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Overview

This is the reference for the functions defined in the Stan math library and available
in the Stan programming language.

The Stan project comprises a domain-specific language for probabilistic programming,
a differentiable mathematics and probability library, algorithms for Bayesian posterior
inference and posterior analysis, along with interfaces and analysis tools in all of the
popular data analysis languages.

In addition to this reference manual, there is a user’s guide and a language reference
manual for the Stan language and algorithms. The Stan User’s Guide provides
example models and programming techniques for coding statistical models in Stan.
The Stan Reference Manual specifies the Stan programming language and inference
algorithms.

There is also a separate installation and getting started guide for each of the Stan
interfaces (R, Python, Julia, Stata, MATLAB, Mathematica, and command line).

Interfaces and platforms

Stan runs under Windows, Mac OS X, and Linux.

Stan uses a domain-specific programming language that is portable across data
analysis languages. Stan has interfaces for R, Python, Julia, MATLAB, Mathematica,
Stata, and the command line, as well as an alternative language interface in Scala.
See the web site https://mc-stan.org for interface-specific links and getting started
instructions

Web site

The official resource for all things related to Stan is the web site:

https://mc-stan.org

The web site links to all of the packages comprising Stan for both users and develop-
ers. This is the place to get started with Stan. Find the interface in the language you
want to use and follow the download, installation, and getting started instructions.
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https://mc-stan.org
https://mc-stan.org


GitHub organization

Stan’s source code and much of the developer process is hosted on GitHub. Stan’s
organization is:

https://github.com/stan-dev

Each package has its own repository within the stan-dev organization. The web site
is also hosted and managed through GitHub. This is the place to peruse the source
code, request features, and report bugs. Much of the ongoing design discussion is
hosted on the GitHub Wiki.

Forums

Stan hosts message boards for discussing all things related to Stan.

https://discourse.mc-stan.org

This is the place to ask questions about Stan, including modeling, programming, and
installation.

Licensing

• Computer code: BSD 3-clause license

The core C++ code underlying Stan, including the math library, language, and
inference algorithms, is licensed under the BSD 3-clause licensed as detailed in each
repository and on the web site along with the distribution links.

• Logo: Stan logo usage guidelines

Acknowledgements
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agencies to the participants in the project. For more details of direct funding for the
project, see the web site and project pages of the Stan developers.
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reporting and in many cases fixing bugs in the code and its documentation. We used
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1. Void Functions

Stan does not technically support functions that do not return values. It does support
two types of statements, one printing and one for rejecting outputs.

Although print and reject appear to have the syntax of functions, they are actually
special kinds of statements with slightly different form and behavior than other
functions. First, they are the constructs that allow a variable number of arguments.
Second, they are the the only constructs to accept string literals (e.g., "hello
world") as arguments. Third, they have no effect on the log density function and
operate solely through side effects.

The special keyword void is used for their return type because they behave like
variadic functions with void return type, even though they are special kinds of
statements.

1.1. Print statement
Printing has no effect on the model’s log probability function. Its sole purpose is
the side effect (i.e., an effect not represented in a return value) of arguments being
printed to whatever the standard output stream is connected to (e.g., the terminal
in command-line Stan or the R console in RStan).

void print(T1 x1,..., TN xN)
Print the values denoted by the arguments x1 through xN on the output message
stream. There are no spaces between items in the print, but a line feed (LF; Unicode
U+000A; C++ literal '\n') is inserted at the end of the printed line. The types T1
through TN can be any of Stan’s built-in numerical types or double quoted strings of
ASCII characters.

1.2. Reject statement
The reject statement has the same syntax as the print statement, accepting an
arbitrary number of arguments of any type (including string literals). The effect
of executing a reject statement is to throw an exception internally that terminates
the current iteration with a rejection (the behavior of which will depend on the
algorithmic context in which it occurs).

void reject(T1 x1,..., TN xN)
Reject the current iteration and print the values denoted by the arguments x1 through
xN on the output message stream. There are no spaces between items in the print,

2
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but a line feed (LF; Unicode U+000A; C++ literal '\n') is inserted at the end of
the printed line. The types T1 through TN can be any of Stan’s built-in numerical
types or double quoted strings of ASCII characters.



2. Integer-Valued Basic Functions

This chapter describes Stan’s built-in function that take various types of arguments
and return results of type integer.

2.1. Integer-valued arithmetic operators
Stan’s arithmetic is based on standard double-precision C++ integer and floating-
point arithmetic. If the arguments to an arithmetic operator are both integers, as
in 2 + 2, integer arithmetic is used. If one argument is an integer and the other a
floating-point value, as in 2.0 + 2 and 2 + 2.0, then the integer is promoted to a
floating point value and floating-point arithmetic is used.

Integer arithmetic behaves slightly differently than floating point arithmetic. The
first difference is how overflow is treated. If the sum or product of two integers over-
flows the maximum integer representable, the result is an undesirable wraparound
behavior at the bit level. If the integers were first promoted to real numbers, they
would not overflow a floating-point representation. There are no extra checks in
Stan to flag overflows, so it is up to the user to make sure it does not occur.

Secondly, because the set of integers is not closed under division and there is no
special infinite value for integers, integer division implicitly rounds the result. If both
arguments are positive, the result is rounded down. For example, 1 / 2 evaluates
to 0 and 5 / 3 evaluates to 1.

If one of the integer arguments to division is negative, the latest C++ specification
( C++11), requires rounding toward zero. This would have 1 / 2 and -1 / 2
evaluate to 0, -7 / 2 evaluate to -3, and 7 / 2 evaluate to 3. Before the C++11
specification, the behavior was platform dependent, allowing rounding up or down.
All compilers recent enough to be able to deal with Stan’s templating should follow
the C++11 specification, but it may be worth testing if you are not sure and plan to
use integer division with negative values.

Unlike floating point division, where 1.0 / 0.0 produces the special positive infinite
value, integer division by zero, as in 1 / 0, has undefined behavior in the C++
standard. For example, the clang++ compiler on Mac OS X returns 3764, whereas
the g++ compiler throws an exception and aborts the program with a warning. As
with overflow, it is up to the user to make sure integer divide-by-zero does not occur.

4
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Binary infix operators
Operators are described using the C++ syntax. For instance, the binary operator of
addition, written X + Y, would have the Stan signature int operator+(int,int)
indicating it takes two real arguments and returns a real value. As noted previously,
the value of integer division is platform-dependent when rounding is platform
dependent before C++11; the descriptions below provide the C++11 definition.

int operator+(int x, int y)
The sum of the addends x and y

operator+(x, y) = (x+ y)

int operator-(int x, int y)
The difference between the minuend x and subtrahend y

operator-(x, y) = (x− y)

int operator*(int x, int y)
The product of the factors x and y

operator*(x, y) = (x× y)

int operator/(int x, int y)
The integer quotient of the dividend x and divisor y

operator/(x, y) =
{
bx/yc if x/y ≥ 0
−bfloor(−x/y)c if x/y < 0.

int operator%(int x, int y)
x modulo y, which is the positive remainder after dividing x by y. If both x and y are
non-negative, so is the result; otherwise, the sign of the result is platform dependent.

operator%(x, y) = x mod y = x− y ∗ bx/yc

Unary prefix operators
int operator-(int x)
The negation of the subtrahend x [ operator-(x) = -x

int operator+(int x)
This is a no-op.

operator+(x) = x
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2.2. Absolute functions
R abs(T x)
absolute value of x

int int_step(int x)

int int_step(real x)
Return the step function of x as an integer,

int_step(x) =
{

1 if x > 0
0 if x ≤ 0 or x is NaN

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and
step(NaN) return 1.

See the warning in section step functions about the dangers of step functions applied
to anything other than data.

2.3. Bound functions
int min(int x, int y)
Return the minimum of x and y.

min(x, y) =
{
x if x < y

y otherwise

int max(int x, int y)
Return the maximum of x and y.

max(x, y) =
{
x if x > y

y otherwise

2.4. Size functions
int size(int x)

int size(real x)

Return the size of x which for scalar-valued x is 1



3. Real-Valued Basic Functions

This chapter describes built-in functions that take zero or more real or integer
arguments and return real values.

3.1. Vectorization of real-valued functions
Although listed in this chapter, many of Stan’s built-in functions are vectorized so that
they may be applied to any argument type. The vectorized form of these functions is
not any faster than writing an explicit loop that iterates over the elements applying
the function—it’s just easier to read and write and less error prone.

Unary function vectorization
Many of Stan’s unary functions can be applied to any argument type. For example,
the exponential function, exp, can be applied to real arguments or arrays of real
arguments. Other than for integer arguments, the result type is the same as the
argument type, including dimensionality and size. Integer arguments are first
promoted to real values, but the result will still have the same dimensionality and
size as the argument.

Real and real array arguments

When applied to a simple real value, the result is a real value. When applied to
arrays, vectorized functions like exp() are defined elementwise. For example,

// declare some variables for arguments
real x0;
real x1[5];
real x2[4, 7];
...
// declare some variables for results
real y0;
real y1[5];
real y2[4, 7];
...
// calculate and assign results
y0 = exp(x0);
y1 = exp(x1);
y2 = exp(x2);

7
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When exp is applied to an array, it applies elementwise. For example, the statement
above,

y2 = exp(x2);

produces the same result for y2 as the explicit loop

for (i in 1:4)
for (j in 1:7)
y2[i, j] = exp(x2[i, j]);

Vector and matrix arguments

Vectorized functions also apply elementwise to vectors and matrices. For example,

vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv;
row_vector[7] yrv;
matrix[10, 20] ym;

yv = exp(xv);
yrv = exp(xrv);
ym = exp(xm);

Arrays of vectors and matrices work the same way. For example,

matrix[17, 93] u[12];

matrix[17, 93] z[12];

z = exp(u);

After this has been executed, z[i, j, k] will be equal to exp(u[i, j, k]).

Integer and integer array arguments

Integer arguments are promoted to real values in vectorized unary functions. Thus if
n is of type int, exp(n) is of type real. Arrays work the same way, so that if n2 is a
one dimensional array of integers, then exp(n2) will be a one-dimensional array of
reals with the same number of elements as n2. For example,
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int n1[23];
real z1[23];
z1 = exp(n1);

It would be illegal to try to assign exp(n1) to an array of integers; the return type is
a real array.

Binary function vectorization
Like the unary functions, many of Stan’s binary functions have been vectorized, and
can be applied elementwise to combinations of both scalars or container types.

Scalar and scalar array arguments

When applied to two scalar values, the result is a scalar value. When applied to two
arrays, or combination of a scalar value and an array, vectorized functions like pow()
are defined elementwise. For example,

// declare some variables for arguments
real x00;
real x01;
real x10[5];
real x11[5];
real x20[4, 7];
real x21[4, 7];
...
// declare some variables for results
real y0;
real y1[5];
real y2[4, 7];
...
// calculate and assign results
y0 = pow(x00, x01);
y1 = pow(x10, x11);
y2 = pow(x20, x21);

When pow is applied to two arrays, it applies elementwise. For example, the statement
above,

y2 = pow(x20, x21);

produces the same result for y2 as the explicit loop

for (i in 1:4)
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for (j in 1:7)
y2[i, j] = pow(x20[i, j], x21[i, j]);

Alternatively, if a combination of an array and a scalar are provided, the scalar value
is broadcast to be applied to each value of the array. For example, the following
statement:

y2 = pow(x20, x00);

produces the same result for y2 as the explicit loop:

for (i in 1:4)
for (j in 1:7)
y2[i, j] = pow(x20[i, j], x00);

Vector and matrix arguments

Vectorized binary functions also apply elementwise to vectors and matrices, and to
combinations of these with scalar values. For example,

real x00;
vector[5] xv00;
vector[5] xv01;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv;
row_vector[7] yrv;
matrix[10, 20] ym;

yv = pow(xv00, xv01);
yrv = pow(xrv, x00);
ym = pow(x00, xm);

Arrays of vectors and matrices work the same way. For example,

matrix[17, 93] u[12];

matrix[17, 93] z[12];

z = pow(u, x00);

After this has been executed, z[i, j, k] will be equal to pow(u[i, j, k], x00).
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Input & return types

Vectorised binary functions require that both inputs, unless one is a real, be containers
of the same type and size. For example, the following statements are legal:

vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv = pow(xv, xv)
row_vector[7] yrv = pow(xrv, xrv)
matrix[10, 20] = pow(xm, xm)

But the following statements are not:

vector[5] xv;
vector[7] xv2;
row_vector[5] xrv;

// Cannot mix different types
vector[5] yv = pow(xv, xrv)

// Cannot mix different sizes of the same type
vector[5] yv = pow(xv, xv2)

While the vectorized binary functions generally require the same input types, the
only exception to this is for binary functions that require one input to be an integer
and the other to be a real (e.g., bessel_first_kind). For these functions, one
argument can be a container of any type while the other can be an integer array, as
long as the dimensions of both are the same. For example, the following statements
are legal:

vector[5] xv;
matrix[5, 5] xm;
int xi[5];
int xii[5, 5];

vector[5] yv = bessel_first_kind(xi, xv);
matrix[5, 5] ym = bessel_first_kind(xii, xm);

Whereas these are not:

vector[5] xv;
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matrix[5, 5] xm;
int xi[7];

// Dimensions of containers do not match
vector[5] yv = bessel_first_kind(xi, xv);

// Function requires first argument be an integer type
matrix[5, 5] ym = bessel_first_kind(xm, xm);

3.2. Mathematical constants
Constants are represented as functions with no arguments and must be called as
such. For instance, the mathematical constant π must be written in a Stan program
as pi().

real pi()
π, the ratio of a circle’s circumference to its diameter

real e()
e, the base of the natural logarithm

real sqrt2()
The square root of 2

real log2()
The natural logarithm of 2

real log10()
The natural logarithm of 10

3.3. Special values
real not_a_number()
Not-a-number, a special non-finite real value returned to signal an error

real positive_infinity()
Positive infinity, a special non-finite real value larger than all finite numbers

real negative_infinity()
Negative infinity, a special non-finite real value smaller than all finite numbers

real machine_precision()
The smallest number x such that (x + 1) 6= 1 in floating-point arithmetic on the
current hardware platform
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3.4. Log probability function
The basic purpose of a Stan program is to compute a log probability function
and its derivatives. The log probability function in a Stan model outputs the log
density on the unconstrained scale. A log probability accumulator starts at zero
and is then incremented in various ways by a Stan program. The variables are first
transformed from unconstrained to constrained, and the log Jacobian determinant
added to the log probability accumulator. Then the model block is executed on
the constrained parameters, with each sampling statement (~) and log probability
increment statement (increment_log_prob) adding to the accumulator. At the end
of the model block execution, the value of the log probability accumulator is the log
probability value returned by the Stan program.

Stan provides a special built-in function target() that takes no arguments and
returns the current value of the log probability accumulator.1 This function is
primarily useful for debugging purposes, where for instance, it may be used with
a print statement to display the log probability accumulator at various stages of
execution to see where it becomes ill defined.

real target()
Return the current value of the log probability accumulator.

real get_lp()
Return the current value of the log probability accumulator; deprecated; - use
target() instead.

Both target and the deprecated get_lp act like other functions ending in _lp,
meaning that they may only may only be used in the model block.

3.5. Logical functions
Like C++, BUGS, and R, Stan uses 0 to encode false, and 1 to encode true. Stan
supports the usual boolean comparison operations and boolean operators. These all
have the same syntax and precedence as in C++; for the full list of operators and
precedences, see the reference manual.

Comparison operators
All comparison operators return boolean values, either 0 or 1. Each operator has
two signatures, one for integer comparisons and one for floating-point comparisons.
Comparing an integer and real value is carried out by first promoting the integer
value.

1This function used to be called get_lp(), but that name has been deprecated; using it will print a
warning. The function get_lp() will be removed in a future release.
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int operator<(int x, int y)

int operator<(real x, real y)
Return 1 if x is less than y and 0 otherwise.

operator<(x, y) =
{

1 if x < y

0 otherwise

int operator<=(int x, int y)

int operator<=(real x, real y)
Return 1 if x is less than or equal y and 0 otherwise.

operator<=(x, y) =
{

1 if x ≤ y
0 otherwise

int operator>(int x, int y)

int operator>(real x, real y)
Return 1 if x is greater than y and 0 otherwise.

operator> =
{

1 if x > y

0 otherwise

int operator>=(int x, int y)

int operator>=(real x, real y)
Return 1 if x is greater than or equal to y and 0 otherwise.

operator>= =
{

1 if x ≥ y
0 otherwise

int operator==(int x, int y)
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int operator==(real x, real y)
Return 1 if x is equal to y and 0 otherwise.

operator==(x, y) =
{

1 if x = y

0 otherwise

int operator!=(int x, int y)

int operator!=(real x, real y)
Return 1 if x is not equal to y and 0 otherwise.

operator!=(x, y) =
{

1 if x 6= y

0 otherwise

Boolean operators
Boolean operators return either 0 for false or 1 for true. Inputs may be any real or
integer values, with non-zero values being treated as true and zero values treated as
false. These operators have the usual precedences, with negation (not) binding the
most tightly, conjunction the next and disjunction the weakest; all of the operators
bind more tightly than the comparisons. Thus an expression such as !a && b is
interpreted as (!a) && b, and a < b || c >= d && e != f as (a < b) || (((c
>= d) && (e != f))).

int operator!(int x)

int operator!(real x)
Return 1 if x is zero and 0 otherwise.

operator!(x) =
{

0 if x 6= 0
1 if x = 0

int operator&&(int x, int y)

int operator&&(real x, real y)
Return 1 if x is unequal to 0 and y is unequal to 0.

operator&&(x, y) =
{

1 if x 6= 0 and y 6= 0
0 otherwise
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int operator||(int x, int y)

int operator||(real x, real y)
Return 1 if x is unequal to 0 or y is unequal to 0.

operator||(x, y) =
{

1 if x 6= 0 or y 6= 0
0 otherwise

Boolean operator short circuiting

Like in C++, the boolean operators && and || and are implemented to short circuit
directly to a return value after evaluating the first argument if it is sufficient to
resolve the result. In evaluating a || b, if a evaluates to a value other than zero,
the expression returns the value 1 without evaluating the expression b. Similarly,
evaluating a && b first evaluates a, and if the result is zero, returns 0 without
evaluating b.

Logical functions
The logical functions introduce conditional behavior functionally and are primarily
provided for compatibility with BUGS and JAGS.

real step(real x)
Return 1 if x is positive and 0 otherwise.

step(x) =
{

0 if x < 0
1 otherwise

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and
step(NaN) return 1.

The step function is often used in BUGS to perform conditional operations. For
instance, step(a-b) evaluates to 1 if a is greater than b and evaluates to 0 otherwise.
step is a step-like functions; see the warning in section step functions applied to
expressions dependent on parameters.

int is_inf(real x)
Return 1 if x is infinite (positive or negative) and 0 otherwise.

int is_nan(real x)
Return 1 if x is NaN and 0 otherwise.
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Care must be taken because both of these indicator functions are step-like and
thus can cause discontinuities in gradients when applied to parameters; see section
step-like functions for details.

3.6. Real-valued arithmetic operators
The arithmetic operators are presented using C++ notation. For instance
operator+(x,y) refers to the binary addition operator and operator-(x) to the
unary negation operator. In Stan programs, these are written using the usual infix
and prefix notations as x + y and -x, respectively.

Binary infix operators
real operator+(real x, real y)
Return the sum of x and y.

(x+ y) = operator+(x, y) = x+ y

real operator-(real x, real y)
Return the difference between x and y.

(x− y) = operator-(x, y) = x− y

real operator*(real x, real y)
Return the product of x and y.

(x ∗ y) = operator*(x, y) = xy

real operator/(real x, real y)
Return the quotient of x and y.

(x/y) = operator/(x, y) = x

y

real operatorˆ(real x, real y)
Return x raised to the power of y.

(x∧y) = operator∧(x, y) = xy

Unary prefix operators
real operator-(real x)
Return the negation of the subtrahend x.

operator-(x) = (−x)
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real operator+(real x)
Return the value of x.

operator+(x) = x

3.7. Step-like functions
Warning: These functions can seriously hinder sampling and optimization efficiency for
gradient-based methods (e.g., NUTS, HMC, BFGS) if applied to parameters (including
transformed parameters and local variables in the transformed parameters or model
block). The problem is that they break gradients due to discontinuities coupled with zero
gradients elsewhere. They do not hinder sampling when used in the data, transformed
data, or generated quantities blocks.

Absolute value functions
R fabs(T x)
absolute value of x

real fdim(real x, real y)
Return the positive difference between x and y, which is x - y if x is greater than y
and 0 otherwise; see warning above.

fdim(x, y) =
{
x− y if x ≥ y
0 otherwise

R fdim(T1 x, T2 y)
Vectorized implementation of the fdim function

Bounds functions
real fmin(real x, real y)
Return the minimum of x and y; see warning above.

fmin(x, y) =
{
x if x ≤ y
y otherwise

R fmin(T1 x, T2 y)
Vectorized implementation of the fmin function

real fmax(real x, real y)
Return the maximum of x and y; see warning above.

fmax(x, y) =
{
x if x ≥ y
y otherwise
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R fmax(T1 x, T2 y)
Vectorized implementation of the fmax function

Arithmetic functions
real fmod(real x, real y)
Return the real value remainder after dividing x by y; see warning above.

fmod(x, y) = x−
⌊
x

y

⌋
y

The operator buc is the floor operation; see below.

R fmod(T1 x, T2 y)
Vectorized implementation of the fmod function

Rounding functions
Warning: Rounding functions convert real values to integers. Because the output is
an integer, any gradient information resulting from functions applied to the integer
is not passed to the real value it was derived from. With MCMC sampling using HMC
or NUTS, the MCMC acceptance procedure will correct for any error due to poor
gradient calculations, but the result is likely to be reduced acceptance probabilities
and less efficient sampling.

The rounding functions cannot be used as indices to arrays because they return real
values. Stan may introduce integer-valued versions of these in the future, but as of
now, there is no good workaround.

