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Conferences are held in various locations and usually very complex




Place Cell and Grid Cell
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https://www.nobelprize.org/prizes/medicine/2014/advanced-information/



Remapping
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Klukas, Mirko, et al. "Fragmented Spatial Maps: State Abstraction and Efficient Planning from Surprisal ." bioRxiv (2021).



Where does the remapping happen?

Pred. Horizon

Klukas, Mirko, et al. "Fragmented Spatial Maps: State Abstraction and Efficient Planning from Surprisal ." bioRxiv (2021).
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Overall Framework
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Why Fragmentation and Recall?

* By Fragmentation

= We can divide one big problem into multiple subproblem.

= Since the problem set size is reduced, we can use a local model that is expertized in

each sub set.

* By Recall

= We can use memorized information without forgetting.



Simultaneous Localization and Mapping (SLAM)

https://www.ifp.uni-stuttgart.de/en/research/photogrammetric_computer_vision/SLAM/



Cell Type in the Occupancy Grid
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Frontier: boundary between known and unknown cells
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Fragmentation and Recall in Map Building (FARMap)
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Short-Term Memory (STM)

e Short-Term Memory builds a local predictive map.

* The map is defined as temporally decaying trace of recent sensory observations.
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Confidence and Surprisal

 Confidence at time tis defined as average confidence of visible cells:

e Surprisal is defined as
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Fragmentation

* We calculate running average and standard deviation of surprisal in the local map.

e If z-score for the current surprisal is bigger than a threshold, the fragmentation happens.
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Long-Term Memory (LTM)

e Store —when the fragmentation event happens.

= Local map

= the ratio of the number of frontier and the number of known

cells in the map

Recall — when the agent approaches to the fragmented

location (overlap with another local map)

= Recall corresponding local map.

= Store current local map in LTM.

Recall stored local map.

Short-Term Memory (STM)
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Subgoal

Two sources of subgoal; STM and LTM.
From the current local map, the agent sets frontier-based subgoal.

By using connectivity graph of maps in LTM, the agent decides that which local region is

less explored.



Subgoal from LTM

* Subgoal is defined as fragmentation location between the current local map and less explor

ed local map which is defined as

qi

— arg ma
I g?l Xdz',chG

* If g = ¢ (current local map), stay in the current map

0.w. set subgoal to fragmentation location between the current local map and local map 9

« d; ¢: the distance between the agent and local map

* 4c : (the number of frontiers) / (the number of known (empty + occupied))

» € : hyper-parameter — preference to not stay in the current region
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Procedurally-Generated Environments

e 1500 environments

= 300 maps with 5 different colors and starting locations.

= Depending on the size of environment, we divide into three groups; small, medium, large.

(b) Small (size: 3249)  (c) Medium (size: 13689)  (d) Large (size: 23868)



Observation

* Egocentric restricted field of view (130 degree) with occlusion.

occuluded

e

observation —

agent




grid cell neural activity FARMap Simulation grid cell neural activity

FARMap Fragments where actual Remapping happens

FARMap Simulation
am

-

(a) Carpenter et al. (2015) (b) Derdikman et al. (2009)




Map Coverage (%)

Memory Usage (%)

FARMap achieves better performance with less memory & wall-clock time
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Processor

Memory

Where can we use FarMap?

Radiation-hardened central processor with PowerPC 750 Architecture: a BAE RAD 750

Operates at up to 200 megahertz speed, 10 times the speed in Mars rovers Spirit and
Opportunity's computers

2 gigabytes of flash memory (~8 times as much as Spirit or Opportunity)

256 megabytes of dynamic random access memory

https;//mars.nasa.gov/msl/spacecraft/rover/brains/

Final Call
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FarMap in Robot Operating System (ROS)

Environment

(turtlebot)

Observation

Environment 2

American

Environment 1

Environment 2

AWS Office (Erdogan, 2019)

American (Shen et al., 2021)

Model Coverage (k)  Memory (k) | Coverage (k) Memory (k) | Coverage (k) Memory (k) Coverage (k)  Memory (k)
Frontier | 7.0 (£ 1.4)  20.5 (£ 1.0) | 8.3 (£ 0.6) 32.8 (£ 344) | 38.2 (£ 30.0) 48.1 (£ 20.8) | 138 (£3.1) 11.0(=*2.1)
FARMap | 7.7 (£ 1.0) 20.1 (£ 2.4) | 83 (£0.1) 23.0 (+ 8.6) | 57.0 (£ 4.7)  66.0 (£ 14.3) | 15.8 (£ 4.2) 10.6 (& 3.7)




With Neural SLAM in Habitat Simulation
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Neural SLAM (Chaplot et al., 2020) 0.818 64.795
Neural SLAM w/o global policy + Frontier | 0.733 58.103
Neural SLAM w/o global policy + FARMap | 0.833 66.012

Chaplot, Devendra Singh, et al. "Learning to explore using active neural slam." ICLR. 2020



Summary

We proposed Fragmentation-and-Recall framework for map building (FARMap)
The fracture points match with the actual neuroscience experiments.
FARMap explores a new environment faster with less memory compared to the baseline.

FARMap can be combined with other spatial exploration methods.
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