constructor more general by placing extra parameters into the __init__-
method, as shown in this example:

class Point:

"o

""" Point class represents and manipulates x,y coords.

def __init_ (self, x=0, y=0):
""" Create a new point at x, y

mn

self.x = x

self.y =y
Other statements outside the class continue below here.

The x and y parameters here are both optional. If the caller does not supply arguments, they’ll get
the default values of 0. Here is our improved class in action:

a b W N -

Chapter 15: Classes and Objects — the Basics 258

>>> p = Point(4, 2)
>>> q = Point(6, 3)
>>> r = Point() # r represents the origin (0, 0)

>>> print(p.x, q.y, r.x)
4 30

Technically speaking ...

If we are really fussy, we would argue that the __init__ method’s docstring is inaccurate. __init_-
_ doesn’t create the object (i.e. set aside memory for it), — it just initializes the object to its
factory-default settings after its creation.

But tools like PyScripter understand that instantiation — creation and initialization — happen
together, and they choose to display the initializer’s docstring as the tooltip to guide the programmer
that calls the class constructor.

So we're writing the docstring so that it makes the most sense when it pops up to help the
programmer who is using our Point class:

1
2 class Point:
« 3 """ point class represents and manipulates x,y coords. """
4
5 def init (self, x=8, y=8):
+ & """ Create a new point at =, y """
-« self.x = x
+ self.y = y
9
10 # Other statements outside the class continue below here.
11
*+ 12 g = Point(

*=0, y=0
Create a new point at x, v

15.5. Adding other methods to our class

The key advantage of using a class like Point rather than a simple tuple (6, 7) now becomes
apparent. We can add methods to the Point class that are sensible operations for points, but which
may not be

appropriate for other tuples like (25, 12) which might represent, say, a day and a month, e.g.
Christmas day. So being able to calculate the distance from the origin is sensible for points, but
not for (day,

month) data. For (day, month) data, we’d like different operations, perhaps to find what day of the
week it will fall on in 2020.

Creating a class like Point brings an exceptional amount of “organizational power” to our programs,

© 00 N O O & W N =

(RN
= O

© 00 N O O b W N =

N N B X R N N b Ly s
, O © 00 N O O b W N =~ 0o

Chapter 15: Classes and Objects — the Basics 259

and to our thinking. We can group together the sensible operations, and the kinds of data they apply
to, and each instance of the class can have its own state.

A method behaves like a function but it is invoked on a specific instance, e.g. tess.right(9@). Like
a data attribute, methods are accessed using dot notation.

Let’s add another method, distance_from_origin, to see better how methods work:

class Point:

mn

""" Create a new Point, at coordinates x, y

def __init_ (self, x=0, y=0):
""" Create a new point at x, y """

self.x = x

self.y =y

def distance_from_origin(self):

""" Compute my distance from the origin
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

Let’s create a few point instances, look at their attributes, and call our new method on them: (We
must run our program first, to make our Point class available to the interpreter.)

>>> p = Point(3, 4)
>3 p.xX

3
> ply

>>> p.distance_from_origin()
5.0
>>> g

Point(5, 12)
>>> g.x

>>> q.y

12

>>> qg.distance_from_origin()
13.0

>>> r = Point()

>>> r.X

>>> r.y

>>> r.distance_from_origin()
0.0

g b W N =

Chapter 15: Classes and Objects — the Basics 260

When defining a method, the first parameter refers to the instance being manipulated. As already
noted, it is customary to name this parameter sel f.

Notice that the caller of distance_from_origin does not explicitly supply an argument to match the
self parameter — this is done for us, behind our back.

15.6. Instances as arguments and parameters

We can pass an object as an argument in the usual way. We’ve already seen this in some of the
turtle examples, where we passed the turtle to some function like draw_bar in the chapter titled
Conditionals, so that the function could control and use whatever turtle instance we passed to it.

Be aware that our variable only holds a reference to an object, so passing tess into a function creates
an alias: both the caller and the called function now have a reference, but there is only one turtle!

Here is a simple function involving our new Point objects:

def print_point(pt):
print("({0}, {1})".format(pt.x, pt.y))

print_point takes a point as an argument and formats the output in whichever way we choose. If
we call print_point(p) with point p as defined previously, the output is (3, 4).

15.7. Converting an instance to a string

Most object-oriented programmers probably would not do what we’ve just done in print_point.
When we’re working with classes and objects, a preferred alternative is to add a new method to the
class. And we don’t

like chatterbox methods that call print. A better approach is to have a method so that every instance
can produce a string representation of itself. Let’s initially call it to_string:

class Point:
#...

def to_string(self):
return "({0}, {1})".format(self.x, self.y)

Now we can say:

g b W N~ BwWw N

oW N -

Chapter 15: Classes and Objects — the Basics 261

>>> p = Point(3, 4)
>>> print(p.to_string())
(3, 4)

But don’t we already have a str type converter that can turn our object into a string? Yes!
And doesn’t print automatically use this when printing things? Yes again! But these automatic
mechanisms do not

yet do exactly what we want:

»>> str(p)

'<_main__.Point object at 0x01F9AA10>'
>>> print(p)

'<_main__.Point object at 0x01F9AA10>'

Python has a clever trick up its sleeve to fix this. If we call our new method __str__ instead of
to_string, the Python interpreter will use our code whenever it needs to convert a Point to a string.
Let’s re-do this again, now:

class Point:
#...

def __str_ (self): # A1l we have done is renamed the method
return "({0}, {1})".format(self.x, self.y)

and now things are looking great!
>>> str(p) # Python now uses the __str__ method that we wrote.
(3, 4)

>>> print(p)
(3, 4)

15.8. Instances as return values

Functions and methods can return instances. For example, given two Point objects, find their
midpoint. First we’ll write this as a regular function:

0 N O O &~ W N = g b W N - a b W N -

a b w N

Chapter 15: Classes and Objects — the Basics 262

def midpoint(pl, p2):
""" Return the midpoint of points p1 and p2 """
mx = (p1.x + p2.x)/2
my = (pl.y + p2.y)/2
return Point(mx, my)

The function creates and returns a new Point object:

>>> p = Point(3, 4)
>>> q = Point(5, 12)
>>> r = midpoint(p, q)
T

(4.0, 8.0)

Now let us do this as a method instead. Suppose we have a point object, and wish to find the midpoint
halfway between it and some other target point:

class Point:
#...

def halfway(self, target):
""" Return the halfway point between myself and the target """
mx = (self.x + target.x)/2
my = (self.y + target.y)/2
return Point(mx, my)

This method is identical to the function, aside from some renaming. It’s usage might be like this:

>>> p = Point(3, 4)
>>> q = Point(5, 12)
>>> v = p.halfway(q)
S > T

(4.0, 8.0)

While this example assigns each point to a variable, this need not be done. Just as function calls are
composable, method calls and object instantiation are also composable, leading to this alternative
that uses

no variables:

Chapter 15: Classes and Objects — the Basics 263

>>> print(Point(3, 4).halfway(Point(5, 12)))
(4.0, 8.0)

15.9. A change of perspective

The original syntax for a function call, print_time(current_time), suggests that the function is the
active agent. It says something like, “Hey, print_time! Here’s an object for you to print.”

In object-oriented programming, the objects are considered the active agents. An invocation like
current_time.print_time() says “Hey current_time! Please print yourself!”

In our early introduction to turtles, we used an object-oriented style, so that we said
tess. forward(100), which asks the turtle to move itself forward by the given number of
steps.

This change in perspective might be more polite, but it may not initially be obvious that it is useful.
But sometimes shifting responsibility from the functions onto the objects makes it possible to write
more versatile functions, and makes it easier to maintain and reuse code.

The most important advantage of the object-oriented style is that it fits our mental chunking and
real-life experience more accurately. In real life our cook method is part of our microwave oven —
we don’t

have a cook function sitting in the corner of the kitchen, into which we pass the microwave! Similarly,
we use the cellphone’s own methods to send an sms, or to change its state to silent. The functionality
of

real-world objects tends to be tightly bound up inside the objects themselves. OOP allows us to
accurately mirror this when we organize our programs.

15.10. Objects can have state

Objects are most useful when we also need to keep some state that is updated from time to time.
Consider a turtle object. Its state consists of things like its position, its heading, its color, and its
shape. A

method like 1eft(90) updates the turtle’s heading, forward changes its position, and so on.

For a bank account object, a main component of the state would be the current balance, and perhaps
a log of all transactions. The methods would allow us to query the current balance, deposit new
funds, or make

a payment. Making a payment would include an amount, and a description, so that this could be
added to the transaction log. We’d also want a method to show the transaction log.

Chapter 15: Classes and Objects — the Basics 264

15.11. Glossary

attribute
One of the named data items that makes up an instance.

class

A user-defined compound type. A class can also be thought of as a
template for the objects that are instances of it. (The iPhone is a
class. By December 2010, estimates are that 50 million instances had

been sold!)

constructor

Every class has a “factory”, called by the same name as the class, for
making new instances. If the class has an initializer method, this
method is used to get the attributes (i.e. the state) of the new object
properly set up.

initializer method

A special method in Python (called __init__) that is invoked
automatically to set a newly created object’s attributes to their
initial (factory-default) state.

instance
An object whose type is of some class. Instance and object are used
interchangeably.

instantiate
To create an instance of a class, and to run its initializer.

method
A function that is defined inside a class definition and is invoked on
instances of that class.

object

A compound data type that is often used to model a thing or concept in
the real world. It bundles together the data and the operations that are
relevant for that kind of data. Instance and object are used
interchangeably.

object-oriented programming
A powerful style of programming in which data and the operations that
manipulate it are organized into objects.

object-oriented language
A language that provides features, such as user-defined classes and
inheritance, that facilitate object-oriented programming.

Chapter 15: Classes and Objects — the Basics 265

15.12. Exercises

1. Rewrite the distance function from the chapter titled Fruitful functions so that it takes two

Points as parameters instead of four numbers.

2. Add a method reflect_x to Point which returns a new Point, one which is the reflection of the
point

about the x-axis. For example, Point(3, 5).reflect_x() is (3, -5)

3. Add a method slope_from_origin which returns the slope of the line joining the origin to the
point. For

example:

>>> Point(4, 10).slope_from_origin()
2.5

What cases will cause this method to fail?
4. The equation of a straight line is “y = ax + b”, (or perhaps “y = mx + ¢”). The coefficients a and b

completely describe the line. Write a method in the Point class so that if a point instance is
given another point, it will compute the equation of the straight ine joining the two points. It must
return the two coefficients as a tuple of two values. For example, :

>>> print(Point(4, 11).get_line_to(Point(6, 15)))
>>> (2, 3)

This tells us that the equation of the line joining the two points is “y = 2x + 3”. When will this method
fail?
5. Given four points that fall on the circumference of a circle, find the midpoint of the circle. When
will

this function fail?

Hint: You must know how to solve the geometry problem before you think of going anywhere near
programming. You cannot program a solution to a problem if you don’t understand what you want
the

computer to do!

O© 00 N O O & W N =~

T = =N =
o N O O b W N =~ 0o

Chapter 15: Classes and Objects — the Basics

6. Create a new class, SMS_store. The class will instantiate SMS_store objects, similar to an inbox

or

outbox on a cellphone:

my_inbox = SMS_store()

This store can hold multiple SMS messages (i.e. its internal state will just be a list of messages). Each

message will be represented as a tuple:
(has_been_viewed, from_number, time_arrived, text_of_SMS)
The inbox object should provide these methods:

my_inbox.add_new_arrival(from_number, time_arrived, text_of_SMS)
Makes new SMS tuple, inserts it after other messages
1n the store. When creating this message, its

has_been_viewed status is set False.

my_inbox.message_count()

Returns the number of sms messages in my_inbox

my_inbox.get_unread_indexes()

Returns list of indexes of all not-yet-viewed SMS messages

my_inbox.get_message(i)
Return (from_number, time_arrived, text_of _sms) for message[i]
Also change its state to "has been viewed".

If there is no message at position i, return None

my_inbox.delete(i) # Delete the message at index i

my_inbox.clear() # Delete all messages from inbox

Write the class, create a message store object, write tests for these methods, and implement the

methods.

© 00 N O O & W N =

N = ==
N O O b= W N -~ O

Chapter 16: Classes and Objects —
Digging a little deeper

16.1. Rectangles

Let’s say that we want a class to represent a rectangle which is located somewhere in the XY plane.
The question is, what information do we have to provide in order to specify such a rectangle? To
keep things simple, assume that the rectangle is oriented either vertically or horizontally, never at
an angle.

There are a few possibilities: we could specify the center of the rectangle (two coordinates) and its
size (width and height); or we could specify one of the corners and the size; or we could specify two
opposing corners. A conventional choice is to specify the upper-left corner of the rectangle, and the
size.

Again, we’ll define a new class, and provide it with an initializer and a string converter method:

class Rectangle:

mn

""" A class to manufacture rectangle objects

def __init__(self, posn, w, h):
""" Initialize rectangle at posn, with width w, height h """
self.corner = posn
self.width = w
self.height = h

def __str__ (self):
return "({0}, {1}, {2})"
.format(self.corner, self.width, self.height)

box = Rectangle(Point(0, 0), 100, 200)

bomb = Rectangle(Point(100, 80), 5, 10) # In my video game
print("box: ", box)

print("bomb: ", bomb)

To specify the upper-left corner, we have embedded a Point object (as we used it in the previous
chapter) within our new Rectangle object! We create two new Rectangle objects, and then print
them producing:

O 00 N O O & W N =

Chapter 16: Classes and Objects — Digging a little deeper 268

box: ((0, 0), 100, 200)
bomb: ((100, 80), 5, 10)

The dot operator composes. The expression box.corner .x means, “Go to the object that box refers
to and select its attribute named corner, then go to that object and select its attribute named x”.

The figure shows the state of this object:

16.2. Objects are mutable

We can change the state of an object by making an assignment to one of its attributes. For example,
to grow the size of a rectangle without changing its position, we could modify the values of width
and height:

box.width += 50
box.height += 100

Of course, we’d probably like to provide a method to encapsulate this inside the class. We will also
provide another method to move the position of the rectangle elsewhere:

class Rectangle:
#...

def grow(self, delta_width, delta_height):
""" Grow (or shrink) this object by the deltas
self.width += delta_width
self.height += delta_height

mn

def move(self, dx, dy):

10
11
12

© 00 N O O b W N =

W N

Chapter 16: Classes and Objects — Digging a little deeper 269

mn

""" Move this object by the deltas
self.corner.x += dx

self.corner.y += dy
Let us try this:

>>> r = Rectangle(Point(10,5), 100, 50)
>>> print(r)

((10, 5), 100, 50)

>>> r.grow(25, -10)

>>> print(r)

((10, 5), 125, 40)

>>> r.move(-10, 10)

print(r)

((0, 15), 125, 40)

16.3. Sameness

The meaning of the word “same” seems perfectly clear until we give it some thought, and then we
realize there is more to it than we initially expected.

For example, if we say, “Alice and Bob have the same car”, we mean that her car and his are the
same make and model, but that they are two different cars. If we say, “Alice and Bob have the same
mother”, we mean

that her mother and his are the same person.

When we talk about objects, there is a similar ambiguity. For example, if two Points are the same,
does that mean they contain the same data (coordinates) or that they are actually the same object?

We've already seen the is operator in the chapter on lists, where we talked about aliases: it allows
us to find out if two references refer to the same object:

>>> pl = Point(3, 4)
>>> p2 = Point(3, 4)
>>> pl is p2

False

Even though p1 and p2 contain the same coordinates, they are not the same object. If we assign p1
to p3, then the two variables are aliases of the same object:

W N

© 00 N O O b W N =

Chapter 16: Classes and Objects — Digging a little deeper 270

> > p3 = p'l
>>> pl is p3
True

This type of equality is called shallow equality because it compares only the references, not the
contents of the objects.

To compare the contents of the objects — deep equality —we can write a function called same_-
coordinates:

def same_coordinates(pl, p2):
return (p1.x == p2.x) and (pl.y == p2.y)

Now if we create two different objects that contain the same data, we can use same_point to find
out if they represent points with the same coordinates.

>>> pl = Point(3, 4)
>>> p2 = Point(3, 4)
>>> same_coordinates(p1l, p2)

True

Of course, if the two variables refer to the same object, they have both shallow and deep equality.
Beware of ==

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means just what I choose
it to mean — neither more nor less.” Alice in Wonderland

Python has a powerful feature that allows a designer of a class to decide what an operation like == or
< should mean. (We’ve just shown how we can control how our own objects are converted to strings,
so we've already made a start!) We’ll cover more detail later. But sometimes the implementors will
attach shallow equality semantics, and sometimes deep equality, as shown in this little experiment:

p = Point(4, 2)
s = Point(4, 2)
print("== on Points returns", p == s)

By default, == on Point objects does a shallow equality test

a = [2,8]
b = [2,8]
print("== on lists returns", a == b)

But by default, == does a deep equality test on lists

This outputs:

=~ O U s W N

Chapter 16: Classes and Objects — Digging a little deeper 271

== on Points returns False

== on lists returns True

So we conclude that even though the two lists (or tuples, etc.) are distinct objects with different
memory addresses, for lists the == operator tests for deep equality, while in the case of points it
makes a

shallow test.

16.4. Copying

Aliasing can make a program difficult to read because changes made in one place might have
unexpected effects in another place. It is hard to keep track of all the variables that might refer
to a given object.

Copying an object is often an alternative to aliasing. The copy module contains a function called
copy that can duplicate any object:

>>> import copy

>>> pl Point(3, 4)
>>> p2 = copy.copy(pl)
>>> pl is p2

False

>>> same_coordinates(p1l, p2)
True

Once we import the copy module, we can use the copy function to make a new Point. p1 and p2 are
not the same point, but they contain the same data.

To copy a simple object like a Point, which doesn’t contain any embedded objects, copy is sufficient.
This is called shallow copying.

For something like a Rectangle, which contains a reference to a Point, copy doesn’t do quite the
right thing. It copies the reference to the Point object, so both the old Rectangle and the new one
refer to a single Point.

If we create a box, b1, in the usual way and then make a copy, b2, using copy, the resulting state
diagram looks like this:

Chapter 16: Classes and Objects — Digging a little deeper 272

This is almost certainly not what we want. In this case, invoking grow on one of the Rectangle
objects would not affect the other, but invoking move on either would affect both! This behavior is
confusing

and error-prone. The shallow copy has created an alias to the Point that represents the corner.

Fortunately, the copy module contains a function named deepcopy that copies not only the object
but also any embedded objects. It won’t be surprising to learn that this operation is called a deep

copy.
>>> b2 = copy.deepcopy(b1)

Now b1 and b2 are completely separate objects.

16.5. Glossary

deep copy

To copy the contents of an object as well as any embedded objects, and
any objects embedded in them, and so on; implemented by the deepcopy
function in the copy module.

deep equality

Equality of values, or two references that point to objects that have
the same value.

shallow copy

To copy the contents of an object, including any references to embedded
objects; implemented by the copy function in the copy module.

shallow equality

Equality of references, or two references that point to the same object.

Bw N

N O O b W N =~

Chapter 16: Classes and Objects — Digging a little deeper 273

16.6. Exercises

1. Add a method area to the Rectangle class that returns the area of any instance:

r = Rectangle(Point(0, 0), 10, 5)
test(r.area() == 50)

2. Write aperimeter method in the Rectangle class so that we can find the perimeter of any rectangle

instance:

r = Rectangle(Point(0, 0), 10, 5)
test(r.perimeter() == 30)

3. Write a f1ip method in the Rectangle class that swaps the width and the height of any rectangle

instance:

r = Rectangle(Point(100, 50), 10, 5)
test(r.width == 10 and r.height == 5)
r.flip()

test(r.width == 5 and r.height == 10)

4. Write a new method in the Rectangle class to test if a Point falls within the rectangle. For this

exercise, assume that a rectangle at (0,0) with width 10 and height 5 has open upper bounds on the
width and height, i.e. it stretches in the x direction from [0 to 10), where 0 is included but 10 is
excluded, and from [0 to 5) in the y direction. So it does not contain the point (10,2). These tests
should pass:

r = Rectangle(Point(0, 0), 10, 5)
test(r.contains(Point(0, 0)))
test(r.contains(Point(3, 3)))
test(not r.contains(Point(3, 7)))
test(not r.contains(Point(3, 5)))
test(r.contains(Point(3, 4.99999)))
test(not r.contains(Point(-3, -3)))

Chapter 16: Classes and Objects — Digging a little deeper 274

5. In games, we often put a rectangular “bounding box” around our sprites. (A sprite is an object that
can

move about in the game, as we will see shortly.) We can then do collision detection between,
say, bombs and spaceships, by comparing whether their rectangles overlap anywhere.

Write a function to determine whether two rectangles collide. Hint: this might be quite a tough
exercise! Think carefully about all the cases before you code.

Chapter 17: PyGame

PyGame is a package that is not part of the standard Python distribution, so if you do not
already have it installed (i.e. import pygame fails), download and install a suitable version from
http://pygame.org/download.shtml. These notes are based on PyGame 1.9.1, the most recent version
at the time of writing.

PyGame comes with a substantial set of tutorials, examples, and help, so there is ample opportunity
to stretch yourself on the code. You may need to look around a bit to find these resources, though:
if you've

installed PyGame on a Windows machine, for example, they’ll end up in a folder like
C:\Python31\Lib\site-packages\pygame\ where you will find directories for docs and examples.

17.1. The game loop

The structure of the games we’ll consider always follows this fixed pattern:

Chapter 17: PyGame 276

exit

HEH

The Gome Loop

!

In every game, in the setup section we’ll create a window, load and prepare some content, and then
enter the game loop. The game loop continuously does four main things:

- it polls for events — i.e. asks the system whether events have

occurred — and responds appropriately,
- it updates whatever internal data structures or objects need

changing,
- it draws the current state of the game into a (non-visible) surface,

- it puts the just-drawn surface on display.

Chapter 17: PyGame 277

import pygame

def main():

© 00 =N O O & W N =~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

mmn

" Set up the game and run the main game loop
pygame.init() # Prepare the pygame module for use

surface_sz = 480 # Desired physical surface size, in pixels.

Create surface of (width, height), and its window.
main_surface = pygame.display.set_mode((surface_sz, surface_sz))

Set up some data to describe a small rectangle and its color
small_rect = (300, 200, 150, 90)

some_color = (255, 0, 0) # A color is a mix of (Red, Green, Blue)
while True:
ev = pygame.event.poll() # | ook for any event

if ev.type == pygame.QUIT: # Window close button clicked?

break # ... leave game loop
Update your game objects and data structures here. ..
We draw everything from scratch on each frame.
So first fill everything with the background color

main_surface.fill((0, 200, 255))

QOverpaint a smaller rectangle on the main surface
main_surface.fill(some_color, small_rect)

Now the surface is ready, tell pygame to display it!
pygame.display.flip()

pygame.quit() # Once we leave the loop, close the window.

main()

This program pops up a window which stays there until we close it:

Chapter 17: PyGame 278

Stop®

=] = pygame window

Console Shell

pygame 2.8.1 (SDL 2.08.14, Python 3.8.10)
Hello from the pygame community. https://www._pygame.org/contribute.html

PyGame does all its drawing onto rectangular surfaces. After initializing PyGame at line 5, we create
a window holding our main surface. The main loop of the game extends from line 15 to 30, with the
following key bits of logic:

- First (line 16) we poll to fetch the next event that might be ready

for us. This step will always be followed by some conditional
statements that will determine whether any event that we’re
interested in has happened. Polling for the event consumes it, as

far as PyGame is concerned, so we only get one chance to fetch and
use each event. On line 17 we test whether the type of the event is
the predefined constant called pygame.QUIT. This is the event that
we’ll see when the user clicks the close button on the PyGame
window. In response to this event, we leave the loop.

- Once we've left the loop, the code at line 32 closes window, and

we’ll return from function main. Your program could go on to do
other things, or reinitialize pygame and create another window, but
it will usually just end too.

- There are different kinds of events — key presses, mouse motion,

Chapter 17: PyGame 279

mouse clicks, joystick movement, and so on. It is usual that we test

and handle all these cases with new code squeezed in before line 19.
The general idea is “handle events first, then worry about the other

stuff”.

- At line 20 we’d update objects or data — for example, if we wanted

to vary the color, position, or size of the rectangle we’re about to
draw, we’d re-assign some_color, and small_rect here.
- A modern way to write games (now that we have fast computers and

fast graphics cards) is to redraw everything from scratch on every
iteration of the game loop. So the first thing we do at line 24 is

fill the entire surface with a background color. The fi11 method
of a surface takes two arguments — the color to use for filling,

and the rectangle to be filled. But the second argument is optional,
and if it is left out the entire surface is filled.

- In line 27 we fill a second rectangle, this time using some_color.

The placement and size of the rectangle are given by the tuple
small_rect, a 4-element tuple (x, y, width, height).
- It is important to understand that the origin of the PyGame’s

surface is at the top left corner (unlike the turtle module that

puts its origin in the middle of the screen). So, if you wanted the
rectangle closer to the top of the window, you need to make its y
coordinate smaller.

- If your graphics display hardware tries to read from memory at the

same time as the program is writing to that memory, they will
interfere with each other, causing video noise and flicker. To get
around this, PyGame keeps two buffers in the main surface — the
back buffer that the program draws to, while the front buffer is
being shown to the user. Each time the program has fully prepared
its back buffer, it flips the back/front role of the two buffers. So

the drawing on lines 24 and 27 does does not change what is seen on
the screen until we f1ip the buffers, on line 30.

17.2. Displaying images and text

To draw an image on the main surface, we load the image, say a beach ball, into its own new surface.
The main surface has a blit method that copies pixels from the beach ball surface into its own
surface. When we call blit, we can specify where the beach ball should be placed on the main
surface. The term blit is widely used in computer graphics, and means to make a fast copy of pixels
from one area of memory to another.

Chapter 17: PyGame 280

So in the setup section, before we enter the game loop, we’d load the image, like this:

ball = pygame.image.load("ball.png")

and after line 28 in the program above, we’d add this code to display our image at position (100,120):
main_surface.blit(ball, (50, 70))

To display text, we need do do three things. Before we enter the game loop, we instantiate a font
object:

Instantiate 16 point Courier font to draw text.
my_font = pygame.font.SysFont("Courier", 16)

and after line 28, again, we use the font’s render method to create a new surface containing the
pixels of the drawn text, and then, as in the case for images, we blit our new surface onto the main
surface. Notice

that render takes two extra parameters — the second tells it whether to carefully smooth edges of
the text while drawing (this process is called anti-aliasing), and the second is the color that we want
the

text text be. Here we’ve used (@,0,0) which is black:

the_text = my_font.render("Hello, world!", True, (0,0,0))
main_surface.blit(the_text, (10, 10))

We’ll demonstrate these two new features by counting the frames — the iterations of the game loop —
and keeping some timing information. On each frame, we’ll display the frame count, and the frame
rate. We will

only update the frame rate after every 500 frames, when we’ll look at the timing interval and can
do the calculations.

First download an image of a beach ball. You can find one at https://learnpythontherightway.com/_-
downloads/ball.png. Upload it to your repl by using the “Upload file” menu. Now you can run the
following code.

© 00 =N O O & W N =~

BB DWW WWWWWW W WN DN DNDDDNDDNDDNDDNDNDN RS A,
W N~ OO O 0N O 0 B WON A0 O N O O d»x WONAO00 O 0 N O O & Ww N~ 0o

Chapter 17: PyGame

import pygame

import time

def main():

pygame.init() # Prepare the PyGame module for use
main_surface = pygame.display.set_mode((480, 240))

[oad an image to draw. Substitute your own.
PyGame handles gif, jpg, png, etc. image types.
ball = pygame.image.load("ball.png")

Create a font for rendering text

my_font = pygame.font.SysFont("Courier", 16)
frame_count = 0
frame_rate = 0

t@ = time.process_time()

while True:

| ook for an event from keyboard, mouse, joystick,

ev = pygame.event.poll()

if ev.type == pygame.QUIT: # Window close button clicked?

break # [eave game loop

Do other bits of logic for the game here
frame_count += 1
if frame_count 7% 500 == 0:

t1 = time.process_time()

frame_rate = 500 / (t1-tQ)

to = t1

Completely redraw the surface, starting with background

main_surface.fill((0, 200, 255))

Put a red rectangle somewhere on the surface
main_surface.fil1((255,0,0), (300, 100, 150, 90))

Copy our image to the surface, at this (x,y) posn

main_surface.blit(ball, (50, 70))

Make a new surface with an image of the text

etc.

281

44
45
46
47
48
49
50
51
52
53
54
55

Chapter 17: PyGame 282

the_text = my_font.render("Frame = {0}, rate = {1:.2f} fps"
. format(frame_count, frame_rate), True, (0,0,0))

Copy the text surface to the main surface

main_surface.blit(the_text, (10, 10))

Now that everything is drawn, put it on display!
pygame.display.flip()

pygame.quit()

main()

The frame rate is close to ridiculous — a lot faster than one’s eye can process frames. (Commercial
video games usually plan their action for 60 frames per second (fps).) Of course, our rate will drop
once we

start doing something a little more strenuous inside our game loop.

= b pygame window

17.3. Drawing a board for the N queens puzzle

We previously solved our N queens puzzle. For the 8x8 board, one of the solutions was the list
[6,4,2,0,5,7,1,3].Let’s use that solution as testdata, and now use PyGame to draw that chessboard
with its queens.

© 00 N O O b W N =

I = SN
B W N s,

Chapter 17: PyGame 283

We’ll create a new module for the drawing code, called draw_queens.py. When we have our test
case(s) working, we can go back to our solver, import this new module, and add a call to our new
function to draw a

board each time a solution is discovered.

We begin with a background of black and red squares for the board. Perhaps we could create an
image that we could load and draw, but that approach would need different background images for
different size boards. Just drawing our own red and black rectangles of the appropriate size sounds
like much more fun!

def draw_board(the_board):

""" Draw a chess board with queens, from the_board.

o

pygame.init()
colors = [(255,0,0), (0,0,0)] # Set up colors [red, black]

n = len(the_board) # This is an NxN chess board.

surface_sz = 480 # Proposed physical surface size. \
sq_sz = surface_sz // n # sg_sz is length of a square.

surface_sz = n * sq_sz # Adjust to exactly fit n squares.

Create the surface of (width, height), and its window.

surface = pygame.display.set_mode((surface_sz, surface_sz))

Here we precompute sq_sz, the integer size that each square will be, so that we can fit the squares
nicely into the available window. So if we’d like the board to be 480x480, and we’re drawing an 8x8
chessboard,

then each square will need to have a size of 60 units. But we notice that a 7x7 board cannot fit nicely
into 480 — we’re going to get some ugly border that our squares don’t fill exactly. So we recompute

the

surface size to exactly fit our squares before we create the window.

Now let’s draw the squares, in the game loop. We’ll need a nested loop: the outer loop will run over
the rows of the chessboard, the inner loop over the columns:

o N O O b W N =

Chapter 17: PyGame 284

Draw a fresh background (a blank chess board)

for row in range(n): # Draw each row of the board.
c_indx = row % 2 # Change starting color on each row
for col in range(n): # Run through cols drawing squares

the_square = (col*sq_sz, row*sq_sz, Sq_SZ, SQ_SZ)
surface.fill(colors[c_indx], the_square)

now flip the color index for the next square
c_indx = (c_indx + 1) % 2

There are two important ideas in this code: firstly, we compute the rectangle to be filled from the
row and col loop variables, multiplying them by the size of the square to get their position. And, of
course, each square is a fixed width and height. So the_square represents the rectangle to be filled
on the current iteration of the loop. The second idea is that we have to alternate colors on every
square. In the earlier setup code we created a list containing two colors, here we manipulate c_indx
(which will always either have the value 0 or 1) to start each row on a color that is different from
the previous row’s starting color, and to switch colors each time a square is filled.