R floor(T x)
floor of x, which is the largest integer less than or equal to x, converted to a real
value; see warning at start of section step-like functions

R ceil(T x)
ceiling of x, which is the smallest integer greater than or equal to x, converted to a
real value; see warning at start of section step-like functions

R round(T x)
nearest integer to x, converted to a real value; see warning at start of section step-like
functions

R trunc(T x)
integer nearest to but no larger in magnitude than x, converted to a double value;
see warning at start of section step-like functions
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3.8. Power and logarithm functions
R sqrt(T x)
square root of x

R cbrt(T x)
cube root of x

R square(T x)
square of x

R exp(T x)
natural exponential of x

R exp2(T x)
base-2 exponential of x

R log(T x)
natural logarithm of x

R log2(T x)
base-2 logarithm of x

R log10(T x)
base-10 logarithm of x

real pow(real x, real y)
Return x raised to the power of y.

pow(x, y) = xy

R pow(T1 x, T2 y)
Vectorized implementation of the pow function

R inv(T x)
inverse of x

R inv_sqrt(T x)
inverse of the square root of x

R inv_square(T x)
inverse of the square of x
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3.9. Trigonometric functions
real hypot(real x, real y)
Return the length of the hypotenuse of a right triangle with sides of length x and y.

hypot(x, y) =
{√

x2 + y2 if x, y ≥ 0
NaN otherwise

R hypot(T1 x, T2 y)
Vectorized implementation of the hypot function

R cos(T x)
cosine of the angle x (in radians)

R sin(T x)
sine of the angle x (in radians)

R tan(T x)
tangent of the angle x (in radians)

R acos(T x)
principal arc (inverse) cosine (in radians) of x

R asin(T x)
principal arc (inverse) sine (in radians) of x

R atan(T x)
principal arc (inverse) tangent (in radians) of x, with values from −π to π

real atan2(real y, real x)
Return the principal arc (inverse) tangent (in radians) of y divided by x,

atan2(y, x) = arctan
(y
x

)
3.10. Hyperbolic trigonometric functions
R cosh(T x)
hyperbolic cosine of x (in radians)

R sinh(T x)
hyperbolic sine of x (in radians)

R tanh(T x)
hyperbolic tangent of x (in radians)
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R acosh(T x)
inverse hyperbolic cosine (in radians)

R asinh(T x)
inverse hyperbolic cosine (in radians)

R atanh(T x)
inverse hyperbolic tangent (in radians) of x

3.11. Link functions
The following functions are commonly used as link functions in generalized linear
models. The function Φ is also commonly used as a link function (see section
probability-related functions).

R logit(T x)
log odds, or logit, function applied to x

R inv_logit(T x)
logistic sigmoid function applied to x

R inv_cloglog(T x)
inverse of the complementary log-log function applied to x

3.12. Probability-related functions
Normal cumulative distribution functions
The error function erf is related to the standard normal cumulative distribution
function Φ by scaling. See section normal distribution for the general normal
cumulative distribution function (and its complement).

R erf(T x)
error function, also known as the Gauss error function, of x

R erfc(T x)
complementary error function of x

R Phi(T x)
standard normal cumulative distribution function of x

R inv_Phi(T x)
standard normal inverse cumulative distribution function of p, otherwise known as
the quantile function

R Phi_approx(T x)
fast approximation of the unit (may replace Phi for probit regression with maximum
absolute error of 0.00014, see (Bowling et al. 2009) for details)
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Other probability-related functions
real binary_log_loss(int y, real y_hat)
Return the log loss function for for predicting ŷ ∈ [0, 1] for boolean outcome y ∈
{0, 1}.

binary_log_loss(y, ŷ) =
{
− log ŷ if y = 0
− log(1− ŷ) otherwise

R binary_log_loss(T1 x, T2 y)
Vectorized implementation of the binary_log_loss function

real owens_t(real h, real a)
Return the Owen’s T function for the probability of the event X > h and 0 < Y < aX
where X and Y are independent standard normal random variables.

owens_t(h, a) = 1
2π

∫ a

0

exp(− 1
2h

2(1 + x2))
1 + x2 dx

R owens_t(T1 x, T2 y)
Vectorized implementation of the owens_t function

3.13. Combinatorial functions
real beta(real alpha, real beta)
Return the beta function applied to alpha and beta. The beta function, B(α, β),
computes the normalizing constant for the beta distribution, and is defined for α > 0
and β > 0. See section appendix for definition of B(α, β).

R beta(T1 x, T2 y)
Vectorized implementation of the beta function

real inc_beta(real alpha, real beta, real x)
Return the regularized incomplete beta function up to x applied to alpha and beta.
See section appendix for a definition.

real lbeta(real alpha, real beta)
Return the natural logarithm of the beta function applied to alpha and beta. The
beta function, B(α, β), computes the normalizing constant for the beta distribution,
and is defined for α > 0 and β > 0.

lbeta(α, β) = log Γ(a) + log Γ(b)− log Γ(a+ b)

See section appendix for definition of B(α, β).
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R lbeta(T1 x, T2 y)
Vectorized implementation of the lbeta function

R tgamma(T x)
gamma function applied to x. The gamma function is the generalization of the
factorial function to continuous variables, defined so that Γ(n+ 1) = n!. See for a
full definition of Γ(x). The function is defined for positive numbers and non-integral
negative numbers,

R lgamma(T x)
natural logarithm of the gamma function applied to x,

R digamma(T x)
digamma function applied to x. The digamma function is the derivative of the natural
logarithm of the Gamma function. The function is defined for positive numbers and
non-integral negative numbers

R trigamma(T x)
trigamma function applied to x. The trigamma function is the second derivative of
the natural logarithm of the Gamma function

real lmgamma(int n, real x)
Return the natural logarithm of the multivariate gamma function Γn with n dimen-
sions applied to x.

lmgamma(n, x) =
{
n(n−1)

4 log π +
∑n
j=1 log Γ

(
x+ 1−j

2
)

if x 6∈ {. . . ,−3,−2,−1, 0}
error otherwise

R lmgamma(T1 x, T2 y)
Vectorized implementation of the lmgamma function

real gamma_p(real a, real z)
Return the normalized lower incomplete gamma function of a and z defined for
positive a and nonnegative z.

gamma_p(a, z) =
{

1
Γ(a)

∫ z
0 t

a−1e−tdt if a > 0, z ≥ 0
error otherwise

R gamma_p(T1 x, T2 y)
Vectorized implementation of the gamma_p function

real gamma_q(real a, real z)
Return the normalized upper incomplete gamma function of a and z defined for
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positive a and nonnegative z.

gamma_q(a, z) =


1

Γ(a)
∫∞
z
ta−1e−tdt if a > 0, z ≥ 0

error otherwise

R gamma_q(T1 x, T2 y)
Vectorized implementation of the gamma_q function

real binomial_coefficient_log(real x, real y)
Warning: This function is deprecated and should be replaced with lchoose. Return
the natural logarithm of the binomial coefficient of x and y. For non-negative
integer inputs, the binomial coefficient function is written as

(
x
y

)
and pronounced “x

choose y.” This function generalizes to real numbers using the gamma function. For
0 ≤ y ≤ x,

binomial_coefficient_log(x, y) = log Γ(x+ 1)− log Γ(y + 1)− log Γ(x− y + 1).

R binomial_coefficient_log(T1 x, T2 y)
Vectorized implementation of the binomial_coefficient_log function

int choose(int x, int y)
Return the binomial coefficient of x and y. For non-negative integer inputs, the
binomial coefficient function is written as

(
x
y

)
and pronounced “x choose y.” In its

the antilog of the lchoose function but returns an integer rather than a real number
with no non-zero decimal places. For 0 ≤ y ≤ x, the binomial coefficient function
can be defined via the factorial function

choose(x, y) = x!
(y!) (x− y)! .

R choose(T1 x, T2 y)
Vectorized implementation of the choose function

real bessel_first_kind(int v, real x)
Return the Bessel function of the first kind with order v applied to x.

bessel_first_kind(v, x) = Jv(x),

where

Jv(x) =
(

1
2x
)v ∞∑

k=0

(
− 1

4x
2)k

k! Γ(v + k + 1)
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R bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the bessel_first_kind function

real bessel_second_kind(int v, real x)
Return the Bessel function of the second kind with order v applied to x defined for
positive x and v. For x, v > 0,

bessel_second_kind(v, x) =
{
Yv(x) if x > 0
error otherwise

where

Yv(x) = Jv(x) cos(vπ)− J−v(x)
sin(vπ)

R bessel_second_kind(T1 x, T2 y)
Vectorized implementation of the bessel_second_kind function

real modified_bessel_first_kind(int v, real z)
Return the modified Bessel function of the first kind with order v applied to z defined
for all z and integer v.

modified_bessel_first_kind(v, z) = Iv(z)

where

Iv(z) =
(

1
2z
)v ∞∑

k=0

( 1
4z

2)k
k!Γ(v + k + 1)

R modified_bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the modified_bessel_first_kind function

real log_modified_bessel_first_kind(real v, real z)
Return the log of the modified Bessel function of the first kind. v does not have to be
an integer.

R log_modified_bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the log_modified_bessel_first_kind function

real modified_bessel_second_kind(int v, real z)
Return the modified Bessel function of the second kind with order v applied to z
defined for positive z and integer v.

modified_bessel_second_kind(v, z) =
{
Kv(z) if z > 0
error if z ≤ 0
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where

Kv(z) = π

2 ·
I−v(z)− Iv(z)

sin(vπ)

R modified_bessel_second_kind(T1 x, T2 y)
Vectorized implementation of the modified_bessel_second_kind function

real falling_factorial(real x, real n)
Return the falling factorial of x with power n defined for positive x and real n.

falling_factorial(x, n) =
{

(x)n if x > 0
error if x ≤ 0

where

(x)n = Γ(x+ 1)
Γ(x− n+ 1)

R falling_factorial(T1 x, T2 y)
Vectorized implementation of the falling_factorial function

real lchoose(real x, real y)
Return the natural logarithm of the generalized binomial coefficient of x and y. For
non-negative integer inputs, the binomial coefficient function is written as

(
x
y

)
and

pronounced “x choose y.” This function generalizes to real numbers using the gamma
function. For 0 ≤ y ≤ x,

binomial_coefficient_log(x, y) = log Γ(x+ 1)− log Γ(y + 1)− log Γ(x− y + 1).

real log_falling_factorial(real x, real n)
Return the log of the falling factorial of x with power n defined for positive x and
real n.

log_falling_factorial(x, n) =
{

log(x)n if x > 0
error if x ≤ 0

real rising_factorial(real x, int n)
Return the rising factorial of x with power n defined for positive x and integer n.

rising_factorial(x, n) =
{
x(n) if x > 0
error if x ≤ 0

where

x(n) = Γ(x+ n)
Γ(x)
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R rising_factorial(T1 x, T2 y)
Vectorized implementation of the rising_factorial function

real log_rising_factorial(real x, real n)
Return the log of the rising factorial of x with power n defined for positive x and real
n.

log_rising_factorial(x, n) =
{

log x(n) if x > 0
error if x ≤ 0

R log_rising_factorial(T1 x, T2 y)
Vectorized implementation of the log_rising_factorial function

3.14. Composed functions
The functions in this section are equivalent in theory to combinations of other func-
tions. In practice, they are implemented to be more efficient and more numerically
stable than defining them directly using more basic Stan functions.

R expm1(T x)
natural exponential of x minus 1

real fma(real x, real y, real z)
Return z plus the result of x multiplied by y.

fma(x, y, z) = (x× y) + z

real multiply_log(real x, real y)
Warning: This function is deprecated and should be replaced with lmultiply.
Return the product of x and the natural logarithm of y.

multiply_log(x, y) =


0 if x = y = 0
x log y if x, y 6= 0
NaN otherwise

R multiply_log(T1 x, T2 y)
Vectorized implementation of the multiply_log function

real ldexp(real x, int y)
Return the product of x and two raised to the y power.

ldexp(x, y) = x2y
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R ldexp(T1 x, T2 y)
Vectorized implementation of the ldexp function

real lmultiply(real x, real y)
Return the product of x and the natural logarithm of y.

lmultiply(x, y) =


0 if x = y = 0
x log y if x, y 6= 0
NaN otherwise

R lmultiply(T1 x, T2 y)
Vectorized implementation of the lmultiply function

R log1p(T x)
natural logarithm of 1 plus x

R log1m(T x)
natural logarithm of 1 minus x

R log1p_exp(T x)
natural logarithm of one plus the natural exponentiation of x

R log1m_exp(T x)
logarithm of one minus the natural exponentiation of x

real log_diff_exp(real x, real y)
Return the natural logarithm of the difference of the natural exponentiation of x and
the natural exponentiation of y.

log_diff_exp(x, y) =

log(exp(x)− exp(y)) if x > y

NaN otherwise

R log_diff_exp(T1 x, T2 y)
Vectorized implementation of the log_diff_exp function

real log_mix(real theta, real lp1, real lp2)
Return the log mixture of the log densities lp1 and lp2 with mixing proportion theta,
defined by

log_mix(θ, λ1, λ2) = log(θ exp(λ1) + (1− θ) exp(λ2))

= log_sum_exp(log(θ) + λ1, log(1− θ) + λ2) .
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real log_sum_exp(real x, real y)
Return the natural logarithm of the sum of the natural exponentiation of x and the
natural exponentiation of y.

log_sum_exp(x, y) = log(exp(x) + exp(y))

R log_inv_logit(T x)
natural logarithm of the inverse logit function of x

R log_inv_logit_diff(T1 x, T2 y)
natural logarithm of the difference of the inverse logit function of x and the inverse
logit function of y

R log1m_inv_logit(T x)
natural logarithm of 1 minus the inverse logit function of x

3.15. Special functions
R lambert_w0(T x)

Implementation of the W0 branch of the Lambert W function, i.e., solution to the
function W0(x) expW0(x) = x

R lambert_wm1(T x)
Implementation of the W−1 branch of the Lambert W function, i.e., solution to the
function W−1(x) expW−1(x) = x



4. Array Operations

4.1. Reductions
The following operations take arrays as input and produce single output values.
The boundary values for size 0 arrays are the unit with respect to the combination
operation (min, max, sum, or product).

Minimum and maximum
real min(real[] x)
The minimum value in x, or +∞ if x is size 0.

int min(int[] x)
The minimum value in x, or error if x is size 0.

real max(real[] x)
The maximum value in x, or −∞ if x is size 0.

int max(int[] x)
The maximum value in x, or error if x is size 0.

Sum, product, and log sum of exp
int sum(int[] x)
The sum of the elements in x, defined for x of size N by

sum(x) =


∑N
n=1 xn ifN > 0

0 ifN = 0

real sum(real[] x)
The sum of the elements in x; see definition above.

real prod(real[] x)
The product of the elements in x, or 1 if x is size 0.

real prod(int[] x)
The product of the elements in x,

product(x) =


∏N
n=1 xn ifN > 0

1 ifN = 0

31
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real log_sum_exp(real[] x)
The natural logarithm of the sum of the exponentials of the elements in x, or −∞ if
the array is empty.

Sample mean, variance, and standard deviation
The sample mean, variance, and standard deviation are calculated in the usual way.
For i.i.d. draws from a distribution of finite mean, the sample mean is an unbiased
estimate of the mean of the distribution. Similarly, for i.i.d. draws from a distribution
of finite variance, the sample variance is an unbiased estimate of the variance.1 The
sample deviation is defined as the square root of the sample deviation, but is not
unbiased.

real mean(real[] x)
The sample mean of the elements in x. For an array x of size N > 0,

mean(x) = x̄ = 1
N

N∑
n=1

xn.

It is an error to the call the mean function with an array of size 0.

real variance(real[] x)
The sample variance of the elements in x. For N > 0,

variance(x) =


1

N−1
∑N
n=1(xn − x̄)2 if N > 1

0 if N = 1

It is an error to call the variance function with an array of size 0.

real sd(real[] x)
The sample standard deviation of elements in x.

sd(x) =


√

variance(x) if N > 1

0 if N = 0

It is an error to call the sd function with an array of size 0.

Euclidean distance and squared distance
real distance(vector x, vector y)
The Euclidean distance between x and y, defined by

distance(x, y) =
√∑N

n=1(xn − yn)2

1Dividing by N rather than (N − 1) produces a maximum likelihood estimate of variance, which is
biased to underestimate variance.
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where N is the size of x and y. It is an error to call distance with arguments of
unequal size.

real distance(vector x, row_vector y)
The Euclidean distance between x and y

real distance(row_vector x, vector y)
The Euclidean distance between x and y

real distance(row_vector x, row_vector y)
The Euclidean distance between x and y

real squared_distance(vector x, vector y)
The squared Euclidean distance between x and y, defined by

squared_distance(x, y) = distance(x, y)2 =
∑N
n=1(xn − yn)2,

where N is the size of x and y. It is an error to call squared_distance with arguments
of unequal size.

real squared_distance(vector x, row_vector y)
The squared Euclidean distance between x and y

real squared_distance(row_vector x, vector y)
The squared Euclidean distance between x and y

real squared_distance(row_vector x, row_vector y)
The Euclidean distance between x and y

Quantile
Produces sample quantiles corresponding to the given probabilities. The smallest
observation corresponds to a probability of 0 and the largest to a probability of 1.

Implements algorithm 7 from Hyndman, R. J. and Fan, Y., Sample quantiles in
Statistical Packages (R’s default quantile function).

real quantile(data real[] x, data real p)
The p-th quantile of x

real[] quantile(data real[] x, data real p[])
An array containing the quantiles of x given by the array of probabilities p

4.2. Array size and dimension function
The size of an array or matrix can be obtained using the dims() function. The
dims() function is defined to take an argument consisting of any variable with up
to 8 array dimensions (and up to 2 additional matrix dimensions) and returns an
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array of integers with the dimensions. For example, if two variables are declared as
follows,

real x[7,8,9];
matrix[8,9] y[7];

then calling dims(x) or dims(y) returns an integer array of size 3 containing the
elements 7, 8, and 9 in that order.

The size() function extracts the number of elements in an array. This is just the
top-level elements, so if the array is declared as

real a[M,N];

the size of a is M.

The function num_elements, on the other hand, measures all of the elements, so
that the array a above has M ×N elements.

The specialized functions rows() and cols() should be used to extract the dimen-
sions of vectors and matrices.

int[] dims(T x)
Return an integer array containing the dimensions of x; the type of the argument T
can be any Stan type with up to 8 array dimensions.

int num_elements(T[] x)
Return the total number of elements in the array x including all elements in contained
arrays, vectors, and matrices. T can be any array type. For example, if x is of type
real[4,3] then num_elements(x) is 12, and if y is declared as matrix[3,4] y[5],
then size(y) evaluates to 60.

int size(T[] x)
Return the number of elements in the array x; the type of the array T can be any type,
but the size is just the size of the top level array, not the total number of elements
contained. For example, if x is of type real[4,3] then size(x) is 4.

4.3. Array broadcasting
The following operations create arrays by repeating elements to fill an array of a
specified size. These operations work for all input types T, including reals, integers,
vectors, row vectors, matrices, or arrays.

T[] rep_array(T x, int n)
Return the n array with every entry assigned to x.
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T[,] rep_array(T x, int m, int n)
Return the m by n array with every entry assigned to x.

T[„] rep_array(T x, int k, int m, int n)
Return the k by m by n array with every entry assigned to x.

For example, rep_array(1.0,5) produces a real array (type real[]) of size 5 with
all values set to 1.0. On the other hand, rep_array(1,5) produces an integer array
(type int[]) of size 5 with all values set to 1. This distinction is important because
it is not possible to assign an integer array to a real array. For example, the following
example contrasts legal with illegal array creation and assignment

real y[5];
int x[5];

x = rep_array(1,5); // ok
y = rep_array(1.0,5); // ok

x = rep_array(1.0,5); // illegal
y = rep_array(1,5); // illegal

x = y; // illegal
y = x; // illegal

If the value being repeated v is a vector (i.e., T is vector), then rep_array(v,27)
is a size 27 array consisting of 27 copies of the vector v.

vector[5] v;
vector[5] a[3];

a = rep_array(v,3); // fill a with copies of v
a[2,4] = 9.0; // v[4], a[1,4], a[2,4] unchanged

If the type T of x is itself an array type, then the result will be an array with one,
two, or three added dimensions, depending on which of the rep_array functions is
called. For instance, consider the following legal code snippet.

real a[5,6];
real b[3,4,5,6];

b = rep_array(a,3,4); // make (3 x 4) copies of a
b[1,1,1,1] = 27.9; // a[1,1] unchanged



36 CHAPTER 4. ARRAY OPERATIONS

After the assignment to b, the value for b[j,k,m,n] is equal to a[m,n] where it is
defined, for j in 1:3, k in 1:4, m in 1:5, and n in 1:6.

4.4. Array concatenation
T append_array(T x, T y)
Return the concatenation of two arrays in the order of the arguments. T must be an
N-dimensional array of any Stan type (with a maximum N of 7). All dimensions but
the first must match.

For example, the following code appends two three dimensional arrays of matrices
together. Note that all dimensions except the first match. Any mismatches will cause
an error to be thrown.

matrix[4, 6] x1[2, 1, 7];
matrix[4, 6] x2[3, 1, 7];
matrix[4, 6] x3[5, 1, 7];

x3 = append_array(x1, x2);

4.5. Sorting functions
Sorting can be used to sort values or the indices of those values in either ascending
or descending order. For example, if v is declared as a real array of size 3, with
values

v = (1,−10.3, 20.987),

then the various sort routines produce

sort_asc(v) = (−10.3, 1, 20.987)

sort_desc(v) = (20.987, 1,−10.3)

sort_indices_asc(v) = (2, 1, 3)

sort_indices_desc(v) = (3, 1, 2)

real[] sort_asc(real[] v)
Sort the elements of v in ascending order

int[] sort_asc(int[] v)
Sort the elements of v in ascending order

real[] sort_desc(real[] v)
Sort the elements of v in descending order
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int[] sort_desc(int[] v)
Sort the elements of v in descending order

int[] sort_indices_asc(real[] v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

int[] sort_indices_asc(int[] v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

int[] sort_indices_desc(real[] v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.

int[] sort_indices_desc(int[] v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.

int rank(real[] v, int s)
Number of components of v less than v[s]

int rank(int[] v, int s)
Number of components of v less than v[s]

4.6. Reversing functions
Stan provides functions to create a new array by reversing the order of elements in
an existing array. For example, if v is declared as a real array of size 3, with values

v = (1, −10.3, 20.987),

then
reverse(v) = (20.987, −10.3, 1).

T[] reverse(T[] v)
Return a new array containing the elements of the argument in reverse order.



5. Matrix Operations

5.1. Integer-valued matrix size functions
int num_elements(vector x)
The total number of elements in the vector x (same as function rows)

int num_elements(row_vector x)
The total number of elements in the vector x (same as function cols)

int num_elements(matrix x)
The total number of elements in the matrix x. For example, if x is a 5 × 3 matrix,
then num_elements(x) is 15

int rows(vector x)
The number of rows in the vector x

int rows(row_vector x)
The number of rows in the row vector x, namely 1

int rows(matrix x)
The number of rows in the matrix x

int cols(vector x)
The number of columns in the vector x, namely 1

int cols(row_vector x)
The number of columns in the row vector x

int cols(matrix x)
The number of columns in the matrix x

int size(vector x)
The size of x, i.e., the number of elements

int size(row_vector x)
The size of x, i.e., the number of elements

int size(matrix x)
The size of the matrix x. For example, if x is a 5× 3 matrix, then size(x) is 15

38
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5.2. Matrix arithmetic operators
Stan supports the basic matrix operations using infix, prefix and postfix operations.
This section lists the operations supported by Stan along with their argument and
result types.