This (together with the other fragments not shown to flip the surface onto the display) leads to the
pleasing backgrounds like this, for different size boards:

i Prgee sirdow S — e 13 pygame windaw S = ﬁ‘ | 48 pymamse window - - |
|
|
|
|
|
|
|
|
|

Now, on to drawing the queens! Recall that our solution [6,4,2,0,5,7,1,3] means that in column
0 of the board we want a queen at row 6, at column 1 we want a queen at row 4, and so on. So we
need a loop running over each queen:

for (col, row) in enumerate(the_board):

draw a queen at col, row. ..

In this chapter we already have a beach ball image, so we’ll use that for our queens. In the setup
code before our game loop, we load the ball image (as we did before), and in the body of the loop,
we add the line:

Chapter 17: PyGame 285

1 surface.blit(ball, (col * sq_sz, row * sq_sz))

= pygame window

~

We’re getting there, but those queens need to be centred in their squares! Our problem arises from
the fact that both the ball and the rectangle have their upper left corner as their reference points. If
we’re going to centre this ball in the square, we need to give it an extra offset in both the x and y
direction. (Since the ball is round and the square is square, the offset in the two directions will be
the same, so we’ll just compute a single offset value, and use it in both directions.)

The offset we need is half the (size of the square less the size of the ball). So we’ll precompute this

O 00 N O O & W N =

NN N NN NN NN RS R R R s
© 00 9 O O & WO N~ OO © W 1 O U b W N ~» &

Chapter 17: PyGame 286

in the game’s setup section, after we’ve loaded the ball and determined the square size:
ball_offset = (sq_sz - ball.get_width()) // 2

Now we touch up the drawing code for the ball and we’re done:

surface.blit(ball, (col * sq_sz + ball_offset, row * g_sz + ball_offset))

We might just want to think about what would happen if the ball was bigger than the square. In that

case, ball_offset would become negative. So it would still be centered in the square - it would just
spill over the boundaries, or perhaps obscure the square entirely!

Here is the complete program:

import pygame

def draw_board(the_board):

""" Draw a chess board with queens, as determined by the the_board. """
pygame.init()
colors = [(255,0,0), (0,0,0)] # Set up colors [red, black]

n = len(the_board) # This is an NxN chess board.

surface_sz = 480 # Proposed physical surface size. \
sq_sz = surface_sz // n # sg_sz is length of a square.

surface_sz = n * sqg_sz # Adjust to exactly fit n squares.

Create the surface of (width, height), and its window.

surface = pygame.display.set_mode((surface_sz, surface_sz))

ball = pygame.image.load("ball.png")

Use an extra offset to centre the ball in its square.
If the square is too small, offset becomes negative,
but it will still be centered :-)

ball_offset = (sqg_sz-ball.get_width()) // 2

while True:
| ook for an event from keyboard, mouse, etc.

ev = pygame.event.poll()
if ev.type == pygame.QUIT:

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Chapter 17: PyGame 287

break;
Draw a fresh background (a blank chess board)
for row in range(n): # Draw each row of the board.
c_indx = row % 2 # Alternate starting color
for col in range(n): # Run through cols drawing squares
the_square = (col*sq_sz, row*sq_sz, SQ_Sz, SQ_Sz)
surface.fill(colors[c_indx], the_square)
Now flip the color index for the next square
c_indx = (c_indx + 1) % 2
Now that squares are drawn, draw the queens.
for (col, row) in enumerate(the_board):
surface.blit(ball,
(col*sq_sz+ball_offset,row¥sq_sz+ball_offset))
pygame.display.flip()
pygame.quit()
if _name__ == "_main__":
draw_board([0, 5, 3, 1, 6, 4, 2]) # 7 x 7 to test window size
draw_board([6, 4, 2, 0, 5, 7, 1, 3])
draw_board([9, 6, 0, 38, 10, 7, 2, 4, 12, 8, 11, 5, 1]) # 13 x 13
draw_board([11, 4, 8, 12, 2, 7, 3, 15, 0, 14, 10, 6, 13, 1, 5, 9])

There is one more thing worth reviewing here. The conditional statement on line 50 tests whether
the name of the currently executing program is __main__. This allows us to distinguish whether this
module is being

run as a main program, or whether it has been imported elsewhere, and used as a module. If we
run this module in Python, the test cases in lines 51-54 will be executed. However, if we import this
module into another program (i.e. our N queens solver from earlier) the condition at line 50 will be
false, and the statements on lines 51-54 won’t run.

In Chapter 14, (14.9. Eight Queens puzzle, part 2) our main program looked like this:

Chapter 17: PyGame 288

def main():

bd = list(range(8)) # Generate the initial permutation
num_found = 0
tries = 0
while num_found < 10:
random.shuffle(bd)
tries += 1
if not has_clashes(bd):
print("Found solution {0} in {1} tries.".format(bd, tries))
tries = 0

num_found += 1

main()

Now we just need two changes. At the top of that program, we import the module that we’ve been
working on here (assume we called it draw_queens). (You’ll have to ensure that the two modules are
saved in the same folder.) Then after line 10 here we add a call to draw the solution that we’ve just
discovered:

draw_queens . draw_board(bd)

And that gives a very satisfying combination of program that can search for solutions to the N
queens problem, and when it finds each, it pops up the board showing the solution.

17.4. Sprites

A sprite is an object that can move about in a game, and has internal behaviour and state of its own.
For example, a spaceship would be a sprite, the player would be a sprite, and bullets and bombs
would all be

sprites.

Object oriented programming (OOP) is ideally suited to a situation like this: each object can have its
own attributes and internal state, and a couple of methods. Let’s have some fun with our N queens
board. Instead

of placing the queen in her final position, we’d like to drop her in from the top of the board, and let
her fall into position, perhaps bouncing along the way.

The first encapsulation we need is to turn each of our queens into an object. We’ll keep a list of all
the active sprites (i.e. a list of queen objects), and arrange two new things in our game loop:

- After handling events, but before drawing, call an update method

© 00 N O O b W N =

O S = Y
O b W0 N =~ O

Chapter 17: PyGame 289

on every sprite. This will give each sprite a chance to modify its
internal state in some way — perhaps change its image, or change
its position, or rotate itself, or make itself grow a bit bigger or

a bit smaller.

- Once all the sprites have updated themselves, the game loop can

begin drawing - first the background, and then call a draw method
on each sprite in turn, and delegate (hand off) the task of drawing
to the object itself. This is in line with the OOP idea that we

don’t say “Hey, draw, show this queen!”, but we prefer to say
“Hey, queen, draw yourself!”.

We start with a simple object, no movement or animation yet, just scaffolding, to see how to fit all
the pieces together:

class QueenSprite:

def __init_ (self, img, target_posn):
""" Create and initialize a queen for this
target position on the board
self.image = img
self.target_posn = target_posn
self.posn = target_posn

def update(self):
return # Do nothing for the moment.

def draw(self, target_surface):

target_surface.blit(self.image, self.posn)

We’ve given the sprite three attributes: an image to be drawn, a target position, and a current position.
If we’re going to move the spite about, the current position may need to be different from the target,
which is where we want the queen finally to end up. In this code at this time we’ve done nothing in
the update method, and our draw method (which can probably remain this simple in future) simply
draws itself at

its current position on the surface that is provided by the caller.

With its class definition in place, we now instantiate our N queens, put them into a list of sprites,
and arrange for the game loop to call the update and draw methods on each frame. The new bits of
code, and the

revised game loop look like this:

O© 00 I O O b W N =

NN NN N NN R 1 N s s Ly
O O b W N, O 00N 0 O bk w N~

Chapter 17: PyGame 290

all_sprites = [] # Keep a list of all sprites in the game

Create a sprite object for each queen, and populate our list.
for (col, row) in enumerate(the_board):
a_queen = QueenSprite(ball,
(col*sq_sz+ball_offset, rowtsq_sz+ball_offset))

all_sprites.append(a_queen)

while True:
| ook for an event from keyboard, mouse, etc.
ev = pygame.event.poll()
if ev.type == pygame.QUIT:
break;

Ask every sprite to update itself.
for sprite in all_sprites:
sprite.update()

Draw a fresh background (a blank chess board)

... same as before ...

Ask every sprite to draw itself.
for sprite in all_sprites:
sprite.draw(surface)

pygame.display. flip()

This works just like it did before, but our extra work in making objects for the queens has prepared
the way for some more ambitious extensions.

Let us begin with a falling queen object. At any instant, it will have a velocity i.e. a speed, in a certain
direction. (We are only working with movement in the y direction, but use your imagination!) So in
the

object’s update method, we want to change its current position by its velocity. If our N queens board
is floating in space, velocity would stay constant, but hey, here on Earth we have gravity! Gravity
changes

the velocity on each time interval, so we’ll want a ball that speeds up as it falls further. Gravity will
be constant for all queens, so we won’t keep it in the instances — we’ll just make it a variable in our
module. We’ll make one other change too: we will start every queen at the top of the board, so that
it can fall towards its target position. With these changes, we now get the following:

O© 00 I O O b W N =

10
11
12
13
14
15
16
17
18
19

Chapter 17: PyGame 291

gravity = 0.0001
class QueenSprite:

def __init_ (self, img, target_posn):
self.image = img
self.target_posn = target_posn
(x, y) = target_posn
self.posn = (x, 0) # Start ball at top of its column

self.y_velocity = 0 # with zero initial velocity

def update(self):
self.y_velocity += gravity # Gravity changes velocity
(x, y) = self.posn
new_y_pos =y + self.y_velocity # Velocity moves the ball

self.posn = (X, new_y_pos) # to this new position.

def draw(self, target_surface): # Same as before.

target_surface.blit(self.image, self.posn)

Making these changes gives us a new chessboard in which each queen starts at the top of its column,
and speeds up, until it drops off the bottom of the board and disappears forever. A good start — we
have

movement!

The next step is to get the ball to bounce when it reaches its own target position. It is pretty easy to
bounce something — you just change the sign of its velocity, and it will move at the same speed in
the opposite direction. Of course, if it is travelling up towards the top of the board it will be slowed
down by gravity. (Gravity always sucks down!) And you’ll find it bounces all the way up to where
it began

from, reaches zero velocity, and starts falling all over again. So we’ll have bouncing balls that never
settle.

A realistic way to settle the object is to lose some energy (probably to friction) each time it bounces
— so instead of simply reversing the sign of the velocity, we multiply it by some fractional factor —
say

-0.65. This means the ball only retains 65% of its energy on each bounce, so it will, as in real life, stop
bouncing after a short while, and settle on its “ground”.

The only changes are in the update method, which now looks like this:

Chapter 17: PyGame 292

def update(self):
self.y_velocity += gravity
(x, y) = self.posn
new_y_pos = y + self.y_velocity
(target_x, target_y) = self.target_posn # Unpack the position

dist_to_go = target_y - new_y_pos # How far to our floor?

if dist_to_go < 0: # Are we under floor?
self.y_velocity = -0.65 * self.y_velocity # Bounce
new_y_pos = target_y + dist_to_go # Move back above floor

self.posn = (X, new_y_pos) # Set our new position.

Heh, heh, heh! We're not going to show animated screenshots, so copy the code into your Python
environment and see for yourself.

17.5. Events

The only kind of event we’re handled so far has been the QUIT event. But we can also detect
keydown and keyup events, mouse motion, and mousebutton down or up events. Consult the
PyGame documentation and follow the link to Event.

When your program polls for and receives an event object from PyGame, its event type will
determine what secondary information is available. Each event object carries a dictionary (which
you may only cover in

due course in these notes). The dictionary holds certain keys and values that make sense for the type
of event.

For example, if the type of event is MOUSEMOTION, we’ll be able to find the mouse position and
information about the state of the mouse buttons in the dictionary attached to the event. Similarly,
if the event is

KEYDOWN, we can learn from the dictionary which key went down, and whether any modifier
keys (shift, control, alt, etc.) are also down. You also get events when the game window becomes
active (i.e. gets focus) or

loses focus.

The event object with type NOEVENT is returned if there are no events waiting. Events can be
printed, allowing you to experiment and play around. So dropping these lines of code into the game
loop directly

after polling for any event is quite informative:

O© 00 9 O U B W N =~

NN N N S R N by s s
W N PO O 0N 0O O Bk W N =

Chapter 17: PyGame

if ev.type != pygame.NOEVENT:
print(ev)

With this is place, hit the space bar and the

293

Only print if it is interesting!

escape key, and watch the events you get. Click your

three mouse buttons. Move your mouse over the window. (This causes a vast cascade of events, so

you may also need to

filter those out of the printing.) You’ll get output that looks something like this:

<Event(17-VideoExpose {})>

<Event(1-ActiveEvent {'state': 1, 'gain': 0})>

<Event(2-KeyDown {'scancode': 57, 'key': 32, 'unicode': ' ', 'mod': 0})>
<Event(3-KeyUp {'scancode': 57, 'key': 32, 'mod': 0})>

<Event(2-KeyDown {'scancode': 1, 'key': 27, 'unicode': '\x1b', 'mod': 0})>
<Event(3-KeyUp {'scancode': 1, 'key': 27, 'mod': 0})>

<Event(4-MouseMotion {'buttons': (0, 0, @), 'pos': (323, 194), 'rel': (-3, -1)})>
<Event(4-MouseMotion {'buttons': (@, @, 0), 'pos': (322, 193), 'rel': (-1, -1)})>
<Event(4-MouseMotion {'buttons': (0, @, ©0), 'pos': (321, 192), 'rel': (-1, -1)})>
<Event(4-MouseMotion {'buttons': (0, @, @), 'pos': (319, 192), 'rel': (-2, 0)})>
<Event(5-MouseButtonDown {'button': 1, 'pos': (319, 192)})>
<Event(6-MouseButtonUp {'button': 1, 'pos': (319, 192)})>

<Event(4-MouseMotion {'buttons': (@, @, ©), 'pos': (319, 191), 'rel': (0, -1)})>

<Event(5-MouseButtonDown {'button': 2,
<Event(5-MouseButtonDown {'button': 5,

<Event(6-MouseButtonUp {'button': 5, 'pos':
<Event(6-MouseButtonUp {'button': 2, 'pos':

<Event(5-MouseButtonDown {'button': 3,
<Event(6-MouseButtonUp {'button': 3,

'p

'pos': (319, 191)})>
'pos': (319, 191)})>
(319, 191)})»
(319, 191)})>
'pos': (319, 191)})>

os': (319, 191)})>

<Event(1-ActiveEvent {'state': 1, 'gain': 0})>

<Event(12-Quit {})>

So let us now make these changes to the code near the top of our game loop:

Chapter 17: PyGame 294

while True:

| ook for an event from keyboard, mouse, etc.
ev = pygame.event.poll()
if ev.type == pygame.QUIT:
break;
if ev.type == pygame.KEYDOWN:
key = ev.dict["key"]
if key == 27: # On Escape key ...
break # leave the game Ioop.
if key == ord("r"):
colors[0] = (255, 0, 0) # Change to red + black.
elif key == ord("g"):
colors[@] = (@, 255, Q) # Change to green + black.
elif key == ord("b"):
colors[@] = (0, @, 255) # Change to blue + black.

if ev.type == pygame.MOUSEBUTTONDOWN: # Mouse gone down?
posn_of_click = ev.dict["pos"] # Get the coordinates.
print(posn_of_click) # Just print them.

Lines 7-16 show typical processing for a KEYDOWN event — if a key has gone down, we test which
key it is, and take some action. With this in place, we have another way to quit our queens program
—by hitting the

escape key. Also, we can use keys to change the color of the board that is drawn.

Finally, at line 20, we respond (pretty lamely) to the mouse button going down.

As a final exercise in this section, we’ll write a better response handler to mouse clicks. What we
will do is figure out if the user has clicked the mouse on one of our sprites. If there is a sprite under
the

mouse when the click occurs, we’ll send the click to the sprite and let it respond in some sensible
way.

We’ll begin with some code that finds out which sprite is under the clicked position, perhaps none!
We add a method to the class, contains_point, which returns True if the point is within the rectangle
of the sprite:

O O B W N

Chapter 17: PyGame 295

def contains_point(self, pt):
""" Return True if my sprite rectangle contains point pt """
(my_x, my_y) = self.posn
my_width = self.image.get_width()
my_height = self.image.get_height()
(x, y) = pt
return (x >= my_x and x < my_x + my_width and

y >=my_y and y < my_y + my_height)

Now in the game loop, once we’ve seen the mouse event, we determine which queen, if any, should
be told to respond to the event:

if ev.type == pygame.MOUSEBUTTONDOWN :
posn_of_click = ev.dict["pos"]
for sprite in all_sprites:
if sprite.contains_point(posn_of_click):
sprite.handle_click()
break

And the final thing is to write a new method called handle_click in the QueenSprite class. When a
sprite is clicked, we’ll just add some velocity in the up direction, i.e. kick it back into the air.

def handle_click(self):
self.y_velocity += -0.3 # Kick it up

With these changes we have a playable game! See if you can keep all the balls on the move, not
allowing any one to settle!

17.6. A wave of animation

Many games have sprites that are animated: they crouch, jump and shoot. How do they do that?

Consider this sequence of 10 images: if we display them in quick succession, Duke will wave at us.
(Duke is a friendly visitor from the kingdom of Javaland.)

ANMARNNN N

A compound image containing smaller patches which are intended for animation is called a sprite
sheet. Download this sprite sheet by right-clicking in your browser and saving it in your working

Chapter 17: PyGame 296

directory
with the name duke_spritesheet.png.

The sprite sheet has been quite carefully prepared: each of the 10 patches are spaced exactly 50 pixels
apart. So, assuming we want to draw patch number 4 (numbering from 0), we want to draw only
the rectangle

that starts at x position 200, and is 50 pixels wide, within the sprite sheet. Here we’ve shown the
patches and highlighted the patch we want to draw.

f ¥ »,

| | |
|

The blit method we’ve been using — for copying pixels from one surface to another —can copy
a sub-rectangle of the source surface. So the grand idea here is that each time we draw Duke, we
won’t blit the

whole sprite sheet. Instead we’ll provide an extra rectangle argument that determines which portion
of the sprite sheet will be blitted.

We’re going to add new code in this section to our existing N queens drawing game. What we want
is to put some instances of Duke on the chessboard somewhere. If the user clicks on one of them,
we’ll get him

to respond by waving back, for one cycle of his animation.

But before we do that, we need another change. Up until now, our game loop has been running at
really fast frame rates that are unpredictable. So we’ve chosen some magic numbers for gravity and
for bouncing and
kicking the ball on the basis of trial-and-error. If we're going to start animating more sprites, we
need to tame our game loop to operate at a fixed, known frame rate. This will allow us to plan our
animation better.

PyGame gives us the tools to do this in just two lines of code. In the setup section of the game, we
instantiate a new Clock object:

my_clock = pygame.time.Clock()

and right at the bottom of the game loop, we call a method on this object that limits the frame rate
to whatever we specify. So let’s plan our game and animation for 60 frames per second, by adding
this line at

the bottom of our game loop:

my_clock.tick(6@) # Waste time so that frame rate becomes 60 fps

You’ll find that you have to go back and adjust the numbers for gravity and kicking the ball now, to
match this much slower frame rate. When we plan an animation so that it only works sensibly at a

© 0O N O O & W N =

I = = =S
0 N O O b W N -~ O

O© 00 1 O O b W N =

N
[~

Chapter 17: PyGame 297

fixed frame rate,
we say that we’ve baked the animation. In this case we're baking our animations for 60 frames per
second.

To fit into the existing framework that we already have for our queens board, we want to create a
DukeSprite class that has all the same methods as the QueenSprite class. Then we can add one or
more Duke

instances onto our list of all_sprites, and our existing game loop will then call methods of the
Duke instance. Let us start with skeleton scaffolding for the new class:

class DukeSprite:

def __init_ (self, img, target_posn):
self.image = img
self.posn = target_posn

def update(self):

return

def draw(self, target_surface):
return

def handle_click(self):

return

def contains_point(self, pt):
Use code from QueenSprite here

return

The only changes we’ll need to the existing game are all in the setup section. We load up the new
sprite sheet and instantiate a couple of instances of Duke, at the positions we want on the chessboard.
So before

entering the game loop, we add this code:

[oad the sprite sheet

duke_sprite_sheet = pygame.image.load("duke_spritesheet.png")

Instantiate two duke instances, put them on the chessboard
duke1l = DukeSprite(duke_sprite_sheet,(sq_sz*2, 0))
duke2 = DukeSprite(duke_sprite_sheet, (sq_sz*5, sq_sz))

Add them to the list of sprites which our game loop manages
all_sprites.append(dukel)
all_sprites.append(duke2)

BSw N

W N

Chapter 17: PyGame 298

Now the game loop will test if each instance has been clicked, will call the click handler for that
instance. It will also call update and draw for all sprites. All the remaining changes we need to make
will be made

in the methods of the DukeSprite class.

Let’s begin with drawing one of the patches. We’ll introduce a new attribute curr_patch_num into
the class. It holds a value between 0 and 9, and determines which patch to draw. So the job of the
draw method is to compute the sub-rectangle of the patch to be drawn, and to blit only that portion
of the spritesheet:

def draw(self, target_surface):
patch_rect = (self.curr_patch_num * 50, O,
50, self.image.get_height())
target_surface.blit(self.image, self.posn, patch_rect)

Now on to getting the animation to work. We need to arrange logic in update so that if we’re busy
animating, we change the curr_patch_num every so often, and we also decide when to bring Duke
back to his rest position, and stop the animation. An important issue is that the game loop frame rate
—in our case 60 fps — is not the same as the animation rate — the rate at which we want to change
Duke’s animation patches. So we’ll plan Duke wave’s animation cycle for a duration of 1 second. In
other words, we want to play out Duke’s 10 animation patches over 60 calls to update. (This is how
the baking of the animation takes place!) So we’ll keep another animation frame counter in the class,
which will be zero when we’re not animating, and each call to update will increment the counter up
to 59, and then back to 0. We can then divide that animation counter by 6, to set the curr_patch_num
variable to select the patch we want to show.

def update(self):
if self.anim_frame_count > 0:
self.anim_frame_count = (self.anim_frame_count + 1) % 60

self.curr_patch_num = self.anim_frame_count // 6

Notice that if anim_frame_count is zero, i.e. Duke is at rest, nothing happens here. But if we start
the counter running, it will count up to 59 before settling back to zero. Notice also, that because
anim_frame_count can only be a value between 0 and 59, the curr_patch_num will always stay
between 0 and 9. Just what we require!

Now how do we trigger the animation, and start it running? On the mouse click.

def handle_click(self):
if self.anim_frame_count == 0:

self.anim_frame_count = 5

Two things of interest here. We only start the animation if Duke is at rest. Clicks on Duke while he
is already waving get ignored. And when we do start the animation, we set the counter to 5 — this

© 00 N O O b W N =

W DN DN N DN DN NN DNDNDNDDND -~ s, s, s, s, s,
© © 00 N O O b W N~ OO O 0 3 O O bk W N =~ O

Chapter 17: PyGame 299

means that on

the very next call to update the counter becomes 6, and the image changes. If we had set the counter
to 1, we would have needed to wait for 5 more calls to update before anything happened — a slight
lag, but enough to make things feel sluggish.

The final touch-up is to initialize our two new attributes when we instantiate the class. Here is the
code for the whole class now:

class DukeSprite:

def __init_ (self, img, target_posn):
self.image = img
self.posn = target_posn
self.anim_frame_count = 0
self.curr_patch_num = 0

def update(self):
if self.anim_frame_count > 0:
self.anim_frame_count = (self.anim_frame_count + 1) % 60

self.curr_patch_num = self.anim_frame_count // 6

def draw(self, target_surface):
patch_rect = (self.curr_patch_num * 50, 0,
50, self.image.get_height())
target_surface.blit(self.image, self.posn, patch_rect)

def contains_point(self, pt):
""" Return True if my sprite rectangle contains pt """
(my_x, my_y) = self.posn
my_width = self.image.get_width()
my_height = self.image.get_height()
(x, y) = pt
return (x >= my_x and x < my_x + my_width and

y >=my_y and y < my_y + my_height)

def handle_click(self):
if self.anim_frame_count ==

I
al

self.anim_frame_count

Now we have two extra Duke instances on our chessboard, and clicking on either causes that instance
to wave.

Chapter 17: PyGame 300

17.7. Aliens - a case study

Find the example games with the PyGame package, (On a windows system, something like
C:\Python3\Lib\site-packages\pygame\examples) and play the Aliens game. Then read the code, in
an editor or Python environment that shows line numbers.

It does a number of much more advanced things than we do, and relies on the PyGame framework
for more of its logic. Here are some of the points to notice:

- The frame rate is deliberately constrained near the bottom of the

game loop at line 311. If we change that number we can make the game
very slow or unplayably fast!
- There are different kinds of sprites: Explosions, Shots, Bombs,

Aliens and a Player. Some of these have more than one image — by
swapping the images, we get animation of the sprites, i.e. the Alien
spacecraft lights change, and this is done at line 112.

- Different kinds of objects are referenced in different groups of

sprites, and PyGame helps maintain these. This lets the program
check for collisions between, say, the list of shots fired by the

player, and the list of spaceships that are attacking. PyGame does a
lot of the hard work for us.

- Unlike our game, objects in the Aliens game have a limited lifetime,

and have to get killed. For example, if we shoot, a Shot object is
created — if it reaches the top of the screen without expoding
against anything, it has to be removed from the game. Lines 141-142
do this. Similarly, when a falling bomb gets close to the ground

(line 156), it instantiates a new Explosion sprite, and the bomb

kills itself.

- There are random timings that add to the fun — when to spawn the

Chapter 17: PyGame 301

next Alien, when an Alien drops the next bomb, etc.
- The game plays sounds too: a less-than-relaxing loop sound, plus

sounds for the shots and explosions.

17.8. Reflections

Object oriented programming is a good organizational tool for software. In the examples in this
chapter, we've started to use (and hopefully appreciate) these benefits. Here we had N queens each
with its own

state, falling to its own floor level, bouncing, getting kicked, etc. We might have managed without
the organizational power of objects — perhaps we could have kept lists of velocities for each queen,
and lists

of target positions, and so on — our code would likely have been much more complicated, ugly, and
a lot poorer!

17.9. Glossary

animation rate

The rate at which we play back successive patches to create the illusion
of movement. In the sample we considered in this chapter, we played
Duke’s 10 patches over the duration of one second. Not the same as the
frame rate.

baked animation

An animation that is designed to look good at a predetermined fixed
frame rate. This reduces the amount of computation that needs to be done
when the game is running. High-end commercial games usually bake their
animations.

blit

A verb used in computer graphics, meaning to make a fast copy of an
image or pixels from a sub-rectangle of one image or surface to another
surface or image.

frame rate
The rate at which the game loop executes and updates the display.

game loop

A loop that drives the logic of a game. It will usually poll for events,
then update each of the objects in the game, then get everything drawn,
and then put the newly drawn frame on display.

Chapter 17: PyGame 302

pixel
A single picture element, or dot, from which images are made.

poll

To ask whether something like a keypress or mouse movement has happened.
Game loops usually poll to discover what events have occurred. This is
different from event-driven programs like the ones seen in the chapter

titled “Events”. In those cases, the button click or keypress event

triggers the call of a handler function in your program, but this

happens behind your back.

sprite
An active agent or element in a game, with its own state, position and
behaviour.

surface
This is PyGame’s term for what the Turtle module calls a canvas. A
surface is a rectangle of pixels used for displaying shapes and images.

17.10. Exercises

1. Have fun with Python, and with PyGame.
2. We deliberately left a bug in the code for animating Duke. If you click on one of the chessboard
squares

to the right of Duke, he waves anyway. Why? Find a one-line fix for the bug.
3. Use your preferred search engine to search their image library for “sprite sheet playing cards”.
Create a

list [0..51] to represent an encoding of the 52 cards in a deck. Shuffle the cards, slice off the top five
as your hand in a poker deal. Display the hand you have been dealt.

4. So the Aliens game is in outer space, without gravity. Shots fly away forever, and bombs don’t
speed up

when they fall. Add some gravity to the game. Decide if you’re going to allow your own shots to
fall back on your head and kill you.

5. Those pesky Aliens seem to pass right through each other! Change the game so that they collide,
and

destroy each other in a mighty explosion.

Chapter 18: Recursion

Recursion means “defining something in terms of itself” usually at some smaller scale, perhaps
multiple times, to achieve your objective. For example, we might say “A human being is someone
whose mother is a human being”, or “a directory is a structure that holds files and (smaller)
directories”, or “a family tree starts with a couple who have children, each with their own family
sub-trees”.

Programming languages generally support recursion, which means that, in order to solve a
problem,functions can call themselves to solve smaller subproblems.

18.1. Drawing Fractals

For our purposes, a fractal is a drawing which also has self-similar structure, where it can be defined
in terms of itself.

Let us start by looking at the famous Koch fractal. An order 0 Koch fractal is simply a straight line
of a given size.

An order 1 Koch fractal is obtained like this: instead of drawing just one line, draw instead four
smaller segments, in the pattern shown here:

Now what would happen if we repeated this Koch pattern again on each of the order 1 segments?
We’d get this order 2 Koch fractal:

O© 00 I O O b W N =

T =Y
O O B W N~

Chapter 18: Recursion 304

Repeating our pattern again gets us an order 3 Koch fractal:

Now let us think about it the other way around. To draw a Koch fractal of order 3, we can simply
draw four order 2 Koch fractals. But each of these in turn needs four order 1 Koch fractals, and each
of those in turn needs four order 0 fractals. Ultimately, the only drawing that will take place is at
order 0. This is very simple to code up in Python:

def koch(t, order, size):
Make turtle t draw a Koch fractal of 'order' and 'size'.
Leave the turtle facing the same direction.

mn

if order == 0: # The base case is just a straight line
t. forward(size)
else:
koch(t, order-1, size/3) # Go 1/3 of the way
t . left(60)
koch(t, order-1, size/3)
t.right(120)
koch(t, order-1, size/3)
t. left(60)
koch(t, order-1, size/3)

The key thing that is new here is that if order is not zero, koch calls itself recursively to get its job
done.

Let’s make a simple observation and tighten up this code. Remember that turning right by 120 is
the same as turning left by -120. So with a bit of clever rearrangement, we can use a loop instead of
lines 10-16:

© 00 N O O B W N =

.
(N

Chapter 18: Recursion 305

def koch(t, order, size):
if order ==
t. forward(size)
else:
for angle in [60, -120, 60, 0]:
koch(t, order-1, size/3)
t.left(angle)

The final turn is 0 degrees — so it has no effect. But it has allowed us to find a pattern and reduce
seven lines of code to three, which will make things easier for our next observations.

Recursion, the high-level view

One way to think about this is to convince yourself that the function works correctly when you call
it for an order 0 fractal. Then do a mental leap of faith, saying “the fairy godmother (or Python, if
you can think of Python as your fairy godmother) knows how to handle the recursive level 0 calls
for me on lines 11, 13, 15, and 17, so I don’t need to think about that detail!” All I need to focus on
is how to draw an order 1 fractal if I can assume the order 0 one is already working.

You're practicing mental abstraction — ignoring the subproblem while you solve the big problem.

If this mode of thinking works (and you should practice it!), then take it to the next level. Aha! now
can I see that it will work when called for order 2 under the assumption that it is already working
for level 1.

And, in general, if I can assume the order n-1 case works, can I just solve the level n problem?

Students of mathematics who have played with proofs of induction should see some very strong
similarities here.

Recursion, the low-level operational view

Another way of trying to understand recursion is to get rid of it! If we had separate functions to
draw a level 3 fractal, a level 2 fractal, a level 1 fractal and a level 0 fractal, we could simplify the
above code,

quite mechanically, to a situation where there was no longer any recursion, like this:

def koch_0(t, size):
t.forward(size)

def koch_1(t, size):
for angle in [60, -120, 60, 0]:
koch_0(t, size/3)
t.left(angle)

def koch_2(t, size):
for angle in [60, -120, 60, 0]:

11
12
13
14
15
16
17

Chapter 18: Recursion 306

koch_1(t, size/3)
t.left(angle)

def koch_3(t, size):
for angle in [60, -120, 60, 0]:
koch_2(t, size/3)
t.left(angle)

This trick of “unrolling” the recursion gives us an operational view of what happens. You can trace
the program into koch_3, and from there, into koch_2, and then into koch_1, etc., all the way down
the different layers of the recursion.