Negation prefix operators
vector operator-(vector x)
The negation of the vector x.

row_vector operator-(row_vector x)
The negation of the row vector x.

matrix operator-(matrix x)
The negation of the matrix x.

Infix matrix operators
vector operator+(vector x, vector y)
The sum of the vectors x and y.

row_vector operator+(row_vector x, row_vector y)
The sum of the row vectors x and y.

matrix operator+(matrix x, matrix y)
The sum of the matrices x and y

vector operator-(vector x, vector y)
The difference between the vectors x and y.

row_vector operator-(row_vector x, row_vector y)
The difference between the row vectors x and y

matrix operator-(matrix x, matrix y)
The difference between the matrices x and y

vector operator*(real x, vector y)
The product of the scalar x and vector y

row_vector operator*(real x, row_vector y)
The product of the scalar x and the row vector y

matrix operator*(real x, matrix y)
The product of the scalar x and the matrix y

vector operator*(vector x, real y)
The product of the scalar y and vector x
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matrix operator*(vector x, row_vector y)
The product of the vector x and row vector y

row_vector operator*(row_vector x, real y)
The product of the scalar y and row vector x

real operator*(row_vector x, vector y)
The product of the row vector x and vector y

row_vector operator*(row_vector x, matrix y)
The product of the row vector x and matrix y

matrix operator*(matrix x, real y)
The product of the scalar y and matrix x

vector operator*(matrix x, vector y)
The product of the matrix x and vector y

matrix operator*(matrix x, matrix y)
The product of the matrices x and y

Broadcast infix operators
vector operator+(vector x, real y)
The result of adding y to every entry in the vector x

vector operator+(real x, vector y)
The result of adding x to every entry in the vector y

row_vector operator+(row_vector x, real y)
The result of adding y to every entry in the row vector x

row_vector operator+(real x, row_vector y)
The result of adding x to every entry in the row vector y

matrix operator+(matrix x, real y)
The result of adding y to every entry in the matrix x

matrix operator+(real x, matrix y)
The result of adding x to every entry in the matrix y

vector operator-(vector x, real y)
The result of subtracting y from every entry in the vector x

vector operator-(real x, vector y)
The result of adding x to every entry in the negation of the vector y
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row_vector operator-(row_vector x, real y)
The result of subtracting y from every entry in the row vector x

row_vector operator-(real x, row_vector y)
The result of adding x to every entry in the negation of the row vector y

matrix operator-(matrix x, real y)
The result of subtracting y from every entry in the matrix x

matrix operator-(real x, matrix y)
The result of adding x to every entry in negation of the matrix y

vector operator/(vector x, real y)
The result of dividing each entry in the vector x by y

row_vector operator/(row_vector x, real y)
The result of dividing each entry in the row vector x by y

matrix operator/(matrix x, real y)
The result of dividing each entry in the matrix x by y

5.3. Transposition operator
Matrix transposition is represented using a postfix operator.

matrix operator'(matrix x)
The transpose of the matrix x, written as x'

row_vector operator'(vector x)
The transpose of the vector x, written as x'

vector operator'(row_vector x)
The transpose of the row vector x, written as x'

5.4. Elementwise functions
Elementwise functions apply a function to each element of a vector or matrix,
returning a result of the same shape as the argument. There are many functions
that are vectorized in addition to the ad hoc cases listed in this section; see section
function vectorization for the general cases.

vector operator.*(vector x, vector y)
The elementwise product of y and x

row_vector operator.*(row_vector x, row_vector y)
The elementwise product of y and x
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matrix operator.*(matrix x, matrix y)
The elementwise product of y and x

vector operator./(vector x, vector y)
The elementwise quotient of y and x

vector operator./(vector x, real y)
The elementwise quotient of y and x

vector operator./(real x, vector y)
The elementwise quotient of y and x

row_vector operator./(row_vector x, row_vector y)
The elementwise quotient of y and x

row_vector operator./(row_vector x, real y)
The elementwise quotient of y and x

row_vector operator./(real x, row_vector y)
The elementwise quotient of y and x

matrix operator./(matrix x, matrix y)
The elementwise quotient of y and x

matrix operator./(matrix x, real y)
The elementwise quotient of y and x

matrix operator./(real x, matrix y)
The elementwise quotient of y and x

vector operator.ˆ(vector x, vector y)
The elementwise power of y and x

vector operator.ˆ(vector x, real y)
The elementwise power of y and x

vector operator.ˆ(real x, vector y)
The elementwise power of y and x

row_vector operator.ˆ(row_vector x, row_vector y)
The elementwise power of y and x

row_vector operator.ˆ(row_vector x, real y)
The elementwise power of y and x

row_vector operator.ˆ(real x, row_vector y)
The elementwise power of y and x
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matrix operator.ˆ(matrix x, matrix y)
The elementwise power of y and x

matrix operator.ˆ(matrix x, real y)
The elementwise power of y and x

matrix operator.ˆ(real x, matrix y)
The elementwise power of y and x

5.5. Dot products and specialized products
real dot_product(vector x, vector y)
The dot product of x and y

real dot_product(vector x, row_vector y)
The dot product of x and y

real dot_product(row_vector x, vector y)
The dot product of x and y

real dot_product(row_vector x, row_vector y)
The dot product of x and y

row_vector columns_dot_product(vector x, vector y)
The dot product of the columns of x and y

row_vector columns_dot_product(row_vector x, row_vector y)
The dot product of the columns of x and y

row_vector columns_dot_product(matrix x, matrix y)
The dot product of the columns of x and y

vector rows_dot_product(vector x, vector y)
The dot product of the rows of x and y

vector rows_dot_product(row_vector x, row_vector y)
The dot product of the rows of x and y

vector rows_dot_product(matrix x, matrix y)
The dot product of the rows of x and y

real dot_self(vector x)
The dot product of the vector x with itself

real dot_self(row_vector x)
The dot product of the row vector x with itself



44 CHAPTER 5. MATRIX OPERATIONS

row_vector columns_dot_self(vector x)
The dot product of the columns of x with themselves

row_vector columns_dot_self(row_vector x)
The dot product of the columns of x with themselves

row_vector columns_dot_self(matrix x)
The dot product of the columns of x with themselves

vector rows_dot_self(vector x)
The dot product of the rows of x with themselves

vector rows_dot_self(row_vector x)
The dot product of the rows of x with themselves

vector rows_dot_self(matrix x)
The dot product of the rows of x with themselves

Specialized products
matrix tcrossprod(matrix x)
The product of x postmultiplied by its own transpose, similar to the tcrossprod(x)
function in R. The result is a symmetric matrix x x>.

matrix crossprod(matrix x)
The product of x premultiplied by its own transpose, similar to the crossprod(x)
function in R. The result is a symmetric matrix x> x.

The following functions all provide shorthand forms for common expressions, which
are also much more efficient.

matrix quad_form(matrix A, matrix B)
The quadratic form, i.e., B' * A * B.

real quad_form(matrix A, vector B)
The quadratic form, i.e., B' * A * B.

matrix quad_form_diag(matrix m, vector v)
The quadratic form using the column vector v as a diagonal matrix, i.e.,
diag_matrix(v) * m * diag_matrix(v).

matrix quad_form_diag(matrix m, row_vector rv)
The quadratic form using the row vector rv as a diagonal matrix, i.e.,
diag_matrix(rv) * m * diag_matrix(rv).

matrix quad_form_sym(matrix A, matrix B)
Similarly to quad_form, gives B' * A * B, but additionally checks if A is symmetric
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and ensures that the result is also symmetric.

real quad_form_sym(matrix A, vector B)
Similarly to quad_form, gives B' * A * B, but additionally checks if A is symmetric
and ensures that the result is also symmetric.

real trace_quad_form(matrix A, matrix B)
The trace of the quadratic form, i.e., trace(B' * A * B).

real trace_gen_quad_form(matrix D,matrix A, matrix B)
The trace of a generalized quadratic form, i.e., trace(D * B' * A * B).

matrix multiply_lower_tri_self_transpose(matrix x)
The product of the lower triangular portion of x (including the diagonal) times its
own transpose; that is, if L is a matrix of the same dimensions as x with L(m,n) equal
to x(m,n) for n ≤ m and L(m,n) equal to 0 if n > m, the result is the symmetric
matrix L L>. This is a specialization of tcrossprod(x) for lower-triangular matrices.
The input matrix does not need to be square.

matrix diag_pre_multiply(vector v, matrix m)
Return the product of the diagonal matrix formed from the vector v and the matrix
m, i.e., diag_matrix(v) * m.

matrix diag_pre_multiply(row_vector rv, matrix m)
Return the product of the diagonal matrix formed from the vector rv and the matrix
m, i.e., diag_matrix(rv) * m.

matrix diag_post_multiply(matrix m, vector v)
Return the product of the matrix m and the diagonal matrix formed from the vector
v, i.e., m * diag_matrix(v).

matrix diag_post_multiply(matrix m, row_vector rv)
Return the product of the matrix m and the diagonal matrix formed from the the row
vector rv, i.e., m * diag_matrix(rv).

5.6. Reductions
Log sum of exponents
real log_sum_exp(vector x)
The natural logarithm of the sum of the exponentials of the elements in x

real log_sum_exp(row_vector x)
The natural logarithm of the sum of the exponentials of the elements in x

real log_sum_exp(matrix x)
The natural logarithm of the sum of the exponentials of the elements in x
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Minimum and maximum
real min(vector x)
The minimum value in x, or +∞ if x is empty

real min(row_vector x)
The minimum value in x, or +∞ if x is empty

real min(matrix x)
The minimum value in x, or +∞ if x is empty

real max(vector x)
The maximum value in x, or −∞ if x is empty

real max(row_vector x)
The maximum value in x, or −∞ if x is empty

real max(matrix x)
The maximum value in x, or −∞ if x is empty

Sums and products
real sum(vector x)
The sum of the values in x, or 0 if x is empty

real sum(row_vector x)
The sum of the values in x, or 0 if x is empty

real sum(matrix x)
The sum of the values in x, or 0 if x is empty

real prod(vector x)
The product of the values in x, or 1 if x is empty

real prod(row_vector x)
The product of the values in x, or 1 if x is empty

real prod(matrix x)
The product of the values in x, or 1 if x is empty

Sample moments
Full definitions are provided for sample moments in section array reductions.

real mean(vector x)
The sample mean of the values in x; see section array reductions for details.

real mean(row_vector x)
The sample mean of the values in x; see section array reductions for details.
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real mean(matrix x)
The sample mean of the values in x; see section array reductions for details.

real variance(vector x)
The sample variance of the values in x; see section array reductions for details.

real variance(row_vector x)
The sample variance of the values in x; see section array reductions for details.

real variance(matrix x)
The sample variance of the values in x; see section array reductions for details.

real sd(vector x)
The sample standard deviation of the values in x; see section array reductions for
details.

real sd(row_vector x)
The sample standard deviation of the values in x; see section array reductions for
details.

real sd(matrix x)
The sample standard deviation of the values in x; see section array reductions for
details.

Quantile
Produces sample quantiles corresponding to the given probabilities. The smallest
observation corresponds to a probability of 0 and the largest to a probability of 1.

Implements algorithm 7 from Hyndman, R. J. and Fan, Y., Sample quantiles in
Statistical Packages (R’s default quantile function).

real quantile(data vector x, data real p)
The p-th quantile of x

real[] quantile(data vector x, data real p[])
An array containing the quantiles of x given by the array of probabilities p

real quantile(data row_vector x, data real p)
The p-th quantile of x

real[] quantile(data row_vector x, data real p[])
An array containing the quantiles of x given by the array of probabilities p

5.7. Broadcast functions
The following broadcast functions allow vectors, row vectors and matrices to be
created by copying a single element into all of their cells. Matrices may also be
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created by stacking copies of row vectors vertically or stacking copies of column
vectors horizontally.

vector rep_vector(real x, int m)
Return the size m (column) vector consisting of copies of x.

row_vector rep_row_vector(real x, int n)
Return the size n row vector consisting of copies of x.

matrix rep_matrix(real x, int m, int n)
Return the m by n matrix consisting of copies of x.

matrix rep_matrix(vector v, int n)
Return the m by n matrix consisting of n copies of the (column) vector v of size m.

matrix rep_matrix(row_vector rv, int m)
Return the m by n matrix consisting of m copies of the row vector rv of size n.

Unlike the situation with array broadcasting (see section array broadcasting), where
there is a distinction between integer and real arguments, the following two state-
ments produce the same result for vector broadcasting; row vector and matrix
broadcasting behave similarly.

vector[3] x;
x = rep_vector(1, 3);
x = rep_vector(1.0, 3);

There are no integer vector or matrix types, so integer values are automatically
promoted.

Symmetrization
matrix symmetrize_from_lower_tri(matrix A)

Construct a symmetric matrix from the lower triangle of A.

5.8. Diagonal matrix functions
matrix add_diag(matrix m, row_vector d)
Add row_vector d to the diagonal of matrix m.

matrix add_diag(matrix m, vector d)
Add vector d to the diagonal of matrix m.

matrix add_diag(matrix m, real d)
Add scalar d to every diagonal element of matrix m.
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vector diagonal(matrix x)
The diagonal of the matrix x

matrix diag_matrix(vector x)
The diagonal matrix with diagonal x

Although the diag_matrix function is available, it is unlikely to ever show up in
an efficient Stan program. For example, rather than converting a diagonal to a full
matrix for use as a covariance matrix,

y ~ multi_normal(mu, diag_matrix(square(sigma)));

it is much more efficient to just use a univariate normal, which produces the same
density,

y ~ normal(mu, sigma);

Rather than writing m * diag_matrix(v) where m is a matrix and v is a vector,
it is much more efficient to write diag_post_multiply(m, v) (and similarly for
pre-multiplication). By the same token, it is better to use quad_form_diag(m, v)
rather than quad_form(m, diag_matrix(v)).

matrix identity_matrix(int k)
Create an identity matrix of size k × k

5.9. Container construction functions
real[] linspaced_array(int n, data real lower, data real upper)
Create a real array of length n of equidistantly-spaced elements between lower and
upper

real[] linspaced_int_array(int n, int lower, int upper)
Create a regularly spaced, increasing integer array of length n between lower and
upper, inclusively. If (upper - lower) / (n - 1) is less than one, repeat each
output (n - 1) / (upper - lower) times. If neither (upper - lower) / (n -
1) or (n - 1) / (upper - lower) are integers, upper is reduced until one of these
is true.

vector linspaced_vector(int n, data real lower, data real upper)
Create an n-dimensional vector of equidistantly-spaced elements between lower and
upper

row_vector linspaced_row_vector(int n, data real lower, data real
upper)
Create an n-dimensional row-vector of equidistantly-spaced elements between lower
and upper
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int[] one_hot_int_array(int n, int k)
Create a one-hot encoded int array of length n with array[k] = 1

real[] one_hot_array(int n, int k)
Create a one-hot encoded real array of length n with array[k] = 1

vector one_hot_vector(int n, int k)
Create an n-dimensional one-hot encoded vector with vector[k] = 1

row_vector one_hot_row_vector(int n, int k)
Create an n-dimensional one-hot encoded row-vector with row_vector[k] = 1

int[] ones_int_array(int n)
Create an int array of length n of all ones

real[] ones_array(int n)
Create a real array of length n of all ones

vector ones_vector(int n)
Create an n-dimensional vector of all ones

row_vector ones_row_vector(int n)
Create an n-dimensional row-vector of all ones

int[] zeros_int_array(int n)
Create an int array of length n of all zeros

real[] zeros_array(int n)
Create a real array of length n of all zeros

vector zeros_vector(int n)
Create an n-dimensional vector of all zeros

row_vector zeros_row_vector(int n)
Create an n-dimensional row-vector of all zeros

vector uniform_simplex(int n)
Create an n-dimensional simplex with elements vector[i] = 1 / n for all i ∈
1, . . . , n

5.10. Slicing and blocking functions
Stan provides several functions for generating slices or blocks or diagonal entries for
matrices.
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Columns and rows
vector col(matrix x, int n)
The n-th column of matrix x

row_vector row(matrix x, int m)
The m-th row of matrix x

The row function is special in that it may be used as an lvalue in an assignment
statement (i.e., something to which a value may be assigned). The row function is
also special in that the indexing notation x[m] is just an alternative way of writing
row(x,m). The col function may not, be used as an lvalue, nor is there an indexing
based shorthand for it.

Block operations
Matrix slicing operations

Block operations may be used to extract a sub-block of a matrix.

matrix block(matrix x, int i, int j, int n_rows, int n_cols)
Return the submatrix of x that starts at row i and column j and extends n_rows rows
and n_cols columns.

The sub-row and sub-column operations may be used to extract a slice of row or
column from a matrix

vector sub_col(matrix x, int i, int j, int n_rows)
Return the sub-column of x that starts at row i and column j and extends n_rows
rows and 1 column.

row_vector sub_row(matrix x, int i, int j, int n_cols)
Return the sub-row of x that starts at row i and column j and extends 1 row and
n_cols columns.

Vector and array slicing operations

The head operation extracts the first n elements of a vector and the tail operation
the last. The segment operation extracts an arbitrary subvector.

vector head(vector v, int n)
Return the vector consisting of the first n elements of v.

row_vector head(row_vector rv, int n)
Return the row vector consisting of the first n elements of rv.

T[] head(T[] sv, int n)
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Return the array consisting of the first n elements of sv; applies to up to three-
dimensional arrays containing any type of elements T.

vector tail(vector v, int n)
Return the vector consisting of the last n elements of v.

row_vector tail(row_vector rv, int n)
Return the row vector consisting of the last n elements of rv.

T[] tail(T[] sv, int n)
Return the array consisting of the last n elements of sv; applies to up to three-
dimensional arrays containing any type of elements T.

vector segment(vector v, int i, int n)
Return the vector consisting of the n elements of v starting at i; i.e., elements i
through through i + n - 1.

row_vector segment(row_vector rv, int i, int n)
Return the row vector consisting of the n elements of rv starting at i; i.e., elements i
through through i + n - 1.

T[] segment(T[] sv, int i, int n)
Return the array consisting of the n elements of sv starting at i; i.e., elements i
through through i + n - 1. Applies to up to three-dimensional arrays containing any
type of elements T.

5.11. Matrix concatenation
Stan’s matrix concatenation operations append_col and append_row are like the
operations cbind and rbind in R.

Horizontal concatenation

matrix append_col(matrix x, matrix y)
Combine matrices x and y by columns. The matrices must have the same number of
rows.

matrix append_col(matrix x, vector y)
Combine matrix x and vector y by columns. The matrix and the vector must have
the same number of rows.

matrix append_col(vector x, matrix y)
Combine vector x and matrix y by columns. The vector and the matrix must have
the same number of rows.
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matrix append_col(vector x, vector y)
Combine vectors x and y by columns. The vectors must have the same number of
rows.

row_vector append_col(row_vector x, row_vector y)
Combine row vectors x and y of any size into another row vector.

row_vector append_col(real x, row_vector y)
Append x to the front of y, returning another row vector.

row_vector append_col(row_vector x, real y)
Append y to the end of x, returning another row vector.

Vertical concatenation

matrix append_row(matrix x, matrix y)
Combine matrices x and y by rows. The matrices must have the same number of
columns.

matrix append_row(matrix x, row_vector y)
Combine matrix x and row vector y by rows. The matrix and the row vector must
have the same number of columns.

matrix append_row(row_vector x, matrix y)
Combine row vector x and matrix y by rows. The row vector and the matrix must
have the same number of columns.

matrix append_row(row_vector x, row_vector y)
Combine row vectors x and y by row. The row vectors must have the same number
of columns.

vector append_row(vector x, vector y)
Concatenate vectors x and y of any size into another vector.

vector append_row(real x, vector y)
Append x to the top of y, returning another vector.

vector append_row(vector x, real y)
Append y to the bottom of x, returning another vector.

5.12. Special matrix functions
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Softmax
The softmax function maps1 y ∈ RK to the K-simplex by

softmax(y) = exp(y)∑K
k=1 exp(yk)

,

where exp(y) is the componentwise exponentiation of y. Softmax is usually calcu-
lated on the log scale,

log softmax(y) = y − log
K∑
k=1

exp(yk)

= y − log_sum_exp(y).

where the vector y minus the scalar log_sum_exp(y) subtracts the scalar from each
component of y.

Stan provides the following functions for softmax and its log.

vector softmax(vector x)
The softmax of x

vector log_softmax(vector x)
The natural logarithm of the softmax of x

Cumulative sums
The cumulative sum of a sequence x1, . . . , xN is the sequence y1, . . . , yN , where

yn =
n∑

m=1
xm.

real[] cumulative_sum(real[] x)
The cumulative sum of x

vector cumulative_sum(vector v)
The cumulative sum of v

row_vector cumulative_sum(row_vector rv)
The cumulative sum of rv

1The softmax function is so called because in the limit as yn →∞ with ym for m 6= n held constant,
the result tends toward the “one-hot” vector θ with θn = 1 and θm = 0 for m 6= n, thus providing a “soft”
version of the maximum function.
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5.13. Covariance functions
Exponentiated quadratic covariance function
The exponentiated quadratic kernel defines the covariance between f(xi) and f(xj)
where f : RD 7→ R as a function of the squared Euclidian distance between xi ∈ RD
and xj ∈ RD:

cov(f(xi), f(xj)) = k(xi, xj) = α2 exp
(
− 1

2ρ2

D∑
d=1

(xi,d − xj,d)2

)

with α and ρ constrained to be positive.

There are two variants of the exponentiated quadratic covariance function in Stan.
One builds a covariance matrix, K ∈ RN×N for x1, . . . , xN , where Ki,j = k(xi, xj),
which is necessarily symmetric and positive semidefinite by construction. There is
a second variant of the exponentiated quadratic covariance function that builds a
K ∈ RN×M covariance matrix for x1, . . . , xN and x′1, . . . , x

′
M , where xi ∈ RD and

x′i ∈ RD and Ki,j = k(xi, x′j).

matrix cov_exp_quad(row_vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

matrix cov_exp_quad(vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

matrix cov_exp_quad(real[] x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

matrix cov_exp_quad(row_vectors x1, row_vectors x2, real alpha, real
rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

matrix cov_exp_quad(vectors x1, vectors x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

matrix cov_exp_quad(real[] x1, real[] x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

5.14. Linear algebra functions and solvers
Matrix division operators and functions
In general, it is much more efficient and also more arithmetically stable to use
matrix division than to multiply by an inverse. There are specialized forms for lower
triangular matrices and for symmetric, positive-definite matrices.
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Matrix division operators

row_vector operator/(row_vector b, matrix A)
The right division of b by A; equivalently b * inverse(A)

matrix operator/(matrix B, matrix A)
The right division of B by A; equivalently B * inverse(A)

vector operator\(matrix A, vector b)
The left division of A by b; equivalently inverse(A) * b

matrix operator\(matrix A, matrix B)
The left division of A by B; equivalently inverse(A) * B

Lower-triangular matrix division functions

There are four division functions which use lower triangular views of a matrix. The
lower triangular view of a matrix tri(A) is used in the definitions and defined by

tri(A)[m,n] =
{

A[m,n] if m ≥ n, and

0 otherwise.