This might be a useful hint to build your understanding. The mental goal is, however, to be able to
do the abstraction!

18.2. Recursive data structures

All of the Python data types we have seen can be grouped inside lists and tuples in a variety of
ways. Lists and tuples can also be nested, providing many possibilities for organizing data. The
organization of data for the purpose of making it easier to use is called a data structure.

It’s election time and we are helping to compute the votes as they come in. Votes arriving from
individual wards, precincts, municipalities, counties, and states are sometimes reported as a sum
total of votes and sometimes as a list of subtotals of votes. After considering how best to store the
tallies, we decide to use a nested number list, which we define as follows:

A nested number list is a list whose elements are either:

1. numbers
2. nested number lists

Notice that the term, nested number list is used in its own definition. Recursive definitions like this
are quite common in mathematics and computer science. They provide a concise and powerful way
to describe recursive data structures that are partially composed of smaller and simpler instances
of themselves. The definition is not circular, since at some point we will reach a list that does not
have any lists as elements.

Now suppose our job is to write a function that will sum all of the values in a nested number list.
Python has a built-in function which finds the sum of a sequence of numbers:

>>> sum([1, 2, 8])
11

For our nested number list, however, sum will not work:

a b W N -

o N O O b W N =

Chapter 18: Recursion 307

>>> sum([1, 2, [11, 13], 8])
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'list'
>>>

The problem is that the third element of this list, [11, 13], is itself a list, so it cannot just be added
to1, 2, and 8.

18.3. Processing recursive number lists

To sum all the numbers in our recursive nested number list we need to traverse the list, visiting each
of the elements within its nested structure, adding any numeric elements to our sum, and recursively
repeating the summing process with any elements which are themselves sub-lists.

Thanks to recursion, the Python code needed to sum the values of a nested number list is surprisingly
short:

def r_sum(nested_num_list):
tot = 0
for element in nested_num_list:
if type(element) == type([]):
tot += r_sum(element)
else:
tot += element

return tot

The body of r_sum consists mainly of a for loop that traverses nested_num_list. If element is a
numerical value (the else branch), it is simply added to tot. If element is a list, then r_sum is called
again, with the element as an argument. The statement inside the function definition in which the
function calls itself is known as the recursive call.

The example above has a base case (on line 7) which does not lead to a recursive call: the case
where the element is not a (sub-) list. Without a base case, you’ll have infinite recursion, and your
program will not work.

Recursion is truly one of the most beautiful and elegant tools in computer science.

A slightly more complicated problem is finding the largest value in our nested number list:

g b W N =

Chapter 18: Recursion

def r_max(nxs):

mn

Find the maximum in a recursive structure of lists

within other lists.

Precondition: No lists or sublists are empty.

mn

largest = None
first_time = True
for e in nxs:
if type(e) == type([]):
val = r_max(e)
else:

val = e

if first_time or val > largest:
largest = val
first_time = False

return largest

test(r_max([2, 9, [1, 13], 8, 6]) == 13)

test(r_max([2, [[100, 7], 90], [1, 13], 6]) ==

test(r_max([[[13, 7], 92], 2, [1, 100], 8 6]) ==
[)

n

test(r_max(["joe", ["sam", "ben"]]) == "sam"

Tests are included to provide examples of r_max at work.

100)
100)

308

The added twist to this problem is finding a value for initializing 1argest. We can’t just use nxs[0],
since that could be either a element or a list. To solve this problem (at every recursive call) we
initialize a Boolean flag (at line 8). When we’ve found the value of interest, (at line 15) we check to
see whether this is the initializing (first) value for l1argest, or a value that could potentially change

largest.

Again here we have a base case at line 13. If we don’t supply a base case, Python stops after reaching
a maximum recursion depth and returns a runtime error. See how this happens, by running this little

script which we will call ‘infinite_recursion.py":

def recursion_depth(number):
print("{@}, ".format(number), end="")
recursion_depth(number + 1)

recursion_depth(0Q)

After watching the messages flash by, you will be presented with the end of a long traceback that

ends with a message like the following:

a b w N

Chapter 18: Recursion 309

RuntimeError: maximum recursion depth exceeded ...

We would certainly never want something like this to happen to a user of
one of our programs, so in the next chapter we’ll see how errors, any
kinds of errors, are handled in Python.

18.4. Case study: Fibonacci numbers

The famous Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134, ... was devised by Fibonacci
(1170-1250), who used this to model the breeding of (pairs) of rabbits. If, in generation 7 you had
21 pairs in total, of which 13 were adults, then next generation the adults will all have bred new
children, and the previous children will have grown up to become adults. So in generation 8 you'll
have 13+21=34, of which 21 are adults.

This model to explain rabbit breeding made the simplifying assumption that rabbits never died.
Scientists often make (unrealistic) simplifying assumptions and restrictions to make some headway
with the problem.

If we number the terms of the sequence from 0, we can describe each term recursively as the sum
of the previous two terms:

fib(0) = ©
fib(1) = 1

fib(n) = fib(n-1) + fib(n-2) for n >= 2

This translates very directly into some Python:

def fib(n):
if n <=1:
return n
t = fib(n-1) + fib(n-2)
return t

This is a particularly inefficient algorithm, and we’ll show one way of fixing it when we learn about
dictionaries:

=~ O O b W N =

© 00 N O O & W N =

[N T N T N T N S o S S o = = G G Y
W N O © 0N 0O O k& Ww N =~ o

Chapter 18: Recursion 310

import time

t@ = time.clock()
n = 35

result = fib(n)
t1 = time.clock()

print("fib({0}) = {1}, ({2:.2f} secs)".format(n, result, t1-t@))
We get the correct result, but an exploding amount of work! :

fib(35) = 9227465, (10.54 secs)

18.5. Example with recursive directories and files

The following program lists the contents of a directory and all its subdirectories.

import os

def get_dirlist(path):
Return a sorted list of all entries in path.
This returns just the names, not the full path to the names.
dirlist = os.listdir(path)
dirlist.sort()
return dirlist

def print_files(path, prefix = ""):
""" Print recursive listing of contents of path """

nwn o,

if prefix == # Detect outermost call, print a heading

print("Folder listing for", path)

"

prefix = "|

dirlist = get_dirlist(path)
for f in dirlist:

print(prefix+f) # Print the line

fullname = os.path. join(path, f) # Turn name into full pathname

if os.path.isdir(fullname): # If a directory, recurse.
print_files(fullname, prefix + "| ")

Calling the function print_files with some folder name will produce output similar to this:

O© 00 9 O U b W N =~

N S
a b W N~

Chapter 18: Recursion 311

Folder listing for c:\python31\Lib\site-packages\pygame\examples
| _init__.py
| aacircle.py
| aliens.py
| arraydemo.py
| blend_fill.py
| blit_blends.py
| camera.py
| chimp.py

| cursors.py

| data

| | alienl.png
| | alien2.png
| | alien3.png

18.6. An animated fractal, using PyGame

Here we have a tree fractal pattern of order 8. We've labelled some of the edges, showing the depth
of the recursion at which each edge was drawn.

=10

In the tree above, the angle of deviation from the trunk is 30 degrees. Varying that angle gives other
interesting shapes, for example, with the angle at 90 degrees we get this:

© 00 =N O O & W N =~

[S = G G N = e Y
S © 0 N O O & W N =~ O

Chapter 18: Recursion 312

=00 =]

_—
L

H 1 B |
FH|H HFH|F
|\ H |||
HF HH|FL E
L HI|EHL E
L\ L EL|E
HIH H ||
H H EFF

An interesting animation occurs if we generate and draw trees very rapidly, each time varying the
angle a little. Although the Turtle module can draw trees like this quite elegantly, we could struggle
for good frame rates. So we’ll use PyGame instead, with a few embellishments and observations.
(Once again, we suggest you cut and paste this code into your Python environment.)

import pygame, math
pygame.init() # prepare the pygame module for use

Create a new surface and window.

1024
pygame.display.set_mode((surface_size,surface_size))

sur face_size =
main_surface =

my_clock = pygame.time.Clock()

def draw_tree(order, theta, sz, posn, heading, color=(0,0,0), depth=0):

trunk_ratio = ©0.29 # How big is the trunk relative to whole tree?
trunk = sz * trunk_ratio # length of trunk

delta_x = trunk * math.cos(heading)

delta_y = trunk * math.sin(heading)

(u, v) = posn

newpos = (u + delta_x, v + delta_y)

pygame.draw.line(main_surface, color, posn, newpos)

if order > 0: # Draw another layer of subtrees

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61

Chapter 18: Recursion

These next six lines are a simple hack to make the two major halves

of the recursion different colors. Fiddle here to change colors

at other depths, or when depth is even, or odd, etc.
if depth == 0:

color1l = (255, 0, @)

color2 = (0, 0, 255)
else:

colorl = color

color2 = color

make the recursive calls to draw the two subtrees

newsz = sz*(1 - trunk_ratio)

draw_tree(order-1, theta, newsz, newpos, heading-theta, colori, depth+1)
draw_tree(order-1, theta, newsz, newpos, heading+theta, color2, depth+1)

def gameloop():

theta = 0
while True:

Handle evente from keyboard, mouse, etc.
ev = pygame.event.poll()
if ev.type == pygame.QUIT:

break;

Updates - change the angle
theta += 0.01

Draw everything
main_surface.fill((255, 255, 0))

313

draw_tree(9, theta, surface_size*0.9, (surface_size//2, surface_size-50), -m\

ath.pi/2)
pygame.display.flip()
my_clock.tick(120)
gameloop()

pygame.quit()

- The math library works with angles in radians rather than degrees.

Chapter 18: Recursion 314

- Lines 14 and 15 uses some high school trigonmetry. From the length

of the desired line (trunk), and its desired angle, cos and
sin help us to calculate the x and y distances we need to
move.

- Lines 22-30 are unnecessary, except if we want a colorful tree.
- In the main game loop at line 49 we change the angle on every frame,

and redraw the new tree.

- Line 18 shows that PyGame can also draw lines, and plenty more.

Check out the documentation. For example, drawing a small circle at
each branch point of the tree can be accomplished by adding this
line directly below line 18:

pygame.draw.circle(main_surface, color, (int(posn[@]), int(posn[1])), 3)

Another interesting effect — instructive too, if you wish to reinforce the idea of different instances
of the function being called at different depths of recursion —is to create a list of colors, and let each
recursive depth use a different color for drawing. (Use the depth of the recursion to index the list of
colors.)

18.7. Glossary

base case

A branch of the conditional statement in a recursive function that does
not give rise to further recursive calls.

infinite recursion

A function that calls itself recursively without ever reaching any base
case. Eventually, infinite recursion causes a runtime error.

recursion
The process of calling a function that is already executing.
recursive call

The statement that calls an already executing function. Recursion can
also be indirect — function f can call
g which calls h, and h could make a call back to f.

Chapter 18: Recursion 315

recursive definition

A definition which defines something in terms of itself. To be useful it
must include base cases which are not recursive. In this way it

differs from a circular definition. Recursive definitions often

provide an elegant way to express complex data structures, like a
directory that can contain other directories, or a menu that can contain
other menus.

18.8. Exercises

1. Modify the Koch fractal program so that it draws a Koch snowflake, like this:

2. 1. Draw a Cesaro torn line fractal, of the order given by the user.

We show four different lines of orders 0,1,2,3. In this example,
the angle of the tear is 10 degrees.

Té Python Turtle Graphics (Mot Responding) J.I ﬂ dE’QTEE Iltear“ =" H‘.’H.

s

2. Four lines
make a square. Use the code in part a) to draw cesaro

squares. Varying the angle gives interesting effects —

experiment a bit, or perhaps let the user input the angle of the

tear.

Chapter 18: Recursion 316

Té Python Turtle Graphics (Mot Responding) j‘I D dEgrEE “tEﬂr" =l “-

mathematically inclined). In the squares shown here,

the higher-order drawings become a little larger. (Look at the
bottom lines of each square - they’re not aligned.) This is

because we just halved the drawn part of the line for each
recursive subproblem. So we’ve “grown” the overall square by the
width of the tear(s). Can you solve the geometry problem so that
the total size of the subproblem case (including the tear)

remains exactly the same size as the original?

3. A Sierpinski triangle of order 0 is an equilateral triangle. An order 1 triangle can be drawn by
drawing

3 smaller triangles (shown slightly disconnected here, just to help our understanding). Higher
order 2 and 3 triangles are also shown. Draw Sierpinski triangles of any order input by the user.

/\
/NN

Adapt the above program to change the color of its three sub-triangles at some depth of recursion.
The

illustration below shows two cases: on the left, the color is changed at depth 0 (the outmost level of
recursion), on the right, at depth 2. If the user supplies a negative depth, the color never changes.
(Hint: add a new optional parameter colorChangeDepth (wWhich defaults to -1), and make this one
smaller on each recursive subcall. Then, in the section of code before you recurse, test whether the
parameter is

zero, and change color.)

W N

=~ O U s W N

O O W N

Chapter 18: Recursion

Color changes at depth 0 Celor changes at depth 2

317

5. Write a function, recursive_min, that

returns the smallest value in a nested number list. Assume there

are no empty lists or sublists:

test(recursive_min([2, 9, [1, 18], 8, 6]) == 1)
test(recursive_min([2, [[100, 1], 90], [10, 13], 8, 6]) == 1)
test(recursive_min([2, [[18, -T7], 90], [1, 100], 8, 6]) == -T)
test(recursive_min([[[-13, 7], 90], 2, [1, 100], 8, 6]) == -13)

6. Write a function count that returns the number of occurrences of target in a nested list:

test(count(2, []), @)

test(count(2, [2, 9, [2, 1, 13, 2], 8, [2, 6]]) == 4)
test(count(7, [[9, [7, 1, 13, 2], 8], [7, 6]]) == 2)
test(count(15, [[9, [7, 1, 18, 2], 8], [2, 6]]) == 0)
test(count(5, [[5, [5, [1, 5], 5], 5], [5, 6]]) == 6)

test(count("a",
[[”this”, [nan’ ["thing",”a"] , Ilall] ,"iS”] , ["a”,”easy"]]) - 4)

7. Write a function flatten that returns a simple list containing all the values in a nested list:

test(flatten([2,9,[2,1,13,2],8,[2,6]]1) == [2,9,2,1,13,2,8,2,6])
test(flatten([[9,[7,1,13,2],8],[7,6]]) == [9,7,1,13,2,8,7,6])
test(flatten([[9,[7,1,13,2],8],[2,6]]) == [9,7,1,13,2,8,2,6])
test(flatten([["this", ["a", ["thing"],6"a"],"is"],["a", "easy"]]) ==

["this","a","thing","a","is","a", "easy"])
test(flatten([]) == [])

8. Rewrite the fibonacci algorithm without using recursion. Can you find bigger terms of the

sequence? Can

you find fib(200)?

Chapter 18: Recursion 318

9. Use help to find out what sys.getrecursionlimit() and sys.setrecursionlimit(n) do. Create
several

experiments similar to what was done in infinite_recursion.py to test your understanding of how
these module functions work.

10. Write a program that walks a directory structure (as in the last section of this chapter), but
instead of
printing filenames, it returns a list of all the full paths of files in the directory or the
subdirectories. (Don’t include directories in this list — just files.) For example, the output list
might have elements like this:

[“C:Python31Lib\site-packages\pygame\docs\ref\mask.html”,
“C:Python31Lib\site-packages\pygame\docs\ref\midi.html”,

“C:Python31Lib\site-packages\pygame\examples\aliens.py”,

“C:Python31Lib\site-packages\pygame\examples\data\boom.wav”,

2]

11. Write a program named litter.py that creates an empty file named trash.txt in each
subdirectory of a
directory tree given the root of the tree as an argument (or the current directory as a default).
Now write a program named cleanup.py that removes all these files.

Hint #1: Use the program from the example in the last section of this chapter as a basis for these two
recursive programs. Because you’re going to destroy files on your disks, you better get this right, or
you risk losing files you care about. So excellent advice is that initially you should fake the deletion
of the files — just print the full path names of each file that you intend to delete. Once you’re happy
that your logic is correct, and you can see that you’re not deleting the wrong things, you can replace
the print statement with the real thing.

Hint #2: Look in the os module for a function that removes files.

[© 2 N O N S Bw N

g b W N~

Chapter 19: Exceptions

19.1. Catching exceptions

Whenever a runtime error occurs, it creates an exception object. The program stops running at this
point and Python prints out the traceback, which ends with a message describing the exception that
occurred.

For example, dividing by zero creates an exception:

>>> print(55/0)
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero
So does accessing a non-existent list item:

>>> a = []
>>> print(a[5])
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

IndexError: list index out of range
Or trying to make an item assignment on a tuple:

>>> tup = ("a", "b", "d", "d")
>>> tup[2] = "¢
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

In each case, the error message on the last line has two parts: the type of error before the colon, and
specifics about the error after the colon.

Sometimes we want to execute an operation that might cause an exception, but we don’t want the
program to stop. We can handle the exception using the try statement to “wrap” a region of code.

For example, we might prompt the user for the name of a file and then try to open it. If the file
doesn’t exist, we don’t want the program to crash; we want to handle the exception:

a b W N -

=~ O O s W N

Chapter 19: Exceptions 320

filename = input("Enter a file name: ")
try:

f = open(filename, "r")
except:

print("There is no file named", filename)

The try statement has three separate clauses, or parts, introduced by the keywords try ... except ...
finally. Either the except or the finally clauses can be omitted, so the above code considers the
most common version of the try statement first.

The try statement executes and monitors the statements in the first block. If no exceptions occur, it
skips the block under the except clause. If any exception occurs, it executes the statements in the
except clause and then continues.

We could encapsulate this capability in a function: exists which takes a filename and returns true
if the file exists, false if it doesn’t:

def exists(filename):
try:
f = open(filename)
f.close()
return True
except:

return False

.. The try statement in this function was already introduced previously (the same code), so I thought
it would be appropriate to add an else clause here.

pw: HI Victor - I looked at the else: and went against it! It is just a horrible language feature in my
view. Not only do we complicate things by overload the keyword else (here, in the if, and in the for
loop), but it adds no new expressive power over just doing the “didn’t get an exception” inline. And
the allowable combinations are hard to explain. You can omit the except clause if you have a finally
clause. But you cannot have the else if you omit except, ... and so on. Too much risk for too little
return, in my view.

A template to test if a file exists, without using exceptions

The function we’ve just shown is not one we’d recommend. It opens and closes the file, which is
semantically different from asking “does it exist?”. How? Firstly, it might update some timestamps
on the file. Secondly, it might tell us that there is no such file if some other program already happens
to have the file open, or if our permission settings don’t allow us to open the file.

Python provides a module called os.path within the os module. It provides a number of useful
functions to work with paths, files and directories, so you should check out the help.

Bw N

© 00 N O O b W N =

-
[\

Chapter 19: Exceptions 321

import os

This is the preferred way to check if a file exists.
if os.path.isfile("c:/temp/testdata.txt"):

We can use multiple except clauses to handle different kinds of exceptions (see the Errors and
Exceptions'® lesson from Python creator Guido van Rossum’s Python Tutorial* for a more complete
discussion of exceptions). So the program could do one thing if the file does not exist, but do
something else if the file was in use by another program.

19.2. Raising our own exceptions

Can our program deliberately cause its own exceptions? If our program detects an error condition,
we can raise an exception. Here is an example that gets input from the user and checks that the
number is non-negative:

Line 5 creates an exception object, in this case, a ValueError object, which encapsulates specific
information about the error. Assume that in this case function A called B which called ¢ which called
D which called get_age. The raise statement on line 6 carries this object out as a kind of “return
value”, and immediately exits from get_age() to its caller D. Then D again exits to its caller C,

and C exits to B and so on, each returning the exception object to their caller, until it encounters a
try ... except that can handle the exception. We call this “unwinding the call stack”.

ValueError is one of the built-in exception types which most closely matches the kind of error we
want to raise. The complete listing of built-in exceptions can be found at the Built-inExceptions®*
section of the Python Library Reference®”, again by Python’s creator, Guido van Rossum.

If the function that called get_age (or its caller, or their caller, ...) handles the error, then the program
can carry on running; otherwise, Python prints the traceback and exits:

>>> get_age()
Please enter your age: 42
42
>>> get_age()
Please enter your age: -2
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>

File "learn_exceptions.py", line 4, in get_age

raise ValueError("{@} is not a valid age".format(age))

ValueError: -2 is not a valid age

http://docs.python.org/py3k/tutorial/errors.html
*http://docs.python.org/py3k/tutorial/index.html
*'http://docs.python.org/py3k/library/exceptions.html
**http://docs.python.org/py3k/library/index.html

http://docs.python.org/py3k/tutorial/errors.html
http://docs.python.org/py3k/tutorial/errors.html
http://docs.python.org/py3k/tutorial/index.html
http://docs.python.org/py3k/library/exceptions.html
http://docs.python.org/py3k/library/index.html
http://docs.python.org/py3k/tutorial/errors.html
http://docs.python.org/py3k/tutorial/index.html
http://docs.python.org/py3k/library/exceptions.html
http://docs.python.org/py3k/library/index.html

o N O O b W N =

Chapter 19: Exceptions 322

The error message includes the exception type and the additional information that was provided
when the exception object was first created.

It is often the case that lines 5 and 6 (creating the exception object, then raising the exception)
are combined into a single statement, but there are really two different and independent things
happening, so

perhaps it makes sense to keep the two steps separate when we first learn to work with exceptions.
Here we show it all in a single statement:

raise ValueError("{0} is not a valid age".format(age))

19.3. Revisiting an earlier example

Using exception handling, we can now modify our recursion_depth example from the previous
chapter so that it stops when it reaches the maximum recursion depth allowed:

def recursion_depth(number):
print("Recursion depth number", number)
try:
recursion_depth(number + 1)
except:
print("I cannot go any deeper into this wormhole.")

recursion_depth(0)

Run this version and observe the results.

19.4. The finally clause of the try statement

A common programming pattern is to grab a resource of some kind — e.g. we create a window for
turtles to draw on, or we dial up a connection to our internet service provider, or we may open a
file for writing. Then we perform some computation which may raise an exception, or may work
without any problems.

Whatever happens, we want to “clean up” the resources we grabbed — e.g. close the window,
disconnect our dial-up connection, or close the file. The finally clause of the try statement is the
way to do just this. Consider this (somewhat contrived) example:

O© 00 I O O b W N =

[ST S T N T S S N I = W™ S G W
N »~» © © 0 N O O & Ww N =~ o

Chapter 19: Exceptions 323

import turtle

import time

def show_poly():

try:
win = turtle.Screen() # Grab/create a resource, e.g. a window
tess = turtle.Turtle()
This dialog could be cancelled,
or the conversion to int might fail, or n might be zero.
n = int(input("How many sides do you want in your polygon?"))
angle = 360 / n
for i in range(n): # Draw the polygon
tess. forward(10)
tess.left(angle)
time.sleep(3) # Make program wait a few seconds
finally:
win.bye() # Close the turtle's window

show_poly()
show_poly()
show_poly()

In lines 20-22, show_poly is called three times. Each one creates a new window for its turtle, and
draws a polygon with the number of sides input by the user. But what if the user enters a string
that cannot be converted to an int? What if they close the dialog? We’ll get an exception, but even
though we’ve had an exception, we still want to close the turtle’s window. Lines 17-18 does this for
us. Whether we complete the statements in the try clause successfully or not, the finally block will
always be executed.

Notice that the exception is still unhandled — only an except clause can handle an exception, so our
program will still crash. But at least its turtle window will be closed before it crashes!

19.5. Glossary

O© 00 I O O b W N =

Chapter 19: Exceptions 324

exception

An error that occurs at runtime.

handle an exception
To prevent an exception from causing our program to crash, by wrapping
the block of code in a “try" ... “except”™ construct.

raise

To create a deliberate exception by using the “raise” statement.

19.6. Exercises

1. Write a function named readposint that uses the input dialog to prompt the user for a positive

integer and then checks the input to confirm that it meets the requirements. It should be able to
handle

inputs that cannot be converted to int, as well as negative ints, and edge cases (e.g. when the user
closes the dialog, or does not enter anything at all.)

Chapter 20: Dictionaries

All of the compound data types we have studied in detail so far — strings, lists, and tuples — are
sequence types, which use integers as indices to access the values they contain within them.

Dictionaries are yet another kind of compound type. They are Python’s built-in mapping type. They
map keys, which can be any immutable type, to values, which can be any type (heterogeneous), just
like the elements of a list or tuple. In other languages, they are called associative arrays since they
associate a key with a value.

As an example, we will create a dictionary to translate English words into Spanish. For this
dictionary, the keys are strings.

One way to create a dictionary is to start with the empty dictionary and add key:value pairs. The
empty dictionary is denoted {}:

>>> eng2sp = {}

>>> eng2sp|["one"] "uno"

>>> eng2sp["two"] = "dos"

The first assignment creates a dictionary named eng2sp; the other assignments add new key:value
pairs to the dictionary. We can print the current value of the dictionary in the usual way:

>>> print(eng2sp)
{”tWO": "dOS", "OI”Ie”: ”uI’]O"}

The key:value pairs of the dictionary are separated by commas. Each pair contains a key and a value
separated by a colon.

Hashing

The order of the pairs may not be what was expected. Python uses complex algorithms, designed for
very fast access, to determine where the key:value pairs are stored in a dictionary. For our purposes
we can think of this ordering as unpredictable.

You also might wonder why we use dictionaries at all when the same concept of mapping a key to
a value could be implemented using a list of tuples:

Bw N

g b W N~

Chapter 20: Dictionaries 326

>>> {"apples": 430, "bananas": 312, "oranges": 525, "pears": 217}
{'pears': 217, 'apples': 430, 'oranges': 525, 'bananas': 312}

>>> [('apples', 430), ('bananas', 312), ('oranges', 525), ('pears',6 217)]
[("apples', 430), ('bananas', 312), ('oranges', 525), ('pears',6 217)]

The reason is dictionaries are very fast, implemented using a technique called hashing, which allows
us to access a value very quickly. By contrast, the list of tuples implementation is slow. If we wanted
to find a value associated with a key, we would have to iterate over every tuple, checking the 0th
element. What if the key wasn’t even in the list? We would have to get to the end of it to find out.

Another way to create a dictionary is to provide a list of key:value pairs using the\
same syntax as the previous output:

INENEN

python

>>> eng2sp = {"one": "uno", "two": "dos", "three": "tres"}

It doesn’t matter what order we write the pairs. The values in a dictionary are accessed with keys,
not with indices, so there is no need to care about ordering.

Here is how we use a key to look up the corresponding value:

>>> print(eng2sp["two"])
'dos’

The key "two" yields the value "dos".

Lists, tuples, and strings have been called sequences, because their items occur in order. The
dictionary is the first compound type that we’ve seen that is not a sequence, so we can’t index
or slice a dictionary.

20.1. Dictionary operations

The del statement removes a key:value pair from a dictionary. For example, the following dictionary
contains the names of various fruits and the number of each fruit in stock:

>>> inventory = {"apples": 430, "bananas": 312, "oranges": 525, "pears": 217}
>>> print(inventory)
{'pears': 217, 'apples': 430, 'oranges': 525, 'bananas': 312}

If someone buys all of the pears, we can remove the entry from the dictionary:

g b w N~

Chapter 20: Dictionaries 327

>>> del inventory["pears"]
>>> print(inventory)

{'apples': 430, 'oranges': 525, 'bananas': 312}
Or if we’re expecting more pears soon, we might just change the value associated with pears:

>>> inventory["pears"] = 0
>>> print(inventory)
{'pears': 0, 'apples': 430, 'oranges': 525, 'bananas': 312}

A new shipment of bananas arriving could be handled like this:

>>> inventory["bananas"] += 200
>>> print(inventory)
{'pears': 0, 'apples': 430, 'oranges': 525, 'bananas': 512}

The 1en function also works on dictionaries; it returns the number of key:value pairs:

>>> len(inventory)
4

20.2. Dictionary methods

Dictionaries have a number of useful built-in methods.

The keys method returns what Python 3 calls a view of its underlying keys. A view object has some
similarities to the range object we saw earlier —it is a lazy promise, to deliver its elements when
they’re needed by the rest of the program. We can iterate over the view, or turn the view into a list

like this:

for k in eng2sp.keys(): # The order of the k's is not defined
print("Got key", k, "which maps to value", eng2sp[k])

ks = list(eng2sp.keys())
print(ks)

This produces this output:

Bw N

Chapter 20: Dictionaries 328

Got key three which maps to value tres
Got key two which maps to value dos
Got key one which maps to value uno
["three', 'two', 'one']

It is so common to iterate over the keys in a dictionary that we can omit the keys method call in the
for loop — iterating over a dictionary implicitly iterates over its keys:

for k in eng2sp:
print("Got key", k)

The values method is similar; it returns a view object which can be turned into a list:

>>> list(eng2sp.values())
["tres', 'dos', 'uno']

The items method also returns a view, which promises a list of tuples — one tuple for each key:value
pair:

>>> list(eng2sp.items())

[("three', 'tres'), ('two', 'dos'), ('one', 'uno')]
Tuples are often useful for getting both the key and the value at the same time while we are looping:

for (k,v) in eng2sp.items():
print("Got",k,"that maps to",v)

This produces:

Got three that maps to tres
Got two that maps to dos
Got one that maps to uno

The in and not in operators can test if a key is in the dictionary:

O O B W N

W N

w

Chapter 20: Dictionaries 329

"

>>> "one" in eng2sp

True

>>> "six" in eng2sp

False

>>> "tres" in eng2sp # Note that 'in' tests keys, not values.
False

This method can be very useful, since looking up a non-existent key in a dictionary causes a runtime
error:

>>> eng2esp["dog"]
Traceback (most recent call last):

KeyError: 'dog

20.3. Aliasing and copying

As in the case of lists, because dictionaries are mutable, we need to be aware of aliasing. Whenever
two variables refer to the same object, changes to one affect the other.

If we want to modify a dictionary and keep a copy of the original, use the copy method. For example,
opposites is a dictionary that contains pairs of opposites:

>>> opposites = {"up": "down", "right": "wrong", "yes": "no"}
>>> alias = opposites

>>> copy = opposites.copy() # Shallow copy

alias and opposites refer to the same object; copy refers to a fresh copy of the same dictionary. If
we modify alias, opposites is also changed:

>>> alias["right"] = "left"
>>> opposites|["right"]
"left’

If we modify copy, opposites is unchanged:

>>> copy["right"] = "privilege"
>>> opposites["right"]
"left'

g b W N =

Chapter 20: Dictionaries 330

20.4. Sparse matrices

We previously used a list of lists to represent a matrix. That is a good choice for a matrix with mostly
nonzero values, but consider a sparse matrix* like this one:

e I e e Y
[I T U R
e - R R o
R R R R
e T e I Y

The list representation contains a lot of zeroes:

matrix = [[0, @, 0, 1, O],
[0, 9, 0, 0, O],
[0, 2, 0, 0, Q],
[0, 9, 0, 0, Q],
[0, 9, 0, 3, 0]]

An alternative is to use a dictionary. For the keys, we can use tuples that contain the row and column
numbers. Here is the dictionary representation of the same matrix:

>>> matrix = {(0, 3): 1, (2, 1): 2, (4, 3): 3}

We only need three key:value pairs, one for each nonzero element of the matrix. Each key is a tuple,
and each value is an integer.

To access an element of the matrix, we could use the [] operator:

>>> matrix[(0, 3)]
1

Notice that the syntax for the dictionary representation is not the same as the syntax for the nested
list representation. Instead of two integer indices, we use one index, which is a tuple of integers.

There is one problem. If we specify an element that is zero, we get an error, because there is no entry
in the dictionary with that key:

>>> matrix[(1, 3)]
KeyError: (1, 3)

The get method solves this problem:

*http://en.wikipedia.org/wiki/Sparse_matrix

http://en.wikipedia.org/wiki/Sparse_matrix
http://en.wikipedia.org/wiki/Sparse_matrix

Chapter 20: Dictionaries 331

>>> matrix.get((@, 3), 9)
1

The first argument is the key; the second argument is the value get should return if the key is not
in the dictionary:

>>> matrix.get((1, 3), 0)
0

get definitely improves the semantics of accessing a sparse matrix. Shame about the syntax.

20.5. Memoization

If you played around with the fibo function from the chapter on recursion, you might have noticed
that the bigger the argument you provide, the longer the function takes to run. Furthermore, the
run time increases very quickly. On one of our machines, fib(20) finishes instantly, fib(30) takes
about a second, and fib(40) takes roughly forever.

To understand why, consider this call graph for fib withn = 4:

fib(4)
D\
fib(3) fib(2)
N N\
fib(2) fib(1)| | fib(1)| | fib(0)
VAW
fib(1) fib(0)

A call graph shows some function frames (instances when the function has been invoked), with lines
connecting each frame to the frames of the functions it calls. At the top of the graph, fib withn =
4 calls fib withn = 3andn = 2.In turn, fib withn = 3 calls fib withn = 2 andn = 1. And so on.

Count how many times fib(@) and fib(1) are called. This is an inefficient solution to the problem,
and it gets far worse as the argument gets bigger.

A good solution is to keep track of values that have already been computed by storing them in a
dictionary. A previously computed value that is stored for later use is called a memo. Here is an
implementation of fib using memos:

=~ O O b W N =

O O b W N~

Chapter 20: Dictionaries 332

alreadyknown = {0: 0, 1: 1}

def fib(n):
if n not in alreadyknown:
new_value = fib(n-1) + fib(n-2)
alreadyknown[n] = new_value

return alreadyknown[n]

The dictionary named alreadyknown keeps track of the Fibonacci numbers we already know. We
start with only two pairs: 0 maps to 1; and 1 maps to 1.

Whenever fib is called, it checks the dictionary to determine if it contains the result. If it’s there, the
function can return immediately without making any more recursive calls. If not, it has to compute
the new value. The new value is added to the dictionary before the function returns.

Using this version of fib, our machines can compute fib(10@) in an eyeblink.

>>> Fib(100)
354224848179261915075

20.6. Counting letters

In the exercises in Chapter 8 (Strings) we wrote a function that counted the number of occurrences
of a letter in a string. A more general version of this problem is to form a frequency table of the
letters in the string, that is, how many times each letter appears.

Such a frequency table might be useful for compressing a text file. Because different letters appear
with different frequencies, we can compress a file by using shorter codes for common letters and
longer codes for letters that appear less frequently.

Dictionaries provide an elegant way to generate a frequency table:

>>> letter_counts = {}
>>> for letter in "Mississippi":

letter_counts[letter] = letter_counts.get(letter, 9) + 1

>>> letter_counts
{'M': 1, 's': 4, 'p': 2, 'i': 4}

We start with an empty dictionary. For each letter in the string, we find the current count (possibly

zero) and increment it. At the end, the dictionary contains pairs of letters and their frequencies.

It might be more appealing to display the frequency table in alphabetical order. We can do that with
the items and sort methods:

Bw N

© 00 N O O b W N =

W W W N NDNDNDDNDNNDN NN S R R Ry oy
N - ® © 0 9 O O b W N~ 0 © W 3 0 O b w N~

Chapter 20: Dictionaries 333

>>> letter_items = list(letter_counts.items())
>>> letter_items.sort()
>>> print(letter_items)

(Cme, 1), ity 4), (p', 2), (Us', 4)]

Notice in the first line we had to call the type conversion function list. That turns the promise we
get from items into a list, a step that is needed before we can use the list’s sort method.

20.7. Glossary

call graph
A graph consisting of nodes which represent function frames (or
invocations), and directed edges (lines with arrows) showing which

frames gave rise to other frames.

dictionary
A collection of key:value pairs that maps from keys to values. The keys

can be any immutable value, and the associated value can be of any type.

immutable data value
A data value which cannot be modified. Assignments to elements or slices
(sub-parts) of immutable values cause a runtime error.

key
A data item that is *mapped to* a value in a dictionary. Keys are used
to look up values in a dictionary. Each key must be unique across the
dictionary.

key:value pair
One of the pairs of items in a dictionary. Values are looked up in a
dictionary by key.

mapping type
A mapping type is a data type comprised of a collection of keys and
associated values. Python's only built-in mapping type is the
dictionary. Dictionaries implement the [associative array](http://en.wikipedia.o\

rg/wiki/Associative_array) abstract data type.

memo
Temporary storage of precomputed values to avoid duplicating the same
computation.

33
34
35
36

Chapter 20: Dictionaries 334

mutable data value
A data value which can be modified. The types of all mutable values are
compound types. Lists and dictionaries are mutable; strings and tuples

are not.

20.8. Exercises

1. Write a program that reads a string and returns a table of the letters of the alphabet in alphabetical

order which occur in the string together with the number of times each letter occurs. Case should
be ignored. A sample output of the program when the user enters the data “ThiS is String with
Upper and lower case Letters”, would look this this:

az
cl
di1
€5
g1
h2

2. Give the Python interpreter’s response to each of the following from a continuous interpreter
session:

>>> d = {"apples": 15, "bananas": 35, "grapes": 12}

>>> d["bananas"]

>>> d["oranges"] = 20
>>> len(d)

© 00 N O O b W N =

N
()

Chapter 20: Dictionaries 335

>>> "grapes" in d

>>> d["pears"]

>>> d.get("pears", 0)

>>> fruits = list(d.keys())
>>> fruits.sort()
>>> print(fruits)

>>> del d["apples"]
>>> "apples" in d

Be sure you understand why you get each result. Then apply what you have learned to fill in the
body of the function below:

def add_fruit(inventory, fruit, quantity=0):
return

Make these tests work. ..

new_inventory = {}

add_fruit(new_inventory, "strawberries", 10)
test("strawberries" in new_inventory)
test(new_inventory["strawberries"] == 10)
add_fruit(new_inventory, "strawberries", 25)
test(new_inventory["strawberries"] == 35)

3. Write a program called alice_words. py that creates a text file named alice_words. txt containing
an

alphabetical listing of all the words, and the number of times each occurs, in the text version of
Alice’s Adventures in Wonderland. (You can obtain a free plain text version of the book, along with
many others, from http://www.gutenberg.org.) The first 10 lines of your output file should look
something like this:

Word Count

Chapter 20: Dictionaries 336

a-piece 1
abide 1
able 1
about 94
above 3
absence 1
absurd 2

How many times does the word alice occur in the book?

4. What is the longest word in Alice in Wonderland? How many characters does it have?

Chapter 21: A Case Study: Indexing
your files

We present a small case study that ties together modules, recursion, files, dictionaries and introduces
simple serialization and deserialization.

In this chapter we're going to use a dictionary to help us find a file rapidly.
The case study has two components:

- A crawler program that scans the disk (or folder) and constructs and saves the dictionary to your
disk.

- A query program that loads the dictionary and can rapidly answer user queries about where a file
is

located.

21.1. The Crawler

Near the end of the chapter on recursion we showed an example of how to recursively list all files
under a given path of our filesystem.

We'll borrow (and change) that code somewhat to provide the skeleton of our crawler. It’s function
is to recursively traverse every file in a given path. (We'll figure out what to do with the file soon:
for the moment we’ll just print it’s short name, and its full path.)

Crawler crawls the filesystem and builds a dictionary

import os

def crawl_files(path):

""" Recursively visit all files in path """

Fetch all the entries in the current folder.
dirlist = os.listdir(path)
for f in dirlist:

Turn each name into full pathname

fullname = os.path.join(path, f)

If it is a directory, recurse.

14
15
16
17
18
19

© 00 N O O & W N =

s R
N =~ O

Chapter 21: A Case Study: Indexing your files 338

if os.path.isdir(fullname):
crawl_files(fullname)

else: # Do something useful with the file
print("{0:30} {1}".format(f, fullname))

crawl_files("C:\\Python32")

We get output similar to this:

CherryPy-wininst. log C:\Python32\CherryPy-wininst.log
bz2.pyd C:\Python32\DLLs\bz2.pyd
py.ico C:\Python32\DLLs\py.ico
pyc.ico C:\Python32\DLLs\pyc.ico
pyexpat.pyd C:\Python32\DLLs\pyexpat .pyd
python3.dl1 C:\Python32\DLLs\python3.d11
select.pyd C:\Python32\DLLs\select.pyd
sqlite3.dll1 C:\Python32\DLLs\sqlite3.dl1
tcl185.4d11 C:\Python32\DLLs\tc185.d11
tclpip85.dl1 C:\Python32\DLLs\tclpip85.dl11
tk85.d11 C:\Python32\DLLs\tk85.d11

We'll adapt this now to store the short name and the full path of the file as a key:value pair in a
dictionary. But first, two observations:

- We can have many instances of files with the same name (in different paths). For example, the
name index.

html is quite common. But dictionary keys must be unique. Our solution is to map each key in our
dictionary to a list of paths.
- File names are not case sensitive. (Well, not for Windows users!) So a good technique is to normalize

the keys before storing them. Here we’ll just ensure that all keys are converted to lowercase. Of
course we’'ll do the same later when we write the query program.

We’ll change the code above by setting up a global dictionary, initially empty: The statement thedict
= {} inserted at line 3 will do this. Then instead of printing the information at line 17, we’ll add the
filename and path to the dictionary. The code will need to check whether the key already exists:

a b W N -

© 00 N O O & W N =

s R
N =~ O

g b W N -

Chapter 21: A Case Study: Indexing your files 339

key = f.lower() # Normalize the filename

if key in thedict:
thedict[key] .append(fullname)

else: # insert the key and a list of one pathname
thedict[key] = [fullnhame]

After running for a while the program terminates. We can interactively confirm that the dictionary
seems to have been built correctly:

>>> len(thedict)

14861

>>> thedict["python.exe"]

['C:\\Python32\\python.exe"]

>>> thedict["logo.png"]
['C:\\Python32\\Lib\\site-packages\\PyQt4\\doc\\html_static\\logo.png',
'C:\\Python32\\Lib\\site-packages\\PyQt4\\doc\\sphinx\\static\\logo.png',
'C:\\Python32\\Lib\\site-packages\\PyQt4\\examples\\demos\\textedit\\images\\logo.p\

ng',
'C:\\Python32\\Lib\\site-packages\\sphinx-1.1.3-py3.2.egg\\sphinx\\themes\\scrolls\\

\static\\logo.png']

>>>

It would be nice to add a progress bar while the crawler is running: a typical technique is to print
dots to show progress. We'll introduce a count of how many files have been indexed (this can be a
global variable), and after we’ve handled the current file, we’ll add this code:

filecount += 1
if filecount % 100 == 0:

print(".", end="")
if filecount 7% 5000 == 0:
print()

As we complete each 100 files we print a dot. After every 50 dots we start a new line. You’ll need to
also create the global variable, initialize it to zero, and remember to declare the variable as global in
the crawler.

The main calling code can now print some statistics for us. It becomes

Bw N

g b W N =

Chapter 21: A Case Study: Indexing your files 340

crawl_files("C:\\Python32")

print() # End the last line of dots ...

print("Indexed {0} files, {1} entries in the dictionary.".
format(filecount, len(thedict)))

We'll now get something like

Indexed 18635 files, 14861 entries in the dictionary.
>>>

It is reassuring to look at the properties of the folder in our operating system, and note that it counts
exactly the same number of files as our program does!

21.2. Saving the dictionary to disk

The dictionary we’ve built is an object. To save it we're going to turn it into a string, and write
the string to a file on our disk. The string must be in a format that allows another program to
unambiguously reconstruct another dictionary with the same key-value entries. The process of
turning an object into a string representation is called serialization, and the inverse operation —
reconstructing a new object from a string —is called deserialization.

There are a few ways to do this: some use binary formats, some use text formats, and the way
different types of data are encoded differs. A popular, lightweight technique used extensively in
web servers and web pages is to use JSON (JavaScript Object Notation) encoding.

Amazingly, we need just four new lines of code to save our dictionary to our disk:

import json
f = open("C:\\temp\\mydict.txt", "w")
json.dump(thedict, f)

f.close()

You can find the file on your disk and open it with a text editor to see what the JSON encoding looks
like.

21.3. The Query Program

This needs to reconstruct the dictionary from the disk file, and then provide a lookup function:

O© 00 I O O b W N =

N S
g b 0w N =~

© 00 N O O & W N =

NN NN N N P R 1 s s Ly
g b W0 N P 0 O 00 N O O b W N »~ O

Chapter 21: A Case Study: Indexing your files 341

import json

f = open("C:\\temp\\mydict.txt", "r")

dict = json.load(f)

f.close()

print("Loaded {@} filenames for querying.".format(len(dict)))

def query(filename):

f = filename.lower()
if £ not in dict:

print("No hits for {0}".format(filename))
else:

print("{0} is at ".format(filename))

for p in dict[f]:

print("...", p)

And here is a sample run:

>
Loaded 14861 filenames for querying.
>>> query('python.exe")
python.exe is at

. C:\Python32\python.exe
>>> query('java.exe')
No hits for java.exe
>>> query('INDEX.HtM1")
INDEX.HtM1 is at

. C:\Python32\Lib\site-packages\cherrypy\test\static\index.html

. C:\Python32\Lib\site-packages\eric5\Documentation\Source\index.html

. C:\Python32\Lib\site-packages\IPython\frontend\html\notebook\static\codemirror\m\
ode\css\index.html

. C:\Python32\Lib\site-packages\IPython\frontend\html\notebook\static\codemirror\m\
ode\htmlmixed\index.html

. C:\Python32\Lib\site-packages\IPython\frontend\html\notebook\static\codemirror\m\
ode\javascript\index.html

. C:\Python32\Lib\site-packages\IPython\frontend\html\notebook\static\codemirror\m\
ode\markdown\index.html

. C:\Python32\Lib\site-packages\IPython\frontend\html\notebook\static\codemirror\m\
ode\python\index.html

. C:\Python32\Lib\site-packages\IPython\frontend\html\notebook\static\codemirror\m\
ode\rst\index.html

. C:\Python32\Lib\site-packages\IPython\frontend\html\notebook\static\codemirror\m\
ode\xml\index.html

26
27
28
29

O O o wWw N

N O U s W N

Chapter 21: A Case Study: Indexing your files 342

. C:\Python32\Lib\site-packages\pygame\docs\index.html
. C:\Python32\Lib\site-packages\pygame\docs\ref\index.html
. C:\Python32\Lib\site-packages\PyQt4\doc\html\index.html

21.4. Compressing the serialized dictionary

The JSON file might get quite big. Gzip compression is available in Python, so let’s take advantage
of it...

When we saved the dictionary to disk we opened a text file for writing. We simply have to change
that one line of the program (and import the correct modules), to create a gzip file instead of a
normal text file. The replacement code is

import json, gzip, io

f = open("C:\\temp\\mydict.txt", "w")

f = io.TextIOWrapper(gzip.open("C:\\temp\\mydict.gz", mode="wb"))
json.dump(thedict, f)

f.close()

Magically, we now get a zipped file that is about 7 times smaller than the text version. (Compres-
siion/decompression like this is often done by web servers and browsers for significantly faster
downloads.)

Now, of course, our query program needs to uncompress the data:

import json, gzip, io

f = open("C:\\temp\\mydict.txt", "r")

f = io.TextIOWrapper(gzip.open("C:\\temp\\mydict.gz", mode="r"))
dict = json.load(f)

f.close()

print("Loaded {0} filenames for querying.".format(len(dict)))

Composability is the key...

In the earliest chapters of the book we talked about composability: the ability to join together or
compose different fragments of code and functionality to build more powerful constructs.

This case study has shown an excellent example of this. Our JSON serializer and deserializer can
link with our file mechanisms. The gzip compressor / decompressor can also present itself to our
program as as if it was just a specialized stream of data, as one might get from reading a file. The
end result is a very elegant composition of powerful tools. Instead of requiring separate steps for
serializing the dictionary to a string, compressing the string, writing the resulting bytes to a file, etc.,
the composability has let us do it all very easily!

Chapter 21: A Case Study: Indexing your files 343

21.5. Glossary

deserialization
Reconstruction an in-memory object from some external text
representation

gzip
A lossless compression technique that reduces the storage size of data.
(Lossless means you can recover the original data exactly.)

JSON

JavaScript Object Notation is a format for serializing and transporting
objects, often used between web servers and web browsers that run
JavasScript. Python contains a json module to provide this capability.

serialization

Turning an object into a string (or bytes) so that it can be sent over
the internet, or saved in a file. The recipient can reconstruct a new
object from the data.

N O U s W N

Chapter 22: Even more OOP

22.1. MyTime

As another example of a user-defined type, we’ll define a class called MyTime that records the time
of day. We'll provide an __init__ method to ensure that every instance is created with appropriate
attributes and initialization. The class definition looks like this:

class MyTime:

def __init__(self, hrs=0, mins=0, secs=0):

""" Create a MyTime object initialized to hrs, mins, secs """
self.hours = hrs
self.minutes = mins

self.seconds = secs
We can instantiate a new MyTime object:
timl = MyTime(11, 59, 30)

The state diagram for the object looks like this:

timl ——s~ hours—== 11
minutes —== 59

samnds —== 30

We'll leave it as an exercise for the readers to add a __str__ method so that MyTime objects can
print themselves decently.

22.2. Pure functions

In the next few sections, we’ll write two versions of a function called add_time, which calculates
the sum of two MyTime objects. They will demonstrate two kinds of functions: pure functions and
modifiers.

The following is a rough version of add_time:

O O B W N

a s W N

© 00 N O O b W N =

I = U
W N s,

Chapter 22: Even more OOP 345

def add_time(t1, t2):

h = t1.hours + t2.hours
m = t1.minutes + t2.minutes
s = t1.seconds + t2.seconds

sum_t = MyTime(h, m, s)

return sum_t

The function creates a new MyTime object and returns a reference to the new object. This is called a
pure function because it does not modify any of the objects passed to it as parameters and it has
no side effects, such as updating global variables, displaying a value, or getting user input.

Here is an example of how to use this function. We'll create two MyTime objects: current_time,
which contains the current time; and bread_time, which contains the amount of time it takes for a
breadmaker to make bread. Then we’ll use add_time to figure out when the bread will be done.

>>> current_time = MyTime(9, 14, 30)

>>> bread_time = MyTime(3, 35, 0)

>>> done_time = add_time(current_time, bread_time)
>>> print(done_time)

12:49:30

The output of this program is 12:49:30, which is correct. On the other hand, there are cases where
the result is not correct. Can you think of one?

The problem is that this function does not deal with cases where the number of seconds or minutes
adds up to more than sixty. When that happens, we have to carry the extra seconds into the minutes
column or the extra minutes into the hours column.

Here’s a better version of the function:

def add_time(t1l, t2):

t1.hours + t2.hours

m = t1.minutes + t2.minutes
= t1.seconds + t2.seconds
if s >= 00:
s -= 60
m +=1
if m >= 60:
m -= 60
h +=1

15
16

© 00 N O O b W N =

N
[\

© 00 N O O b W N =

N
)

Chapter 22: Even more OOP 346

sum_t = MyTime(h, m, s)

return sum_t

This function is starting to get bigger, and still doesn’t work for all possible cases. Later we will
suggest an alternative approach that yields better code.

22.3. Modifiers

There are times when it is useful for a function to modify one or more of the objects it gets as
parameters. Usually, the caller keeps a reference to the objects it passes, so any changes the function
makes are visible to the caller. Functions that work this way are called modifiers.

increment, which adds a given number of seconds to a MyTime object, would be written most
naturally as a modifier. A rough draft of the function looks like this:

def increment(t, secs):
t.seconds += secs

if t.seconds >= 60:
t.seconds -= 60
t.minutes += 1

if t.minutes >= 60:
t.minutes -= 60
t.hours += 1

The first line performs the basic operation; the remainder deals with the special cases we saw before.

Is this function correct? What happens if the parameter seconds is much greater than sixty? In that
case, it is not enough to carry once; we have to keep doing it until seconds is less than sixty. One
solution is to replace the i f statements with while statements:

def increment(t, seconds):
t.seconds += seconds

while t.seconds >= 60:
t.seconds -= 60
t.minutes += 1

while t.minutes >= 60:
t.minutes -= 60
t.hours += 1

This function is now correct when seconds is not negative, and when hours does not exceed 23, but
it is not a particularly good solution.

© 00 N O O b W N =

S
w N =~ O

Chapter 22: Even more OOP 347

22.4. Converting increment to a method

Once again, OOP programmers would prefer to put functions that work with MyTime objects into
the MyTime class, so let’s convert increment to a method. To save space, we will leave out previously
defined methods, but you should keep them in your version:

class MyTime:
Previous method definitions here. ..

def increment(self, seconds):
sel f.seconds += seconds

while self.seconds >= 60:
self.seconds -= 60

self.minutes += 1

while self.minutes >= 60:
self.minutes -= 60

self.hours += 1
The transformation is purely mechanical — we move the definition into the class definition and
(optionally) change the name of the first parameter to self, to fit with Python style conventions.

Now we can invoke increment using the syntax for invoking a method.
current_time. increment(500)

Again, the object on which the method is invoked gets assigned to the first parameter, self. The
second parameter, seconds gets the value 500.

22.5. An “Aha!” insight

Often a high-level insight into the problem can make the programming much easier.

In this case, the insight is that a MyTime object is really a three-digit number in base 60! The second
component is the ones column, the minute component is the sixties column, and the hour component
is the thirty-six hundreds column.

When we wrote add_time and increment, we were effectively doing addition in base 60, which is
why we had to carry from one column to the next.

This observation suggests another approach to the whole problem — we can convert a MyTime object
into a single number and take advantage of the fact that the computer knows how to do arithmetic
with numbers. The following method is added to the MyTime class to convert any instance into a
corresponding number of seconds:

W N

© 00 N O O b W N =

N O S =Y
O b W N -~ O

Chapter 22: Even more OOP 348

class MyTime:
#...

def to_seconds(self):
""" Return the number of seconds represented
by this instance

mn

return self . hours * 3600 + self.minutes * 60 + self.seconds

Now, all we need is a way to convert from an integer back to a MyTime object. Supposing we have
tsecs seconds, some integer division and mod operators can do this for us:

hrs = tsecs // 3600
leftoversecs = tsecs 7% 3600
mins = leftoversecs // 60
secs = leftoversecs 7% 60

You might have to think a bit to convince yourself that this technique to convert from one base to
another is correct.

In OOP we’re really trying to wrap together the data and the operations that apply to it. So we’d
like to have this logic inside the MyTime class. A good solution is to rewrite the class initializer so
that it can cope with initial values of seconds or minutes that are outside the normalized values. (A
normalized time would be something like 3 hours 12 minutes and 20 seconds. The same time, but
unnormalized could be 2 hours 70 minutes and 140 seconds.)

Let’s rewrite a more powerful initializer for MyTime:

class MyTime:
#...

def __init_ (self, hrs=0, mins=0, secs=0):
""" Create a new MyTime object initialized to hrs, mins, secs.
The values of mins and secs may be outside the range ©-59,
but the resulting MyTime object will be normalized.

mn

Calculate total seconds to represent

totalsecs = hrs*3600 + mins*60 + secs

self.hours = totalsecs // 3600 # Split in h, m, s
leftoversecs = totalsecs 7% 3600

self.minutes = leftoversecs // 60

self.seconds = leftoversecs % 60

Now we can rewrite add_time like this:

Chapter 22: Even more OOP 349

def add_time(tl, t2):
secs = t1.to_seconds() + t2.to_seconds()
return MyTime(Q, 0, secs)

This version is much shorter than the original, and it is much easier to demonstrate or reason that
it is correct.

22.6. Generalization

In some ways, converting from base 60 to base 10 and back is harder than just dealing with times.
Base conversion is more abstract; our intuition for dealing with times is better.

But if we have the insight to treat times as base 60 numbers and make the investment of writing the
conversions, we get a program that is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two MyTime objects to find
the duration between them. The naive approach would be to implement subtraction with borrowing.
Using the conversion functions would be easier and more likely to be correct.

Ironically, sometimes making a problem harder (or more general) makes the programming easier,
because there are fewer special cases and fewer opportunities for error.

Specialization versus Generalization

Computer Scientists are generally fond of specializing their types, while mathematicians often take
the opposite approach, and generalize everything.

What do we mean by this?

If we ask a mathematician to solve a problem involving weekdays, days of the century, playing cards,
time, or dominoes, their most likely response is to observe that all these objects can be represented
by integers. Playing cards, for example, can be numbered from 0 to 51. Days within the century
can be numbered. Mathematicians will say “These things are enumerable — the elements can be
uniquely numbered (and we can reverse this numbering to get back to the original concept). So let’s
number them, and confine our thinking to integers. Luckily, we have powerful techniques and a good
understanding of integers, and so our abstractions — the way we tackle and simplify these problems
— is to try to reduce them to problems about integers.”

Computer Scientists tend to do the opposite. We will argue that there are many integer operations
that are simply not meaningful for dominoes, or for days of the century. So we’ll often define new
specialized types, like MyTime, because we can restrict, control, and specialize the operations that
are possible. Object-oriented programming is particularly popular because it gives us a good way to
bundle methods and specialized data into a new type.

Both approaches are powerful problem-solving techniques. Often it may help to try to think about
the problem from both points of view — “What would happen if I tried to reduce everything to very
few primitive types?”, versus “What would happen if this thing had its own specialized type?”

W N

© 00 N O O b W N =

T = = =
0 N O O b W N =~ O

Chapter 22: Even more OOP 350

22.7. Another example

The after function should compare two times, and tell us whether the first time is strictly after the
second, e.g.

>>> t1 = MyTime(10, 55, 12)

>>> £2 = MyTime(10, 48, 22)
>>> after(tl, t2) # Js t1 after t27?
True

This is slightly more complicated because it operates on two MyTime objects, not just one. But we’d
prefer to write it as a method anyway — in this case, a method on the first argument:

class MyTime:
Previous method definitions here. ..

def after(self, time2):
""" Return True if I am strictly greater than time2 """
if self.hours > time2.hours:
return True
if self.hours < time2.hours:

return False

if self.minutes > time2.minutes:
return True

if self.minutes < time2.minutes:
return False

if self.seconds > time2.seconds:

return True

return False
We invoke this method on one object and pass the other as an argument:

if current_time.after(done_time):
print("The bread will be done before it starts!")

We can almost read the invocation like English: If the current time is after the done time, then...

The logic of the i f statements deserve special attention here. Lines 11-18 will only be reached if the
two hour fields are the same. Similarly, the test at line 16 is only executed if both times have the
same hours and the same minutes.

Could we make this easier by using our “Aha!” insight and extra work from earlier, and reducing
both times to integers? Yes, with spectacular results!

O O B W N

g b W N~

g b w N

Chapter 22: Even more OOP 351

class MyTime:

Previous method definitions here. ..

def after(self, time2):
""" Return True if I am strictly greater than timeZ """
return self.to_seconds() > time2.to_seconds()

This is a great way to code this: if we want to tell if the first time is after the second time, turn them
both into integers and compare the integers.

22.8. Operator overloading

Some languages, including Python, make it possible to have different meanings for the same operator
when applied to different types. For example, + in Python means quite different things for integers
and for strings. This feature is called operator overloading.

It is especially useful when programmers can also overload the operators for their own user-defined
types.

For example, to override the addition operator +, we can provide a method named __add

class MyTime:

Previously defined methods here. ..

def __add__(self, other):
return MyTime(Q, 0, self.to_seconds() + other.to_seconds())

As usual, the first parameter is the object on which the method is invoked. The second parameter
is conveniently named other to distinguish it from self. To add two MyTime objects, we create and
return a new MyTime object that contains their sum.

Now, when we apply the + operator to MyTime objects, Python invokes the __add__ method that we
have written:

>>> t1 = MyTime(1, 15, 42)
>>> t2 = MyTime(3, 50, 30)
>>> t3 = t1 + t2

>>> print(t3)

05:06:12

The expression t1 + t2 is equivalenttot1.__add__(t2), but obviously more elegant. As an exercise,
add a method __sub__(self, other) that overloads the subtraction operator, and try it out.

For the next couple of exercises we’ll go back to the Point class defined in our first chapter about
objects, and overload some of its operators. Firstly, adding two points adds their respective (x, y)
coordinates:

a b W N -

O O B W N =

Chapter 22: Even more OOP 352

class Point:

Previously defined methods here. ..

def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)

There are several ways to override the behavior of the multiplication operator: by defining a method
named __mul__, or __rmul__, or both.

—_

If the left operand of * is a Point, Python invokes __mul__, which assumes that the other operand is
also a Point. It computes the dot product of the two Points, defined according to the rules of linear
algebra:

def __mul_ (self, other):
return self.x * other.x + self.y * other.y

If the left operand of * is a primitive type and the right operand is a Point, Python invokes __rmul__,
which performs scalar multiplication:

def __rmul__(self, other):
return Point(other * self.x, other * self.y)

The result is a new Point whose coordinates are a multiple of the original coordinates. If other is a
type that cannot be multiplied by a floating-point number, then __rmul__ will yield an error.

This example demonstrates both kinds of multiplication:

>>> pl = Point(3, 4)
>>> p2 = Point(5, 7)
>>> print(pl * p2)

43
>>> print(2 * p2)
(10, 14)

What happens if we try to evaluate p2 * 2? Since the first parameter is a Point, Python invokes
__mul__ with 2 as the second argument. Inside __mul__, the program tries to access the x coordinate
of other, which fails because an integer has no attributes:

>>> print(p2 * 2)
AttributeError: 'int' object has no attribute 'x'

Unfortunately, the error message is a bit opaque. This example demonstrates some of the difficulties
of object-oriented programming. Sometimes it is hard enough just to figure out what code is running.

O O B W N~

Chapter 22: Even more OOP 353

22.9. Polymorphism

Most of the methods we have written only work for a specific type. When we create a new object,
we write methods that operate on that type.

But there are certain operations that we will want to apply to many types, such as the arithmetic
operations in the previous sections. If many types support the same set of operations, we can write
functions that work on any of those types.

For example, the multadd operation (which is common in linear algebra) takes three parameters; it
multiplies the first two and then adds the third. We can write it in Python like this:

def multadd (x, y, z):
return x * y + 2z

This function will work for any values of x and y that can be multiplied and for any value of z that
can be added to the product.

We can invoke it with numeric values:

>>> multadd (3, 2, 1)
7

Or with Points:

>>> pl = Point(3, 4)

>>> p2 = Point(5, 7)

>>> print(multadd (2, p1, p2))
(11, 15)

>>> print(multadd (p1, p2, 1))
44

In the first case, the Point is multiplied by a scalar and then added to another Point. In the second
case, the dot product yields a numeric value, so the third parameter also has to be a numeric value.

A function like this that can take arguments with different types is called polymorphic.

As another example, consider the function front_and_back, which prints a list twice, forward and
backward:

a b W N -

Chapter 22: Even more OOP 354

def front_and_back(front):
import copy
back = copy.copy(front)
back .reverse()
print(str(front) + str(back))

Because the reverse method is a modifier, we make a copy of the list before reversing it. That way,
this function doesn’t modify the list it gets as a parameter.

Here’s an example that applies front_and_back to a list:

>>> my_list = [1, 2, 3, 4]
>>> front_and_back(my_list)
[1, 2, 3, 4][4, 8, 2, 1]

Of course, we intended to apply this function to lists, so it is not surprising that it works. What
would be surprising is if we could apply it to a Point.

To determine whether a function can be applied to a new type, we apply Python’s fundamental rule
of polymorphism, called the duck typing rule: If all of the operations inside the function can be
applied to

the type, the function can be applied to the type. The operations in the front_and_back function
include copy, reverse, and print.

Not all programming languages define polymorphism in this way. Look up duck typing, and see if
you can figure out why it has this name.

copy works on any object, and we have already written a __str__ method for Point objects, so all
we need is a reverse method in the Point class:

def reverse(self):
(self.x , self.y) = (self.y, self.x)

Then we can pass Points to front_and_back:
>>> p = Point(3, 4)
>>> front_and_back(p)

(3, 4)(4, 3)

The most interesting polymorphism is the unintentional kind, where we discover that a function we
have already written can be applied to a type for which we never planned.