When a lower triangular view of a matrix is used, the elements above the diagonal
are ignored.

vector mdivide_left_tri_low(matrix A, vector b)
The left division of b by a lower-triangular view of A; algebraically equivalent
to the less efficient and stable form inverse(tri(A)) * b, where tri(A) is the
lower-triangular portion of A with the above-diagonal entries set to zero.

matrix mdivide_left_tri_low(matrix A, matrix B)
The left division of B by a triangular view of A; algebraically equivalent to the
less efficient and stable form inverse(tri(A)) * B, where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.

row_vector mdivide_right_tri_low(row_vector b, matrix A)
The right division of b by a triangular view of A; algebraically equivalent to the
less efficient and stable form b * inverse(tri(A)), where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.

matrix mdivide_right_tri_low(matrix B, matrix A)
The right division of B by a triangular view of A; algebraically equivalent to the
less efficient and stable form B * inverse(tri(A)), where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.
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Symmetric positive-definite matrix division functions
There are four division functions which are specialized for efficiency and stability for
symmetric positive-definite matrix dividends. If the matrix dividend argument is not
symmetric and positive definite, these will reject and print warnings.

matrix mdivide_left_spd(matrix A, vector b)
The left division of b by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form inverse(A) * b.

vector mdivide_left_spd(matrix A, matrix B)
The left division of B by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form inverse(A) * B.

row_vector mdivide_right_spd(row_vector b, matrix A)
The right division of b by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form b * inverse(A).

matrix mdivide_right_spd(matrix B, matrix A)
The right division of B by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form B * inverse(A).

Matrix exponential
The exponential of the matrix A is formally defined by the convergent power series:

eA =
∞∑
n=0

An

n!

matrix matrix_exp(matrix A)
The matrix exponential of A

matrix matrix_exp_multiply(matrix A, matrix B)
The multiplication of matrix exponential of A and matrix B; algebraically equivalent
to the less efficient form matrix_exp(A) * B.

matrix scale_matrix_exp_multiply(real t, matrix A, matrix B)
The multiplication of matrix exponential of tA and matrix B; algebraically equivalent
to the less efficient form matrix_exp(t * A) * B.

Matrix power
Returns the nth power of the specific matrix:

Mn = M1 ∗ ... ∗Mn
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matrix matrix_power(matrix A, int B)
Matrix A raised to the power B.

Linear algebra functions
Trace

real trace(matrix A)
The trace of A, or 0 if A is empty; A is not required to be diagonal

Determinants

real determinant(matrix A)
The determinant of A

real log_determinant(matrix A)
The log of the absolute value of the determinant of A

Inverses

It is almost never a good idea to use matrix inverses directly because they are both
inefficient and arithmetically unstable compared to the alternatives. Rather than
inverting a matrix m and post-multiplying by a vector or matrix a, as in inverse(m)
* a, it is better to code this using matrix division, as in m \ a. The pre-multiplication
case is similar, with b * inverse(m) being more efficiently coded as as b / m. There
are also useful special cases for triangular and symmetric, positive-definite matrices
that use more efficient solvers.

Warning: The function inv(m) is the elementwise inverse function, which returns 1
/ m[i, j] for each element.

matrix inverse(matrix A)
Compute the inverse of A

matrix inverse_spd(matrix A)
Compute the inverse of A where A is symmetric, positive definite. This version
is faster and more arithmetically stable when the input is symmetric and positive
definite.

matrix chol2inv(matrix L)
Compute the inverse of the matrix whose cholesky factorization is L. That is, for
A = LLT , return A−1.
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Generalized Inverse

The generalized inverse M+ of a matrix M is a matrix that satisfies MM+M = M .
For an invertible, square matrix M , M+ is equivalent to M−1. The dimensions of
M+ are equivalent to the dimensions of MT . The generalized inverse exists for any
matrix, so the M may be singular or less than full rank.

Even though the generalized inverse exists for any arbitrary matrix, the derivatives
of this function only exist on matrices of locally constant rank (Golub and Pereyra
1973), meaning, the derivatives do not exist if small perturbations make the matrix
change rank. For example, considered the rank of the matrix A as a function of ε:

A =
(

1 + ε 2 1
2 4 2

)
When ε = 0, A is rank 1 because the second row is twice the first (and so there
is only one linearly independent row). If ε 6= 0, the rows are no longer linearly
dependent, and the matrix is rank 2. This matrix does not have locally constant rank
at ε = 0, and so the derivatives do not exist at zero. Because HMC depends on the
derivatives existing, this lack of differentiability creates undefined behavior.

matrix generalized_inverse(matrix A)
The generalized inverse of A

Eigendecomposition

vector eigenvalues_sym(matrix A)
The vector of eigenvalues of a symmetric matrix A in ascending order

matrix eigenvectors_sym(matrix A)
The matrix with the (column) eigenvectors of symmetric matrix A in the same order
as returned by the function eigenvalues_sym

Because multiplying an eigenvector by −1 results in an eigenvector, eigenvectors
returned by a decomposition are only identified up to a sign change. In order to
compare the eigenvectors produced by Stan’s eigendecomposition to others, signs
may need to be normalized in some way, such as by fixing the sign of a component,
or doing comparisons allowing a multiplication by −1.

The condition number of a symmetric matrix is defined to be the ratio of the
largest eigenvalue to the smallest eigenvalue. Large condition numbers lead to
difficulty in numerical algorithms such as computing inverses, and thus known as
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“ill conditioned.” The ratio can even be infinite in the case of singular matrices (i.e.,
those with eigenvalues of 0).

QR decomposition

matrix qr_thin_Q(matrix A)
The orthogonal matrix in the thin QR decomposition of A, which implies that the
resulting matrix has the same dimensions as A

matrix qr_thin_R(matrix A)
The upper triangular matrix in the thin QR decomposition of A, which implies that
the resulting matrix is square with the same number of columns as A

matrix qr_Q(matrix A)
The orthogonal matrix in the fat QR decomposition of A, which implies that the
resulting matrix is square with the same number of rows as A

matrix qr_R(matrix A)
The upper trapezoidal matrix in the fat QR decomposition of A, which implies that
the resulting matrix will be rectangular with the same dimensions as A

The thin QR decomposition is always preferable because it will consume much less
memory when the input matrix is large than will the fat QR decomposition. Both
versions of the decomposition represent the input matrix as

A = QR.

Multiplying a column of an orthogonal matrix by −1 still results in an orthogonal
matrix, and you can multiply the corresponding row of the upper trapezoidal matrix
by −1 without changing the product. Thus, Stan adopts the normalization that
the diagonal elements of the upper trapezoidal matrix are strictly positive and
the columns of the orthogonal matrix are reflected if necessary. Also, these QR
decomposition algorithms do not utilize pivoting and thus may be numerically
unstable on input matrices that have less than full rank.

Cholesky decomposition

Every symmetric, positive-definite matrix (such as a correlation or covariance matrix)
has a Cholesky decomposition. If Σ is a symmetric, positive-definite matrix, its
Cholesky decomposition is the lower-triangular vector L such that

Σ = LL>.
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matrix cholesky_decompose(matrix A)
The lower-triangular Cholesky factor of the symmetric positive-definite matrix A

Singular value decomposition

The matrix A can be decomposed into a diagonal matrix of singular values, D, and
matrices of its left and right singular vectors, U and V,

A = UDV T .

The matrices of singular vectors here are thin. That is for an N by P input A,
M = min(N,P ), U is size N by M and V is size P by M .

vector singular_values(matrix A)
The singular values of A in descending order

vector svd_U(matrix A)
The left-singular vectors of A

vector svd_V(matrix A)
The right-singular vectors of A

5.15. Sort functions
See the sorting functions section for examples of how the functions work.

vector sort_asc(vector v)
Sort the elements of v in ascending order

row_vector sort_asc(row_vector v)
Sort the elements of v in ascending order

vector sort_desc(vector v)
Sort the elements of v in descending order

row_vector sort_desc(row_vector v)
Sort the elements of v in descending order

int[] sort_indices_asc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

int[] sort_indices_asc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.
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int[] sort_indices_desc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.

int[] sort_indices_desc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.

int rank(vector v, int s)
Number of components of v less than v[s]

int rank(row_vector v, int s)
Number of components of v less than v[s]

5.16. Reverse functions
vector reverse(vector v)
Return a new vector containing the elements of the argument in reverse order.

row_vector reverse(row_vector v)
Return a new row vector containing the elements of the argument in reverse order.



6. Sparse Matrix Operations

For sparse matrices, for which many elements are zero, it is more efficient to
use specialized representations to save memory and speed up matrix arithmetic
(including derivative calculations). Given Stan’s implementation, there is substantial
space (memory) savings by using sparse matrices. Because of the ease of optimizing
dense matrix operations, speed improvements only arise at 90% or even greater
sparsity; below that level, dense matrices are faster but use more memory.

Because of this speedup and space savings, it may even be useful to read in a dense
matrix and convert it to a sparse matrix before multiplying it by a vector. This chapter
covers a very specific form of sparsity consisting of a sparse matrix multiplied by a
dense vector.

6.1. Compressed row storage
Sparse matrices are represented in Stan using compressed row storage (CSR). For
example, the matrix

A =


19 27 0 0
0 0 0 0
0 0 0 52
81 0 95 33


is translated into a vector of the non-zero real values, read by row from the matrix
A,

w(A) =
[
19 27 52 81 95 33

]>
,

an array of integer column indices for the values,

v(A) =
[
1 2 4 1 3 4

]
,

and an array of integer indices indicating where in w(A) a given row’s values start,

u(A) =
[
1 3 3 4 7

]
,

with a padded value at the end to guarantee that

u(A)[n+ 1]− u(A)[n]

is the number of non-zero elements in row n of the matrix (here 2, 0, 1, and 3). Note
that because the second row has no non-zero elements both the second and third
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elements of u(A) correspond to the third element of w(A), which is 52. The values
(w(A), v(A), u(A)) are sufficient to reconstruct A.

The values are structured so that there is a real value and integer column index for
each non-zero entry in the array, plus one integer for each row of the matrix, plus
one for padding. There is also underlying storage for internal container pointers
and sizes. The total memory usage is roughly 12K +M bytes plus a small constant
overhead, which is often considerably fewer bytes than the M ×N required to store
a dense matrix. Even more importantly, zero values do not introduce derivatives
under multiplication or addition, so many storage and evaluation steps are saved
when sparse matrices are multiplied.

6.2. Conversion functions
Conversion functions between dense and sparse matrices are provided.

Dense to sparse conversion
Converting a dense matrix m to a sparse representation produces a vector w and
two integer arrays, u and v.

vector csr_extract_w(matrix a)
Return non-zero values in matrix a; see section compressed row storage.

int[] csr_extract_v(matrix a)
Return column indices for values in csr_extract_w(a); see compressed row storage.

int[] csr_extract_u(matrix a)
Return array of row starting indices for entries in csr_extract_w(a) followed by
the size of csr_extract_w(a) plus one; see section compressed row storage.

Sparse to dense conversion
To convert a sparse matrix representation to a dense matrix, there is a single function.

matrix csr_to_dense_matrix(int m, int n, vector w, int[] v, int[] u)
Return dense m×n matrix with non-zero matrix entries w, column indices v, and row
starting indices u; the vector w and array v must be the same size (corresponding to
the total number of nonzero entries in the matrix), array v must have index values
bounded by m, array u must have length equal to m + 1 and contain index values
bounded by the number of nonzeros (except for the last entry, which must be equal
to the number of nonzeros plus one). See section compressed row storage for more
details.

6.3. Sparse matrix arithmetic
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Sparse matrix multiplication
The only supported operation is the multiplication of a sparse matrix A and a dense
vector b to produce a dense vector Ab. Multiplying a dense row vector b and a sparse
matrix A can be coded using transposition as

bA = (A> b>)>,

but care must be taken to represent A> rather than A as a sparse matrix.

vector csr_matrix_times_vector(int m, int n, vector w, int[] v, int[]
u, vector b)
Multiply the m× n matrix represented by values w, column indices v, and row start
indices u by the vector b; see compressed row storage.



7. Mixed Operations

These functions perform conversions between Stan containers matrix, vector, row
vector and arrays.

matrix to_matrix(matrix m)
Return the matrix m itself.

matrix to_matrix(vector v)
Convert the column vector v to a size(v) by 1 matrix.

matrix to_matrix(row_vector v)
Convert the row vector v to a 1 by size(v) matrix.

matrix to_matrix(matrix m, int m, int n)
Convert a matrix m to a matrix with m rows and n columns filled in column-major
order.

matrix to_matrix(vector v, int m, int n)
Convert a vector v to a matrix with m rows and n columns filled in column-major
order.

matrix to_matrix(row_vector v, int m, int n)
Convert a row_vector a to a matrix with m rows and n columns filled in column-major
order.

matrix to_matrix(matrix m, int m, int n, int col_major)
Convert a matrix m to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).

matrix to_matrix(vector v, int m, int n, int col_major)
Convert a vector v to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).

matrix to_matrix(row_vector v, int m, int n, int col_major)
Convert a row_vector a to a matrix with m rows and n columns filled in row-major
order if col_major equals 0 (otherwise, they get filled in column-major order).

matrix to_matrix(real[] a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.
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matrix to_matrix(int[] a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.

matrix to_matrix(real[] a, int m, int n, int col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).

matrix to_matrix(int[] a, int m, int n, int col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).

matrix to_matrix(real[,] a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order.

matrix to_matrix(int[,] a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order. If any of the dimensions of a are zero, the result will be a 0 × 0
matrix.

vector to_vector(matrix m)
Convert the matrix m to a column vector in column-major order.

vector to_vector(vector v)
Return the column vector v itself.

vector to_vector(row_vector v)
Convert the row vector v to a column vector.

vector to_vector(real[] a)
Convert the one-dimensional array a to a column vector.

vector to_vector(int[] a)
Convert the one-dimensional integer array a to a column vector.

row_vector to_row_vector(matrix m)
Convert the matrix m to a row vector in column-major order.

row_vector to_row_vector(vector v)
Convert the column vector v to a row vector.
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row_vector to_row_vector(row_vector v)
Return the row vector v itself.

row_vector to_row_vector(real[] a)
Convert the one-dimensional array a to a row vector.

row_vector to_row_vector(int[] a)
Convert the one-dimensional array a to a row vector.

real[,] to_array_2d(matrix m)
Convert the matrix m to a two dimensional array with the same dimensions and
indexing order.

real[] to_array_1d(vector v)
Convert the column vector v to a one-dimensional array.

real[] to_array_1d(row_vector v)
Convert the row vector v to a one-dimensional array.

real[] to_array_1d(matrix m)
Convert the matrix m to a one-dimensional array in column-major order.

real[] to_array_1d(real[...] a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.

int[] to_array_1d(int[...] a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.



8. Compound Arithmetic and Assignment

Compound arithmetic and assignment statements combine an arithmetic operation
and assignment,

x = x op y;

replacing them with the compound form

x op= y;

For example, x = x + 1 may be replaced with x += 1.

The signatures of the supported compound arithmetic and assignment operations
are as follows.

8.1. Compound addition and assignment
void operator+=(int x, int y)
x += y is equivalent to x = x + y.

void operator+=(real x, real y)
x += y is equivalent to x = x + y.

void operator+=(vector x, real y)
x += y is equivalent to x = x + y.

void operator+=(row_vector x, real y)
x += y is equivalent to x = x + y.

void operator+=(matrix x, real y)
x += y is equivalent to x = x + y.

void operator+=(vector x, vector y)
x += y is equivalent to x = x + y.

void operator+=(row_vector x, row_vector y)
x += y is equivalent to x = x + y.

void operator+=(matrix x, matrix y)
x += y is equivalent to x = x + y.
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8.2. Compound subtraction and assignment
void operator-=(int x, int y)
x -= y is equivalent to x = x - y.

void operator-=(real x, real y)
x -= y is equivalent to x = x - y.

void operator-=(vector x, real y)
x -= y is equivalent to x = x - y.

void operator-=(row_vector x, real y)
x -= y is equivalent to x = x - y.

void operator-=(matrix x, real y)
x -= y is equivalent to x = x - y.

void operator-=(vector x, vector y)
x -= y is equivalent to x = x - y.

void operator-=(row_vector x, row_vector y)
x -= y is equivalent to x = x - y.

void operator-=(matrix x, matrix y)
x -= y is equivalent to x = x - y.

8.3. Compound multiplication and assignment
void operator*=(int x, int y)
x *= y is equivalent to x = x * y.

void operator*=(real x, real y)
x *= y is equivalent to x = x * y.

void operator*=(vector x, real y)
x *= y is equivalent to x = x * y.

void operator*=(row_vector x, real y)
x *= y is equivalent to x = x * y.

void operator*=(matrix x, real y)
x *= y is equivalent to x = x * y.

void operator*=(row_vector x, matrix y)
x *= y is equivalent to x = x * y.

void operator*=(matrix x, matrix y)
x *= y is equivalent to x = x * y.
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8.4. Compound division and assignment
void operator/=(int x, int y)
x /= y is equivalent to x = x / y.

void operator/=(real x, real y)
x /= y is equivalent to x = x / y.

void operator/=(vector x, real y)
x /= y is equivalent to x = x / y.

void operator/=(row_vector x, real y)
x /= y is equivalent to x = x / y.

void operator/=(matrix x, real y)
x /= y is equivalent to x = x / y.

8.5. Compound elementwise multiplication and assignment
void operator.*=(vector x, vector y)
x .*= y is equivalent to x = x .* y.

void operator.*=(row_vector x, row_vector y)
x .*= y is equivalent to x = x .* y.

void operator.*=(matrix x, matrix y)
x .*= y is equivalent to x = x .* y.

8.6. Compound elementwise division and assignment
void operator./=(vector x, vector y)
x ./= y is equivalent to x = x ./ y.

void operator./=(row_vector x, row_vector y)
x ./= y is equivalent to x = x ./ y.

void operator./=(matrix x, matrix y)
x ./= y is equivalent to x = x ./ y.

void operator./=(vector x, real y)
x ./= y is equivalent to x = x ./ y.

void operator./=(row_vector x, real y)
x ./= y is equivalent to x = x ./ y.

void operator./=(matrix x, real y)
x ./= y is equivalent to x = x ./ y.



9. Higher-Order Functions

Stan provides a few higher-order functions that act on other functions. In all cases,
the function arguments to the higher-order functions are defined as functions within
the Stan language and passed by name to the higher-order functions.

9.1. Algebraic equation solver
Stan provides two built-in algebraic equation solvers, respectively based on Powell’s
and Newton’s methods. The Newton method constitutes a more recent addition
to Stan; its use is recommended for most problems. Although they look like other
function applications, algebraic solvers are special in two ways.

First, an algebraic solver is a higher-order function, i.e. it takes another function
as one of its arguments. Other functions in Stan which share this feature are the
ordinary differential equation solvers (see section Ordinary Differential Equation
(ODE) Solvers). Ordinary Stan functions do not allow functions as arguments.

Second, some of the arguments of the algebraic solvers are restricted to data only
expressions. These expressions must not contain variables other than those declared
in the data or transformed data blocks. Ordinary Stan functions place no restriction
on the origin of variables in their argument expressions.

Specifying an algebraic equation as a function
An algebraic system is specified as an ordinary function in Stan within the function
block. The algebraic system function must have this signature:

vector algebra_system(vector y, vector theta,
data real[] x_r, int[] x_i)

The algebraic system function should return the value of the algebraic function
which goes to 0, when we plug in the solution to the algebraic system.

The argument of this function are:

• y, the unknowns we wish to solve for

• theta, parameter values used to evaluate the algebraic system

• x_r, data values used to evaluate the algebraic system

• x_i, integer data used to evaluate the algebraic system
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The algebraic system function separates parameter values, theta, from data values,
x_r, for efficiency in propagating the derivatives through the algebraic system.

Call to the algebraic solver
vector algebra_solver(function algebra_system, vector y_guess, vector
theta, data real[] x_r, int[] x_i)
Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm.

vector algebra_solver(function algebra_system, vector y_guess, vector
theta, data real[] x_r, int[] x_i, data real rel_tol, data real
f_tol, int max_steps)
Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm
with additional control parameters for the solver.

Note: In future releases, the function algebra_solver will be deprecated and
replaced with algebra_solver_powell.

vector algebra_solver_newton(function algebra_system, vector y_guess,
vector theta, data real[] x_r, int[] x_i)
Solves the algebraic system, given an initial guess, using Newton’s method.

vector algebra_solver_newton(function algebra_system, vector y_guess,
vector theta, data real[] x_r, int[] x_i, data real rel_tol, data
real f_tol, int max_steps)
Solves the algebraic system, given an initial guess, using Newton’s method with
additional control parameters for the solver.

Arguments to the algebraic solver

The arguments to the algebraic solvers are as follows:

• algebra_system : function literal referring to a function specifying the
system of algebraic equations with signature (vector, vector, real[],
int[]):vector. The arguments represent (1) unknowns, (2) parameters,
(3) real data, and (4) integer data, and the return value contains the value of
the algebraic function, which goes to 0 when we plug in the solution to the
algebraic system,

• y_guess : initial guess for the solution, type vector,

• theta : parameters only, type vector,

• x_r : real data only, type real[], and

• x_i : integer data only, type int[].
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For more fine-grained control of the algebraic solver, these parameters can also be
provided:

• rel_tol : relative tolerance for the algebraic solver, type real, data only,

• function_tol : function tolerance for the algebraic solver, type real, data
only,

• max_num_steps : maximum number of steps to take in the algebraic solver,
type int, data only.

Return value

The return value for the algebraic solver is an object of type vector, with values
which, when plugged in as y make the algebraic function go to 0.

Sizes and parallel arrays

Certain sizes have to be consistent. The initial guess, return value of the solver, and
return value of the algebraic function must all be the same size.

The parameters, real data, and integer data will be passed from the solver directly to
the system function.

Algorithmic details

Stan offers two algebraic solvers: algebra_solver and algebra_solver_newton.
algebra_solver is baed on the Powell hybrid method (Powell 1970), which in turn
uses first-order derivatives. The Stan code builds on the implementation of the
hybrid solver in the unsupported module for nonlinear optimization problems of the
Eigen library (Guennebaud, Jacob et al. 2010). This solver is in turn based on the
algorithm developed for the package MINPACK-1 (Jorge J. More 1980).

algebra_solver_newton, uses Newton’s method, also a first-order derivative based
numerical solver. The Stan code builds on the implementation in KINSOL from
the SUNDIALS suite (Hindmarsh et al. 2005). For many problems, we find that
algebra_solver_newton is faster than Powell’s method. If however Newton’s
method performs poorly, either failing to or requiring an excessively long time
to converge, the user should be prepared to switch to algebra_solver.