22.10. Glossary

© 00 =N O O & W N =~

W oW oW W W W WWNNNNDNNDNNNDND RS B R S Nl
T30 OB @@ N A O O MO 90 O & N 2 0 © 0 3 0 0 & W~ O

Chapter 22: Even more OOP

dot product
An operation defined in linear algebra that multiplies two “Point's and

yields a numeric value.

functional programming style
A style of program design in which the majority of functions are pure.

modifier
A function or method that changes one or more of the objects it receives
as parameters. Most modifier functions are void (do not return a value).

normalized
Data is said to be normalized if it fits into some reduced range or set
of rules. We usually normalize our angles to values in the range
\[0..360). We normalize minutes and seconds to be values in the range
\[0..60). And we'd be surprised if the local store advertised its cold

drinks at "One dollar, two hundred and fifty cents".

operator overloading
Extending built-in operators (“+°, ~-°, ¥, >> < etc.) so that
they do different things for different types of arguments. We've seen

IR

early in the book how “+° is overloaded for numbers and strings, and

here we've shown how to further overload it for user-defined types.

polymorphic
A function that can operate on more than one type. Notice the subtle
distinction: overloading has different functions (all with the same
name) for different types, whereas a polymorphic function is a single

function that can work for a range of types.

pure function
A function that does not modify any of the objects it receives as

parameters. Most pure functions are fruitful rather than void.
scalar multiplication

An operation defined in linear algebra that multiplies each of the
coordinates of a "Point™ by a numeric value.

22.11. Exercises

355

1. Write a Boolean function between that takes two MyTime objects, t1 and t2, as arguments, and

Chapter 22: Even more OOP 356

returns True if the invoking object falls between the two times. Assume t1 <= t2, and make the
test closed at the lower bound and open at the upper bound, i.e. return True if t1 <= obj < t2.

2. Turn the above function into a method in the MyTime class.
3. Overload the necessary operator(s) so that instead of having to write :

if t1.after(t2): ...

we can use the more convenient :

ift1>t2: ...

4. Rewrite increment as a method that uses our “Aha” insight.

5. Create some test cases for the increment method. Consider specifically the case where the number

of

seconds to add to the time is negative. Fix up increment so that it handles this case if it does not do
so already. (You may assume that you will never subtract more seconds than are in the time object.)

6. Can physical time be negative, or must time always move in the forward direction? Some serious
physicists

think this is not such a dumb question. See what you can find on the Internet about this.

W N

Chapter 23: Collections of objects

23.1. Composition

By now, we have seen several examples of composition. One of the first examples was using a method
invocation as part of an expression. Another example is the nested structure of statements; we can
put an i f statement within a while loop, within another i f statement, and so on.

Having seen this pattern, and having learned about lists and objects, we should not be surprised to
learn that we can create lists of objects. We can also create objects that contain lists (as attributes);
we can create lists that contain lists; we can create objects that contain objects; and so on.

In this chapter and the next, we will look at some examples of these combinations, using Card objects
as an example.

23.2. card Oobjects

If you are not familiar with common playing cards, now would be a good time to get a deck, or else
this chapter might not make much sense. There are fifty-two cards in a deck, each of which belongs
to one of four suits and one of thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs
(in descending order in bridge). The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King.
Depending on the game that we are playing, the rank of Ace may be higher than King or lower than
2. The rank is sometimes called the face-value of the card.

If we want to define a new object to represent a playing card, it is obvious what the attributes
should be: rank and suit. It is not as obvious what type the attributes should be. One possibility is
to use strings containing words like "Spade" for suits and "Queen" for ranks. One problem with this
implementation is that it would not be easy to compare cards to see which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. By encode, we do not mean what
some people think, which is to encrypt or translate into a secret code. What a computer scientist
means by encode

is to define a mapping between a sequence of numbers and the items [want to represent. For example:

Spades --> 83
Hearts --> 2
Diamonds --> 1
Clubs --> 0

Bw N

Chapter 23: Collections of objects 358

An obvious feature of this mapping is that the suits map to integers in order, so we can compare
suits by comparing integers. The mapping for ranks is fairly obvious; each of the numerical ranks
maps to the corresponding integer, and for face cards:

Jack --> 11
Queen --> 12
King --> 13

The reason we are using mathematical notation for these mappings is that they are not part of the
Python program. They are part of the program design, but they never appear explicitly in the code.
The class definition for the Card type looks like this:

class Card:
def __init_ (self, suit=0, rank=0):
self.suit = suit
self.rank = rank

As usual, we provide an initialization method that takes an optional parameter for each attribute.

To create some objects, representing say the 3 of Clubs and the Jack of Diamonds, use these
commands:

three_of_clubs = Card(0, 3)
cardl = Card(1, 11)

In the first case above, for example, the first argument, o, represents the suit Clubs.
Save this code for later use ...

In the next chapter we assume that we have save the Cards class, and the upcoming Deck class in a
file called Cards.py.

23.3. Class attributes and the _str_ method

In order to print Card objects in a way that people can easily read, we want to map the integer codes
onto words. A natural way to do that is with lists of strings. We assign these lists to class attributes
at the top of the class definition:

g b W N -

Chapter 23: Collections of objects 359

class Card:
suits = ["Clubs", "Diamonds", "Hearts", "Spades"]
ranks = ["narf", "Ace", "2", "3", "4",6 "5", "6", "T",
"8", "9", "1Q", "Jack", "Queen", "King"]

def __init__ (self, suit=0, rank=0):
self.suit = suit

self.rank = rank

def __str_ (self):
return (self.ranks[self.rank] + " of " + self.suits[self.suit])

A class attribute is defined outside of any method, and it can be accessed from any of the methods
in the class.

Inside __str__, we can use suits and ranks to map the numerical values of suit and rank to strings.
For example, the expression self.suits[self.suit] means use the attribute suit from the object
self as an index into the class attribute named suits, and select the appropriate string.

The reason for the "narf" in the first element in ranks is to act as a place keeper for the zero-eth
element of the list, which will never be used. The only valid ranks are 1 to 13. This wasted item is
not entirely necessary. We could have started at 0, as usual, but it is less confusing to encode the
rank 2 as integer 2, 3 as 3, and so on.

With the methods we have so far, we can create and print cards:

>>> cardl = Card(1, 11)
>>> print(cardl)

Jack of Diamonds

Class attributes like suits are shared by all Card objects. The advantage of this is that we can use
any Card object to access the class attributes:

>>> card2 = Card(1, 3)
>>> print(card2)

3 of Diamonds

>>> print(card2.suits[1])
Diamonds

Because every Card instance references the same class attribute, we have an aliasing situation. The
disadvantage is that if we modify a class attribute, it affects every instance of the class. For example,
if we decide that Jack of Diamonds should really be called Jack of Swirly Whales, we could do this:

Chapter 23: Collections of objects 360

>>> cardl.suits[1] = "Swirly Whales"
>>> print(cardl)
Jack of Swirly Whales

The problem is that all of the Diamonds just became Swirly Whales:

>>> print(card2)
3 of Swirly Whales

It is usually not a good idea to modify class attributes.

23.4. Comparing cards

For primitive types, there are six relational operators (<, >, ==, etc.) that compare values and
determine when one is greater than, less than, or equal to another. If we want our own types to
be comparable using the syntax of these relational operators, we need to define six corresponding
special methods in our class.

We'd like to start with a single method named cmp that houses the logic of ordering. By convention, a
comparison method takes two parameters, self and other, and returns 1 if the first object is greater,
-1 if the second object is greater, and 0 if they are equal to each other.

Some types are completely ordered, which means that we can compare any two elements and tell
which is bigger. For example, the integers and the floating-point numbers are completely ordered.
Some types are unordered, which means that there is no meaningful way to say that one element is
bigger than another. For example, the fruits are unordered, which is why we cannot compare apples
and oranges, and we cannot meaningfully order a
collection of images, or a collection of cellphones.

Playing cards are partially ordered, which means that sometimes we can compare cards and
sometimes not. For example, we know that the 3 of Clubs is higher than the 2 of Clubs, and the 3 of
Diamonds is higher than the 3 of Clubs. But which is better, the 3 of Clubs or the 2 of Diamonds?
One has a higher rank, but the other has a higher suit.

In order to make cards comparable, we have to decide which is more important, rank or suit. To
be honest, the choice is arbitrary. For the sake of choosing, we will say that suit is more important,
because a new deck of cards comes sorted with all the Clubs together, followed by all the Diamonds,
and so on.

With that decided, we can write cmp:

O© 00 N O O B W N =~

O SN
=~ O U s W N =» O

=N O O b W N =~

Chapter 23: Collections of objects

def cmp(self, other):
Check the suits

if self.suit > other.
if self.suit < other.
Suits are the same. ..
if self.rank > other.
if self.rank < other.

Ranks are the same. ..

return 0

In this ordering, Aces appear lower than Deuces (2s).

suit: return 1
suit: return -1
check ranks
rank: return 1
rank: return -1

it's a tie

361

Now, we can define the six special methods that do the overloading of each of the relational operators

for us:

def __eq__(self, other):

return self.cmp(other) ==

def __le_ (self, other):
return self.cmp(other) <= 0

def __ge_ (self, other):

return self.cmp(other) >= 0

def _gt__

(self, other):

return self.cmp(other) > 0

def __1t_

(self, other):

return self.cmp(other) < 0

def __ne_ _(self, other):
return self.cmp(other) != 0

With this machinery in place, the relational operators now work as we’d like them to:

>>> cardl
>>> card?2
>>> card3
>>> cardl
False

>>> cardl

True

= Card(1, 11)
= Card(1, 3)
= Card(1, 11)
< card2
== card3

O O B W N =

a b w N

Chapter 23: Collections of objects 362

23.5. Decks

Now that we have objects to represent Cards, the next logical step is to define a class to represent a
Deck. Of course, a deck is made up of cards, so each Deck object will contain a list of cards as an
attribute. Many card games will need at least two different decks — a red deck and a blue deck.

The following is a class definition for the Deck class. The initialization method creates the attribute
cards and generates the standard pack of fifty-two cards:

class Deck:
def __init__(self):
self.cards = []
for suit in range(4):
for rank in range(1, 14):
self.cards.append(Card(suit, rank))

The easiest way to populate the deck is with a nested loop. The outer loop enumerates the suits from
0 to 3. The inner loop enumerates the ranks from 1 to 13. Since the outer loop iterates four times,
and the inner loop iterates thirteen times, the total number of times the body is executed is fifty-two
(thirteen times four). Each iteration creates a new instance of Card with the current suit and rank,
and appends that card to the cards list.

With this in place, we can instantiate some decks:

red_deck = Deck()
blue_deck = Deck()

23.6. Printing the deck

As usual, when we define a new type we want a method that prints the contents of an instance. To
print a Deck, we traverse the list and print each Card:

class Deck:

def print_deck(self):
for card in self.cards:

print(card)
Here, and from now on, the ellipsis (. . .) indicates that we have omitted the other methods in the
class.

As an alternative to print_deck, we could write a __str__ method for the Deck class. The advantage
of __str__isthat it is more flexible. Rather than just printing the contents of the object, it generates

N O O b W N =~

© 00 N O O b W N =

T = = =
0 N O O b W0 N =~ O

Chapter 23: Collections of objects 363

a string representation that other parts of the program can manipulate before printing, or store for
later use.

Here is a version of __str__ that returns a string representation of a Deck. To add a bit of pizzazz, it
arranges the cards in a cascade where each card is indented one space more than the previous card:

class Deck:

def __str_ (self):
s =""
for i in range(len(self.cards)):

s =s+ " " * i+ str(self.cards[i]) + "\n"

return s

This example demonstrates several features. First, instead of traversing self.cards and assigning
each card to a variable, we are using i as a loop variable and an index into the list of cards.

Second, we are using the string multiplication operator to indent each card by one more space than
the last. The expression " " * i yields a number of spaces equal to the current value of i.

Third, instead of using the print command to print the cards, we use the str function. Passing an
object as an argument to str is equivalent to invoking the __str__ method on the object.

Finally, we are using the variable s as an accumulator. Initially, s is the empty string. Each time
through the loop, a new string is generated and concatenated with the old value of s to get the new

value. When the loop ends, s contains the complete string representation of the Deck, which looks
like this:

>>> red_deck = Deck()
>>> print(red_deck)
Ace of Clubs
2 of Clubs
3 of Clubs
4 of Clubs
5 of Clubs
6 of Clubs
7 of Clubs
8 of Clubs
9 of Clubs
10 of Clubs
Jack of Clubs
Queen of Clubs
King of Clubs
Ace of Diamonds
2 of Diamonds

© 00 N O O b W N =

Chapter 23: Collections of objects 364

And so on. Even though the result appears on 52 lines, it is one long string that contains newlines.

23.7. Shuffling the deck

If a deck is perfectly shuffled, then any card is equally likely to appear anywhere in the deck, and
any location in the deck is equally likely to contain any card.

To shuffle the deck, we will use the randrange function from the random module. With two integer
arguments, a and b, randrange chooses a random integer in the rangea <= x < b. Since the upper
bound is strictly less than b, we can use the length of a list as the second parameter, and we are
guaranteed to get a legal index. For example, if rng has already been instantiated as a random
number source, this expression chooses the index of a random card in a deck:

rng.randrange(0, len(self.cards))

An easy way to shuffle the deck is by traversing the cards and swapping each card with a randomly
chosen one. It is possible that the card will be swapped with itself, but that is fine. In fact, if we
precluded that possibility, the order of the cards would be less than entirely random:

class Deck:

def shuffle(self):
import random
rng = random.Random() # Create a random generator
num_cards = len(self.cards)
for i in range(num_cards):
j = rng.randrange(i, num_cards)
(self.cards[i], self.cards[j]) = (self.cards[j], self.cards[i])

Rather than assume that there are fifty-two cards in the deck, we get the actual length of the list and
store it in num_cards.

For each card in the deck, we choose a random card from among the cards that haven’t been shuffled
yet. Then we swap the current card (i) with the selected card (j). To swap the cards we use a tuple
assignment:

(self.cards[i], self.cards[j]) = (self.cards[j], self.cards[i])

While this is a good shuffling method, a random number generator object also has a shuffle method
that can shuffle elements in a list, in place. So we could rewrite this function to use the one provided
for us:

o N O O b W N = O O B W N

Bw N

Chapter 23: Collections of objects 365

class Deck:

def shuffle(self):
import random
rng = random.Random() # Create a random generator
rng.shuffle(self.cards) # ylUse its shuffle method

23.8. Removing and dealing cards

Another method that would be useful for the Deck class is remove, which takes a card as a parameter,
removes it, and returns True if the card was in the deck and False otherwise:

class Deck:

def remove(self, card):
if card in self.cards:
self.cards.remove(card)
return True
else:

return False

The in operator returns True if the first operand is in the second. If the first operand is an object,
Python uses the object’s__eq__ method to determine equality with items in the list. Since the __eq__
we provided in the Card class checks for deep equality, the remove method checks for deep equality.

To deal cards, we want to remove and return the top card. The list method pop provides a convenient
way to do that:

class Deck:

def pop(self):
return self.cards.pop()

Actually, pop removes the last card in the list, so we are in effect dealing from the bottom of the

deck.

One more operation that we are likely to want is the Boolean function is_empty, which returns True
if the deck contains no cards:

Bw N

O© 00 1 O O b W N =

=Y
N \N]

Chapter 23: Collections of objects

class Deck:

def is_empty(self):
return self.cards == []

23.9. Glossary

encode
To represent one type of value using another type of value by

constructing a mapping between them.

class attribute
A variable that is defined inside a class definition but outside any
method. Class attributes are accessible from any method in the class and

are shared by all instances of the class.

accumulator
A variable used in a loop to accumulate a series of values, such as by
concatenating them onto a string or adding them to a running sum.

23.10. Exercises

1. Modify cmp so that Aces are ranked higher than Kings.

366

Chapter 24: Inheritance

24.1. Inheritance

The language feature most often associated with object-oriented programming is inheritance.
Inheritance is the ability to define a new class that is a modified version of an existing class.

The primary advantage of this feature is that you can add new methods to a class without modifying
the existing class. It is called inheritance because the new class inherits all of the methods of the
existing class. Extending this metaphor, the existing class is sometimes called the parent class. The
new class may be called the child class or sometimes subclass.

Inheritance is a powerful feature. Some programs that would be complicated without inheritance
can be written concisely and simply with it. Also, inheritance can facilitate code reuse, since you
can customize the behavior of parent classes without having to modify them. In some cases, the
inheritance structure reflects the natural structure of the problem, which makes the program easier
to understand.

On the other hand, inheritance can make programs difficult to read. When a method is invoked, it is
sometimes not clear where to find its definition. The relevant code may be scattered among several
modules. Also, many of the things that can be done using inheritance can be done as elegantly (or
more so) without it. If the natural structure of the problem does not lend itself to inheritance, this
style of programming can do more harm than good.

In this chapter we will demonstrate the use of inheritance as part of a program that plays the card
game Old Maid. One of our goals is to write code that could be reused to implement other card
games.

24.2. A hand of cards

For almost any card game, we need to represent a hand of cards. A hand is similar to a deck, of
course. Both are made up of a set of cards, and both require operations like adding and removing
cards. Also, we might like the ability to shuftle both decks and hands.

A hand is also different from a deck. Depending on the game being played, we might want to perform
some operations on hands that don’t make sense for a deck. For example, in poker we might classify
a hand(straight, flush, etc.) or compare it with another hand. In bridge, we might want to compute
a score for a hand in order to make a bid.

This situation suggests the use of inheritance. If Hand is a subclass of Deck, it will have all the methods
of Deck, and new methods can be added.

W N

W N

Chapter 24: Inheritance 368

We add the code in this chapter to our Cards. py file from the previous chapter. In the class definition,
the name of the parent class appears in parentheses:

class Hand(Deck):

pass

This statement indicates that the new Hand class inherits from the existing Deck class.

The Hand constructor initializes the attributes for the hand, which are name and cards. The string
name identifies this hand, probably by the name of the player that holds it. The name is an optional
parameter with the empty string as a default value. cards is the list of cards in the hand, initialized
to the empty list:

class Hand(Deck):
def __init__(self, name=""):
self.cards = []

self.name = name

For just about any card game, it is necessary to add and remove cards from the deck. Removing
cards is already taken care of, since Hand inherits remove from Deck. But we have to write add:

class Hand(Deck):

def add(self, card):
self.cards.append(card)

Again, the ellipsis indicates that we have omitted other methods. The list append method adds the
new card to the end of the list of cards.

24.3. Dealing cards

Now that we have a Hand class, we want to deal cards from the Deck into hands. It is not immediately
obvious whether this method should go in the Hand class or in the Deck class, but since it operates
on a

single deck and (possibly) several hands, it is more natural to put it in Deck.

deal should be fairly general, since different games will have different requirements. We may want
to deal out the entire deck at once or add one card to each hand.

deal takes two parameters, a list (or tuple) of hands and the total number of cards to deal. If there
are not enough cards in the deck, the method deals out all of the cards and stops:

O© 00 I O O b W N =~

NN
= O

Chapter 24: Inheritance 369

class Deck:

def deal(self, hands, num_cards=999):
num_hands = len(hands)
for i in range(num_cards):
if self.is_empty():
break Break if out of cards
card = self.pop() Take the top card
Whose turn is next?

Add the card to the hand

hand = hands[i % num_hands]
hand.add(card)

O# O # H#

The second parameter, num_cards, is optional; the default is a large number, which effectively means
that all of the cards in the deck will get dealt.

The loop variable i goes from 0 to num_cards-1. Each time through the loop, a card is removed from
the deck using the list method pop, which removes and returns the last item in the list.

The modulus operator (%) allows us to deal cards in a round robin (one card at a time to each hand).
When i is equal to the number of hands in the list, the expression i % num_hands wraps around to
the beginning of the list (index 0).

24.4. Printing a Hand

To print the contents of a hand, we can take advantage of the __str__ method inherited from Deck.
For example:

>>> deck = Deck()
>>> deck.shuffle()
>>> hand = Hand("frank")
>>> deck.deal([hand], 5)
>>> print(hand)
Hand frank contains
2 of Spades
3 of Spades

4 of Spades

Ace of Hearts

9 of Clubs

It’s not a great hand, but it has the makings of a straight flush.

Although it is convenient to inherit the existing methods, there is additional information in a Hand
object we might want to include when we print one. To do that, we can provide a __str__ method
in the Hand class that overrides the one in the Deck class:

W N

Chapter 24: Inheritance 370

class Hand(Deck)
def __str__ (self):
s = "Hand " + self.name
if self.is_empty():
s += " is empty\n"
else:
s += " contains\n"

return s + Deck.__str__ (self)

Initially, s is a string that identifies the hand. If the hand is empty, the program appends the words
is empty and returns s.

Otherwise, the program appends the word contains and the string representation of the Deck,
computed by invoking the __str__ method in the Deck class on self.

It may seem odd to send sel f, which refers to the current Hand, to a Deck method, until you remember
that a Hand is a kind of Deck. Hand objects can do everything Deck objects can, so it is legal to send
a Hand to a Deck method.

In general, it is always legal to use an instance of a subclass in place of an instance of a parent class.

24.5. The cardcame class

The CardGame class takes care of some basic chores common to all games, such as creating the deck

and shuffling it:

class CardGame:
def __init__(self):
self.deck = Deck()
self.deck.shuffle()

This is the first case we have seen where the initialization method performs a significant computa-
tion, beyond initializing attributes.

To implement specific games, we can inherit from CardGame and add features for the new game. As
an example, we’ll write a simulation of Old Maid.

The object of Old Maid is to get rid of cards in your hand. You do this by matching cards by rank
and color. For example, the 4 of Clubs matches the 4 of Spades since both suits are black. The Jack
of Hearts matches the Jack of Diamonds since both are red.

To begin the game, the Queen of Clubs is removed from the deck so that the Queen of Spades has
no match. The fifty-one remaining cards are dealt to the players in a round robin. After the deal, all
players match and discard as many cards as possible.

© 00 N1 O O b W N =

[==Y
w N =~

Chapter 24: Inheritance 371

When no more matches can be made, play begins. In turn, each player picks a card (without looking)
from the closest neighbor to the left who still has cards. If the chosen card matches a card in the
player’s hand, the pair is removed. Otherwise, the card is added to the player’s hand. Eventually all
possible matches are made, leaving only the Queen of Spades in the loser’s hand.

In our computer simulation of the game, the computer plays all hands. Unfortunately, some nuances
of the real game are lost. In a real game, the player with the Old Maid goes to some effort to get their
neighbor to pick that card, by displaying it a little more prominently, or perhaps failing to display
it more prominently, or even failing to fail to display that card more prominently. The computer
simply picks a neighbor’s card at random.

24.6. 01dMaidHand class

A hand for playing Old Maid requires some abilities beyond the general abilities of a Hand. We will
define a new class, 01dMaidHand, that inherits from Hand and provides an additional method called
remove_matches:

class OldMaidHand(Hand):
def remove_matches(self):
count = 0
original_cards = self.cards|[:]
for card in original_cards:
match = Card(3 - card.suit, card.rank)
if match in self.cards:
self.cards.remove(card)
self.cards.remove(match)
print("Hand {@}: {1} matches {2}"
.format(self.name, card, match))
count += 1

return count

We start by making a copy of the list of cards, so that we can traverse the copy while removing cards
from the original. Since sel f.cards is modified in the loop, we don’t want to use it to control the
traversal. Python can get quite confused if it is traversing a list that is changing!

For each card in the hand, we figure out what the matching card is and go looking for it. The match
card has the same rank and the other suit of the same color. The expression 3 - card.suit turns
a Club (suit 0) into a Spade (suit 3) and a Diamond (suit 1) into a Heart (suit 2). You should satisfy
yourself that the opposite operations also work. If the match card is also in the hand, both cards are
removed.

The following example demonstrates how to use remove_matches:

O© 00 I O O b W N =

W oW NN NDNDDNDNDNDNDN DN S R R R oy oy
m O © 0O N 0O U s WN S OO O N0 OB WD,

Chapter 24: Inheritance

>>> game = CardGame()
>>> hand = OldMaidHand("frank")
>>> game.deck.deal([hand], 13)
>>> print(hand)
Hand frank contains
Ace of Spades
2 of Diamonds
7 of Spades
8 of Clubs
6 of Hearts
8 of Spades
7 of Clubs
Queen of Clubs
7 of Diamonds
5 of Clubs
Jack of Diamonds
10 of Diamonds
10 of Hearts
>>> hand.remove_matches()

Hand frank: 7 of Spades matches 7 of Clubs
Hand frank: 8 of Spades matches 8 of Clubs
Hand frank: 10 of Diamonds matches 10 of Hearts

>>> print(hand)
Hand frank contains
Ace of Spades
2 of Diamonds
6 of Hearts
Queen of Clubs
7 of Diamonds
5 of Clubs
Jack of Diamonds

372

Notice that there isno __init__ method for the 01dMaidHand class. We inherit it from Hand.

24.7. 01dMaidGame class

Now we can turn our attention to the game itself. 01dMaidGame is a subclass of CardGame with a new
method called play that takes a list of players as a parameter.

Since __init__ is inherited from CardGame, a new 01dMaidGame object contains a new shuffled deck:

=~ O U s W N

Chapter 24: Inheritance 373

class OldMaidGame(CardGame):
def play(self, names):
Remove Queen of Clubs
self.deck.remove(Card(0,12))

Make a hand for each player

self.hands = []

for name in names:
self.hands.append(0l1dMaidHand(name))

Deal the cards
self.deck.deal(self.hands)
print("---------- Cards have been dealt")
self.print_hands()

Remove initial matches

matches = self.remove_all_matches()
print("---------- Matches discarded, play begins")
self.print_hands()

Play until all 50 cards are matched
turn = 0
num_hands = len(self.hands)
while matches < 25:
matches += self.play_one_turn(turn)
turn = (turn + 1) % num_hands

print("---------- Game is Over")

self.print_hands()

The writing of print_hands has been left as an exercise.

Some of the steps of the game have been separated into methods. remove_all_matches traverses the
list of hands and invokes remove_matches on each:

class OldMaidGame(CardGame):

def remove_all_matches(self):
count = 0
for hand in self.hands:
count += hand.remove_matches()
return count

© 00 N O O b W N =

=Y
N \N]

o N O O b W N =

Chapter 24: Inheritance 374

count is an accumulator that adds up the number of matches in each hand. When we’ve gone through
every hand, the total is returned (count).

When the total number of matches reaches twenty-five, fifty cards have been removed from the
hands, which means that only one card is left and the game is over.

The variable turn keeps track of which player’s turn it is. It starts at 0 and increases by one each
time; when it reaches num_hands, the modulus operator wraps it back around to 0.

The method play_one_turn takes a parameter that indicates whose turn it is. The return value is the
number of matches made during this turn:

class OldMaidGame(CardGame):

def play_one_turn(self, i):
if self.hands[i].is_empty():
return 0
neighbor = self.find_neighbor(i)
picked_card = self.hands[neighbor].pop()
self.hands[i].add(picked_card)
print("Hand", self.hands[i].name, "picked", picked_card)
count = self.hands[i].remove_matches()
self.hands[i].shuffle()
return count

If a player’s hand is empty, that player is out of the game, so he or she does nothing and returns 0.

Otherwise, a turn consists of finding the first player on the left that has cards, taking one card from
the neighbor, and checking for matches. Before returning, the cards in the hand are shuffled so that
the next player’s choice is random.

The method find_neighbor starts with the player to the immediate left and continues around the
circle until it finds a player that still has cards:

class OldMaidGame(CardGame):

def find_neighbor(self, i):
num_hands = len(self.hands)
for next in range(1,num_hands):
neighbor = (i + next) % num_hands
if not self.hands[neighbor].is_empty():
return neighbor

If find_neighbor ever went all the way around the circle without finding cards, it would return
None and cause an error elsewhere in the program. Fortunately, we can prove that that will never
happen (as long as the end of the game is detected correctly).

Chapter 24: Inheritance 375

We have omitted the print_hands method. You can write that one yourself.

The following output is from a truncated form of the game where only the top fifteen cards (tens
and higher) were dealt to three players. With this small deck, play stops after seven matches instead

B W

O© 00 NI O O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

of twenty-five.

>>> import cards
>>> game = cards.0ldMaidGame()
>>> game.play(["Allen","Jeff","Chris"])
—————————— Cards have been dealt
Hand Allen contains
King of Hearts
Jack of Clubs
Queen of Spades
King of Spades
10 of Diamonds

Hand Jeff contains
Queen of Hearts
Jack of Spades
Jack of Hearts
King of Diamonds
Queen of Diamonds

Hand Chris contains
Jack of Diamonds
King of Clubs
10 of Spades
10 of Hearts
10 of Clubs

Hand Jeff: Queen of Hearts matches Queen of Diamonds
Hand Chris: 10 of Spades matches 10 of Clubs
—————————— Matches discarded, play begins
Hand Allen contains
King of Hearts
Jack of Clubs
Queen of Spades
King of Spades
10 of Diamonds

Hand Jeff contains
Jack of Spades

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Chapter 24: Inheritance

Jack of Hearts
King of Diamonds

Hand Chris contains
Jack of Diamonds
King of Clubs
10 of Hearts

Hand Allen picked King of Diamonds

Hand Allen: King of Hearts matches King of Diamonds
Hand Jeff picked 10 of Hearts

Hand Chris picked Jack of Clubs

Hand Allen picked Jack of Hearts

Hand Jeff picked Jack of Diamonds

Hand Chris picked Queen of Spades

Hand Allen picked Jack of Diamonds

Hand Allen: Jack of Hearts matches Jack of Diamonds
Hand Jeff picked King of Clubs

Hand Chris picked King of Spades

Hand Allen picked 10 of Hearts

Hand Allen: 10 of Diamonds matches 10 of Hearts
Hand Jeff picked Queen of Spades

Hand Chris picked Jack of Spades

Hand Chris: Jack of Clubs matches Jack of Spades
Hand Jeff picked King of Spades

Hand Jeff: King of Clubs matches King of Spades
—————————— Game is Over

Hand Allen is empty

Hand Jeff contains
Queen of Spades

Hand Chris is empty

So Jeff loses.

24.8. Glossary

376

O© 00 I O O b W N =

N
[~

Chapter 24: Inheritance 377

inheritance
The ability to define a new class that is a modified version of a
previously defined class.

parent class
The class from which a child class inherits.

child class
A new class created by inheriting from an existing class; also called a
subclass.

24.9. Exercises

1. Add a method, print_hands, to the 01dMaidGame class which traverses sel f.hands and prints each
hand.

2. Define a new kind of Turtle, Turt1eGTX, that comes with some extra features: it can jump forward
a

given distance, and it has an odometer that keeps track of how far the turtle has travelled since it
came off the production line. (The parent class has a number of synonyms like fd, forward, back,
backward, and bk: for this exercise, just focus on putting this functionality into the forward method.)
Think carefully about how to count the distance if the turtle is asked to move forward by a negative
amount. (We would not want to buy a second-hand turtle whose odometer reading was faked
because its previous owner drove it backwards around the block too often. Try this in a car near
you, and see if the car’s odometer counts up or down when you reverse.)

3. After travelling some random distance, your turtle should break down with a flat tyre. After this

happens, raise an exception whenever forward is called. Also provide a change_tyre method that
can fix the flat.

=~ O O b W N =

Chapter 25: Linked lists

25.1. Embedded references

We have seen examples of attributes that refer to other objects, which we called embedded
references. A common data structure, the linked list, takes advantage of this feature.

Linked lists are made up of nodes, where each node contains a reference to the next node in the list.
In addition, each node contains a unit of data called the cargo.

A linked list is considered a recursive data structure because it has a recursive definition.
A linked list is either:

1. the empty list, represented by None, or
2. a node that contains a cargo object and a reference to a linked list.

Recursive data structures lend themselves to recursive methods.

25.2. The Node class

As usual when writing a new class, we’ll start with the initialization and __str__ methods so that
we can test the basic mechanism of creating and displaying the new type:

class Node:
def __init_ (self, cargo=None, next=None):
self.cargo = cargo
self.next = next

def __str_ (self):
return str(self.cargo)

As usual, the parameters for the initialization method are optional. By default, both the cargo and
the link, next, are set to None.

The string representation of a node is just the string representation of the cargo. Since any value can
be passed to the str function, we can store any value in a list.

To test the implementation so far, we can create a Node and print it:

Chapter 25: Linked lists 379

>>> node = Node("test")
>>> print(node)
test

To make it interesting, we need a list with more than one node:
>>> nodel = Node(1)

>>> node2 = Node(2)
>>> node3 = Node(3)

This code creates three nodes, but we don’t have a list yet because the nodes are not linked. The
state diagram looks like this:

nodai nodaz nioda3
¥ l ¥
cago —= 1 camgo —= 2 cago —= 3
naxt —= lHona next —== Haona naxt —= Hona

To link the nodes, we have to make the first node refer to the second and the second node refer to
the third:

>>> nodel.next = node2
>>> node2.next = node3

The reference of the third node is None, which indicates that it is the end of the list. Now the state
diagram looks like this:

nodal nods 2 niode3
¥ l ¥
cago —== 1 canga —= 2 cago —= 3
maxt ————— == next ———— = naxt —>= llona

Now you know how to create nodes and link them into lists. What might be less clear at this point
is why.

25.3. Lists as collections

Lists are useful because they provide a way to assemble multiple objects into a single entity,
sometimes called a collection. In the example, the first node of the list serves as a reference to
the entire list.

g b W N =

Chapter 25: Linked lists 380

To pass the list as a parameter, we only have to pass a reference to the first node. For example, the
function print_list takes a single node as an argument. Starting with the head of the list, it prints
each node until it gets to the end:

def print_list(node):
while node is not None:
print(node, end=" ")
node = node.next
print()

To invoke this method, we pass a reference to the first node:

>>> print_list(nodel)
1 2 3

Inside print_list we have a reference to the first node of the list, but there is no variable that refers
to the other nodes. We have to use the next value from each node to get to the next node.

To traverse a linked list, it is common to use a loop variable like node to refer to each of the nodes
in succession.

This diagram shows the value of 1ist and the values that node takes on:

nodai noda 2 nodsd
¥ l ¥
cago —= 1 camgo —= 2 cago —= 3
¥y v —= y —= llana
-
nods

25.4. Lists and recursion

It is natural to express many list operations using recursive methods. For example, the following is
a recursive algorithm for printing a list backwards:

1. Separate the list into two pieces: the first node (called the head); and the rest (called the tail).
2. Print the tail backward.
3. Print the head.

Of course, Step 2, the recursive call, assumes that we have a way of printing a list backward. But if
we assume that the recursive call works — the leap of faith — then we can convince ourselves that
this algorithm works.

O O B W N

Chapter 25: Linked lists 381

All we need are a base case and a way of proving that for any list, we will eventually get to the
base case. Given the recursive definition of a list, a natural base case is the empty list, represented
by None:

def print_backward(list):
if list is None: return
head = list
tail = list.next
print_backward(tail)
print(head, end=" ")

The first line handles the base case by doing nothing. The next two lines split the list into head and
tail. The last two lines print the list. The end argument of the print statement keeps Python from
printing a newline after each node.

We invoke this method as we invoked print_list:

>>> print_backward(nodel)
321

The result is a backward list.

You might wonder why print_list and print_backward are functions and not methods in the Node
class. The reason is that we want to use None to represent the empty list and it is not legal to invoke
a method on None. This limitation makes it awkward to write list — manipulating code in a clean
object-oriented style.

Can we prove that print_backward will always terminate? In other words, will it always reach the
base case? In fact, the answer is no. Some lists will make this method crash.

Revisit the Recursion chapter

In our earlier chapter on recursion we distinguished between the high-level view that requires a leap
of faith, and the low-level operational view. In terms of mental chunking, we want to encourage the
more abstract high-level view.

But if you’d like to see the detail you should use your single-stepping debugging tools to step into
the recursive levels and to examine the execution stack frames at every call to print_backward.

25.5. Infinite lists

There is nothing to prevent a node from referring back to an earlier node in the list, including itself.
For example, this figure shows a list with two nodes, one of which refers to itself:

Chapter 25: Linked lists 382

cargo —= 1 camgo —= 2

ngxt ——— = namt'ﬁH1II

If we invoke print_list on this list, it will loop forever. If we invoke print_backward, it will recurse
infinitely. This sort of behavior makes infinite lists difficult to work with.

Nevertheless, they are occasionally useful. For example, we might represent a number as a list of
digits and use an infinite list to represent a repeating fraction.

Regardless, it is problematic that we cannot prove that print_list and print_backward terminate.
The best we can do is the hypothetical statement, “If the list contains no loops, then these methods
will terminate” This sort of claim is called a precondition. It imposes a constraint on one of the
parameters and describes the behavior of the method if the constraint is satisfied. You will see more
examples soon.

25.6. The fundamental ambiguity theorem

One part of print_backward might have raised an eyebrow:

head = list
tail = list.next

After the first assignment, head and 1ist have the same type and the same value. So why did we
create a new variable?

The reason is that the two variables play different roles. We think of head as a reference to a single
node, and we think of 1ist as a reference to the first node of a list. These roles are not part of the
program; they are in the mind of the programmer.

In general we can’t tell by looking at a program what role a variable plays. This ambiguity can be
useful, but it can also make programs difficult to read. We often use variable names like node and
list to document how we intend to use a variable and sometimes create additional variables to
disambiguate.

We could have written print_backward without head and tail, which makes it more concise but
possibly less clear:

Bw N

© 00 1 O O b W N =

=~ O O b W N =

Chapter 25: Linked lists 383

def print_backward(list):
if list is None: return
print_backward(list.next)
print(list, end=" ")

Looking at the two function calls, we have to remember that print_backward treats its argument as
a collection and print treats its argument as a single object.

The fundamental ambiguity theorem describes the ambiguity that is inherent in a reference to a
node: A variable that refers to a node might treat the node as a single object or as the first in a list
of nodes.

25.7. Modifying lists

There are two ways to modify a linked list. Obviously, we can change the cargo of one of the nodes,
but the more interesting operations are the ones that add, remove, or reorder the nodes.

As an example, let’s write a method that removes the second node in the list and returns a reference
to the removed node:

def remove_second(list):
if list is None: return
first = list
second = list.next
Make the first node refer to the third
first.next = second.next
Separate the second node from the rest of the list
second.next = None

return second

Again, we are using temporary variables to make the code more readable. Here is how to use this
method:

>>> print_list(nodel)

123

>>> removed = remove_second(nodel)
>>> print_list(removed)

2

>>> print_list(nodel)

13

This state diagram shows the effect of the operation:

W N

Chapter 25: Linked lists 384

first sacond
, l
cago —= 1 camgo —= 2 cargo —== 3
naxt we--coce- . nest cooeoemeeee -4 npaxt —= Mana
H“\HE%_ .

What happens if you invoke this method and pass a list with only oneelement (a singleton)? What
happens if you pass the empty list as an argument? Is there a precondition for this method? If so, fix
the method to handle a violation of the precondition in a reasonable way.

25.8. Wrappers and helpers

It is often useful to divide a list operation into two methods. For example, to print a list backward in
the conventional list format [3, 2, 1] we can use the print_backward method to print3, 2, but we
need a separate method to print the brackets and the first node. Let’s call it print_backward_nicely:

def print_backward_nicely(list):
print("[", end=" ")
print_backward(list)
print("]")

Again, it is a good idea to check methods like this to see if they work with special cases like an empty
list or a singleton.

When we use this method elsewhere in the program, we invoke print_backward_nicely directly, and
it invokes print_backward on our behalf. In that sense, print_backward_nicely acts as a wrapper,
and it uses print_backward as a helper.

25.9. The LinkedList class

There are some subtle problems with the way we have been implementing lists. In a reversal of
cause and effect, we’ll propose an alternative implementation first and then explain what problems
it solves.

First, we’ll create a new class called LinkedList. Its attributes are an integer that contains the length
of the list and a reference to the first node. LinkedList objects serve as handles for manipulating
lists of Node objects:

Bw N

O© 00 1 O O b W N =

I = U =N
W N s,

Chapter 25: Linked lists

class LinkedList:
def __init_ (self):
self.length = 0
self.head = None

One nice thing about the LinkedList class is that it provides a natural place to put wrapper functions
like print_backward_nicely, which we can make a method of the LinkedList class:

class LinkedList:

def print_backward(self):
print("[", end=" ")
if self.head is not None:
self.head.print_backward()

class Node:

def print_backward(self):
if self.next is not None:
tail = self.next

tail.print_backward()

=~ O U s W N

print(self.cargo, end=" ")

Just to make things confusing, we renamed print_backward_nicely. Now there are two methods
named print_backward: one in the Node class (the helper); and one in the LinkedList class (the
wrapper). When the wrapper invokes self.head.print_backward, it is invoking the helper, because
self.head is a Node object.

Another benefit of the LinkedList class is that it makes it easier to add or remove the first element of
a list. For example, add_first is a method for LinkedLists; it takes an item of cargo as an argument
and puts it at the beginning of the list:

class LinkedList:

def add_first(self, cargo):
node = Node(cargo)

node.next = self.head
sel f.head
self.length += 1

node

As usual, you should check code like this to see if it handles the special cases. For example, what
happens if the list is initially empty?

O© 00 I O O b W N =~

T N S N S o S S = S N
O O 0 N O O b= W N -~ O

Chapter 25: Linked lists 386

25.10. Invariants

Some lists are well formed; others are not. For example, if a list contains a loop, it will cause many of
our methods to crash, so we might want to require that lists contain no loops. Another requirement
is that the length value in the LinkedList object should be equal to the actual number of nodes in
the list.

Requirements like these are called invariants because, ideally, they should be true of every object
all the time. Specifying invariants for objects is a useful programming practice because it makes it
easier to prove the correctness of code, check the integrity of data structures, and detect errors.

One thing that is sometimes confusing about invariants is that there are times when they are
violated. For example, in the middle of add_first, after we have added the node but before we
have incremented length,the invariant is violated. This kind of violation is acceptable; in fact, it
is often impossible to modify an object without violating an invariant for at least a little while.
Normally, we require that every method that violates an invariant must restore the invariant.

If there is any significant stretch of code in which the invariant is violated, it is important for the
comments to make that clear, so that no operations are performed that depend on the invariant.

25.11. Glossary

embedded reference
A reference stored in an attribute of an object.

linked list
A data structure that implements a collection using a sequence of linked
nodes.

node
An element of a list, usually implemented as an object that contains a

reference to another object of the same type.

cargo

An item of data contained in a node.

link
An embedded reference used to link one object to another.

precondition
An assertion that must be true in order for a method to work correctly.

fundamental ambiguity theorem

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Chapter 25: Linked lists 387

A reference to a list node can be treated as a single object or as the
first in a list of nodes.

singleton
A linked list with a single node.

wrapper
A method that acts as a middleman between a caller and a helper method,
often making the method easier or less error-prone to invoke.

helper
A method that is not invoked directly by a caller but is used by another
method to perform part of an operation.

invariant
An assertion that should be true of an object at all times (except
perhaps while the object is being modified).

25.12. Exercises

1. By convention, lists are often printed in brackets with commas between the elements, asin [1, 2,
3].

Modify print_list so that it generates output in this format.

Chapter 26: Stacks

26.1. Abstract data types

The data types you have seen so far are all concrete, in the sense that we have completely specified
how they are implemented. For example, the Card class represents a card using two integers. As
we discussed at the time, that is not the only way to represent a card; there are many alternative
implementations.

An abstract data type, or ADT, specifies a set of operations (or methods) and the semantics of the
operations (what they do), but it does not not specify the implementation of the operations. That’s
what makes it abstract.

Why is that useful?
1. It simplifies the task of specifying an algorithm if you can denote the operations you need without

having to think at the same time about how the operations are performed.
2. Since there are usually many ways to implement an ADT, it might be useful to write an algorithm
that can

be used with any of the possible implementations.
3. Well-known ADTs, such as the Stack ADT in this chapter, are often implemented in standard
libraries so

they can be written once and used by many programmers.
4. The operations on ADTs provide a common high-level language for specifying and talking about
algorithms.

When we talk about ADTs, we often distinguish between the code that uses the ADT, called the
client code, from the code that implements the ADT, called the provider/implementor code.

26.2. The Stack ADT

In this chapter, we will look at one common ADT, the stack. A stack is a collection, meaning that it is
a data structure that contains multiple elements. Other collections we have seen include dictionaries
and lists.

An ADT is defined by the operations that can be performed on it, which is called an interface. The
interface for a stack consists of these operations:

_init__

Initialize a new empty stack.

O© 00 1 O O b W N =

=Y
N \N]

Chapter 26: Stacks 389

push
Add a new item to the stack.

pop
Remove and return an item from the stack. The item that is returned is always the last one that was

added.

is_empty
Check whether the stack is empty.

A stack is sometimes called a “Last in, First out” or LIFO data structure, because the last item added
is the first to be removed.

26.3. Implementing stacks with Python lists

The list operations that Python provides are similar to the operations that define a stack. The
interface isn’t exactly what it is supposed to be, but we can write code to translate from the Stack
ADT to the built-in operations.

This code is called an implementation of the Stack ADT. In general, an implementation is a set of
methods that satisfy the syntactic and semantic requirements of an interface.

Here is an implementation of the Stack ADT that uses a Python list:

class Stack:
def __init__(self):
self.items = []

def push(self, item):
self.items.append(item)

def pop(self):
return self.items.pop()

def is_empty(self):
return (self.items == [])

A stack object contains an attribute named items that is a list of items in the stack. The initialization
method sets items to the empty list.

To push a new item onto the stack, push appends it onto items. To pop an item off the stack, pop
uses the homonymous (same-named) list method to remove and return the last item on the list.

Finally, to check if the stack is empty, is_empty compares items to the empty list.

An implementation like this, in which the methods consist of simple invocations of existing methods,
is called a veneer. In real life, veneer is a thin coating of good quality wood used in furniture-making

B wWw N

Chapter 26: Stacks 390

to hide lower quality wood underneath. Computer scientists use this metaphor to describe a small
piece of code that hides the details of an implementation and provides a simpler, or more standard,
interface.

26.4. Pushing and popping

A stack is a generic data structure, which means that we can add any type of item to it. The
following example pushes two integers and a string onto the stack:

>>> s = Stack()
>>> s.push(54)
>>> s.push(45)
>>> s.push("+")

We can use is_empty and pop to remove and print all of the items on the stack:

while not s.is_empty():
print(s.pop(), end=" ")

The output is + 45 54. In other words, we just used a stack to print the items backward! Granted,
it’s not the standard format for printing a list, but by using a stack, it was remarkably easy to do.

You should compare this bit of code to the implementation of print_backward in the last chapter.
There is a natural parallel between the recursive version of print_backward and the stack algorithm
here. The difference is that print_backward uses the runtime stack to keep track of the nodes while
it traverses the list, and then prints them on the way back from the recursion. The stack algorithm
does the same thing, except that it uses a Stack object instead of the runtime stack.

26.5. Using a stack to evaluate postfix

In most programming languages, mathematical expressions are written with the operator between
the two operands, as in1 + 2. This format is called infix. An alternative used by some calculators
is called postfix. In postfix, the operator follows the operands, asin1 2 +.

The reason postfix is sometimes useful is that there is a natural way to evaluate a postfix expression
using a stack:

1. Starting at the beginning of the expression, get one term (operator or operand) at a time.

- If the term is an operand, push it on the stack.
- If the term is an operator, pop two operands off the stack, perform the operation on them, and push
the result back on the stack.

Chapter 26: Stacks 391

2. When you get to the end of the expression, there should be exactly one operand left on the stack.
That

operand is the result.

26.6. Parsing

To implement the previous algorithm, we need to be able to traverse a string and break it into
operands and operators. This process is an example of parsing, and the results — the individual
chunks of the string — are called tokens. You might remember these words from Chapter 1.

Python provides a split method in both string objects and the re (regular expression) module. A
string’s split method splits it into a list using a single character as a delimiter. For example:

>>> "Now is the time".split(" ")

["Now', 'is', 'the', 'time']

In this case, the delimiter is the space character, so the string is split at each space.

The function re.split is more powerful, allowing us to provide a regular expression instead of a
delimiter. A regular expression is a way of specifying a set of strings. For example, [A-z] is the
set of all letters and [0-9] is the set of all numbers. The * operator negates a set, so [*@-9] is the
set of everything that is not a number, which is exactly the set we want to use to split up postfix
expressions:

>>> import re
>>> re.split("(["0-9])", "123+456%/")
['123‘, |+|l 1456|I ‘*', ||I ‘/', ||]

The resulting list includes the operands 123 and 456 and the operators * and /. It also includes two
empty strings that are inserted after the operands.

26.7. Evaluating postfix

To evaluate a postfix expression, we will use the parser from the previous section and the algorithm
from the section before that. To keep things simple, we’ll start with an evaluator that only
implements the operators + and *:

Chapter 26: Stacks 392

def eval_postfix(expr):
import re
token_list = re.split("(["0-9])", expr)
stack = Stack()
for token in token_list:
if token == "" or token == " ":
continue
if token == "+":
sum = stack.pop() + stack.pop()
stack.push(sum)
elif token == "x*x":
product = stack.pop() * stack.pop()
stack.push(product)
else:
stack.push(int(token))
return stack.pop()

The first condition takes care of spaces and empty strings. The next two conditions handle operators.
We assume, for now, that anything else must be an operand. Of course, it would be better to check
for erroneous input and report an error message, but we’ll get to that later.

Let’s test it by evaluating the postfix form of (56 + 47) * 2:

>> eval_postfix("56 47 + 2 *")
206

That’s close enough.

26.8. Clients and providers

One of the fundamental goals of an ADT is to separate the interests of the provider, who writes the
code that implements the ADT, and the client, who uses the ADT. The provider only has to worry
about whether the implementation is correct — in accord with the specification of the ADT — and
not how it will be used.

Conversely, the client assumes that the implementation of the ADT is correct and doesn’t worry
about the details. When you are using one of Python’s built-in types, you have the luxury of thinking
exclusively as a client.

Of course, when you implement an ADT, you also have to write client code to test it. In that case,
you play both roles, which can be confusing. You should make some effort to keep track of which
role you are playing

at any moment.

O© 00 I O O b W N =

AW W W W W W W W W WA NN DN NN NN N R R R L Ly
© © ® 9 O O & @ N =~ & © ® 9 0 O & W N~ O© W 3 0 O n W=

Chapter 26: Stacks 393

26.9. Glossary

abstract data type (ADT)
A data type (usually a collection of objects) that is defined by a set
of operations but that can be implemented in a variety of ways.

client
A program (or the person who wrote it) that uses an ADT.

delimiter
A character that is used to separate tokens, such as punctuation in a
natural language.

generic data structure

A kind of data structure that can contain data of any type.

implementation
Code that satisfies the syntactic and semantic requirements of an
interface.

interface
The set of operations that define an ADT.

infix
A way of writing mathematical expressions with the operators between the
operands.

parse
To read a string of characters or tokens and analyze its grammatical structure.

postfix
A way of writing mathematical expressions with the operators after the
operands.

provider

The code (or the person who wrote it) that implements an ADT.
token
A set of characters that are treated as a unit for purposes of parsing,

such as the words in a natural language.

veneer

41
42
43
44

Chapter 26: Stacks 394

A class definition that implements an ADT with method definitions that
are invocations of other methods, sometimes with simple transformations.
The veneer does no significant work, but it improves or standardizes the
interface seen by the client.

26.10. Exercises

1. Apply the postfix algorithm to the expression1 2 + 3 *.This example demonstrates one of the
advantages

of postfix—there is no need to use parentheses to control the order of operations. To get the same
result in infix, we would have to write (1 + 2) * 3.
2. Write a postfix expression that is equivalent to1 + 2 * 3.

Chapter 27: Queues

This chapter presents two ADTs: the Queue and the Priority Queue. In real life, a queue is a line
of people waiting for something. In most cases, the first person in line is the next one to be served.
There are exceptions, though. At airports, peoples whose flights are leaving soon are sometimes
taken from the middle of the queue. At supermarkets, a polite person might let someone with only
a few items go in front of them.

The rule that determines who goes next is called the queueing policy. The simplest queueing policy
is called “First in, First out”, FIFO for short. The most general queueing policy is priority queueing,
in which each person is assigned a priority and the person with the highest priority goes first,
regardless of the order of arrival. We say this is the most general policy because the priority can be
based on anything: what time a flight leaves; how many groceries the person has; or how important
the person is. Of course, not all queueing policies are fair, but fairness is in the eye of the beholder.

The Queue ADT and the Priority Queue ADT have the same set of operations. The difference is in
the semantics of the operations: a queue uses the FIFO policy; and a priority queue (as the name
suggests) uses the priority queueing policy.

27.1. The Queue ADT

The Queue ADT is defined by the following operations:
_init__
Initialize a new empty queue.

insert
Add a new item to the queue.

remove
Remove and return an item from the queue. The item that is returned is
the first one that was added.

is_empty
Check whether the queue is empty.

27.2. Linked Queue

The first implementation of the Queue ADT we will look at is called a linked queue because it is
made up of linked Node objects. Here is the class definition:

Chapter 27: Queues 396

class Queue:
def __init_ (self):
self.length = 0
self.head = None

def is_empty(self):
return self.length == 0

def insert(self, cargo):
node = Node(cargo)
if self.head is None:
If list is empty the new node goes first
self.head = node
else:
find the last node in the list
last = self.head
while last.next:
last = last.next
Append the new node
last .next = node
self.length += 1

def remove(self):
cargo = self.head.cargo
self.head = self.head.next
self.length -= 1

return cargo

The methods is_empty and remove are identical to the LinkedList methods is_empty and remove_-
first. The insert method is new and a bit more complicated.

We want to insert new items at the end of the list. If the queue is empty, we just set head to refer to
the new node.

Otherwise, we traverse the list to the last node and tack the new node on the end. We can identify
the last node because its next attribute is None.

There are two invariants for a properly formed Queue object. The value of length should be the
number of nodes in the queue, and the last node should have next equal to None. Convince yourself
that this method preserves both invariants.

o N O O b W N =

Chapter 27: Queues 397

27.3. Performance characteristics

Normally when we invoke a method, we are not concerned with the details of its implementation.
But there is one detail we might want to know: the performance characteristics of the method.
How long does it take, and how does the run time change as the number of items in the collection
increases?

First look at remove. There are no loops or function calls here, suggesting that the runtime of this
method is the same every time. Such a method is called a constant time operation. In reality, the
method might be slightly faster when the list is empty since it skips the body of the conditional, but
that difference is not significant.

The performance of insert is very different. In the general case, we have to traverse the list to find
the last element.

This traversal takes time proportional to the length of the list. Since the runtime is a linear function
of the length, this method is called linear time. Compared to constant time, that’s very bad.

27.4. Improved Linked Queue

We would like an implementation of the Queue ADT that can perform all operations in constant
time. One way to do that is to modify the Queue class so that it maintains a reference to both the
first and the last node, as shown in the figure:

The ImprovedQueue implementation looks like this:

class ImprovedQueue:
def __init_ (self):
self.length = 0
self.head = None
self.last = None

def is_empty(self):
return self.length == 0

So far, the only change is the attribute last. It is used in insert and remove methods:

O© 00 I O O b W N =

Chapter 27: Queues 398

class ImprovedQueue:

def insert(self, cargo):
node = Node(cargo)
if self.length ==
]Jf list is empty, the new node is head and last
self.head = self.last = node
else:
find the last node
last = self.last
Append the new node
last.next = node
self.last = node
self.length += 1

Since last keeps track of the last node, we don’t have to search for it. As a result, this method is
constant time.

There is a price to pay for that speed. We have to add a special case to remove to set last to None
when the last node is removed:

class ImprovedQueue:

def remove(self):
cargo = self.head.cargo
self.head = self.head.next
self.length -= 1
if self.length ==
self.last = None

return cargo

This implementation is more complicated than the Linked Queue implementation, and it is more
difficult to demonstrate that it is correct. The advantage is that we have achieved the goal — both
insert and remove are constant time operations.

27.5. Priority queue

The Priority Queue ADT has the same interface as the Queue ADT, but different semantics. Again,
the interface is:

_init__
Initialize a new empty queue.

© 00 N O O b W N =

Chapter 27: Queues 399

insert
Add a new item to the queue.

remove
Remove and return an item from the queue. The item that is returned is the one with the highest
priority.

is_empty
Check whether the queue is empty.

The semantic difference is that the item that is removed from the queue is not necessarily the first one
that was added. Rather, it is the item in the queue that has the highest priority. What the priorities
are and how they compare to each other are not specified by the Priority Queue implementation. It
depends on which items are in the queue.

For example, if the items in the queue have names, we might choose them in alphabetical order. If
they are bowling scores, we might go from highest to lowest, but if they are golf scores, we would go
from lowest to highest. As long as we can compare the items in the queue, we can find and remove
the one with the highest priority.

This implementation of Priority Queue has as an attribute a Python list that contains the items in
the queue.

class PriorityQueue:
def __init__(self):
self.items = []

def is_empty(self):
return not self.items

def insert(self, item):
self.items.append(item)

The initialization method, is_empty, and insert are all veneers on list operations. The only
interesting method is remove:

class PriorityQueue:

def remove(self):
maxi = 0
for i in range(1, len(self.items)):
if self.items[i] > self.items[maxi]:
maxi = 1
item = self.items[maxi]
del self.items[maxi]

return item

O© 00 I O O b W N =~

NN
= o

=~ O U s W N

Chapter 27: Queues 400

At the beginning of each iteration, maxi holds the index of the biggest item (highest priority) we
have seen so far. Each time through the loop, the program compares the i ‘th item to the champion.
If the new item is bigger, the value of maxi is set to i.

When the for statement completes, maxi is the index of the biggest item. This item is removed from
the list and returned.

Let’s test the implementation:

>>> q = PriorityQueue()
>>> for num in [11, 12, 14, 13]:
g.insert(num)

>>> while not q.is_empty():
print(q.remove())

14

13

12
11

If the queue contains simple numbers or strings, they are removed in numerical or alphabetical order,
from highest to lowest. Python can find the biggest integer or string because it can compare them
using the built-in comparison operators.

If the queue contains an object type, it has to provide a __gt__ method. When remove uses the >
operator to compare items, it invokes the __gt__ method for one of the items and passes the other
as a parameter. As long as the __gt__ method works correctly, the Priority Queue will work.

27.6. The colfer class

As an example of an object with an unusual definition of priority, let’s implement a class called
Golfer that keeps track of the names and scores of golfers. As usual, we start by defining __init_ -
and __str__

class Golfer:
def __init__(self, name, score):

self.name = name

self.score= score

def _ str_ (self):
return "{0:16}: {1}".format(self.name, self.score)

Bw N

© 00 N O O b W N =

I = SN
B W N O

© 00 N O O b W N =

[==Y
w N =~

Chapter 27: Queues 401

__str__ uses the format method to put the names and scores in neat columns.

Next we define a version of __gt__ where the lowest score gets highest priority. As always, __gt_-
_ returns True if self is greater than other, and False otherwise.

class Golfer:

def _ gt_ (self, other):

return self.score < other.score # [ess 1s more
Now we are ready to test the priority queue with the Golfer class:

>>> tiger = Golfer("Tiger Woods", 61)

>>> phil = Golfer("Phil Mickelson", 72)

>>> hal = Golfer("Hal Sutton", 69)

55>

>>> pg = PriorityQueue()

>>> for g in [tiger, phil, hal]:
pq.insert(g)

>>> while not pq.is_empty():
print(pg.remove())

Tiger Woods : 61
Hal Sutton 1 69
Phil Mickelson : 72

27.7. Glossary

constant time
An operation whose runtime does not depend on the size of the data
structure.

FIFO (First In, First Out)
a queueing policy in which the first member to arrive is the first to be
removed.

linear time
An operation whose runtime is a linear function of the size of the data

structure.

linked queue

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Chapter 27: Queues 402

An implementation of a queue using a linked list.

priority queue
A queueing policy in which each member has a priority determined by
external factors. The member with the highest priority is the first to
be removed.

Priority Queue
An ADT that defines the operations one might perform on a priority

queue.

queue

An ordered set of objects waiting for a service of some kind.

Queue
An ADT that performs the operations one might perform on a queue.

queueing policy
The rules that determine which member of a queue is removed next.

27.8. Exercises

1. Write an implementation of the Queue ADT using a Python list. Compare the performance of this

implementation to the ImprovedQueue for a range of queue lengths.
2. Write an implementation of the Priority Queue ADT using a linked list. You should keep the list
sorted so

that removal is a constant time operation. Compare the performance of this implementation with
the Python list implementation.

Chapter 28: Trees

Like linked lists, trees are made up of nodes. A common kind of tree is a binary tree, in which each
node contains a reference to two other nodes (possibly None). These references are referred to as the

left and right subtrees. Like list nodes, tree nodes also contain cargo. A state diagram for a tree looks
like this:

traa
¥

camgo —== 1

laft right

i *

.cf‘H K
camgo —= 2 camga —== 3
l=ft right laft rig ht
.f H. -f H.
¥ L1 ¥ L
Haona Haona Hona Hona

To avoid cluttering up the picture, we often omit the Nones.

The top of the tree (the node tree refers to) is called the root. In keeping with the tree metaphor,
the other nodes are called branches and the nodes at the tips with null references are called leaves.
It may seem odd that we draw the picture with the root at the top and the leaves at the bottom, but
that is not the strangest thing.

To make things worse, computer scientists mix in another metaphor: the family tree. The top node
is sometimes called a parent and the nodes it refers to are its children. Nodes with the same parent
are called siblings.

Finally, there is a geometric vocabulary for talking about trees. We already mentioned left and right,
but there is also up (toward the parent/root) and down (toward the children/leaves). Also, all of the
nodes that are the same distance from the root comprise a level of the tree.

We probably don’t need three metaphors for talking about trees, but there they are.

Like linked lists, trees are recursive data structures because they are defined recursively. A tree is
either:

1. the empty tree, represented by None, or
2. a node that contains an object reference (cargo) and two tree references.

o N O O b W N =

Chapter 28: Trees 404

28.1. Building trees

The process of assembling a tree is similar to the process of assembling a linked list. Each constructor
invocation builds a single node.

class Tree:
def __init_ (self, cargo, left=None, right=None):
self.cargo = cargo
self.left = left
self.right = right

def __str_ (self):

return str(self.cargo)

The cargo can be any type, but the 1eft and right parameters should be tree nodes. 1eft and right
are optional; the default value is None.

To print a node, we just print the cargo.

One way to build a tree is from the bottom up. Allocate the child nodes first:

left = Tree(2)
right = Tree(3)

Then create the parent node and link it to the children:

tree = Tree(1, left, right)

We can write this code more concisely by nesting constructor invocations:
>>> tree = Tree(1, Tree(2), Tree(3))

Either way, the result is the tree at the beginning of the chapter.

28.2. Traversing trees

Any time you see a new data structure, your first question should be, “How do I traverse it?” The
most natural way to traverse a tree is recursively. For example, if the tree contains integers as cargo,
this function returns their sum:

Chapter 28: Trees 405

def total(tree):
if tree is None: return 0
return total(tree.left) + total(tree.right) + tree.cargo

The base case is the empty tree, which contains no cargo, so the sum is 0. The recursive step makes
two recursive calls to find the sum of the child trees. When the recursive calls complete, we add the
cargo of the parent and return the total.

28.3. Expression trees

A tree is a natural way to represent the structure of an expression. Unlike other notations, it can
represent the computation unambiguously. For example, the infix expression1 + 2 * 3 is ambiguous
unless we know that the multiplication happens before the addition.

This expression tree represents the same computation:

tras

¥

cago —= +

i

laft right

/

i,
5,

W

caigo —== 1

c.arg:l—s-i

l=ft right bt right
.f '~".
¥ 4
caga —= 2 caga —= 3
laft right laft right

The nodes of an expression tree can be operands like 1 and 2 or operators like + and *. Operands are
leaf nodes; operator nodes contain references to their operands. (All of these operators are binary,
meaning they have exactly two operands.)

We can build this tree like this:
>>> tree = Tree("+", Tree(1), Tree("*", Tree(2), Tree(3)))
Looking at the figure, there is no question what the order of operations is; the multiplication happens

first in order to compute the second operand of the addition.