For both solvers, the Jacobian of the solution with respect to auxiliary parameters
is computed using the implicit function theorem. Intermediate Jacobians (of the
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algebraic function’s output with respect to the unknowns y and with respect to the
auxiliary parameters theta) are computed using Stan’s automatic differentiation.

9.2. Ordinary differential equation (ODE) solvers
Stan provides several higher order functions for solving initial value problems
specified as Ordinary Differential Equations (ODEs).

Solving an initial value ODE means given a set of differential equations y′(t, θ) =
f(t, y, θ) and initial conditions y(t0, θ), solving for y at a sequence of times t0 < t1 ≤
t2, · · · ≤ tn. f(t, y, θ) is referred to here as the ODE system function.

f(t, y, θ) will be defined as a function with a certain signature and provided along
with the initial conditions and output times to one of the ODE solver functions.

To make it easier to write ODEs, the solve functions take extra arguments that are
passed along unmodified to the user-supplied system function. Because there can be
any number of these arguments and they can be of different types, they are denoted
below as .... The types of the arguments represented by ... in the ODE solve
function call must match the types of the arguments represented by ... in the
user-supplied system function.

Non-stiff solver
vector[] ode_rk45(function ode, vector initial_state, real
initial_time, real[] times, ...)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.

vector[] ode_rk45_tol(function ode, vector initial_state, real
initial_time, real[] times, data real rel_tol, data real abs_tol,
int max_num_steps, ...)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method with additional control parameters for the
solver.

vector[] ode_ckrk(function ode, vector initial_state, real
initial_time, real[] times, ...)
Solves the ODE system for the times provided using the Cash-Karp algorithm, a
4th/5th order explicit Runge-Kutta method.

vector[] ode_ckrk_tol(function ode, vector initial_state, real
initial_time, real[] times, data real rel_tol, data real abs_tol,
int max_num_steps, ...)
Solves the ODE system for the times provided using the Cash-Karp algorithm, a
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4th/5th order explicit Runge-Kutta method with additional control parameters for
the solver.

vector[] ode_adams(function ode, vector initial_state, real
initial_time, real[] times, ...)
Solves the ODE system for the times provided using the Adams-Moulton method.

vector[] ode_adams_tol(function ode, vector initial_state, real
initial_time, real[] times, data real rel_tol, data real abs_tol,
int max_num_steps, ...)
Solves the ODE system for the times provided using the Adams-Moulton method
with additional control parameters for the solver.

Stiff solver
vector[] ode_bdf(function ode, vector initial_state, real
initial_time, real[] times, ...)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method.

vector[] ode_bdf_tol(function ode, vector initial_state, real
initial_time, real[] times, data real rel_tol, data real abs_tol,
int max_num_steps, ...)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.

Adjoint solver
vector[] ode_adjoint_tol_ctl(function ode, vector initial_state,
real initial_time, real[] times, data real rel_tol_forward,
data vector abs_tol_forward, data real rel_tol_backward,
data vector abs_tol_backward, int max_num_steps, int
num_steps_between_checkpoints, int interpolation_polynomial, int
solver_forward, int solver_backward, ...)

Solves the ODE system for the times provided using the adjoint ODE solver method
from CVODES. The adjoint ODE solver requires a checkpointed forward in time ODE
integration, a backwards in time integration that makes uses of an interpolated ver-
sion of the forward solution, and the solution of a quadrature problem (the number
of which depends on the number of parameters passed to the solve). The tolerances
and numeric methods used for the forward solve, backward solve, quadratures, and
interpolation can all be configured.
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ODE system function
The first argument to one of the ODE solvers is always the ODE system function. The
ODE system function must have a vector return type, and the first two arguments
must be a real and vector in that order. These two arguments are followed by the
variadic arguments that are passed through from the ODE solve function call:

vector ode(real time, vector state, ...)

The ODE system function should return the derivative of the state with respect to
time at the time and state provided. The length of the returned vector must match
the length of the state input into the function.

The arguments to this function are:

• time, the time to evaluate the ODE system

• state, the state of the ODE system at the time specified

• ..., sequence of arguments passed unmodified from the ODE solve function
call. The types here must match the types in the ... arguments of the ODE
solve function call.

Arguments to the ODE solvers
The arguments to the ODE solvers in both the stiff and non-stiff solvers are the same.
The arguments to the adjoint ODE solver are different; see Arguments to the adjoint
ODE solvers.

• ode : ODE system function,

• initial_state : initial state, type vector,

• initial_time : initial time, type real,

• times : solution times, type real[],

• ... : sequence of arguments that will be passed through unmodified to the ODE
system function. The types here must match the types in the ... arguments of
the ODE system function.

For the versions of the ode solver functions ending in _tol, these three parameters
must be provided after times and before the ... arguments:

• data rel_tol : relative tolerance for the ODE solver, type real, data only,

• data abs_tol : absolute tolerance for the ODE solver, type real, data only,
and
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• max_num_steps : maximum number of steps to take between output times in
the ODE solver, type int, data only.

Because the tolerances are data arguments, they must be defined in either the data
or transformed data blocks. They cannot be parameters, transformed parameters or
functions of parameters or transformed parameters.

Arguments to the adjoint ODE solver
The arguments to the adjoint ODE solver are different from those for the other
functions (for those see Arguments to the adjoint ODE solvers).

• ode : ODE system function,

• initial_state : initial state, type vector,

• initial_time : initial time, type real,

• times : solution times, type real[],

• data rel_tol_forward : Relative tolerance for forward solve, type real, data
only,

• data abs_tol_forward : Absolute tolerance vector for each state for forward
solve, type vector, data only,

• data rel_tol_backward : Relative tolerance for backward solve, type real,
data only,

• data abs_tol_backward : Absolute tolerance vector for each state for back-
ward solve, type vector, data only,

• data rel_tol_quadrature : Relative tolerance for backward quadrature, type
real, data only,

• data abs_tol_quadrature : Absolute tolerance for backward quadrature, type
real, data only,

• data max_num_steps : Maximum number of time-steps to take in integrating
the ODE solution between output time points for forward and backward solve,
type int, data only,

• num_steps_between_checkpoints : number of steps between checkpointing
forward solution, type int, data only,

• interpolation_polynomial : can be 1 for hermite or 2 for polynomial inter-
polation method of CVODES, type int, data only,
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• solver_forward : solver used for forward ODE problem: 1=Adams (non-stiff),
2=BDF (stiff), type int, data only,

• solver_backward : solver used for backward ODE problem: 1=Adams (non-
stiff), 2=BDF (stiff), type int, data only.

• ... : sequence of arguments that will be passed through unmodified to the ODE
system function. The types here must match the types in the ... arguments of
the ODE system function.

Because the tolerances are data arguments, they must be defined in either the data
or transformed data blocks. They cannot be parameters, transformed parameters or
functions of parameters or transformed parameters.

Return values

The return value for the ODE solvers is an array of vectors (type vector[]), one
vector representing the state of the system at every time in specified in the times
argument.

Array and vector sizes

The sizes must match, and in particular, the following groups are of the same size:

• state variables passed into the system function, derivatives returned by the
system function, initial state passed into the solver, and length of each vector
in the output,

• number of solution times and number of vectors in the output,

9.3. 1D integrator
Stan provides a built-in mechanism to perform 1D integration of a function via
quadrature methods.

It operates similarly to the algebraic solver and the ordinary differential equations
solver in that it allows as an argument a function.

Like both of those utilities, some of the arguments are limited to data only expres-
sions. These expressions must not contain variables other than those declared in the
data or transformed data blocks.

Specifying an integrand as a function
Performing a 1D integration requires the integrand to be specified somehow. This is
done by defining a function in the Stan functions block with the special signature:
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real integrand(real x, real xc, real[] theta,
real[] x_r, int[] x_i)

The function should return the value of the integrand evaluated at the point x.

The argument of this function are:

• x, the independent variable being integrated over

• xc, a high precision version of the distance from x to the nearest endpoint in a
definite integral (for more into see section Precision Loss).

• theta, parameter values used to evaluate the integral

• x_r, data values used to evaluate the integral

• x_i, integer data used to evaluate the integral

Like algebraic solver and the differential equations solver, the 1D integrator separates
parameter values, theta, from data values, x_r.

Call to the 1D integrator
real integrate_1d (function integrand, real a, real b, real[] theta,
real[] x_r, int[] x_i)
Integrates the integrand from a to b.

real integrate_1d (function integrand, real a, real b, real[] theta,
real[] x_r, int[] x_i, real relative_tolerance)
Integrates the integrand from a to b with the given relative tolerance.

Arguments to the 1D integrator

The arguments to the 1D integrator are as follows:

• integrand : function literal referring to a function specifying the inte-
grand with signature (real, real, real[], real[], int[]):real The ar-
guments represent

– (1) where integrand is evaluated,
– (2) distance from evaluation point to integration limit for definite inte-

grals,
– (3) parameters,
– (4) real data
– (5) integer data, and the return value is the integrand evaluated at the

given point,
• a : left limit of integration, may be negative infinity, type real,
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• b : right limit of integration, may be positive infinity, type real,
• theta : parameters only, type real[],
• x_r : real data only, type real[],
• x_i : integer data only, type int[].

A relative_tolerance argument can optionally be provided for more control over
the algorithm:

• relative_tolerance : relative tolerance for the 1d integrator, type real, data
only.

Return value

The return value for the 1D integrator is a real, the value of the integral.

Zero-crossing integrals

For numeric stability, integrals on the (possibly infinite) interval (a, b) that cross zero
are split into two integrals, one from (a, 0) and one from (0, b). Each integral is
separately integrated to the given relative_tolerance.

Precision loss near limits of integration in definite integrals

When integrating certain definite integrals, there can be significant precision loss
in evaluating the integrand near the endpoints. This has to do with the breakdown
in precision of double precision floating point values when adding or subtracting a
small number from a number much larger than it in magnitude (for instance, 1.0
- x). xc (as passed to the integrand) is a high-precision version of the distance
between x and the definite integral endpoints and can be used to address this issue.
More information (and an example where this is useful) is given in the User’s Guide.
For zero crossing integrals, xc will be a high precision version of the distance to the
endpoints of the two smaller integrals. For any integral with an endpoint at negative
infinity or positive infinity, xc is set to NaN.

Algorithmic details

Internally the 1D integrator uses the double-exponential methods in the Boost 1D
quadrature library. Boost in turn makes use of quadrature methods developed in
(Takahasi and Mori 1974), (Mori 1978), (Bailey, Jeyabalan, and Li 2005), and
(Tanaka et al. 2009).
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The gradients of the integral are computed in accordance with the Leibniz integral
rule. Gradients of the integrand are computed internally with Stan’s automatic
differentiation.

9.4. Reduce-sum function
Stan provides a higher-order reduce function for summation. A function which
returns a scalar g: U -> real is mapped to every element of a list of type U[], {
x1, x2, ... } and all the results are accumulated,

g(x1) + g(x2) + ...

For efficiency reasons the reduce function doesn’t work with the element-wise
evaluated function g itself, but instead works through evaluating partial sums, f:
U[] -> real, where:

f({ x1 }) = g(x1)
f({ x1, x2 }) = g(x1) + g(x2)
f({ x1, x2, ... }) = g(x1) + g(x2) + ...

Mathematically the summation reduction is associative and forming arbitrary partial
sums in an arbritrary order will not change the result. However, floating point
numerics on computers only have a limited precision such that associativity does
not hold exactly. This implies that the order of summation determines the exact
numerical result. For this reason, the higher-order reduce function is available in
two variants:

• reduce_sum: Automatically choose partial sums partitioning based on a dy-
namic scheduling algorithm.

• reduce_sum_static: Compute the same sum as reduce_sum, but partition the
input in the same way for given data set (in reduce_sum this partitioning might
change depending on computer load). This should result in stable numerical
evaluations.

Specifying the reduce-sum function
The higher-order reduce function takes a partial sum function f, an array argument
x (with one array element for each term in the sum), a recommended grainsize,
and a set of shared arguments. This representation allows parallelization of the
resultant sum.

real reduce_sum(F f, T[] x, int grainsize, T1 s1, T2 s2, ...)
real reduce_sum_static(F f, T[] x, int grainsize, T1 s1, T2 s2, ...)

Returns the equivalent of f(x, 1, size(x), s1, s2, ...), but computes the
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result in parallel by breaking the array x into independent partial sums. s1, s2,
... are shared between all terms in the sum.

• f : function literal referring to a function specifying the partial sum operation.
Refer to the partial sum function.

• x : array of T, one for each term of the reduction, T can be any type,
• grainsize : For reduce_sum, grainsize is the recommended size of

the partial sum (grainsize = 1 means pick totally automatically). For
reduce_sum_static, grainsize determines the maximum size of the partial
sums, type int,

• s1 : first (optional) shared argument, type T1, where T1 can be any type
• s2 : second (optional) shared argument, type T2, where T2 can be any type,
• ... : remainder of shared arguments, each of which can be any type.

The partial sum function
The partial sum function must have the following signature where the type T, and
the types of all the shared arguments (T1, T2, . . . ) match those of the original
reduce_sum (reduce_sum_static) call.

(T[] x_subset, int start, int end, T1 s1, T2 s2, ...):real

The partial sum function returns the sum of the start to end terms (inclusive) of
the overall calculations. The arguments to the partial sum function are:

• x_subset, the subset of x a given partial sum is responsible for computing,
type T[], where T matches the type of x in reduce_sum (reduce_sum_static)

• start, the index of the first term of the partial sum, type int

• end, the index of the last term of the partial sum (inclusive), type int

• s1, first shared argument, type T1, matching type of s1 in reduce_sum
(reduce_sum_static)

• s2, second shared argument, type T2, matching type of s2 in reduce_sum
(reduce_sum_static)

• ..., remainder of shared arguments, with types matching those in reduce_sum
(reduce_sum_static)

9.5. Map-rect function
Stan provides a higher-order map function. This allows map-reduce functionality to
be coded in Stan as described in the user’s guide.
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Specifying the mapped function
The function being mapped must have a signature identical to that of the function f
in the following declaration.

vector f(vector phi, vector theta,
data real[] x_r, data int[] x_i);

The map function returns the sequence of results for the particular shard being
evaluated. The arguments to the mapped function are:

• phi, the sequence of parameters shared across shards

• theta, the sequence of parameters specific to this shard

• x_r, sequence of real-valued data

• x_i, sequence of integer data

All input for the mapped function must be packed into these sequences and all output
from the mapped function must be packed into a single vector. The vector of output
from each mapped function is concatenated into the final result.

Rectangular map
The rectangular map function operates on rectangular (not ragged) data structures,
with parallel data structures for job-specific parameters, job-specific real data, and
job-specific integer data.

vector map_rect(F f, vector phi, vector[] theta, data real[,] x_r,
data int[,] x_i)
Return the concatenation of the results of applying the function f, of type (vector,
vector, real[], int[]):vector elementwise, i.e., f(phi, theta[n], x_r[n],
x_i[n]) for each n in 1:N, where N is the size of the parallel arrays of job-
specific/local parameters theta, real data x_r, and integer data x_r. The
shared/global parameters phi are passed to each invocation of f.



10. Deprecated Functions

This appendix lists currently deprecated functionality along with how to replace it.
These deprecated features are likely to be removed in the future.

10.1. integrate_ode_rk45, integrate_ode_adams, inte-
grate_ode_bdf ODE integrators

These ODE integrator functions have been replaced by those described in:

Specifying an ordinary differential equation as a function
A system of ODEs is specified as an ordinary function in Stan within the functions
block. The ODE system function must have this function signature:

real[] ode(real time, real[] state, real[] theta,
real[] x_r, int[] x_i)

The ODE system function should return the derivative of the state with respect to
time at the time provided. The length of the returned real array must match the
length of the state input into the function.

The arguments to this function are:

• time, the time to evaluate the ODE system

• state, the state of the ODE system at the time specified

• theta, parameter values used to evaluate the ODE system

• x_r, data values used to evaluate the ODE system

• x_i, integer data values used to evaluate the ODE system.

The ODE system function separates parameter values, theta, from data values, x_r,
for efficiency in computing the gradients of the ODE.

Non-stiff solver
real[ , ] integrate_ode_rk45(function ode, real[] initial_state, real
initial_time, real[] times, real[] theta, real[] x_r, int[] x_i)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.

real[ , ] integrate_ode_rk45(function ode, real[] initial_state, real
initial_time, real[] times, real[] theta, real[] x_r, int[] x_i,
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real rel_tol, real abs_tol, int max_num_steps)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method with additional control parameters for the
solver.

real[ , ] integrate_ode(function ode, real[] initial_state, real
initial_time, real[] times, real[] theta, real[] x_r, int[] x_i)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.

real[ , ] integrate_ode_adams(function ode, real[] initial_state,
real initial_time, real[] times, real[] theta, data real[] x_r, data
int[] x_i)
Solves the ODE system for the times provided using the Adams-Moulton method.

real[ , ] integrate_ode_adams(function ode, real[] initial_state,
real initial_time, real[] times, real[] theta, data real[] x_r,
data int[] x_i, data real rel_tol, data real abs_tol, data int
max_num_steps)
Solves the ODE system for the times provided using the Adams-Moulton method
with additional control parameters for the solver.

Stiff solver
real[ , ] integrate_ode_bdf(function ode, real[] initial_state, real
initial_time, real[] times, real[] theta, data real[] x_r, data
int[] x_i)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method.

real[ , ] integrate_ode_bdf(function ode, real[] initial_state,
real initial_time, real[] times, real[] theta, data real[] x_r,
data int[] x_i, data real rel_tol, data real abs_tol, data int
max_num_steps)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.

Arguments to the ODE solvers
The arguments to the ODE solvers in both the stiff and non-stiff cases are as follows.

• ode : function literal referring to a function specifying the system of differential
equations with signature:

(real, real[], real[], data real[], data int[]):real[]
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The arguments represent (1) time, (2) system state, (3) parameters, (4) real data,
and (5) integer data, and the return value contains the derivatives with respect to
time of the state,

• initial_state : initial state, type real[],

• initial_time : initial time, type int or real,

• times : solution times, type real[],

• theta : parameters, type real[],

• data x_r : real data, type real[], data only, and

• data x_i : integer data, type int[], data only.

For more fine-grained control of the ODE solvers, these parameters can also be
provided:

• data rel_tol : relative tolerance for the ODE solver, type real, data only,

• data abs_tol : absolute tolerance for the ODE solver, type real, data only,
and

• data max_num_steps : maximum number of steps to take in the ODE solver,
type int, data only.

Return values

The return value for the ODE solvers is an array of type real[,], with values
consisting of solutions at the specified times.

Sizes and parallel arrays

The sizes must match, and in particular, the following groups are of the same size:

• state variables passed into the system function, derivatives returned by the
system function, initial state passed into the solver, and rows of the return
value of the solver,

• solution times and number of rows of the return value of the solver,

• parameters, real data and integer data passed to the solver will be passed to
the system function



11. Conventions for Probability Functions

Functions associated with distributions are set up to follow the same naming con-
ventions for both built-in distributions and for user-defined distributions.

11.1. Suffix marks type of function
The suffix is determined by the type of function according to the following table.

function outcome suffix

log probability mass function discrete _lpmf
log probability density function continuous _lpdf
log cumulative distribution function any _lcdf
log complementary cumulative distribution function any _lccdf
random number generator any _rng

For example, normal_lpdf is the log of the normal probability density function (pdf)
and bernoulli_lpmf is the log of the bernoulli probability mass function (pmf). The
log of the corresponding cumulative distribution functions (cdf) use the same suffix,
normal_lcdf and bernoulli_lcdf.

11.2. Argument order and the vertical bar
Each probability function has a specific outcome value and a number of parameters.
Following conditional probability notation, probability density and mass functions
use a vertical bar to separate the outcome from the parameters of the distribution. For
example, normal_lpdf(y | mu, sigma) returns the value of mathematical formula
log Normal(y |µ, σ). Cumulative distribution functions separate the outcome from
the parameters in the same way (e.g., normal_lcdf(y_low | mu, sigma)

11.3. Sampling notation
The notation

y ~ normal(mu, sigma);

provides the same (proportional) contribution to the model log density as the explicit
target density increment,

target += normal_lpdf(y | mu, sigma);

88
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In both cases, the effect is to add terms to the target log density. The only difference
is that the example with the sampling (~) notation drops all additive constants
in the log density; the constants are not necessary for any of Stan’s sampling,
approximation, or optimization algorithms.

11.4. Finite inputs
All of the distribution functions are configured to throw exceptions (effectively
rejecting samples or optimization steps) when they are supplied with non-finite
arguments. The two cases of non-finite arguments are the infinite values and not-a-
number value—these are standard in floating-point arithmetic.

11.5. Boundary conditions
Many distributions are defined with support or constraints on parameters forming an
open interval. For example, the normal density function accepts a scale parameter
σ > 0. If σ = 0, the probability function will throw an exception.

This is true even for (complementary) cumulative distribution functions, which will
throw exceptions when given input that is out of the support.

11.6. Pseudorandom number generators
For most of the probability functions, there is a matching pseudorandom number gen-
erator (PRNG) with the suffix _rng. For example, the function normal_rng(real,
real) accepts two real arguments, an unconstrained location µ and positive scale
σ > 0, and returns an unconstrained pseudorandom value drawn from Normal(µ, σ).
There are also vectorized forms of random number generators which return more
than one random variate at a time.

Restricted to transformed data and generated quantities
Unlike regular functions, the PRNG functions may only be used in the transformed
data or generated quantities blocks.

Limited vectorization
Unlike the probability functions, only some of the PRNG functions are vectorized.

11.7. Cumulative distribution functions
For most of the univariate probability functions, there is a corresponding cumulative
distribution function, log cumulative distribution function, and log complementary
cumulative distribution function.

For a univariate random variable Y with probability function pY (y | θ), the cumulative
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distribution function (CDF) FY is defined by

FY (y) = Pr[Y ≤ y] =
∫ y

−∞
p(y | θ) dy.

The complementary cumulative distribution function (CCDF) is defined as

Pr[Y > y] = 1− FY (y).

The reason to use CCDFs instead of CDFs in floating-point arithmetic is that it is
possible to represent numbers very close to 0 (the closest you can get is roughly
10−300), but not numbers very close to 1 (the closest you can get is roughly 1−10−15).

In Stan, there is a cumulative distribution function for each probability function. For
instance, normal_cdf(y, mu, sigma) is defined by∫ y

−∞
Normal(y |µ, σ) dy.

There are also log forms of the CDF and CCDF for most univariate distributions. For
example, normal_lcdf(y | mu, sigma) is defined by

log
(∫ y

−∞
Normal(y |µ, σ) dy

)
and normal_lccdf(y | mu, sigma) is defined by

log
(

1−
∫ y

−∞
Normal(y |µ, σ) dy

)
.

11.8. Vectorization
Stan’s univariate log probability functions, including the log density functions, log
mass functions, log CDFs, and log CCDFs, all support vectorized function application,
with results defined to be the sum of the elementwise application of the function.
Some of the PRNG functions support vectorization, see section vectorized PRNG
functions for more details.

In all cases, matrix operations are at least as fast and usually faster than loops and
vectorized log probability functions are faster than their equivalent form defined with
loops. This isn’t because loops are slow in Stan, but because more efficient automatic
differentiation can be used. The efficiency comes from the fact that a vectorized log
probability function only introduces one new node into the expression graph, thus
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reducing the number of virtual function calls required to compute gradients in C++,
as well as from allowing caching of repeated computations.

Stan also overloads the multivariate normal distribution, including the Cholesky-
factor form, allowing arrays of row vectors or vectors for the variate and location
parameter. This is a huge savings in speed because the work required to solve the
linear system for the covariance matrix is only done once.

Stan also overloads some scalar functions, such as log and exp, to apply to vectors
(arrays) and return vectors (arrays). These vectorizations are defined elementwise
and unlike the probability functions, provide only minimal efficiency speedups over
repeated application and assignment in a loop.

Vectorized function signatures
Vectorized scalar arguments

The normal probability function is specified with the signature

normal_lpdf(reals | reals, reals);

The pseudotype reals is used to indicate that an argument position may be vec-
torized. Argument positions declared as reals may be filled with a real, a one-
dimensional array, a vector, or a row-vector. If there is more than one array or vector
argument, their types can be anything but their size must match. For instance, it is
legal to use normal_lpdf(row_vector | vector, real) as long as the vector and
row vector have the same size.

Vectorized vector and row vector arguments

The multivariate normal distribution accepting vector or array of vector arguments
is written as

multi_normal_lpdf(vectors | vectors, matrix);

These arguments may be row vectors, column vectors, or arrays of row vectors or
column vectors.

Vectorized integer arguments

The pseudotype ints is used for vectorized integer arguments. Where it appears
either an integer or array of integers may be used.

Evaluating vectorized log probability functions
The result of a vectorized log probability function is equivalent to the sum of the
evaluations on each element. Any non-vector argument, namely real or int, is
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repeated. For instance, if y is a vector of size N, mu is a vector of size N, and sigma is
a scalar, then

ll = normal_lpdf(y | mu, sigma);

is just a more efficient way to write

ll = 0;
for (n in 1:N)

ll = ll + normal_lpdf(y[n] | mu[n], sigma);

With the same arguments, the vectorized sampling statement

y ~ normal(mu, sigma);

has the same effect on the total log probability as

for (n in 1:N)
y[n] ~ normal(mu[n], sigma);

Evaluating vectorized PRNG functions
Some PRNG functions accept sequences as well as scalars as arguments. Such
functions are indicated by argument pseudotypes reals or ints. In cases of sequence
arguments, the output will also be a sequence. For example, the following is allowed
in the transformed data and generated quantities blocks.

vector[3] mu = ...;
real x[3] = normal_rng(mu, 3);

Argument types

In the case of PRNG functions, arguments marked ints may be integers or integer
arrays, whereas arguments marked reals may be integers or reals, integer or real
arrays, vectors, or row vectors.

pseudotype allowable PRNG arguments

ints int, int[]
reals int, int[], real, real[], vector, row_vector

Dimension matching

In general, if there are multiple non-scalar arguments, they must all have the same
dimensions, but need not have the same type. For example, the normal_rng function
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may be called with one vector argument and one real array argument as long as they
have the same number of elements.

vector[3] mu = ...;
real sigma[3] = ...;
real x[3] = normal_rng(mu, sigma);

Return type

The result of a vectorized PRNG function depends on the size of the arguments and
the distribution’s support. If all arguments are scalars, then the return type is a scalar.
For a continuous distribution, if there are any non-scalar arguments, the return type
is a real array (real[]) matching the size of any of the non-scalar arguments, as all
non-scalar arguments must have matching size. Discrete distributions return ints
and continuous distributions return reals, each of appropriate size. The symbol R
denotes such a return type.
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12. Binary Distributions

Binary probability distributions have support on {0, 1}, where 1 represents the value
true and 0 the value false.

12.1. Bernoulli distribution
Probability mass function
If θ ∈ [0, 1], then for y ∈ {0, 1},

Bernoulli(y | θ) =
{
θ if y = 1, and
1− θ if y = 0.

Sampling statement
y ~ bernoulli(theta)

Increment target log probability density with bernoulli_lupmf(y | theta).

Stan Functions
real bernoulli_lpmf(ints y | reals theta)
The log Bernoulli probability mass of y given chance of success theta

real bernoulli_lupmf(ints y | reals theta)
The log Bernoulli probability mass of y given chance of success theta dropping
constant additive terms

real bernoulli_cdf(ints y, reals theta)
The Bernoulli cumulative distribution function of y given chance of success theta

real bernoulli_lcdf(ints y | reals theta)
The log of the Bernoulli cumulative distribution function of y given chance of success
theta

real bernoulli_lccdf(ints y | reals theta)
The log of the Bernoulli complementary cumulative distribution function of y given
chance of success theta

R bernoulli_rng(reals theta)
Generate a Bernoulli variate with chance of success theta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

95
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12.2. Bernoulli distribution, logit parameterization
Stan also supplies a direct parameterization in terms of a logit-transformed chance-
of-success parameter. This parameterization is more numerically stable if the chance-
of-success parameter is on the logit scale, as with the linear predictor in a logistic
regression.

Probability mass function
If α ∈ R, then for y ∈ {0, 1},

BernoulliLogit(y | α) = Bernoulli(y|logit−1(α)) =
{

logit−1(α) if y = 1, and
1− logit−1(α) if y = 0.

Sampling statement
y ~ bernoulli_logit(alpha)

Increment target log probability density with bernoulli_logit_lupmf(y | alpha).

Stan Functions
real bernoulli_logit_lpmf(ints y | reals alpha)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha)

real bernoulli_logit_lupmf(ints y | reals alpha)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha)
dropping constant additive terms

R bernoulli_logit_rng(reals alpha)
Generate a Bernoulli variate with chance of success logit−1(α); may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

12.3. Bernoulli-logit generalized linear model (Logistic Regres-
sion)

Stan also supplies a single function for a generalized linear model with Bernoulli
likelihood and logit link function, i.e. a function for a logistic regression. This
provides a more efficient implementation of logistic regression than a manually
written regression in terms of a Bernoulli likelihood and matrix multiplication.
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Probability mass function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, then for y ∈ {0, 1}n,

BernoulliLogitGLM(y | x, α, β) =
∏

1≤i≤n
Bernoulli(yi | logit−1(αi + xi · β))

=
∏

1≤i≤n

{
logit−1(αi +

∑
1≤j≤m xij · βj) if yi = 1, and

1− logit−1(αi +
∑

1≤j≤m xij · βj) if yi = 0.

Sampling statement
y ~ bernoulli_logit_glm(x, alpha, beta)

Increment target log probability density with bernoulli_logit_glm_lupmf(y | x,
alpha, beta).

Stan Functions
real bernoulli_logit_glm_lpmf(int y | matrix x, real alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).

real bernoulli_logit_glm_lupmf(int y | matrix x, real alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.

real bernoulli_logit_glm_lpmf(int y | matrix x, vector alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).

real bernoulli_logit_glm_lupmf(int y | matrix x, vector alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.

real bernoulli_logit_glm_lpmf(int[] y | row_vector x, real alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).

real bernoulli_logit_glm_lupmf(int[] y | row_vector x, real alpha,
vector beta)
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The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.

real bernoulli_logit_glm_lpmf(int[] y | row_vector x, vector alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).

real bernoulli_logit_glm_lupmf(int[] y | row_vector x, vector alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.

real bernoulli_logit_glm_lpmf(int[] y | matrix x, real alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).

real bernoulli_logit_glm_lupmf(int[] y | matrix x, real alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.

real bernoulli_logit_glm_lpmf(int[] y | matrix x, vector alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).

real bernoulli_logit_glm_lupmf(int[] y | matrix x, vector alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.



13. Bounded Discrete Distributions

Bounded discrete probability functions have support on {0, . . . , N} for some upper
bound N .

13.1. Binomial distribution
Probability mass function
Suppose N ∈ N and θ ∈ [0, 1], and n ∈ {0, . . . , N}.

Binomial(n | N, θ) =
(
N

n

)
θn(1− θ)N−n.

Log probability mass function

log Binomial(n | N, θ) = log Γ(N + 1)− log Γ(n+ 1)− log Γ(N − n+ 1)

+ n log θ + (N − n) log(1− θ),

Gradient of log probability mass function

∂

∂θ
log Binomial(n | N, θ) = n

θ
− N − n

1− θ

Sampling statement
n ~ binomial(N, theta)

Increment target log probability density with binomial_lupmf(n | N, theta).

Stan functions
real binomial_lpmf(ints n | ints N, reals theta)
The log binomial probability mass of n successes in N trials given chance of success
theta

real binomial_lupmf(ints n | ints N, reals theta)
The log binomial probability mass of n successes in N trials given chance of success
theta dropping constant additive terms

real binomial_cdf(ints n, ints N, reals theta)
The binomial cumulative distribution function of n successes in N trials given chance
of success theta

99
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real binomial_lcdf(ints n | ints N, reals theta)
The log of the binomial cumulative distribution function of n successes in N trials
given chance of success theta

real binomial_lccdf(ints n | ints N, reals theta)
The log of the binomial complementary cumulative distribution function of n suc-
cesses in N trials given chance of success theta

R binomial_rng(ints N, reals theta)
Generate a binomial variate with N trials and chance of success theta; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

13.2. Binomial distribution, logit parameterization
Stan also provides a version of the binomial probability mass function distribution
with the chance of success parameterized on the unconstrained logistic scale.

Probability mass function
Suppose N ∈ N, α ∈ R, and n ∈ {0, . . . , N}. Then

BinomialLogit(n | N,α) = Binomial(n | N, logit−1(α))

=
(
N

n

)(
logit−1(α)

)n (
1− logit−1(α)

)N−n
.

Log probability mass function

log BinomialLogit(n | N,α) = log Γ(N + 1)− log Γ(n+ 1)− log Γ(N − n+ 1)

+ n log logit−1(α) + (N − n) log
(

1− logit−1(α)
)
,

Gradient of log probability mass function

∂

∂α
log BinomialLogit(n | N,α) = n

logit−1(−α)
− N − n

logit−1(α)

Sampling statement
n ~ binomial_logit(N, alpha)

Increment target log probability density with binomial_logit_lupmf(n | N,
alpha).
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Stan functions
real binomial_logit_lpmf(ints n | ints N, reals alpha)
The log binomial probability mass of n successes in N trials given logit-scaled chance
of success alpha

real binomial_logit_lupmf(ints n | ints N, reals alpha)
The log binomial probability mass of n successes in N trials given logit-scaled chance
of success alpha dropping constant additive terms

13.3. Beta-binomial distribution
Probability mass function
If N ∈ N, α ∈ R+, and β ∈ R+, then for n ∈ 0, . . . , N ,

BetaBinomial(n | N,α, β) =
(
N

n

)
B(n+ α,N − n+ β)

B(α, β) ,

where the beta function B(u, v) is defined for u ∈ R+ and v ∈ R+ by

B(u, v) = Γ(u) Γ(v)
Γ(u+ v) .

Sampling statement
n ~ beta_binomial(N, alpha, beta)

Increment target log probability density with beta_binomial_lupmf(n | N,
alpha, beta).

Stan functions
real beta_binomial_lpmf(ints n | ints N, reals alpha, reals beta)
The log beta-binomial probability mass of n successes in N trials given prior success
count (plus one) of alpha and prior failure count (plus one) of beta

real beta_binomial_lupmf(ints n | ints N, reals alpha, reals beta)
The log beta-binomial probability mass of n successes in N trials given prior success
count (plus one) of alpha and prior failure count (plus one) of beta dropping constant
additive terms

real beta_binomial_cdf(ints n, ints N, reals alpha, reals beta)
The beta-binomial cumulative distribution function of n successes in N trials given
prior success count (plus one) of alpha and prior failure count (plus one) of beta

real beta_binomial_lcdf(ints n | ints N, reals alpha, reals beta)
The log of the beta-binomial cumulative distribution function of n successes in N
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trials given prior success count (plus one) of alpha and prior failure count (plus one)
of beta

real beta_binomial_lccdf(ints n | ints N, reals alpha, reals beta)
The log of the beta-binomial complementary cumulative distribution function of n
successes in N trials given prior success count (plus one) of alpha and prior failure
count (plus one) of beta

R beta_binomial_rng(ints N, reals alpha, reals beta)
Generate a beta-binomial variate with N trials, prior success count (plus one) of
alpha, and prior failure count (plus one) of beta; may only be used in transformed
data and generated quantities blocks. For a description of argument and return
types, see section vectorized PRNG functions.

13.4. Hypergeometric distribution
Probability mass function
If a ∈ N, b ∈ N, and N ∈ {0, . . . , a+b}, then for n ∈ {max(0, N −b), . . . ,min(a,N)},

Hypergeometric(n | N, a, b) =
(
a
n

)(
b

N−n
)(

a+b
N

) .

Sampling statement
n ~ hypergeometric(N, a, b)

Increment target log probability density with hypergeometric_lupmf(n | N, a,
b).

Stan functions
real hypergeometric_lpmf(int n | int N, int a, int b)
The log hypergeometric probability mass of n successes in N trials given total success
count of a and total failure count of b

real hypergeometric_lupmf(int n | int N, int a, int b)
The log hypergeometric probability mass of n successes in N trials given total success
count of a and total failure count of b dropping constant additive terms

int hypergeometric_rng(int N, int a, int b)
Generate a hypergeometric variate with N trials, total success count of a, and total
failure count of b; may only be used in transformed data and generated quantities
blocks

13.5. Categorical distribution
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Probability mass functions
If N ∈ N, N > 0, and if θ ∈ RN forms an N -simplex (i.e., has nonnegative entries
summing to one), then for y ∈ {1, . . . , N},

Categorical(y | θ) = θy.

In addition, Stan provides a log-odds scaled categorical distribution,

CategoricalLogit(y | β) = Categorical(y | softmax(β)).

See the definition of softmax for the definition of the softmax function.

Sampling statement
y ~ categorical(theta)

Increment target log probability density with categorical_lupmf(y | theta) drop-
ping constant additive terms.

Sampling statement
y ~ categorical_logit(beta)

Increment target log probability density with categorical_logit_lupmf(y |
beta).

Stan functions
All of the categorical distributions are vectorized so that the outcome y can be a
single integer (type int) or an array of integers (type int[]).

real categorical_lpmf(ints y | vector theta)
The log categorical probability mass function with outcome(s) y in 1 : N given N -
vector of outcome probabilities theta. The parameter theta must have non-negative
entries that sum to one, but it need not be a variable declared as a simplex.

real categorical_lupmf(ints y | vector theta)
The log categorical probability mass function with outcome(s) y in 1 : N given
N -vector of outcome probabilities theta dropping constant additive terms. The
parameter theta must have non-negative entries that sum to one, but it need not be
a variable declared as a simplex.

real categorical_logit_lpmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta.

real categorical_logit_lupmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta dropping constant additive terms.
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int categorical_rng(vector theta)
Generate a categorical variate with N -simplex distribution parameter theta; may
only be used in transformed data and generated quantities blocks

int categorical_logit_rng(vector beta)
Generate a categorical variate with outcome in range 1 : N from log-odds vector
beta; may only be used in transformed data and generated quantities blocks

13.6. Categorical logit generalized linear model (softmax regres-
sion)

Stan also supplies a single function for a generalized linear model with categorical
likelihood and logit link function, i.e. a function for a softmax regression. This
provides a more efficient implementation of softmax regression than a manually
written regression in terms of a Categorical likelihood and matrix multiplication.

Note that the implementation does not put any restrictions on the coefficient matrix
β. It is up to the user to use a reference category, a suitable prior or some other
means of identifiability. See Multi-logit in the Stan User’s Guide.

Probability mass functions
If N,M,K ∈ N, N,M,K > 0, and if x ∈ RM ·K , α ∈ RN , β ∈ RK·N , then for
y ∈ {1, . . . , N}M ,

CategoricalLogitGLM(y | x, α, β) =
∏

1≤i≤M
CategoricalLogit(yi | α+xi·β) =

∏
1≤i≤M

Categorical(yi | softmax(α+xi·β)).

See the definition of softmax for the definition of the softmax function.

Sampling statement
y ~ categorical_logit_glm(x, alpha, beta)

Increment target log probability density with categorical_logit_glm_lupmf(y |
x, alpha, beta).

Stan functions
real categorical_logit_glm_lpmf(int y | row_vector x, vector alpha,
matrix beta)
The log categorical probability mass function with outcome y in 1 : N given N -vector
of log-odds of outcomes alpha + x * beta.

real categorical_logit_glm_lupmf(int y | row_vector x, vector alpha,
matrix beta)

https://mc-stan.org/users/documentation/
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The log categorical probability mass function with outcome y in 1 : N given N -vector
of log-odds of outcomes alpha + x * beta dropping constant additive terms.

real categorical_logit_glm_lpmf(int y | matrix x, vector alpha,
matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N -vector of log-odds of outcomes alpha + x * beta.

real categorical_logit_glm_lupmf(int y | matrix x, vector alpha,
matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N -vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.

real categorical_logit_glm_lpmf(int[] y | row_vector x, vector alpha,
matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given N -
vector of log-odds of outcomes alpha + x * beta.

real categorical_logit_glm_lupmf(int[] y | row_vector x, vector
alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N -vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.

real categorical_logit_glm_lpmf(int[] y | matrix x, vector alpha,
matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N -vector of log-odds of outcomes alpha + x * beta.

real categorical_logit_glm_lupmf(int[] y | matrix x, vector alpha,
matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N -vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.

13.7. Discrete range distribution
Probability mass functions
If l, u ∈ Z are lower and upper bounds (l ≤ u), then for any integer y ∈ {l, . . . , u},

DiscreteRange(y | l, u) = 1
u− l + 1 .
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Sampling statement
y ~ discrete_range(l, u)

Increment the target log probability density with discrete_range_lupmf(y | l,
u) dropping constant additive terms.

Stan functions
All of the discrete range distributions are vectorized so that the outcome y and the
bounds l, u can be a single integer (type int) or an array of integers (type int[]).

real discrete_range_lpmf(ints y | ints l, ints u)
The log probability mass function with outcome(s) y in l : u.

real discrete_range_lupmf(ints y | ints l, ints u)
The log probability mass function with outcome(s) y in l : u dropping constant
additive terms.

real discrete_range_cdf(ints y, ints l, ints u)
The discrete range cumulative distribution function for the given y, lower and upper
bounds.

real discrete_range_lcdf(ints y | ints l, ints u)
The log of the discrete range cumulative distribution function for the given y, lower
and upper bounds.

real discrete_range_lccdf(ints y | ints l, ints u)
The log of the discrete range complementary cumulative distribution function for
the given y, lower and upper bounds.

int discrete_range_rng(ints l, ints u)
Generate a discrete variate between the given lower and upper bounds; may only be
used in transformed data and generated quantities blocks.

13.8. Ordered logistic distribution
Probability mass function
If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . ,K − 2}, and
η ∈ R, then for k ∈ {1, . . . ,K},

OrderedLogistic(k | η, c) =


1− logit−1(η − c1) if k = 1,
logit−1(η − ck−1)− logit−1(η − ck) if 1 < k < K, and

logit−1(η − cK−1)− 0 if k = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the k = 1 and k = K edge cases can be subsumed into the
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general definition by setting c0 = −∞ and cK = +∞ with logit−1(−∞) = 0 and
logit−1(∞) = 1.

Sampling statement
k ~ ordered_logistic(eta, c)

Increment target log probability density with ordered_logistic_lupmf(k | eta,
c).

Stan functions
real ordered_logistic_lpmf(ints k | vector eta, vectors c)
The log ordered logistic probability mass of k given linear predictors eta, and
cutpoints c.

real ordered_logistic_lupmf(ints k | vector eta, vectors c)
The log ordered logistic probability mass of k given linear predictors eta, and
cutpoints c dropping constant additive terms.

int ordered_logistic_rng(real eta, vector c)
Generate an ordered logistic variate with linear predictor eta and cutpoints c; may
only be used in transformed data and generated quantities blocks

13.9. Ordered logistic generalized linear model (ordinal regres-
sion)

Probability mass function
If N,M,K ∈ N with N,M > 0, K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈
{1, . . . ,K − 2}, and x ∈ RN ·M , β ∈ RM , then for y ∈ {1, . . . ,K}N ,

OrderedLogisticGLM(y | x, β, c) =
∏

1≤i≤N
OrderedLogistic(yi | xi·β, c) =

∏
1≤i≤N


1− logit−1(xi · β − c1) if y = 1,
logit−1(xi · β − cy−1)− logit−1(xi · β − cy) if 1 < y < K, and

logit−1(xi · β − cK−1)− 0 if y = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the y = 1 and y = K edge cases can be subsumed into the
general definition by setting c0 = −∞ and cK = +∞ with logit−1(−∞) = 0 and
logit−1(∞) = 1.

Sampling statement
y ~ ordered_logistic_glm(x, beta, c)

Increment target log probability density with ordered_logistic_lupmf(y | x,
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beta, c).

Stan functions
real ordered_logistic_glm_lpmf(int y | row_vector x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c. The cutpoints c must be ordered.

real ordered_logistic_glm_lupmf(int y | row_vector x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

real ordered_logistic_glm_lpmf(int y | matrix x, vector beta, vector
c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c. The cutpoints c must be ordered.

real ordered_logistic_glm_lupmf(int y | matrix x, vector beta, vector
c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

real ordered_logistic_glm_lpmf(int[] y | row_vector x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c. The cutpoints c must be ordered.

real ordered_logistic_glm_lupmf(int[] y | row_vector x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

real ordered_logistic_glm_lpmf(int[] y | matrix x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c. The cutpoints c must be ordered.

real ordered_logistic_glm_lupmf(int[] y | matrix x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

13.10. Ordered probit distribution
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Probability mass function
If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . ,K − 2}, and
η ∈ R, then for k ∈ {1, . . . ,K},

OrderedProbit(k | η, c) =


1− Φ(η − c1) if k = 1,
Φ(η − ck−1)− Φ(η − ck) if 1 < k < K, and

Φ(η − cK−1)− 0 if k = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the k = 1 and k = K edge cases can be subsumed into
the general definition by setting c0 = −∞ and cK = +∞ with Φ(−∞) = 0 and
Φ(∞) = 1.