Expression trees have many uses. The example in this chapter uses trees to translate expressions to
postfix, prefix, and infix. Similar trees are used inside compilers to parse, optimize, and translate
programs.

g b W N -

g b W N~

g b W N -

Chapter 28: Trees 406

28.4. Tree traversal

We can traverse an expression tree and print the contents like this:

def print_tree(tree):
if tree is None: return
print(tree.cargo, end=" ")
print_tree(tree.left)
print_tree(tree.right)

In other words, to print a tree, first print the contents of the root, then print the entire left subtree,
and then print the entire right subtree. This way of traversing a tree is called a preorder, because
the contents of the root appear before the contents of the children. For the previous example, the
output is:

>>> tree = Tree("+", Tree(1), Tree("*", Tree(2), Tree(3)))
>>> print_tree(tree)
+1 % 2 3

This format is different from both postfix and infix; it is another notation called prefix, in which
the operators appear before their operands.

You might suspect that if you traverse the tree in a different order, you will get the expression in a
different notation. For example, if you print the subtrees first and then the root node, you get:

def print_tree_postorder(tree):
if tree is None: return
print_tree_postorder(tree.left)
print_tree_postorder(tree.right)
print(tree.cargo, end=" ")

The result,1 2 3 * +, is in postfix! This order of traversal is called postorder.

Finally, to traverse a tree inorder, you print the left tree, then the root, and then the right tree:

def print_tree_inorder(tree):
if tree is None: return
print_tree_inorder(tree.left)
print(tree.cargo, end=" ")
print_tree_inorder(tree.right)

a o w N

O O B W N

Chapter 28: Trees 407

The result is1 + 2 * 3, which is the expression in infix.

To be fair, we should point out that we have omitted an important complication. Sometimes when
we write an expression in infix, we have to use parentheses to preserve the order of operations. So
an inorder traversal is not quite sufficient to generate an infix expression.

Nevertheless, with a few improvements, the expression tree and the three recursive traversals
provide a general way to translate expressions from one format to another.

If we do an inorder traversal and keep track of what level in the tree we are on, we can generate a
graphical representation of a tree:

def print_tree_indented(tree, level=0):
if tree is None: return
print_tree_indented(tree.right, level+1)
print(" " * level + str(tree.cargo))
print_tree_indented(tree.left, level+1)

The parameter level keeps track of where we are in the tree. By default, it is initially 0. Each time
we make a recursive call, we pass level+1 because the child’s level is always one greater than the

parent’s. Each item is indented by two spaces per level. The result for the example tree is:

>>> print_tree_indented(tree)

If you look at the output sideways, you see a simplified version of the original figure.

28.5. Building an expression tree

In this section, we parse infix expressions and build the corresponding expression trees. For example,
the expression (3 + 7) * 9 yields the following tree:

a b w N

g b W N =

O O B W N

Chapter 28: Trees 408

Notice that we have simplified the diagram by leaving out the names of the attributes.

The parser we will write handles expressions that include numbers, parentheses, and the operators
+ and *. We assume that the input string has already been tokenized into a Python list (producing
this list is left as an exercise). The token list for (3 + 7) * 9 is:

[u(u, 3’ ||+||’ 7’ ")”, n*u, 9’ nendn]

The end token is useful for preventing the parser from reading past the end of the list.

The first function we’ll write is get_token, which takes a token list and an expected token as
parameters. It compares the expected token to the first token on the list: if they match, it removes
the token from the list and returns True; otherwise, it returns False:

def get_token(token_list, expected):
if token_list[Q] == expected:
del token_list[Q]
return True

return False

Since token_list refers to a mutable object, the changes made here are visible to any other variable
that refers to the same object.

The next function, get_number, handles operands. If the next token in token_list is a number, get_-
number removes it and returns a leaf node containing the number; otherwise, it returns None.

def get_number(token_list):
X = token_list[Q]
if type(x) != type(@): return None
del token_list[0]

return Tree(x, None, None)

Before continuing, we should test get_number in isolation. We assign a list of numbers to token_list,
extract the first, print the result, and print what remains of the token list:

>>> token_list = [9, 11, "end"]
>>> x = get_number(token_list)

>>> print_tree_postorder(x)

9
>>> print(token_list)
[11, "end"]

The next method we need is get_product, which builds an expression tree for products. A simple
product has two numbers as operands, like 3 * 7.

Here is a version of get_product that handles simple products.

W N -

W N

Chapter 28: Trees 409

def get_product(token_list):
a = get_number(token_list)
if get_token(token_list, "*"):
b = get_number(token_list)
return Tree("*", a, b)
return a

Assuming that get_number succeeds and returns a singleton tree, we assign the first operand to a.
If the next character is *, we get the second number and build an expression tree with a, b, and the
operator.

If the next character is anything else, then we just return the leaf node with a. Here are two examples:

>>> token_list = [9, "*", 11, "end"]
>>> tree = get_product(token_list)
>>> print_tree_postorder(tree)

9 11 *

>>> token_list = [9, "+", 11, "end"]
>>> tree = get_product(token_list)
>>> print_tree_postorder(tree)

9

The second example implies that we consider a single operand to be a kind of product. This definition
of product is counter-intuitive, but it turns out to be useful.

Now we have to deal with compound products, like like 3 * 5 * 13. We treat this expression as a
product of products, namely 3 * (5 * 13). The resulting tree is:

F LY
5] [

With a small change in get_product, we can handle an arbitrarily long product:

O O B W N

BswWw N

O O B W N

W N

Chapter 28: Trees 410

def get_product(token_list):
a = get_number(token_list)
if get_token(token_list, "*"):
b = get_product(token_list) # This line changed
return Tree("*", a, b)

return a

In other words, a product can be either a singleton or a tree with * at the root, a number on the left,
and a product on the right. This kind of recursive definition should be starting to feel familiar.

Let’s test the new version with a compound product:

>>> token_list = [2, "*x", 3, "x" 5 ["x" 7 ‘lend"]
>>> tree = get_product(token_list)

>>> print_tree_postorder(tree)

2 35 7 % k% *

Next we will add the ability to parse sums. Again, we use a slightly counter-intuitive definition of
sum. For us, a sum can be a tree with + at the root, a product on the left, and a sum on the right. Or,
a sum can be just a product.

If you are willing to play along with this definition, it has a nice property: we can represent any
expression (without parentheses) as a sum of products. This property is the basis of our parsing
algorithm.

get_sum tries to build a tree with a product on the left and a sum on the right. But if it doesn’t find
a +, it just builds a product.

def get_sum(token_list):
a = get_product(token_list)
if get_token(token_list, "+"):
b = get_sum(token_list)
return Tree("+", a, b)

return a
Let’s test it witho * 11 + 5 * 7T:

»>> token_list = [9, ", 11, "+", §
>>> tree = get_sum(token_list)

, |l*l|/ 7/ "eﬂd”]
>>> print_tree_postorder(tree)
911 * 5 7 * +

We are almost done, but we still have to handle parentheses. Anywhere in an expression where there
can be a number, there can also be an entire sum enclosed in parentheses. We just need to modify
get_number to handle subexpressions:

-
© © 0 N O O b W N =

Bw N

o I O O b W N =

Chapter 28: Trees 411

def get_number(token_list):
if get_token(token_list, "("):

x = get_sum(token_list) # Get the subexpression
get_token(token_list, ")") # Remove the closing parenthesis
return x

else:

X = token_list[Q]

if type(x) != type(Q): return None
del token_list[Q]

return Tree(x, None, None)

Let’s test this code with9 * (11 + 5) * T:

>>> token_list = [9, "*", B "(", 44, "+", 5, ")", "¥x", 7, "end"]
>>> tree = get_sum(token_list)

>>> print_tree_postorder(tree)

911 5 + 7 * *

The parser handled the parentheses correctly; the addition happens before the multiplication.

In the final version of the program, it would be a good idea to give get_number a name more
descriptive of its new role.

28.6. Handling errors

Throughout the parser, we’ve been assuming that expressions are well-formed. For example, when
we reach the end of a subexpression, we assume that the next character is a close parenthesis. If
there is an error and the next character is something else, we should deal with it.

def get_number(token_list):
if get_token(token_list, "("):
X = get_sum(token_list)
if not get_token(token_list, ")"):
raise ValueError('Missing close parenthesis")
return x
else:

The rest of the function omitted

The raise statement throws the exception object which we create. In this case we simply used the
most appropriate type of built-in exception that we could find, but you should be aware that you
can create your own more specific user-defined exceptions if you need to. If the function that called
get_number, or one of the other functions in the traceback, handles the exception, then the program
can continue. Otherwise, Python will print an error message and quit.

© 00 N O O b W N =

[T = S G T N S N Y
© © 00 N O O b W N =~ O

Chapter 28: Trees 412

28.7. The animal tree

In this section, we develop a small program that uses a tree to represent a knowledge base.

The program interacts with the user to create a tree of questions and animal names. Here is a sample
run:

Are you thinking of an animal? y

Is it a bird? n

What is the animals name? dog

What question would distinguish a dog from a bird? Can it fly
If the animal were dog the answer would be? n

Are you thinking of an animal? y

Can it fly? n

Is it a dog? n

What is the animals name? cat

What question would distinguish a cat from a dog? Does it bark
If the animal were cat the answer would be? n

Are you thinking of an animal? y
Can it fly? n

Does it bark? vy

Is it a dog? y

I rule!

Are you thinking of an animal? n

Here is the tree this dialog builds:

[Canitfy? |

[N

Dossitbark? | [bid

2 X

(dog)

At the beginning of each round, the program starts at the top of the tree and asks the first question.
Depending on the answer, it moves to the left or right child and continues until it gets to a leaf node.
At that point, it makes a guess. If the guess is not correct, it asks the user for the name of the new
animal and a question that distinguishes the (bad) guess from the new animal. Then it adds a node
to the tree with the new question and the new animal.

A

© 00 =N O O & W N =

BB W W W W W W W W WWNDNDNDNDDNDNDNDNDNDDNDDN S S sSss))
, O © 0O N O O b W N~ OO0 © 0 N O 0 Pk N OO0 © 0O N O 0 - wN =~ 0o

Chapter 28: Trees

Here is the code:

def yes(ques):
ans = input(ques).lower()
return ans[Q] == "y"

def animal():
Start with a singleton
root = Tree("bird")

Loop until the user quits
while True:
print()

if not yes("Are you thinking of an animal? "): break

Walk the tree
tree = root
while tree.left is not None:
prompt = tree.cargo + "7 "
if yes(prompt):
tree = tree.right
else:
tree = tree.left

Make a guess
guess = tree.cargo

prompt = "Is it a " + guess + "? "
if yes(prompt):
print("I rule!")

continue

Get new information

prompt = "What is the animal's name? "
animal = input(prompt)
prompt = "What question would distinguish a {@} from a {1}? "

question = input(prompt.format(animal, guess))

Add new information to the tree
tree.cargo = question
prompt = "If the animal were {0} the answer would be? "
if yes(prompt. format(animal)):
tree.left = Tree(guess)
tree.right = Tree(animal)

413

42
43
44

O© 00 1 O O b W N =

NN NN N R Ry s sy
B W0 N PO O 00N 0 O b WO N~ O

Chapter 28: Trees 414

else:
tree.left = Tree(animal)
tree.right = Tree(guess)

The function yes is a helper; it prints a prompt and then takes input from the user. If the response
begins with y or Y, the function returns True.

The condition of the outer loop of animal is True, which means it will continue until the break
statement executes, if the user is not thinking of an animal.

The inner while loop walks the tree from top to bottom, guided by the user’s responses.

When a new node is added to the tree, the new question replaces the cargo, and the two children
are the new animal and the original cargo.

One shortcoming of the program is that when it exits, it forgets everything you carefully taught it!
Fixing this problem is left as an exercise.

28.8. Glossary

binary operator
An operator that takes two operands.

binary tree
A tree in which each node refers to zero, one, or two dependent nodes.

child
One of the nodes referred to by a node.

leaf
A bottom-most node in a tree, with no children.

level
The set of nodes equidistant from the root.

parent
The node that refers to a given node.

postorder
A way to traverse a tree, visiting the children of each node before the
node itself.

prefix notation
A way of writing a mathematical expression with each operator appearing

25
26
27
28
29
30
31
32
33
34
35
36
37
38

Chapter 28: Trees 415

before its operands.
preorder
A way to traverse a tree, visiting each node before its children.
root
The topmost node in a tree, with no parent.
siblings
Nodes that share a common parent.
subexpression
An expression in parentheses that acts as a single operand in a larger
expression.

28.9. Exercises

1. Modify print_tree_inorder so that it puts parentheses around every operator and pair of
operands. Is

the output correct and unambiguous? Are the parentheses always necessary?
2. Write a function that takes an expression string and returns a token list.
3. Find other places in the expression tree functions where errors can occur and add appropriate

raise

statements. Test your code with improperly formed expressions.
4. Think of various ways you might save the animal knowledge tree in a file. Implement the one you
think is

easiest.

Appendix A: Debugging

Different kinds of errors can occur in a program, and it is useful to distinguish among them in order
to track them down more quickly:

1. Syntax errors are produced by Python when it is translating the

source code into byte code. They usually indicate that there is
something wrong with the syntax of the program. Example: Omitting
the colon at the end of a def statement yields the somewhat

redundant message SyntaxError: invalid syntax.

2. Runtime errors are produced by the runtime system if something goes

wrong while the program is running. Most runtime error messages
include information about where the error occurred and what
functions were executing. Example: An infinite recursion eventually
causes a runtime error of maximum recursion depth exceeded.

3. Semantic errors are problems with a program that compiles and runs

but doesn’t do the right thing. Example: An expression may not be
evaluated in the order you expect, yielding an unexpected result.

The first step in debugging is to figure out which kind of error you are dealing with. Although the
following sections are organized by error type, some techniques are applicable in more than one
situation.

A.1. Syntax errors

Syntax errors are usually easy to fix once you figure out what they are. Unfortunately, the error
messages are often not helpful. The most common messages are SyntaxError: invalid syntax and
SyntaxError: invalid token, neither of which is very informative.

On the other hand, the message does tell you where in the program the problem occurred. Actually,
it tells you where Python noticed a problem, which is not necessarily where the error is. Sometimes
the error is prior to the location of the error message, often on the preceding line.

If you are building the program incrementally, you should have a good idea about where the error
is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s code very carefully.
Check every character. At the same time, remember that the book might be wrong, so if you see
something that looks like a syntax error, it might be.

Appendix A: Debugging 417

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variable name.
2. Check that you have a colon at the end of the header of every

compound statement, including for, while, if, and def
statements.
3. Check that indentation is consistent. You may indent with either

spaces or tabs but it’s best not to mix them. Each level should be
nested the same amount.
4. Make sure that any strings in the code have matching quotation

marks.
5. If you have multiline strings with triple quotes (single or double),

make sure you have terminated the string properly. An unterminated
string may cause an invalid token error at the end of your
program, or it may treat the following part of the program as a
string until it comes to the next string. In the second case, it

might not produce an error message at all!

6. An unclosed bracket — (, {, or [— makes Python continue with

the next line as part of the current statement. Generally, an error
occurs almost immediately in the next line.
7. Check for the classic = instead of == inside a conditional.

If nothing works, move on to the next section...

A.2. | can't get my program to run no matter what I do.

If the compiler says there is an error and you don’t see it, that might be because you and the compiler
are not looking at the same code. Check your programming environment to make sure that the
program you are

editing is the one Python is trying to run. If you are not sure, try putting an obvious and deliberate
syntax error at the beginning of the program. Now run (or import) it again. If the compiler doesn’t
find the new error, there is probably something wrong with the way your environment is set up.

If this happens, one approach is to start again with a new program like Hello, World!, and make
sure you can get a known program to run. Then gradually add the pieces of the new program to the
working one.

A.3. Runtime errors

Once your program is syntactically correct, Python can import it and at least start running it. What
could possibly go wrong?

Appendix A: Debugging 418

A.4. My program does absolutely nothing.

This problem is most common when your file consists of functions and classes but does not actually
invoke anything to start execution. This may be intentional if you only plan to import this module
to supply classes and functions.

If it is not intentional, make sure that you are invoking a function to start execution, or execute one
from the interactive prompt. Also see the Flow of Execution section below.

A.5. My program hangs.

If a program stops and seems to be doing nothing, we say it is hanging. Often that means that it is
caught in an infinite loop or an infinite recursion.

1. If there is a particular loop that you suspect is the problem, add a

print statement immediately before the loop that says entering the
loop and another immediately after that says exiting the loop.
2. Run the program. If you get the first message and not the second,

you’ve got an infinite loop. Go to the Infinite
Loop section below.
3. Most of the time, an infinite recursion will cause the program to

run for a while and then produce a RuntimeError: Maximum recursion
depth exceeded error. If that happens, go to the Infinite

Recursion section below.

4. If you are not getting this error but you suspect there is a problem

with a recursive method or function, you can still use the
techniques in the Infinite Recursion section.
5. If neither of those steps works, start testing other loops and other

recursive functions and methods.
6. If that doesn’t work, then it is possible that you don’t understand

the flow of execution in your program. Go to the Flow of
Execution section below.

A.6. Infinite Loop

If you think you have an infinite loop and you think you know what loop is causing the problem,
add a print statement at the end of the loop that prints the values of the variables in the condition
and the value of the condition.

For example:

=~ O O b W N =

Appendix A: Debugging 419

while x > @ and y < O:
Do something to x

Do something to y

print("x: ", x)
print("y: ", y)
print("condition: ", (x > @ and y < Q))

Now when you run the program, you will see three lines of output for each time through the loop.
The last time through the loop, the condition should be False. If the loop keeps going, you will be
able to see the values of x and y, and you might figure out why they are not being updated correctly.

In a development environment like PyScripter, one can also set a breakpoint at the start of the loop,
and single-step through the loop. While you do this, inspect the values of x and y by hovering your
cursor over them.

Of course, all programming and debugging require that you have a good mental model of what the
algorithm ought to be doing: if you don’t understand what ought to happen to x and y, printing
or inspecting its value is of little use. Probably the best place to debug the code is away from your
computer, working on your understanding of what should be happening.

A.7. Infinite Recursion

Most of the time, an infinite recursion will cause the program to run for a while and then produce
a Maximum recursion depth exceeded error.

If you suspect that a function or method is causing an infinite recursion, start by checking to make
sure that there is a base case. In other words, there should be some condition that will cause the
function or method to return without making a recursive invocation. If not, then you need to rethink
the algorithm and identify a base case.

If there is a base case but the program doesn’t seem to be reaching it, add a print statement at the
beginning of the function or method that prints the parameters. Now when you run the program,
you will see a few lines of output every time the function or method is invoked, and you will see the
parameters. If the parameters are not moving toward the base case, you will get some ideas about
why not.

Once again, if you have an environment that supports easy single-stepping, breakpoints, and
inspection, learn to use them well. It is our opinion that walking through code step-by-step builds
the best and most accurate mental model of how computation happens. Use it if you have it!

A.8. Flow of Execution

If you are not sure how the flow of execution is moving through your program, add print statements
to the beginning of each function with a message like entering function foo, where foo is the name

Appendix A: Debugging 420

of the function.
Now when you run the program, it will print a trace of each function as it is invoked.

If you’re not sure, step through the program with your debugger.

A.9. When | run the program | get an exception.

If something goes wrong during runtime, Python prints a message that includes the name of the
exception, the line of the program where the problem occurred, and a traceback.

Put a breakpoint on the line causing the exception, and look around!

The traceback identifies the function that is currently running, and then the function that invoked
it, and then the function that invoked that, and so on. In other words, it traces the path of function
invocations that got you to where you are. It also includes the line number in your file where each
of these calls occurs.

The first step is to examine the place in the program where the error occurred and see if you can
figure out what happened. These are some of the most common runtime errors:

NameError
You are trying to use a variable that doesn’t exist in the current environment. Remember that local
variables are local. You cannot refer to them from outside the function where they are defined.

TypeError
There are several possible causes:

1. You are trying to use a value improperly. Example: indexing a

string, list, or tuple with something other than an integer.
2. There is a mismatch between the items in a format string and the

items passed for conversion. This can happen if either the number of
items does not match or an invalid conversion is called for.
3. You are passing the wrong number of arguments to a function or

method. For methods, look at the method definition and check that
the first parameter is sel f. Then look at the method invocation;
make sure you are invoking the method on an object with the right
type and providing the other arguments correctly.

KeyError
You are trying to access an element of a dictionary using a key value
that the dictionary does not contain.

AttributeError
You are trying to access an attribute or method that does not exist.

Appendix A: Debugging 421

IndexError

The index you are using to access a list, string, or tuple is greater

than its length minus one. Immediately before the site of the error, add
aprint statement to display the value of the index and the length of
the sequence. Is the sequence the right size? Is the index the right
value?

A.10. | added so many print statements | get inundated
with output.

One of the problems with using print statements for debugging is that you can end up buried in
output. There are two ways to proceed: simplify the output or simplify the program.

To simplify the output, you can remove or comment out print statements that aren’t helping, or
combine them, or format the output so it is easier to understand.

To simplify the program, there are several things you can do. First, scale down the problem the
program is working on. For example, if you are sorting a sequence, sort a small sequence. If the
program takes input from the user, give it the simplest input that causes the problem.

Second, clean up the program. Remove dead code and reorganize the program to make it as easy
to read as possible. For example, if you suspect that the problem is in a deeply nested part of the
program, try rewriting that part with simpler structure. If you suspect a large function, try splitting
it into smaller functions and testing them separately.

Often the process of finding the minimal test case leads you to the bug. If you find that a program
works in one situation but not in another, that gives you a clue about what is going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make a change that you
think doesn’t affect the program, and it does, that can tip you off.

You can also wrap your debugging print statements in some condition, so that you suppress much
of the output. For example, if you are trying to find an element using a binary search, and it is
not working, you might code up a debugging print statement inside a conditional: if the range of
candidate elements is less that 6, then print debugging information, otherwise don’t print.

Similarly, breakpoints can be made conditional: you can set a breakpoint on a statement, then edit
the breakpoint to say “only break if this expression becomes true”.

A.11. Semantic errors

In some ways, semantic errors are the hardest to debug, because the compiler and the runtime system
provide no information about what is wrong. Only you know what the program is supposed to do,
and only you know that it isn’t doing it.

Appendix A: Debugging 422

The first step is to make a connection between the program text and the behavior you are seeing.
You need a hypothesis about what the program is actually doing. One of the things that makes that
hard is that computers run so fast.

You will often wish that you could slow the program down to human speed, and with some
debuggers you can. But the time it takes to insert a few well-placed print statements is often short
compared to setting up the debugger, inserting and removing breakpoints, and walking the program
to where the error is occurring.

A.12. My program doesn’t work.

You should ask yourself these questions:
1. Is there something the program was supposed to do but which doesn’t

seem to be happening? Find the section of the code that performs
that function and make sure it is executing when you think it
should.

2. Is something happening that shouldn’t? Find code in your program

that performs that function and see if it is executing when it
shouldn’t.
3. Is a section of code producing an effect that is not what you

expected? Make sure that you understand the code in question,
especially if it involves invocations to functions or methods in

other Python modules. Read the documentation for the functions you
invoke. Try them out by writing simple test cases and checking the
results.

In order to program, you need to have a mental model of how programs work. If you write a program
that doesn’t do what you expect, very often the problem is not in the program; it’s in your mental
model.

The best way to correct your mental model is to break the program into its components (usually
the functions and methods) and test each component independently. Once you find the discrepancy
between your model and reality, you can solve the problem.

Of course, you should be building and testing components as you develop the program. If you
encounter a problem, there should be only a small amount of new code that is not known to be
correct.

Appendix A: Debugging 423

A.13. I've got a big hairy expression and it doesn’t do
what | expect.

Writing complex expressions is fine as long as they are readable, but they can be hard to debug. It is
often a good idea to break a complex expression into a series of assignments to temporary variables.

For example:
self.hands[i].add_card(self.hands[self.find_neighbor(i)].pop_card())
This can be rewritten as:

neighbor = self.find_neighbor (i)
picked_card = self.hands[neighbor] .pop_card()
self.hands[i].add_card(picked_card)

The explicit version is easier to read because the variable names provide additional documentation,
and it is easier to debug because you can check the types of the intermediate variables and display
or inspect their values.

Another problem that can occur with big expressions is that the order of evaluation may not be what
you expect. For example, if you are translating the expression x/2pi into Python, you might write:

y = x / 2 * math.pi

That is not correct because multiplication and division have the same precedence and are evaluated
from left to right. So this expression computes (x/2)pi.

A good way to debug expressions is to add parentheses to make the order of evaluation explicit:
y = x / (2 * math.pi)

Whenever you are not sure of the order of evaluation, use parentheses. Not only will the program
be correct (in the sense of doing what you intended), it will also be more readable for other people
who haven’t memorized the rules of precedence.

A.14. I've got a function or method that doesn’t return
what | expect.

If you have a return statement with a complex expression, you don’t have a chance to print the
return value before returning. Again, you can use a temporary variable. For example, instead of:

Appendix A: Debugging 424
return self.hands[i].remove_matches()
you could write:

count = self.hands[i].remove_matches()

return count

Now you have the opportunity to display or inspect the value of count
before returning.

A.15. I'm really, really stuck and | need help.

First, try getting away from the computer for a few minutes. Computers emit waves that affect the
brain, causing these effects:

1. Frustration and/or rage.
2. Superstitious beliefs (the computer hates me) and magical thinking

(the program only works when I wear my hat backward).
3. Random-walk programming (the attempt to program by writing every

possible program and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for a walk. When you are
calm, think about the program. What is it doing? What are some possible causes of that behavior?
When was the last time you had a working program, and what did you do next?

Sometimes it just takes time to find a bug. We often find bugs when we are away from the computer
and let our minds wander. Some of the best places to find bugs are trains, showers, and in bed, just
before you fall asleep.

A.16. No, | really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you work on a program
so long that you can’t see the error. A fresh pair of eyes is just the thing.

Before you bring someone else in, make sure you have exhausted the techniques described here.
Your program should be as simple as possible, and you should be working on the smallest input that
causes the error. You should have print statements in the appropriate places (and the output they
produce should be comprehensible). You should understand the problem well enough to describe it
concisely.

When you bring someone in to help, be sure to give them the information they need:

Appendix A: Debugging 425

1. If there is an error message, what is it and what part of the

program does it indicate?
2. What was the last thing you did before this error occurred? What

were the last lines of code that you wrote, or what is the new test
case that fails?
3. What have you tried so far, and what have you learned?

Good instructors and helpers will also do something that should not offend you: they won’t believe
when you tell them “I’m sure all the input routines are working just fine, and that I've set up the data
correctly!”. They will want to validate and check things for themselves. After all, your program has
a bug. Your understanding and inspection of the code have not found it yet. So you should expect
to have your assumptions challenged. And as you gain skills and help others, you’ll need to do the
same for them.

When you find the bug, take a second to think about what you could have done to find it faster. Next
time you see something similar, you will be able to find the bug more quickly.

Remember, the goal is not just to make the program work. The goal is to learn how to make the
program work.

Appendix B: An odds-and-ends
Workbook

This workbook / cookbook of recipes is still very much under construction.

B.1. The Five Strands of Proficiency

This was an important study commissioned by the President in the USA. It looked at what was
needed for students to become proficient in maths.

But it is also an amazingly accurate fit for what we need for proficiency in Computer Science, or
even for proficiency in playing Jazz!

Conceptual
Understanding

Strategic | Preductive
Cnmpetence Disposition

/ Procedural
" Fluency

— o ™

,.-
I' E /

Adaptive
Haasnnmg

1. Procedural Fluency: Learn the syntax. Learn to type. Learn your

way around your tools. Learn and practice your scales. Learn to
rearrange formulae.

© 00 N O O b W N =

=N
N O

Appendix B: An odds-and-ends Workbook 427

2. Conceptual Understanding: Understand why the bits fit together
like they do.

3. Strategic Competence: Can you see what to do next? Can you

formulate this word problem into your notation? Can you take the
music where you want it to go?

4. Adaptive Reasoning: Can you see how to change what you’ve

learned for this new problem?

5. A Productive Disposition: We need that Can Do! attitude!

1. You habitually think it is worthwhile studying this stuff.

2. You are diligent and disciplined enough to grind through the
tough stuff, and to put in your practice hours.

3. You develop a sense of efficacy — that you can make things
happen!

Check out http://mason.gmu.edu/~jsuh4/teaching/strands.htm, or Kilpatrick’s book at
http://www.nap.edu/openbook.php?isbn=0309069955

B.2. Sending Email

Sometimes it is fun to do powerful things with Python — remember that part of the “productive
disposition” we saw under the five threads of proficiency included efficacy — the sense of being able
to accomplish something useful. Here is a Python example of how you can send email to someone.

import smtplib, email.mime.text

me = " joe@my.org.com" # Put your own email here
fred = "fred@his.org.com" # And fred's email address here
your_mail_server = "mail.my.org.com" # Ask your system administrator

Create a text message containing the body of the email.
You could read this from a file, of course.

msg = email .mime.text MIMEText("""Hey Fred,

I'm having a party, please come at 8pm.
Bring a plate of snacks and your own drinks.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© 00 N O O b W N =

Appendix B: An odds-and-ends Workbook 428

\Joeﬂllll)
msg["From"] = me # Add headers to the message object
msg["To"] = fred

msg["Subject"] = "Party on Saturday 23rd"

Create a connection to your mail server

svr = smtplib.SMTP(your_mail_server)

response = svr.sendmail(me, fred, msg.as_string()) # Send message
if response != {}:

"

print("Sending failed for ", response)
else:

print("Message sent.")

svr.quit() # Close the connection

In the context of the course, notice how we use the two objects in this program: we create a message
object on line 9, and set some attributes at lines 16-18. We then create a connection object at line 21,
and ask it to send our message.

B.3. Write your own Web Server

Python is gaining in popularity as a tool for writing web applications. Although one will probably
use Python to process requests behind a web server like Apache, there are powerful libraries which
allow you to write your own stand-alone web server in a couple of lines. This simpler approach
means that you can have a test web server running on your own desktop machine in a couple of
minutes, without having to install any extra software.

In this cookbook example we use the wsgi (“wizz-gee”) protocol: a modern way of connecting web
servers to code that runs to provide the services. See http://en.wikipedia.org/wiki/Web_Server_-
Gateway_Interface for more on wsgi.

from codecs import latin_1_encode

from wsgiref.simple_server import make_server

def my_handler(environ, start_response):
path_info = environ.get("PATH_INFO", None)
query_string = environ.get("QUERY_STRING", None)
response_body = "You asked for {0} with query {1}".format(
path_info, query_string)
response_headers = [("Content-Type", "text/plain"),

10
11
12
13
14
15
16

© 00 N O O b W N =

T = = =
0 N O O b W N =~ O

Appendix B: An odds-and-ends Workbook 429

("Content-Length", str(len(response_body)))]
start_response("200 OK", response_headers)
response = latin_1_encode(response_body)[0]
return [response]

httpd = make_server("127.0.0.1", 8000, my_handler)

httpd.serve_forever() # Start the server listening for requests

When you run this, your machine will listen on port 8000 for requests. (You may have to tell your
firewall software to be kind to your new application!)

In a web browser, navigate to http://127.0.0.1:8000/catalogue?category=guitars. Your browser should
get the response

You asked for /catalogue with query category=guitars

Your web server will keep running until you interrupt it (Ctrl+F2 if you are using PyScripter).

The important lines 15 and 16 create a web server on the local machine, listening at port 8000. Each
incoming html request causes the server to call my_handler which processes the request and returns
the appropriate response.