Sampling statement
k ~ ordered_probit(eta, c)

Increment target log probability density with ordered_probit_lupmf(k | eta, c).

Stan functions
real ordered_probit_lpmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cutpoints
c.

real ordered_probit_lupmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cutpoints
c dropping constant additive terms.

int ordered_probit_rng(real eta, vector c)
Generate an ordered probit variate with linear predictor eta and cutpoints c; may
only be used in transformed data and generated quantities blocks



14. Unbounded Discrete Distributions

The unbounded discrete distributions have support over the natural numbers (i.e.,
the non-negative integers).

14.1. Negative binomial distribution
For the negative binomial distribution Stan uses the parameterization described
in Gelman et al. (2013). For alternative parameterizations, see section negative
binomial glm.

Probability mass function
If α ∈ R+ and β ∈ R+, then for n ∈ N,

NegBinomial(n | α, β) =
(
n+ α− 1
α− 1

) (
β

β + 1

)α ( 1
β + 1

)n
.

The mean and variance of a random variable n ∼ NegBinomial(α, β) are given by

E[n] = α

β
and Var[n] = α

β2 (β + 1).

Sampling statement
n ~ neg_binomial(alpha, beta)

Increment target log probability density with neg_binomial_lupmf(n | alpha,
beta).

Stan functions
real neg_binomial_lpmf(ints n | reals alpha, reals beta)
The log negative binomial probability mass of n given shape alpha and inverse scale
beta

real neg_binomial_lupmf(ints n | reals alpha, reals beta)
The log negative binomial probability mass of n given shape alpha and inverse scale
beta dropping constant additive terms

real neg_binomial_cdf(ints n, reals alpha, reals beta)
The negative binomial cumulative distribution function of n given shape alpha and
inverse scale beta
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real neg_binomial_lcdf(ints n | reals alpha, reals beta)
The log of the negative binomial cumulative distribution function of n given shape
alpha and inverse scale beta

real neg_binomial_lccdf(ints n | reals alpha, reals beta)
The log of the negative binomial complementary cumulative distribution function of
n given shape alpha and inverse scale beta

R neg_binomial_rng(reals alpha, reals beta)
Generate a negative binomial variate with shape alpha and inverse scale beta; may
only be used in transformed data and generated quantities blocks. alpha / beta
must be less than 229. For a description of argument and return types, see section
vectorized function signatures.

14.2. Negative binomial distribution (alternative parameteriza-
tion)

Stan also provides an alternative parameterization of the negative binomial distribu-
tion directly using a mean (i.e., location) parameter and a parameter that controls
overdispersion relative to the square of the mean. Section combinatorial functions,
below, provides a second alternative parameterization directly in terms of the log
mean.

Probability mass function
The first parameterization is for µ ∈ R+ and φ ∈ R+, which for n ∈ N is defined as

NegBinomial2(n |µ, φ) =
(
n+ φ− 1

n

) (
µ

µ+ φ

)n (
φ

µ+ φ

)φ
.

The mean and variance of a random variable n ∼ NegBinomial2(n | µ, φ) are

E[n] = µ and Var[n] = µ+ µ2

φ
.

Recall that Poisson(µ) has variance µ, so µ2/φ > 0 is the additional variance of
the negative binomial above that of the Poisson with mean µ. So the inverse of
parameter φ controls the overdispersion, scaled by the square of the mean, µ2.

Sampling statement
n ~ neg_binomial_2(mu, phi)

Increment target log probability density with neg_binomial_2_lupmf(n | mu,
phi).
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Stan functions
real neg_binomial_2_lpmf(ints n | reals mu, reals phi)
The negative binomial probability mass of n given location mu and precision phi.

real neg_binomial_2_lupmf(ints n | reals mu, reals phi)
The negative binomial probability mass of n given location mu and precision phi
dropping constant additive terms.

real neg_binomial_2_cdf(ints n, reals mu, reals phi)
The negative binomial cumulative distribution function of n given location mu and
precision phi.

real neg_binomial_2_lcdf(ints n | reals mu, reals phi)
The log of the negative binomial cumulative distribution function of n given location
mu and precision phi.

real neg_binomial_2_lccdf(ints n | reals mu, reals phi)
The log of the negative binomial complementary cumulative distribution function of
n given location mu and precision phi.

R neg_binomial_2_rng(reals mu, reals phi)
Generate a negative binomial variate with location mu and precision phi; may only
be used in transformed data and generated quantities blocks. mu must be less than
229. For a description of argument and return types, see section vectorized function
signatures.

14.3. Negative binomial distribution (log alternative parameter-
ization)

Related to the parameterization in section negative binomial, alternative parame-
terization, the following parameterization uses a log mean parameter η = log(µ),
defined for η ∈ R, φ ∈ R+, so that for n ∈ N,

NegBinomial2Log(n | η, φ) = NegBinomial2(n| exp(η), φ).

This alternative may be used for sampling, as a function, and for random number
generation, but as of yet, there are no CDFs implemented for it. This is especially
useful for log-linear negative binomial regressions.

Sampling statement
n ~ neg_binomial_2_log(eta, phi)

Increment target log probability density with neg_binomial_2_log_lupmf(n |
eta, phi).
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Stan functions
real neg_binomial_2_log_lpmf(ints n | reals eta, reals phi)
The log negative binomial probability mass of n given log-location eta and inverse
overdispersion parameter phi.

real neg_binomial_2_log_lupmf(ints n | reals eta, reals phi)
The log negative binomial probability mass of n given log-location eta and inverse
overdispersion parameter phi dropping constant additive terms.

R neg_binomial_2_log_rng(reals eta, reals phi)
Generate a negative binomial variate with log-location eta and inverse overdisper-
sion control phi; may only be used in transformed data and generated quantities
blocks. eta must be less than 29 log 2. For a description of argument and return
types, see section vectorized function signatures.

14.4. Negative-binomial-2-log generalized linear model (nega-
tive binomial regression)

Stan also supplies a single function for a generalized linear model with negative
binomial likelihood and log link function, i.e. a function for a negative binomial
regression. This provides a more efficient implementation of negative binomial
regression than a manually written regression in terms of a negative binomial
likelihood and matrix multiplication.

Probability mass function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, φ ∈ R+, then for y ∈ Nn,

NegBinomial2LogGLM(y | x, α, β, φ) =
∏

1≤i≤n
NegBinomial2(yi | exp(αi+xi ·β), φ).

Sampling statement
y ~ neg_binomial_2_log_glm(x, alpha, beta, phi)

Increment target log probability density with neg_binomial_2_log_glm_lupmf(y
| x, alpha, beta, phi).

Stan functions
real neg_binomial_2_log_glm_lpmf(int y | matrix x, real alpha, vector
beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

real neg_binomial_2_log_glm_lupmf(int y | matrix x, real alpha,
vector beta, real phi)
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The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

real neg_binomial_2_log_glm_lpmf(int y | matrix x, vector alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

real neg_binomial_2_log_glm_lupmf(int y | matrix x, vector alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

real neg_binomial_2_log_glm_lpmf(int[] y | row_vector x, real alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

real neg_binomial_2_log_glm_lupmf(int[] y | row_vector x, real alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

real neg_binomial_2_log_glm_lpmf(int[] y | row_vector x, vector
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

real neg_binomial_2_log_glm_lupmf(int[] y | row_vector x, vector
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

real neg_binomial_2_log_glm_lpmf(int[] y | matrix x, real alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

real neg_binomial_2_log_glm_lupmf(int[] y | matrix x, real alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

real neg_binomial_2_log_glm_lpmf(int[] y | matrix x, vector alpha,
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vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

real neg_binomial_2_log_glm_lupmf(int[] y | matrix x, vector alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

14.5. Poisson distribution
Probability mass function
If λ ∈ R+, then for n ∈ N,

Poisson(n|λ) = 1
n! λ

n exp(−λ).

Sampling statement
n ~ poisson(lambda)

Increment target log probability density with poisson_lupmf(n | lambda).

Stan functions
real poisson_lpmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda

real poisson_lupmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda dropping constant additive
terms

real poisson_cdf(ints n, reals lambda)
The Poisson cumulative distribution function of n given rate lambda

real poisson_lcdf(ints n | reals lambda)
The log of the Poisson cumulative distribution function of n given rate lambda

real poisson_lccdf(ints n | reals lambda)
The log of the Poisson complementary cumulative distribution function of n given
rate lambda

R poisson_rng(reals lambda)
Generate a Poisson variate with rate lambda; may only be used in transformed data
and generated quantities blocks. lambda must be less than 230. For a description of
argument and return types, see section vectorized function signatures.
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14.6. Poisson distribution, log parameterization
Stan also provides a parameterization of the Poisson using the log rate α = log λ as
a parameter. This is useful for log-linear Poisson regressions so that the predictor
does not need to be exponentiated and passed into the standard Poisson probability
function.

Probability mass function
If α ∈ R, then for n ∈ N,

PoissonLog(n|α) = 1
n! exp (nα− exp(α)) .

Sampling statement
n ~ poisson_log(alpha)

Increment target log probability density with poisson_log_lupmf(n | alpha).

Stan functions
real poisson_log_lpmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha

real poisson_log_lupmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha dropping constant additive
terms

R poisson_log_rng(reals alpha)
Generate a Poisson variate with log rate alpha; may only be used in transformed data
and generated quantities blocks. alpha must be less than 30 log 2. For a description
of argument and return types, see section vectorized function signatures.

14.7. Poisson-log generalized linear model (Poisson regression)
Stan also supplies a single function for a generalized linear model with Poisson
likelihood and log link function, i.e. a function for a Poisson regression. This
provides a more efficient implementation of Poisson regression than a manually
written regression in terms of a Poisson likelihood and matrix multiplication.

Probability mass function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, then for y ∈ Nn,

PoisonLogGLM(y|x, α, β) =
∏

1≤i≤n
Poisson(yi| exp(αi + xi · β)).

Sampling statement
y ~ poisson_log_glm(x, alpha, beta)
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Increment target log probability density with poisson_log_glm_lupmf(y | x,
alpha, beta).

Stan functions
real poisson_log_glm_lpmf(int y | matrix x, real alpha, vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

real poisson_log_glm_lupmf(int y | matrix x, real alpha, vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.

real poisson_log_glm_lpmf(int y | matrix x, vector alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

real poisson_log_glm_lupmf(int y | matrix x, vector alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.

real poisson_log_glm_lpmf(int[] y | row_vector x, real alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

real poisson_log_glm_lupmf(int[] y | row_vector x, real alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.

real poisson_log_glm_lpmf(int[] y | row_vector x, vector alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

real poisson_log_glm_lupmf(int[] y | row_vector x, vector alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.

real poisson_log_glm_lpmf(int[] y | matrix x, real alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

real poisson_log_glm_lupmf(int[] y | matrix x, real alpha, vector
beta)
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The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.

real poisson_log_glm_lpmf(int[] y | matrix x, vector alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

real poisson_log_glm_lupmf(int[] y | matrix x, vector alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.



15. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are
expressed in Stan as arrays.

15.1. Multinomial distribution
Probability mass function
If K ∈ N, N ∈ N, and θ ∈ K-simplex, then for y ∈ NK such that

∑K
k=1 yk = N ,

Multinomial(y|θ) =
(

N

y1, . . . , yK

) K∏
k=1

θyk

k ,

where the multinomial coefficient is defined by(
N

y1, . . . , yk

)
= N !∏K

k=1 yk!
.

Sampling statement
y ~ multinomial(theta)

Increment target log probability density with multinomial_lupmf(y | theta).

Stan functions
real multinomial_lpmf(int[] y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter theta and (implicit) total count N = sum(y)

real multinomial_lupmf(int[] y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter theta and (implicit) total count N = sum(y)
dropping constant additive terms

int[] multinomial_rng(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter theta and total
count N ; may only be used in transformed data and generated quantities blocks

15.2. Multinomial distribution, logit parameterization
Stan also provides a version of the multinomial probability mass function distribution
with the K-simplex for the event count probabilities per category given on the
unconstrained logistic scale.
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Probability mass function
If K ∈ N, N ∈ N, and softmax−1(θ) ∈ K-simplex, then for y ∈ NK such that∑K
k=1 yk = N ,

MultinomialLogit(y|θ) = Multinomial(y|softmax−1(θ)) =
(

N

y1, . . . , yK

) K∏
k=1

[softmax−1(θ)k]yk ,

where the multinomial coefficient is defined by(
N

y1, . . . , yk

)
= N !∏K

k=1 yk!
.

Sampling statement
y ~ multinomial_logit(theta)

Increment target log probability density with multinomial_logit_lupmf(y |
theta).

Stan functions
real multinomial_logit_lpmf(int[] y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter softmax−1(θ) and (implicit) total count N =
sum(y)

real multinomial_logit_lupmf(int[] y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter softmax−1(θ) and (implicit) total count N =
sum(y) dropping constant additive terms

int[] multinomial_logit_rng(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter softmax−1(θ)
and total count N ; may only be used in transformed data and generated quantities
blocks



Continuous Distributions
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16. Unbounded Continuous Distributions

The unbounded univariate continuous probability distributions have support on all
real numbers.

16.1. Normal distribution
Probability density function
If µ ∈ R and σ ∈ R+, then for y ∈ R,

Normal(y|µ, σ) = 1√
2π σ

exp
(
− 1

2

(
y − µ
σ

)2
)
.

Sampling statement
y ~ normal(mu, sigma)

Increment target log probability density with normal_lupdf(y | mu, sigma).

Stan functions
real normal_lpdf(reals y | reals mu, reals sigma)
The log of the normal density of y given location mu and scale sigma

real normal_lupdf(reals y | reals mu, reals sigma)
The log of the normal density of y given location mu and scale sigma dropping
constant additive terms.

real normal_cdf(reals y, reals mu, reals sigma)
The cumulative normal distribution of y given location mu and scale sigma; nor-
mal_cdf will underflow to 0 for y−µ

σ below -37.5 and overflow to 1 for y−µ
σ above

8.25; the function Phi_approx is more robust in the tails, but must be scaled and
translated for anything other than a standard normal.

real normal_lcdf(reals y | reals mu, reals sigma)
The log of the cumulative normal distribution of y given location mu and scale sigma;
normal_lcdf will underflow to −∞ for y−µ

σ below -37.5 and overflow to 0 for y−µ
σ

above 8.25; log(Phi_approx(...)) is more robust in the tails, but must be scaled
and translated for anything other than a standard normal.

real normal_lccdf(reals y | reals mu, reals sigma)
The log of the complementary cumulative normal distribution of y given location mu
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and scale sigma; normal_lccdf will overflow to 0 for y−µ
σ below -37.5 and underflow

to −∞ for y−µ
σ above 8.25; log1m(Phi_approx(...)) is more robust in the tails,

but must be scaled and translated for anything other than a standard normal.

R normal_rng(reals mu, reals sigma)
Generate a normal variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Standard normal distribution
The standard normal distribution is so-called because its parameters are the units
for their respective operations—the location (mean) is zero and the scale (standard
deviation) one. The standard normal is parameter-free, and the unit parameters
allow considerable simplification of the expression for the density.

StdNormal(y) = Normal(y | 0, 1) = 1√
2π

exp
(
−y2

2

)
.

Up to a proportion on the log scale, where Stan computes,

log Normal(y | 0, 1) = −y2

2 + const.

With no logarithm, no subtraction, and no division by a parameter, the standard
normal log density is much more efficient to compute than the normal log density
with constant location 0 and scale 1.

Sampling statement
y ~ std_normal()

Increment target log probability density with std_normal_lupdf(y).

Stan functions
real std_normal_lpdf(reals y)
The standard normal (location zero, scale one) log probability density of y.

real std_normal_lupdf(reals y)
The standard normal (location zero, scale one) log probability density of y dropping
constant additive terms.

real std_normal_cdf(reals y)
The cumulative standard normal distribution of y; std_normal_cdf will underflow to
0 for y below -37.5 and overflow to 1 for y above 8.25; the function Phi_approx is
more robust in the tails.
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real std_normal_lcdf(reals y)
The log of the cumulative standard normal distribution of y; std_normal_lcdf
will underflow to −∞ for y below -37.5 and overflow to 0 for y above 8.25;
log(Phi_approx(...)) is more robust in the tails.

real std_normal_lccdf(reals y)
The log of the complementary cumulative standard normal distribution of y;
std_normal_lccdf will overflow to 0 for y below -37.5 and underflow to −∞ for y
above 8.25; log1m(Phi_approx(...)) is more robust in the tails.

real std_normal_rng()
Generate a normal variate with location zero and scale one; may only be used in
transformed data and generated quantities blocks.

16.2. Normal-id generalized linear model (linear regression)
Stan also supplies a single function for a generalized linear lodel with normal
likelihood and identity link function, i.e. a function for a linear regression. This
provides a more efficient implementation of linear regression than a manually written
regression in terms of a normal likelihood and matrix multiplication.

Probability distribution function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, σ ∈ R+, then for y ∈ Rn,

NormalIdGLM(y|x, α, β, σ) =
∏

1≤i≤n
Normal(yi|αi + xi · β, σ).

Sampling statement
y ~ normal_id_glm(x, alpha, beta, sigma)

Increment target log probability density with normal_id_glm_lupdf(y | x,
alpha, beta, sigma).

Stan functions
real normal_id_glm_lpdf(real y | matrix x, real alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

real normal_id_glm_lupdf(real y | matrix x, real alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
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real normal_id_glm_lpdf(real y | matrix x, vector alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

real normal_id_glm_lupdf(real y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.

real normal_id_glm_lpdf(vector y | row_vector x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

real normal_id_glm_lupdf(vector y | row_vector x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.

real normal_id_glm_lpdf(vector y | row_vector x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

real normal_id_glm_lupdf(vector y | row_vector x, vector alpha,
vector beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.

real normal_id_glm_lpdf(vector y | matrix x, real alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

real normal_id_glm_lupdf(vector y | matrix x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.

real normal_id_glm_lpdf(vector y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
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sigma.

real normal_id_glm_lupdf(vector y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.

16.3. Exponentially modified normal distribution
Probability density function
If µ ∈ R, σ ∈ R+, and λ ∈ R+, then for y ∈ R,

ExpModNormal(y|µ, σ, λ) = λ

2 exp
(
λ

2
(
2µ+ λσ2 − 2y

))
erfc

(
µ+ λσ2 − y√

2σ

)
.

Sampling statement
y ~ exp_mod_normal(mu, sigma, lambda)

Increment target log probability density with exp_mod_normal_lupdf(y | mu,
sigma, lambda).

Stan functions
real exp_mod_normal_lpdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal density of y given location mu, scale
sigma, and shape lambda

real exp_mod_normal_lupdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal density of y given location mu, scale
sigma, and shape lambda dropping constant additive terms

real exp_mod_normal_cdf(reals y, reals mu, reals sigma, reals lambda)
The exponentially modified normal cumulative distribution function of y given
location mu, scale sigma, and shape lambda

real exp_mod_normal_lcdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal cumulative distribution function of y
given location mu, scale sigma, and shape lambda

real exp_mod_normal_lccdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal complementary cumulative distribution
function of y given location mu, scale sigma, and shape lambda



16.4. SKEW NORMAL DISTRIBUTION 127

R exp_mod_normal_rng(reals mu, reals sigma, reals lambda)
Generate a exponentially modified normal variate with location mu, scale sigma,
and shape lambda; may only be used in transformed data and generated quantities
blocks. For a description of argument and return types, see section vectorized PRNG
functions.

16.4. Skew normal distribution
Probability density function
If ξ ∈ R, ω ∈ R+, and α ∈ R, then for y ∈ R,

SkewNormal(y | ξ, ω, α) = 1
ω
√

2π
exp

(
− 1

2

(
y − ξ
ω

)2
) (

1 + erf
(
α

(
y − ξ
ω
√

2

)))
.

Sampling statement
y ~ skew_normal(xi, omega, alpha)

Increment target log probability density with skew_normal_lupdf(y | xi, omega,
alpha).

Stan functions
real skew_normal_lpdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal density of y given location xi, scale omega, and shape
alpha

real skew_normal_lupdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal density of y given location xi, scale omega, and shape
alpha dropping constant additive terms

real skew_normal_cdf(reals y, reals xi, reals omega, reals alpha)
The skew normal distribution function of y given location xi, scale omega, and shape
alpha

real skew_normal_lcdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal cumulative distribution function of y given location xi,
scale omega, and shape alpha

real skew_normal_lccdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal complementary cumulative distribution function of y
given location xi, scale omega, and shape alpha

R skew_normal_rng(reals xi, reals omega, real alpha)
Generate a skew normal variate with location xi, scale omega, and shape alpha; may
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only be used in transformed data and generated quantities blocks. For a description
of argument and return types, see section vectorized PRNG functions.

16.5. Student-t distribution
Probability density function
If ν ∈ R+, µ ∈ R, and σ ∈ R+, then for y ∈ R,

StudentT(y|ν, µ, σ) = Γ ((ν + 1)/2)
Γ(ν/2)

1√
νπ σ

(
1 + 1

ν

(
y − µ
σ

)2
)−(ν+1)/2

.

Sampling statement
y ~ student_t(nu, mu, sigma)

Increment target log probability density with student_t_lupdf(y | nu, mu,
sigma).

Stan functions
real student_t_lpdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and
scale sigma

real student_t_lupdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and
scale sigma dropping constant additive terms

real student_t_cdf(reals y, reals nu, reals mu, reals sigma)
The Student-t cumulative distribution function of y given degrees of freedom nu,
location mu, and scale sigma

real student_t_lcdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t cumulative distribution function of y given degrees of
freedom nu, location mu, and scale sigma

real student_t_lccdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t complementary cumulative distribution function of y given
degrees of freedom nu, location mu, and scale sigma

R student_t_rng(reals nu, reals mu, reals sigma)
Generate a Student-t variate with degrees of freedom nu, location mu, and scale
sigma; may only be used in transformed data and generated quantities blocks. For a
description of argument and return types, see section vectorized PRNG functions.
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16.6. Cauchy distribution
Probability density function
If µ ∈ R and σ ∈ R+, then for y ∈ R,

Cauchy(y|µ, σ) = 1
πσ

1
1 + ((y − µ)/σ)2 .

Sampling statement
y ~ cauchy(mu, sigma)

Increment target log probability density with cauchy_lupdf(y | mu, sigma).