We modify the above example below: my_handler now interrogates the path_info, and calls
specialist functions to deal with each different kind of incoming request. (We say that my_handler
dispatches the request to the appropriate function.) We can easily add other more request cases:

import time

def my_handler(environ, start_response):
path_info = environ.get("PATH_INFO", None)
if path_info == "/gettime":
response_body = gettime(environ, start_response)

elif path_info == "/classlist":
response_body = classlist(environ, start_response)
else:

response_body =
start_response("404 Not Found", [("Content-Type", "text/plain")])

response = latin_1_encode(response_body)[0]

return [response]

def gettime(env, resp):
html_template = """<html>
<body bgcolor='lightblue'>

19
20
21
22
23
24
25
26
27
28
29
30

Appendix B: An odds-and-ends Workbook 430

<h2>The time on the server is {0}</h2>
<body>
</html>
response_body = html_template.format(time.ctime())
response_headers = [("Content-Type", "text/html"),

("Content-Length", str(len(response_body)))]

resp("200 OK", response_headers)
return response_body

def classlist(env, resp):
return # Will be written in the next section!

Notice how gettime returns an (admittedly simple) html document which is built on the fly by using
format to substitute content into a predefined template.

B.4. Using a Database

Python has a library for using the popular and lightweight sqlite database. Learn more about this
self-contained, embeddable, zero-configuration SQL database engine at http://www.sqlite.org.

Firstly, we have a script that creates a new database, creates a table, and stores some rows of test
data into the table: (Copy and paste this code into your Python system.)

We get this output:

Database table StudentSubjects has been created.
StudentSubjects table now has 18 rows of data.

Our next recipe adds to our web browser from the previous section. We'll allow a query like
classlist?subject=CompSci&year=2012 and show how our server can extract the arguments from
the query string, query the database, and send the rows back to the browser as a formatted table
within an html page. We’ll start with two new imports to get access to sqlite3 and cgi, a library
which helps us parse forms and query strings that are sent to the server:

import sqlite3
import cgi

Now we replace the stub function classlist with a handler that can do what we need:

Appendix B: An odds-and-ends Workbook 431

classlistTemplate = """<html>
<body bgcolor="'lightgreen'>
<h2>Students taking {0} during {1}:</h2>
<table border=3 cellspacing=2 cellpadding=2>
{2}
</table>
<body>
</html>

O© 00 I O O b W N =

W W W W W W N DN N DD DD DN DNDNDNDN - s
O b W N » © © 00 J O O b W N » © © 00 N O O b W N =~ O

def classlist(env, resp):

Parse the field value from the query string (or from a submitted form)
In a real server you'd want to check thay they were present!
the_fields = cgi.FieldStorage(environ = env)

subj = the_fields["subject"].value

year = the_fields["year"].value
Attach to the database, build a query, fetch the rows.
connection = sqlite3.connect("c:\studentRecords.db")
cursor = connection.cursor()
cursor.execute("SELECT * FROM StudentSubjects WHERE subject=? AND year=?",
(subj, year))
result = cursor. fetchall()
Build the html rows for the table
table_rows = ""
for (sn, yr, subj) in result:
table_rows += " <tr><td> {0} <td>{1}<td>{2}\n". format(sn, yr, subj)

Now plug the headings and data into the template, and complete the response

response_body = classlistTemplate.format(subj, year, table_rows)

response_headers = [("Content-Type", "text/html"),
("Content-Length", str(len(response_body)))]

resp("200 OK", response_headers)

return response_body

When we run this and navigate to http://127.0.0.1:8000/classlist?subject=CompSci&year=2012 with
a browser, we’ll get output like this:

Appendix B: An odds-and-ends Workbook 432

Firefox ™

] http://127.0.0.1:80...t=CompSciayear =2012.

{1 | 127.0.0.1:3000/dasslist?subject=CompScifyear=2012 77 v C

It is unlikely that we would write our own web server from scratch. But the beauty of this approach
is that it creates a great test environment for working with server-side applications that use the wsgi
protocols. Once our code is ready, we can deploy it behind a web server like Apache which can
interact with our handlers using wsgi.

Appendix C: Configuring Ubuntu for
Python Development

Note: the following instructions assume that you are connected to the Internet and that you have
both the main and universe package repositories enabled. All unix shell commands are assumed
to be running from your home directory ($HOME). Finally, any command that begins with sudo
assumes that you have administrative rights on your machine. If you do not — please ask your
system administrator about installing the software you need.

What follows are instructions for setting up an Ubuntu 9.10 (Karmic) home environment for use
with this book. I use Ubuntu GNU/Linux for both development and testing of the book, so it is the
only system about which I can personally answer setup and configuration questions.

In the spirit of software freedom and open collaboration, please contact me if you would like to
maintain a similar appendix for your own favorite system. I'd be more than happy to link to it or
put it on the Open Book Project site, provided you agree to answer user feedback concerning it.

Thanks!

Jeffrey Elkner**
Governor’s Career and Technical Academy in Arlington
Arlington, Virginia

C.1.Vim

Vim*® can be used very effectively for Python development, but Ubuntu only comes with the vim-
tiny package installed by default, so it doesn’t support color syntax highlighting or auto-indenting.

To use Vim, do the following:
1. From the unix command prompt, run:

$ sudo apt-get install vim-gnome

2. Create a file in your home directory named .vimrc that contains the following:

syntax enable
filetype indent on
set et

**mailto:jeff@elkner.net
*http://www.vim.org

mailto:jeff@elkner.net
http://www.vim.org/
mailto:jeff@elkner.net
http://www.vim.org/

Appendix C: Configuring Ubuntu for Python Development 434

set sw=4
set smarttab
map <f2> :w]|!python %

When you edit a file with a .py extension, you should now have color syntax highlighting and auto
indenting. Pressing the key should run your program, and bring you back to the editor when the
program completes.

To learn to use vim, run the following command at a unix command prompt:

$ vimtutor

C.2. SHOME environment

The following creates a useful environment in your home directory for adding your own Python
libraries and executable scripts:

1. From the command prompt in your home directory, create bin and lib/python subdirectories by
running the

following commands:

$ mkdir bin lib
$ mkdir lib/python

2. Add the following lines to the bottom of your .bashrc in your home directory:

PYTHONPATH=$HOME/lib/python
EDITOR=vim

export PYTHONPATH EDITOR

This will set your prefered editor to Vim, add your own lib/python subdirectory for your Python
libraries to your Python path, and add your own bin directory as a place to put executable

scripts. You need to logout and log back in before your local bin directory will be in your search
path?.

*Shttp://en.wikipedia.org/wiki/Path_(variable)

http://en.wikipedia.org/wiki/Path_(variable)
http://en.wikipedia.org/wiki/Path_(variable)
http://en.wikipedia.org/wiki/Path_(variable)

Appendix C: Configuring Ubuntu for Python Development 435

C.3. Making a Python script executable and runnable
from anywhere

On unix systems, Python scripts can be made executable using the following process:

1. Add this line as the first line in the script:
#!/usr/bin/env python3

2. At the unix command prompt, type the following to make myscript.py executable:

$ chmod +x myscript.py

3. Move myscript.py into your bin directory, and it will be runnable from anywhere.

Appendix D: Customizing and
Contributing to the Book

Note: the following instructions assume that you are connected to the Internet and that you have
both the main and universe package repositories enabled. All unix shell commands are assumed
to be running from your home directory (SHOME). Finally, any command that begins with sudo
assumes that you have administrative rights on your machine. If you do not — please ask your
system administrator about installing the software you need.

This book is free as in freedom, which means you have the right to modify it to suite your needs,
and to redistribute your modifications so that our whole community can benefit.

That freedom lacks meaning, however, if you the tools needed to make a custom version or to
contribute corrections and additions are not within your reach. This appendix attempts to put those
tools in your hands.

Thanks!

Jeffrey Elkner?’
Governor’s Career and Technical Academy in Arlington
Arlington, Virginia

D.1. Getting the Source

This book is marked up?® in ReStructuredText* using a document generation system called Sphinx*°.

The source code is located at https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-
rle.

The easiest way to get the source code on an Ubuntu computer is:

1. run sudo apt-get install bzr on your system to install

bzr3'.

2. run bzr branch lp:thinkcspy.

The last command above will download the book source from Launchpad into a directory named
thinkespy which contains the Sphinx source and configuration information needed to build the
book.

*"mailto:jeff@elkner.net
*http://en.wikipedia.org/wiki/Markup_language
*http://en.wikipedia.org/wiki/ReStructuredText
*http://en.wikipedia.org/wiki/Sphinx_%28documentation_generator?%29
*'http://en.wikipedia.org/wiki/Bazaar_%28software%29

mailto:jeff@elkner.net
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/ReStructuredText
http://en.wikipedia.org/wiki/Sphinx_(documentation_generator)
http://en.wikipedia.org/wiki/Bazaar_(software)
mailto:jeff@elkner.net
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/ReStructuredText
http://en.wikipedia.org/wiki/Sphinx_(documentation_generator)
http://en.wikipedia.org/wiki/Bazaar_(software)

Appendix D: Customizing and Contributing to the Book 437

D.2. Making the HTML Version

To generate the html version of the book:
1. run sudo apt-get install python-sphinx to install the Sphinx

documentation system.
2.cd thinkespy - change into the thinkespy directory containing

the book source.
3. make html.

The last command will run sphinx and create a directory named build containing the html version
of the text.

Note: Sphinx supports building other output types as well, such as PDF*?. This requires that LaTeX>’
be present on your system. Since I only personally use the html version, I will not attempt to
document that process here.

*?http://en.wikipedia.org/wiki/PDF
*http://en.wikipedia.org/wiki/LaTeX

http://en.wikipedia.org/wiki/PDF
http://en.wikipedia.org/wiki/LaTeX
http://en.wikipedia.org/wiki/PDF
http://en.wikipedia.org/wiki/LaTeX

Appendix E: Some Tips, Tricks, and
Common Errors

These are small summaries of ideas, tips, and commonly seen errors that might be helpful to those
beginning Python.

E.1. Functions

Functions help us with our mental chunking: they allow us to group together statements for a high-
level purpose, e.g. a function to sort a list of items, a function to make the turtle draw a spiral, or a
function to compute the mean and standard deviation of some measurements.

There are two kinds of functions: fruitful, or value-returning functions, which calculate and return
a value, and we use them because we’re primarily interested in the value they’ll return. Void (non-
fruitful) functions are used because they perform actions that we want done — e.g. make a turtle
draw a rectangle, or print the first thousand prime numbers. They always return None — a special
dummy value.

Tip: None is not a string

Values like None, True and False are not strings: they are special values in Python, and are in the list
of keywords we gave in chapter 2 (Variables, expressions, and statements). Keywords are special in
the language: they are part of the syntax. So we cannot create our own variable or function with a
name True — we'll get a syntax error. (Built-in functions are not privileged like keywords: we can
define our own variable or function called 1en, but we’d be silly to do so!)

Along with the fruitful/void families of functions, there are two flavors of the return statement
in Python: one that returns a useful value, and the other that returns nothing, or None. And if we
get to the end of any function and we have not explicitly executed any return statement, Python
automatically returns the value None.

Tip: Understand what the function needs to return

Perhaps nothing — some functions exists purely to perform actions rather than to calculate and
return a result. But if the function should return a value, make sure all execution paths do return the
value.

To make functions more useful, they are given parameters. So a function to make a turtle draw a
square might have two parameters — one for the turtle that needs to do the drawing, and another
for the size of the square. See the first example in Chapter 4 (Functions) — that function can be used

=~ O U s W N

O O W N

Appendix E: Some Tips, Tricks, and Common Errors 439

with any turtle, and for any size square. So it is much more general than a function that always uses
a specific turtle, say tess to draw a square of a specific size, say 30.

Tip: Use parameters to generalize functions

Understand which parts of the function will be hard-coded and unchangeable, and which parts
should become parameters so that they can be customized by the caller of the function.

Tip: Try to relate Python functions to ideas we already know

In math, we’re familiar with functions like f(x) = 3x + 5. We already understand that when we
call the function £(3) we make some association between the parameter x and the argument 3. Try
to draw parallels to argument passing in Python.

Quiz: Is the function f(z) = 3z + 5 the same as function f above?
E.2. Problems with logic and flow of control

We often want to know if some condition holds for any item in a list, e.g. “does the list have any
odd numbers?” This is a common mistake:

def any_odd(xs): # Buggy version
""" Return True if there is an odd number in xs, a list of integers. """
for v in xs:
if vz 2==1:
return True
else:

return False

Can we spot two problems here? As soon as we execute a return, we’ll leave the function. So the
logic of saying “If I find an odd number I can return True” is fine. However, we cannot return False
after only looking at one item — we can only return False if we’ve been through all the items, and
none of them are odd. So line 6 should not be there, and line 7 has to be outside the loop. To find the
second problem above, consider what happens if you call this function with an argument that is an
empty list. Here is a corrected version:

def any_odd(xs):
""" Return True if there is an odd number in xs, a list of integers. """
for v in xs:
ifvz2=="1:
return True

return False

This “eureka”, or “short-circuit” style of returning from a function as soon as we are certain what
the outcome will be was first seen in Section 8.10, in the chapter on strings.

It is preferred over this one, which also works correctly:

o N O O b W N =

Appendix E: Some Tips, Tricks, and Common Errors 440

def any_odd(xs):

""" Return True if there is an odd number in xs, a list of integers. """
count = 0
for v in xs:

ifvz2==1:

count += 1 # Count the odd numbers

if count > O:

return True
else:

return False

The performance disadvantage of this one is that it traverses the whole list, even if it knows the
outcome very early on.

Tip: Think about the return conditions of the function

Do I need to look at all elements in all cases? Can I shortcut and take an early exit? Under what
conditions? When will I have to examine all the items in the list?

The code in lines 7-10 can also be tightened up. The expression count > @ evaluates to a Boolean
value, either True or False. The value can be used directly in the return statement. So we could cut
out that code and simply have the following:

def any_odd(xs):
""" Return True if there is an odd number in xs, a list of integers. """
count = @
for v in xs:
if v 2==1:
count += 1 # Count the odd numbers
return count > 0 # Aha! a programmer who understands that Boolean

expressions are not just used in 1f statements!

Although this code is tighter, it is not as nice as the one that did the short-circuit return as soon as
the first odd number was found.

Tip: Generalize your use of Booleans

Mature programmers won’t write if is_prime(n) == True: when they could say instead if
is_prime(n): Think more generally about Boolean values, not just in the context of if or while
statements. Like arithmetic expressions, they have their own set of operators (and, or, not) and values
(True, False) and can be assigned to variables, put into lists, etc. A good resource for improving
your use of Booleans is http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_-
3/Boolean_Expressions

Exercise time:

- How would we adapt this to make another function which returns

=~ O O b W N =~

Appendix E: Some Tips, Tricks, and Common Errors 441

True if all the numbers are odd? Can you still use a
short-circuit style?
- How would we adapt it to return True if at least three of the

numbers are odd? Short-circuit the traversal when the third odd
number is found — don’t traverse the whole list unless we have to.

E.3. Local variables

Functions are called, or activated, and while they’re busy they create their own stack frame which
holds local variables. A local variable is one that belongs to the current activation. As soon as the
function returns (whether from an explicit return statement or because Python reached the last
statement), the stack frame and its local variables are all destroyed. The important consequence
of this is that a function cannot use its own variables to remember any kind of state between
different activations. It cannot count how many times it has been called, or remember to switch
colors between red and blue UNLESS it makes use of variables that are global. Global variables
will survive even after our function has exited, so they are the correct way to maintain information
between calls.

sz = 2

def h2():
""" Draw the next step of a spiral on each call. """
global sz

tess.turn(42)
tess. forward(sz)
sz += 1

This fragment assumes our turtle is tess. Each time we call h2() it turns, draws, and increases the
global variable sz. Python always assumes that an assignment to a variable (as in line 7) means that
we want a new local variable, unless we’ve provided a global declaration (on line 4). So leaving out
the global declaration means this does not work.

Tip: Local variables do not survive when you exit the function

Use a Python visualizer like the one at http://pythontutor.com/ to build a strong understanding of
function calls, stack frames, local variables, and function returns.

Tip: Assignment in a function creates a local variable

Any assignment to a variable within a function means Python will make a local variable, unless we
override with global.

Appendix E: Some Tips, Tricks, and Common Errors 442

E.4. Event handler functions

Our chapter on event handling showed three different kinds of events that we could handle. They
each have their own subtle points that can trip us up.

- Event handlers are void functions — they don’t return any values.
- They’re automatically called by the Python interpreter in response

to an event, so we don’t get to see the code that calls them.
- A mouse-click event passes two coordinate arguments to its handler,

so when we write this handler we have to provide for two parameters
(usually named x and y). This is how the handler knows where the
mouse click occurred.

- A keypress event handler has to be bound to the key it responds to.

There is a messy extra step when using keypresses: we have to
remember to issue a wn.listen() before our program will receive
any keypresses. But if the user presses the key 10 times, the

handler will be called ten times.

- Using a timer to create a future-dated event only causes one call to

the handler. If we want repeated periodic handler activations, then
from within the handler we call wn.ontimer(....) to set up the
next event.

E.5. String handling

There are only four really important operations on strings, and we’ll be able to do just about anything.
There are many more nice-to-have methods (we’ll call them sugar coating) that can make life easier,
but if we can work with the basic four operations smoothly, we’ll have a great grounding.

- len(str) finds the length of a string.
- str[i] the subscript operation extracts the i’th character of the

string, as a new string.
- str[i:j] the slice operation extracts a substring out of a string.
- str.find(target) returns the index where target occurs within the

string, or -1 if it is not found.

So if we need to know if “snake” occurs as a substring within s, we could write

O O B W N

Appendix E: Some Tips, Tricks, and Common Errors 443

if s.find("snake") >= 0:

if "snake" in s: ... # Also works, nice-to-know sugar coating!

It would be wrong to split the string into words unless we were asked whether the word “snake”
occurred in the string.

Suppose we're asked to read some lines of data and find function definitions, e.g.: def some_-
function_name(x, y):, and we are further asked to isolate and work with the name of the function.
(Let’s say, print it.)

s ="..." # Get the next line from somewhere

def_pos = s.find("def ") # | ook for "def " in the line

if def_pos == 0: # If it occurs at the left margin
op_index = s.find("(") # Find the index of the open parenthesis
fnname = s[4:op_index] # Slice out the function name
print(fnname) # ... and work with it.

One can extend these ideas:
- What if the function def was indented, and didn’t start at column 0?

The code would need a bit of adjustment, and we’d probably want to
be sure that all the characters in front of the def_pos position

were spaces. We would not want to do the wrong thing on data like
this: # I def initely like Python!

- We’ve assumed on line 3 that we will find an open parenthesis. It

may need to be checked that we did!
- We have also assumed that there was exactly one space between the

keyword def and the start of the function name. It will not work
nicely for def f(x)

As we've already mentioned, there are many more “sugar-coated” methods that let us work more
easily with strings. There is an rfind method, like find, that searches from the end of the string
backwards. It is useful if we want to find the last occurrence of something. The lower and upper
methods can do case conversion. And the split method is great for breaking a string into a list of
words, or into a list of lines. We’ve also made extensive use in this book of the format method. In
fact, if we want to practice reading the Python documentation and learning some new methods on
our own, the string methods are an excellent resource.

Exercises:
- Suppose any line of text can contain at most one url that starts

with “http://” and ends at the next space in the line. Write a
fragment of code to extract and print the full url if it is present.

http://

© 00 N1 O O b W N =

= U U
W N s,

15
16
17
18
19
20
21
22
23

Appendix E: Some Tips, Tricks, and Common Errors 444

(Hint: read the documentation for find. It takes some extra
arguments, so you can set a starting point from which it will
search.)

- Suppose a string contains at most one substring “< ... >”.

Write a fragment of code to extract and print the portion of the
string between the angle brackets.

E.6. Looping and lists

Computers are useful because they can repeat computation, accurately and fast. So loops are going
to be a central feature of almost all programs you encounter.

Tip: Don’t create unnecessary lists

Lists are useful if you need to keep data for later computation. But if you don’t need lists, it is
probably better not to generate them.

Here are two functions that both generate ten million random numbers, and return the sum of the
numbers. They both work.

import random

joe = random.Random()

def sumi():

""" Build a list of random numbers, then sum them """
xs = []
for i in range(10000000) :

num = joe.randrange(1000) # Generate one random number

xs.append(num) # Save it in our list

tot = sum(xs)
return tot

def sum2():
" Sum the random numbers as we generate them
tot = 0
for i in range(10000000) :
num = joe.randrange(1000)

e

tot += num

return tot

print(sumi())
print(sum2())

Appendix E: Some Tips, Tricks, and Common Errors 445

What reasons are there for preferring the second version here? (Hint: open a tool like the Performance
Monitor on your computer, and watch the memory usage. How big can you make the list before you
get a fatal memory error in sum1?)

In a similar way, when working with files, we often have an option to read the whole file contents
into a single string, or we can read one line at a time and process each line as we read it. Line-at-a-
time is the more traditional and perhaps safer way to do things — you’ll be able to work comfortably
no matter how large the file is. (And, of course, this mode of processing the files was essential in
the old days when computer memories were much smaller.) But you may find whole-file-at-once is
sometimes more convenient!

	Table of Contents
	Copyright Notice
	Foreword
	Preface
	How and why I came to use Python
	Finding a textbook
	Introducing programming with Python
	Building a community

	Contributor List
	Second Edition
	First Edition

	Chapter 1: The way of the program
	1.1. The Python programming language
	1.2. What is a program?
	1.3. What is debugging?
	1.4. Syntax errors
	1.5. Runtime errors
	1.6. Semantic errors
	1.7. Experimental debugging
	1.8. Formal and natural languages
	1.9. The first program
	1.10. Comments
	1.11. Glossary
	1.12. Exercises

	Chapter 2: Variables, expressions and statements
	2.1. Values and data types
	2.2. Variables
	2.3. Variable names and keywords
	2.4. Statements
	2.5. Evaluating expressions
	2.6. Operators and operands
	2.7. Type converter functions
	2.8. Order of operations
	2.9. Operations on strings
	2.10. Input
	2.11. Composition
	2.12. The modulus operator
	2.13. Glossary
	2.14. Exercises

	Chapter 3: Hello, little turtles!
	3.1. Our first turtle program
	3.2. Instances — a herd of turtles
	3.3. The for loop
	3.4. Flow of Execution of the for loop
	3.5. The loop simplifies our turtle program
	3.6. A few more turtle methods and tricks
	3.7. Glossary
	3.8. Exercises

	Chapter 4: Functions
	4.1. Functions
	4.2. Functions can call other functions
	4.3. Flow of execution
	4.4. Functions that require arguments
	4.5. Functions that return values
	4.6. Variables and parameters are local
	4.7. Turtles Revisited
	4.8. Glossary
	4.9. Exercises

	Chapter 5: Conditionals
	5.1. Boolean values and expressions
	5.2. Logical operators
	5.3. Truth Tables
	5.4. Simplifying Boolean Expressions
	5.5. Conditional execution
	5.6. Omitting the else clause
	5.7. Chained conditionals
	5.8. Nested conditionals
	5.9. The return statement
	5.10. Logical opposites
	5.11. Type conversion
	5.12. A Turtle Bar Chart
	5.13. Glossary
	5.14. Exercises

	Chapter 6: Fruitful functions
	6.1. Return values
	6.2. Program development
	6.3. Debugging with print
	6.4. Composition
	6.5. Boolean functions
	6.6. Programming with style
	6.7. Unit testing
	6.8. Glossary
	6.9. Exercises

	Chapter 7: Iteration
	7.1. Assignment
	7.2. Updating variables
	7.3. The for loop revisited
	7.4. The while statement
	7.5. The Collatz 3n + 1 sequence
	7.6. Tracing a program
	7.7. Counting digits
	7.8. Abbreviated assignment
	7.9. Help and meta-notation
	7.10. Tables
	7.11. Two-dimensional tables
	7.12. Encapsulation and generalization
	7.13. More encapsulation
	7.14. Local variables
	7.15. The break statement
	7.16. Other flavours of loops
	7.17. An example
	7.18. The continue statement
	7.19. More generalization
	7.20. Functions
	7.21. Paired Data
	7.22. Nested Loops for Nested Data
	7.23. Newton’s method for finding square roots
	7.24. Algorithms
	7.25. Glossary
	7.26. Exercises

	Chapter 8: Strings
	8.1. A compound data type
	8.2. Working with strings as single things
	8.3. Working with the parts of a string
	8.4. Length
	8.5. Traversal and the for loop
	8.6. Slices
	8.7. String comparison
	8.8. Strings are immutable
	8.9. The in and not in operators
	8.10. A find function
	8.11. Looping and counting
	8.12. Optional parameters
	8.13. The built-in find method
	8.14. The split method
	8.15. Cleaning up your strings
	8.16. The string format method
	8.17. Summary
	8.18. Glossary
	8.19. Exercises

	Chapter 9: Tuples
	9.1. Tuples are used for grouping data
	9.2. Tuple assignment
	9.3. Tuples as return values
	9.4. Composability of Data Structures
	9.5. Glossary
	9.6. Exercises

	Chapter 10: Event handling
	10.1. Event-driven programming
	10.2. Keypress events
	10.3. Mouse events
	10.4. Automatic events from a timer
	10.5. An example: state machines
	10.6. Glossary
	10.7. Exercises

	Chapter 11: Lists
	11.1. List values
	11.2. Accessing elements
	11.3. List length
	11.4. List membership
	11.5. List operations
	11.6. List slices
	11.7. Lists are mutable
	11.8. List deletion
	11.9. Objects and references
	11.10. Aliasing
	11.11. Cloning lists
	11.12. Lists and for loops
	11.13. List parameters
	11.14. List methods
	11.15. Pure functions and modifiers
	11.16. Functions that produce lists
	11.17. Strings and lists
	11.18. list and range
	11.19. Nested lists
	11.20. Matrices
	11.21. Glossary
	11.22. Exercises

	Chapter 12: Modules
	12.1. Random numbers
	12.2. The time module
	12.3. The math module
	12.4. Creating your own modules
	12.5. Namespaces
	12.6. Scope and lookup rules
	12.7. Attributes and the dot operator
	12.8. Three import statement variants
	12.9. Turn your unit tester into a module
	12.10. Glossary
	12.11. Exercises

	Chapter 13: Files
	13.1. About files
	13.2. Writing our first file
	13.3. Reading a file line-at-a-time
	13.4. Turning a file into a list of lines
	13.5. Reading the whole file at once
	13.6. Working with binary files
	13.7. An example
	13.8. Directories
	13.9. What about fetching something from the web?
	13.10. Glossary
	13.11. Exercises

	Chapter 14: List Algorithms
	14.1. Test-driven development
	14.2. The linear search algorithm
	14.3. A more realistic problem
	14.4. Binary Search
	14.5. Removing adjacent duplicates from a list
	14.6. Merging sorted lists
	14.7. Alice in Wonderland, again!
	14.8. Eight Queens puzzle, part 1
	14.9. Eight Queens puzzle, part 2
	14.10. Glossary
	14.11. Exercises

	Chapter 15: Classes and Objects — the Basics
	15.1. Object-oriented programming
	15.2. User-defined compound data types
	15.3. Attributes
	15.4. Improving our initializer
	15.5. Adding other methods to our class
	15.6. Instances as arguments and parameters
	15.7. Converting an instance to a string
	15.8. Instances as return values
	15.9. A change of perspective
	15.10. Objects can have state
	15.11. Glossary
	15.12. Exercises

	Chapter 16: Classes and Objects — Digging a little deeper
	16.1. Rectangles
	16.2. Objects are mutable
	16.3. Sameness
	16.4. Copying
	16.5. Glossary
	16.6. Exercises

	Chapter 17: PyGame
	17.1. The game loop
	17.2. Displaying images and text
	17.3. Drawing a board for the N queens puzzle
	17.4. Sprites
	17.5. Events
	17.6. A wave of animation
	17.7. Aliens - a case study
	17.8. Reflections
	17.9. Glossary
	17.10. Exercises

	Chapter 18: Recursion
	18.1. Drawing Fractals
	18.2. Recursive data structures
	18.3. Processing recursive number lists
	18.4. Case study: Fibonacci numbers
	18.5. Example with recursive directories and files
	18.6. An animated fractal, using PyGame
	18.7. Glossary
	18.8. Exercises

	Chapter 19: Exceptions
	19.1. Catching exceptions
	19.2. Raising our own exceptions
	19.3. Revisiting an earlier example
	19.4. The finally clause of the try statement
	19.5. Glossary
	19.6. Exercises

	Chapter 20: Dictionaries
	20.1. Dictionary operations
	20.2. Dictionary methods
	20.3. Aliasing and copying
	20.4. Sparse matrices
	20.5. Memoization
	20.6. Counting letters
	20.7. Glossary
	20.8. Exercises

	Chapter 21: A Case Study: Indexing your files
	21.1. The Crawler
	21.2. Saving the dictionary to disk
	21.3. The Query Program
	21.4. Compressing the serialized dictionary
	21.5. Glossary

	Chapter 22: Even more OOP
	22.1. MyTime
	22.2. Pure functions
	22.3. Modifiers
	22.4. Converting increment to a method
	22.5. An ``Aha!'' insight
	22.6. Generalization
	22.7. Another example
	22.8. Operator overloading
	22.9. Polymorphism
	22.10. Glossary
	22.11. Exercises

	Chapter 23: Collections of objects
	23.1. Composition
	23.2. Card objects
	23.3. Class attributes and the __str__ method
	23.4. Comparing cards
	23.5. Decks
	23.6. Printing the deck
	23.7. Shuffling the deck
	23.8. Removing and dealing cards
	23.9. Glossary
	23.10. Exercises

	Chapter 24: Inheritance
	24.1. Inheritance
	24.2. A hand of cards
	24.3. Dealing cards
	24.4. Printing a Hand
	24.5. The CardGame class
	24.6. OldMaidHand class
	24.7. OldMaidGame class
	24.8. Glossary
	24.9. Exercises

	Chapter 25: Linked lists
	25.1. Embedded references
	25.2. The Node class
	25.3. Lists as collections
	25.4. Lists and recursion
	25.5. Infinite lists
	25.6. The fundamental ambiguity theorem
	25.7. Modifying lists
	25.8. Wrappers and helpers
	25.9. The LinkedList class
	25.10. Invariants
	25.11. Glossary
	25.12. Exercises

	Chapter 26: Stacks
	26.1. Abstract data types
	26.2. The Stack ADT
	26.3. Implementing stacks with Python lists
	26.4. Pushing and popping
	26.5. Using a stack to evaluate postfix
	26.6. Parsing
	26.7. Evaluating postfix
	26.8. Clients and providers
	26.9. Glossary
	26.10. Exercises

	Chapter 27: Queues
	27.1. The Queue ADT
	27.2. Linked Queue
	27.3. Performance characteristics
	27.4. Improved Linked Queue
	27.5. Priority queue
	27.6. The Golfer class
	27.7. Glossary
	27.8. Exercises

	Chapter 28: Trees
	28.1. Building trees
	28.2. Traversing trees
	28.3. Expression trees
	28.4. Tree traversal
	28.5. Building an expression tree
	28.6. Handling errors
	28.7. The animal tree
	28.8. Glossary
	28.9. Exercises

	Appendix A: Debugging
	A.1. Syntax errors
	A.2. I can't get my program to run no matter what I do.
	A.3. Runtime errors
	A.4. My program does absolutely nothing.
	A.5. My program hangs.
	A.6. Infinite Loop
	A.7. Infinite Recursion
	A.8. Flow of Execution
	A.9. When I run the program I get an exception.
	A.10. I added so many print statements I get inundated with output.
	A.11. Semantic errors
	A.12. My program doesn't work.
	A.13. I've got a big hairy expression and it doesn't do what I expect.
	A.14. I've got a function or method that doesn't return what I expect.
	A.15. I'm really, really stuck and I need help.
	A.16. No, I really need help.

	Appendix B: An odds-and-ends Workbook
	B.1. The Five Strands of Proficiency
	B.2. Sending Email
	B.3. Write your own Web Server
	B.4. Using a Database

	Appendix C: Configuring Ubuntu for Python Development
	C.1. Vim
	C.2. $HOME environment
	C.3. Making a Python script executable and runnable from anywhere

	Appendix D: Customizing and Contributing to the Book
	D.1. Getting the Source
	D.2. Making the HTML Version

	Appendix E: Some Tips, Tricks, and Common Errors
	E.1. Functions
	E.2. Problems with logic and flow of control
	E.3. Local variables
	E.4. Event handler functions
	E.5. String handling
	E.6. Looping and lists