Stan functions
real cauchy_lpdf(reals y | reals mu, reals sigma)
The log of the Cauchy density of y given location mu and scale sigma

real cauchy_lupdf(reals y | reals mu, reals sigma)
The log of the Cauchy density of y given location mu and scale sigma dropping
constant additive terms

real cauchy_cdf(reals y, reals mu, reals sigma)
The Cauchy cumulative distribution function of y given location mu and scale sigma

real cauchy_lcdf(reals y | reals mu, reals sigma)
The log of the Cauchy cumulative distribution function of y given location mu and
scale sigma

real cauchy_lccdf(reals y | reals mu, reals sigma)
The log of the Cauchy complementary cumulative distribution function of y given
location mu and scale sigma

R cauchy_rng(reals mu, reals sigma)
Generate a Cauchy variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

16.7. Double exponential (Laplace) distribution
Probability density function
If µ ∈ R and σ ∈ R+, then for y ∈ R,

DoubleExponential(y|µ, σ) = 1
2σ exp

(
− |y − µ|

σ

)
.
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Note that the double exponential distribution is parameterized in terms of the scale,
in contrast to the exponential distribution (see section exponential distribution),
which is parameterized in terms of inverse scale.

The double-exponential distribution can be defined as a compound exponential-
normal distribution (Ding and Blitzstein 2018). Using the inverse scale parameteri-
zation for the exponential distribution, and the standard deviation parameterization
for the normal distribution, one can write

α ∼ Exponential
(

1
2σ2

)
and

β | α ∼ Normal(µ,
√
α),

then
β ∼ DoubleExponential(µ, σ).

This may be used to code a non-centered parameterization by taking

βraw ∼ Normal(0, 1)

and defining
β = µ+ αβraw.

Sampling statement
y ~ double_exponential(mu, sigma)

Increment target log probability density with double_exponential_lupdf(y | mu,
sigma).

Stan functions
real double_exponential_lpdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma

real double_exponential_lupdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma
dropping constant additive terms

real double_exponential_cdf(reals y, reals mu, reals sigma)
The double exponential cumulative distribution function of y given location mu and
scale sigma

real double_exponential_lcdf(reals y | reals mu, reals sigma)
The log of the double exponential cumulative distribution function of y given location
mu and scale sigma
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real double_exponential_lccdf(reals y | reals mu, reals sigma)
The log of the double exponential complementary cumulative distribution function
of y given location mu and scale sigma

R double_exponential_rng(reals mu, reals sigma)
Generate a double exponential variate with location mu and scale sigma; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

16.8. Logistic distribution
Probability density function
If µ ∈ R and σ ∈ R+, then for y ∈ R,

Logistic(y|µ, σ) = 1
σ

exp
(
− y − µ

σ

) (
1 + exp

(
− y − µ

σ

))−2
.

Sampling statement
y ~ logistic(mu, sigma)

Increment target log probability density with logistic_lupdf(y | mu, sigma).

Stan functions
real logistic_lpdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma

real logistic_lupdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma dropping
constant additive terms

real logistic_cdf(reals y, reals mu, reals sigma)
The logistic cumulative distribution function of y given location mu and scale sigma

real logistic_lcdf(reals y | reals mu, reals sigma)
The log of the logistic cumulative distribution function of y given location mu and
scale sigma

real logistic_lccdf(reals y | reals mu, reals sigma)
The log of the logistic complementary cumulative distribution function of y given
location mu and scale sigma

R logistic_rng(reals mu, reals sigma)
Generate a logistic variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
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16.9. Gumbel distribution
Probability density function
If µ ∈ R and β ∈ R+, then for y ∈ R,

Gumbel(y|µ, β) = 1
β

exp
(
−y − µ

β
− exp

(
−y − µ

β

))
.

Sampling statement
y ~ gumbel(mu, beta)

Increment target log probability density with gumbel_lupdf(y | mu, beta).

Stan functions
real gumbel_lpdf(reals y | reals mu, reals beta)
The log of the gumbel density of y given location mu and scale beta

real gumbel_lupdf(reals y | reals mu, reals beta)
The log of the gumbel density of y given location mu and scale beta dropping
constant additive terms

real gumbel_cdf(reals y, reals mu, reals beta)
The gumbel cumulative distribution function of y given location mu and scale beta

real gumbel_lcdf(reals y | reals mu, reals beta)
The log of the gumbel cumulative distribution function of y given location mu and
scale beta

real gumbel_lccdf(reals y | reals mu, reals beta)
The log of the gumbel complementary cumulative distribution function of y given
location mu and scale beta

R gumbel_rng(reals mu, reals beta)
Generate a gumbel variate with location mu and scale beta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

16.10. Skew double exponential distribution
Probability density function
If µ ∈ R, σ ∈ R+ and τ ∈ [0, 1], then for y ∈ R,

SkewDoubleExponential(y|µ, σ, τ) =
2τ(1− τ)

σ
exp

[
− 2
σ

[(1− τ) I(y < µ)(µ− y) + τI(y > µ)(y − µ)]
]
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Sampling statement
y ~ skew_double_exponential(mu, sigma, tau)

Increment target log probability density with skew_double_exponential(y | mu,
sigma, tau)

Stan functions
real skew_double_exponential_lpdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential density of y given location mu, scale sigma
and skewness tau

real skew_double_exponential_lupdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential density of y given location mu, scale sigma
and skewness tau dropping constant additive terms

real skew_double_exponential_cdf(reals y, reals mu, reals sigma,
reals tau)
The skew double exponential cumulative distribution function of y given location
mu, scale sigma and skewness tau

real skew_double_exponential_lcdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential cumulative distribution function of y given
location mu, scale sigma and skewness tau

real skew_double_exponential_lccdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential complementary cumulative distribution
function of y given location mu, scale sigma and skewness tau

R skew_double_exponential_rng(reals mu, reals sigma, reals tau)
Generate a skew double exponential variate with location mu, scale sigma and
skewness tau; may only be used in transformed data and generated quantities
blocks. For a description of argument and return types, see section vectorized PRNG
functions.



17. Positive Continuous Distributions

The positive continuous probability functions have support on the positive real
numbers.

17.1. Lognormal distribution
Probability density function
If µ ∈ R and σ ∈ R+, then for y ∈ R+,

LogNormal(y|µ, σ) = 1√
2π σ

1
y

exp
(
− 1

2

(
log y − µ

σ

)2
)
.

Sampling statement
y ~ lognormal(mu, sigma)

Increment target log probability density with lognormal_lupdf(y | mu, sigma).

Stan functions
real lognormal_lpdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma

real lognormal_lupdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma dropping
constant additive terms

real lognormal_cdf(reals y, reals mu, reals sigma)
The cumulative lognormal distribution function of y given location mu and scale
sigma

real lognormal_lcdf(reals y | reals mu, reals sigma)
The log of the lognormal cumulative distribution function of y given location mu
and scale sigma

real lognormal_lccdf(reals y | reals mu, reals sigma)
The log of the lognormal complementary cumulative distribution function of y given
location mu and scale sigma

R lognormal_rng(reals mu, reals sigma)
Generate a lognormal variate with location mu and scale sigma; may only be used in

134
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transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

17.2. Chi-square distribution
Probability density function
If ν ∈ R+, then for y ∈ R+,

ChiSquare(y|ν) = 2−ν/2

Γ(ν/2) y
ν/2−1 exp

(
− 1

2 y
)
.

Sampling statement
y ~ chi_square(nu)

Increment target log probability density with chi_square_lupdf(y | nu).

Stan functions
real chi_square_lpdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu

real chi_square_lupdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu dropping constant
additive terms

real chi_square_cdf(reals y, reals nu)
The Chi-square cumulative distribution function of y given degrees of freedom nu

real chi_square_lcdf(reals y | reals nu)
The log of the Chi-square cumulative distribution function of y given degrees of
freedom nu

real chi_square_lccdf(reals y | reals nu)
The log of the complementary Chi-square cumulative distribution function of y given
degrees of freedom nu

R chi_square_rng(reals nu)
Generate a Chi-square variate with degrees of freedom nu; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

17.3. Inverse chi-square distribution
Probability density function
If ν ∈ R+, then for y ∈ R+,

InvChiSquare(y | ν) = 2−ν/2

Γ(ν/2) y
−ν/2−1 exp

(
− 1

2
1
y

)
.
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Sampling statement
y ~ inv_chi_square(nu)

Increment target log probability density with inv_chi_square_lupdf(y | nu).

Stan functions
real inv_chi_square_lpdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu

real inv_chi_square_lupdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu dropping
constant additive terms

real inv_chi_square_cdf(reals y, reals nu)
The inverse Chi-squared cumulative distribution function of y given degrees of
freedom nu

real inv_chi_square_lcdf(reals y | reals nu)
The log of the inverse Chi-squared cumulative distribution function of y given degrees
of freedom nu

real inv_chi_square_lccdf(reals y | reals nu)
The log of the inverse Chi-squared complementary cumulative distribution function
of y given degrees of freedom nu

R inv_chi_square_rng(reals nu)
Generate an inverse Chi-squared variate with degrees of freedom nu; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

17.4. Scaled inverse chi-square distribution
Probability density function
If ν ∈ R+ and σ ∈ R+, then for y ∈ R+,

ScaledInvChiSquare(y|ν, σ) = (ν/2)ν/2

Γ(ν/2) σν y−(ν/2+1) exp
(
− 1

2 ν σ
2 1
y

)
.

Sampling statement
y ~ scaled_inv_chi_square(nu, sigma)

Increment target log probability density with scaled_inv_chi_square_lupdf(y |
nu, sigma).
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Stan functions
real scaled_inv_chi_square_lpdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu
and scale sigma

real scaled_inv_chi_square_lupdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu
and scale sigma dropping constant additive terms

real scaled_inv_chi_square_cdf(reals y, reals nu, reals sigma)
The scaled inverse Chi-square cumulative distribution function of y given degrees of
freedom nu and scale sigma

real scaled_inv_chi_square_lcdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square cumulative distribution function of y given
degrees of freedom nu and scale sigma

real scaled_inv_chi_square_lccdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square complementary cumulative distribution
function of y given degrees of freedom nu and scale sigma

R scaled_inv_chi_square_rng(reals nu, reals sigma)
Generate a scaled inverse Chi-squared variate with degrees of freedom nu and scale
sigma; may only be used in transformed data and generated quantities blocks. For a
description of argument and return types, see section vectorized PRNG functions.

17.5. Exponential distribution
Probability density function
If β ∈ R+, then for y ∈ R+,

Exponential(y|β) = β exp(−β y).

Sampling statement
y ~ exponential(beta)

Increment target log probability density with exponential_lupdf(y | beta).

Stan functions
real exponential_lpdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta

real exponential_lupdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta dropping constant
additive terms
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real exponential_cdf(reals y, reals beta)
The exponential cumulative distribution function of y given inverse scale beta

real exponential_lcdf(reals y | reals beta)
The log of the exponential cumulative distribution function of y given inverse scale
beta

real exponential_lccdf(reals y | reals beta)
The log of the exponential complementary cumulative distribution function of y
given inverse scale beta

R exponential_rng(reals beta)
Generate an exponential variate with inverse scale beta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

17.6. Gamma distribution
Probability density function
If α ∈ R+ and β ∈ R+, then for y ∈ R+,

Gamma(y|α, β) = βα

Γ(α) y
α−1 exp(−β y).

Sampling statement
y ~ gamma(alpha, beta)

Increment target log probability density with gamma_lupdf(y | alpha, beta).

Stan functions
real gamma_lpdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta

real gamma_lupdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta dropping
constant additive terms

real gamma_cdf(reals y, reals alpha, reals beta)
The cumulative gamma distribution function of y given shape alpha and inverse
scale beta

real gamma_lcdf(reals y | reals alpha, reals beta)
The log of the cumulative gamma distribution function of y given shape alpha and
inverse scale beta
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real gamma_lccdf(reals y | reals alpha, reals beta)
The log of the complementary cumulative gamma distribution function of y given
shape alpha and inverse scale beta

R gamma_rng(reals alpha, reals beta)
Generate a gamma variate with shape alpha and inverse scale beta; may only be used
in transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

17.7. Inverse gamma Distribution
Probability density function
If α ∈ R+ and β ∈ R+, then for y ∈ R+,

InvGamma(y|α, β) = βα

Γ(α) y
−(α+1) exp

(
−β 1

y

)
.

Sampling statement
y ~ inv_gamma(alpha, beta)

Increment target log probability density with inv_gamma_lupdf(y | alpha, beta).

Stan functions
real inv_gamma_lpdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta

real inv_gamma_lupdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta dropping
constant additive terms

real inv_gamma_cdf(reals y, reals alpha, reals beta)
The inverse gamma cumulative distribution function of y given shape alpha and
scale beta

real inv_gamma_lcdf(reals y | reals alpha, reals beta)
The log of the inverse gamma cumulative distribution function of y given shape
alpha and scale beta

real inv_gamma_lccdf(reals y | reals alpha, reals beta)
The log of the inverse gamma complementary cumulative distribution function of y
given shape alpha and scale beta

R inv_gamma_rng(reals alpha, reals beta)
Generate an inverse gamma variate with shape alpha and scale beta; may only
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be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

17.8. Weibull distribution
Probability density function
If α ∈ R+ and σ ∈ R+, then for y ∈ [0,∞),

Weibull(y|α, σ) = α

σ

( y
σ

)α−1
exp
(
−
( y
σ

)α)
.

Note that if Y ∝Weibull(α, σ), then Y −1 ∝ Frechet(α, σ−1).

Sampling statement
y ~ weibull(alpha, sigma)

Increment target log probability density with weibull_lupdf(y | alpha, sigma).

Stan functions
real weibull_lpdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma

real weibull_lupdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma dropping
constant additive terms

real weibull_cdf(reals y, reals alpha, reals sigma)
The Weibull cumulative distribution function of y given shape alpha and scale sigma

real weibull_lcdf(reals y | reals alpha, reals sigma)
The log of the Weibull cumulative distribution function of y given shape alpha and
scale sigma

real weibull_lccdf(reals y | reals alpha, reals sigma)
The log of the Weibull complementary cumulative distribution function of y given
shape alpha and scale sigma

R weibull_rng(reals alpha, reals sigma)
Generate a weibull variate with shape alpha and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

17.9. Frechet distribution
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Probability density function
If α ∈ R+ and σ ∈ R+, then for y ∈ R+,

Frechet(y|α, σ) = α

σ

( y
σ

)−α−1
exp
(
−
( y
σ

)−α)
.

Note that if Y ∝ Frechet(α, σ), then Y −1 ∝Weibull(α, σ−1).

Sampling statement
y ~ frechet(alpha, sigma)

Increment target log probability density with frechet_lupdf(y | alpha, sigma).

Stan functions
real frechet_lpdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma

real frechet_lupdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma dropping
constant additive terms

real frechet_cdf(reals y, reals alpha, reals sigma)
The Frechet cumulative distribution function of y given shape alpha and scale sigma

real frechet_lcdf(reals y | reals alpha, reals sigma)
The log of the Frechet cumulative distribution function of y given shape alpha and
scale sigma

real frechet_lccdf(reals y | reals alpha, reals sigma)
The log of the Frechet complementary cumulative distribution function of y given
shape alpha and scale sigma

R frechet_rng(reals alpha, reals sigma)
Generate a Frechet variate with shape alpha and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

17.10. Rayleigh distribution
Probability density function
If σ ∈ R+, then for y ∈ [0,∞),

Rayleigh(y|σ) = y

σ2 exp(−y2/2σ2).
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Sampling statement
y ~ rayleigh(sigma)

Increment target log probability density with rayleigh_lupdf(y | sigma).

Stan functions
real rayleigh_lpdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma

real rayleigh_lupdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma dropping constant additive
terms

real rayleigh_cdf(real y, real sigma)
The Rayleigh cumulative distribution of y given scale sigma

real rayleigh_lcdf(real y | real sigma)
The log of the Rayleigh cumulative distribution of y given scale sigma

real rayleigh_lccdf(real y | real sigma)
The log of the Rayleigh complementary cumulative distribution of y given scale
sigma

R rayleigh_rng(reals sigma)
Generate a Rayleigh variate with scale sigma; may only be used in generated quanti-
ties block. For a description of argument and return types, see section vectorized
PRNG functions.



18. Positive Lower-Bounded Distributions

The positive lower-bounded probabilities have support on real values above some
positive minimum value.

18.1. Pareto distribution
Probability density function
If ymin ∈ R+ and α ∈ R+, then for y ∈ R+ with y ≥ ymin,

Pareto(y|ymin, α) = α yαmin

yα+1 .

Sampling statement
y ~ pareto(y_min, alpha)

Increment target log probability density with pareto_lupdf(y | y_min, alpha).

Stan functions
real pareto_lpdf(reals y | reals y_min, reals alpha)
The log of the Pareto density of y given positive minimum value y_min and shape
alpha

real pareto_lupdf(reals y | reals y_min, reals alpha)
The log of the Pareto density of y given positive minimum value y_min and shape
alpha dropping constant additive terms

real pareto_cdf(reals y, reals y_min, reals alpha)
The Pareto cumulative distribution function of y given positive minimum value y_min
and shape alpha

real pareto_lcdf(reals y | reals y_min, reals alpha)
The log of the Pareto cumulative distribution function of y given positive minimum
value y_min and shape alpha

real pareto_lccdf(reals y | reals y_min, reals alpha)
The log of the Pareto complementary cumulative distribution function of y given
positive minimum value y_min and shape alpha

R pareto_rng(reals y_min, reals alpha)
Generate a Pareto variate with positive minimum value y_min and shape alpha; may
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only be used in transformed data and generated quantities blocks. For a description
of argument and return types, see section vectorized PRNG functions.

18.2. Pareto type 2 distribution
Probability density function
If µ ∈ R, λ ∈ R+, and α ∈ R+, then for y ≥ µ,

Pareto_Type_2(y|µ, λ, α) = α

λ

(
1 + y − µ

λ

)−(α+1)
.

Note that the Lomax distribution is a Pareto Type 2 distribution with µ = 0.

Sampling statement
y ~ pareto_type_2(mu, lambda, alpha)

Increment target log probability density with pareto_type_2_lupdf(y | mu,
lambda, alpha).

Stan functions
real pareto_type_2_lpdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 density of y given location mu, scale lambda, and shape
alpha

real pareto_type_2_lupdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 density of y given location mu, scale lambda, and shape
alpha dropping constant additive terms

real pareto_type_2_cdf(reals y, reals mu, reals lambda, reals alpha)
The Pareto Type 2 cumulative distribution function of y given location mu, scale
lambda, and shape alpha

real pareto_type_2_lcdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 cumulative distribution function of y given location mu,
scale lambda, and shape alpha

real pareto_type_2_lccdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 complementary cumulative distribution function of y
given location mu, scale lambda, and shape alpha
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R pareto_type_2_rng(reals mu, reals lambda, reals alpha)
Generate a Pareto Type 2 variate with location mu, scale lambda, and shape alpha;
may only be used in transformed data and generated quantities blocks. For a
description of argument and return types, see section vectorized PRNG functions.

18.3. Wiener First Passage Time Distribution
Probability density function
If α ∈ R+, τ ∈ R+, β ∈ [0, 1] and δ ∈ R, then for y > τ ,

Wiener(y|α, τ, β, δ) = α3

(y − τ)3/2 exp
(
−δαβ − δ2(y − τ)

2

) ∞∑
k=−∞

(2k+β)φ
(

2kα+ β√
y − τ

)
where φ(x) denotes the standard normal density function; see (Feller 1968),
(Navarro and Fuss 2009).

Sampling statement
y ~ wiener(alpha, tau, beta, delta)

Increment target log probability density with wiener_lupdf(y | alpha, tau,
beta, delta).

Stan functions
real wiener_lpdf(reals y | reals alpha, reals tau, reals beta, reals
delta)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta and drift rate delta

real wiener_lupdf(reals y | reals alpha, reals tau, reals beta, reals
delta)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta and drift rate delta dropping constant
additive terms

boundaries
Stan returns the first passage time of the accumulation process over the upper
boundary only. To get the result for the lower boundary, use

wiener(y|α, τ, 1− β,−δ)

For more details, see the appendix of Vandekerckhove and Wabersich (2014).



19. Continuous Distributions on [0, 1]

The continuous distributions with outcomes in the interval [0, 1] are used to charac-
terized bounded quantities, including probabilities.

19.1. Beta distribution
Probability density function
If α ∈ R+ and β ∈ R+, then for θ ∈ (0, 1),

Beta(θ|α, β) = 1
B(α, β) θ

α−1 (1− θ)β−1,

where the beta function B() is as defined in section combinatorial functions.

Warning: If θ = 0 or θ = 1, then the probability is 0 and the log probability is −∞.
Similarly, the distribution requires strictly positive parameters, α, β > 0.

Sampling statement
theta ~ beta(alpha, beta)

Increment target log probability density with beta_lupdf(theta | alpha, beta).

Stan functions
real beta_lpdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0, 1] given positive prior successes (plus one)
alpha and prior failures (plus one) beta

real beta_lupdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0, 1] given positive prior successes (plus one)
alpha and prior failures (plus one) beta dropping constant additive terms

real beta_cdf(reals theta, reals alpha, reals beta)
The beta cumulative distribution function of theta in [0, 1] given positive prior
successes (plus one) alpha and prior failures (plus one) beta

real beta_lcdf(reals theta | reals alpha, reals beta)
The log of the beta cumulative distribution function of theta in [0, 1] given positive
prior successes (plus one) alpha and prior failures (plus one) beta

real beta_lccdf(reals theta | reals alpha, reals beta)
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The log of the beta complementary cumulative distribution function of theta in [0, 1]
given positive prior successes (plus one) alpha and prior failures (plus one) beta

R beta_rng(reals alpha, reals beta)
Generate a beta variate with positive prior successes (plus one) alpha and prior
failures (plus one) beta; may only be used in transformed data and generated
quantities blocks. For a description of argument and return types, see section
vectorized PRNG functions.

19.2. Beta proportion distribution
Probability density function
If µ ∈ (0, 1) and κ ∈ R+, then for θ ∈ (0, 1),

Beta_Proportion(θ|µ, κ) = 1
B(µκ, (1− µ)κ) θ

µκ−1 (1− θ)(1−µ)κ−1,

where the beta function B() is as defined in section combinatorial functions.

Warning: If θ = 0 or θ = 1, then the probability is 0 and the log probability is −∞.
Similarly, the distribution requires µ ∈ (0, 1) and strictly positive parameter, κ > 0.

Sampling statement
theta ~ beta_proportion(mu, kappa)

Increment target log probability density with beta_proportion_lupdf(theta |
mu, kappa).

Stan functions
real beta_proportion_lpdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta in (0, 1) given mean mu and precision
kappa

real beta_proportion_lupdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta in (0, 1) given mean mu and precision
kappa dropping constant additive terms

real beta_proportion_lcdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion cumulative distribution function of theta in (0, 1)
given mean mu and precision kappa

real beta_proportion_lccdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion complementary cumulative distribution function of
theta in (0, 1) given mean mu and precision kappa

R beta_proportion_rng(reals mu, reals kappa)
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Generate a beta_proportion variate with mean mu and precision kappa; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.



20. Circular Distributions

Circular distributions are defined for finite values y in any interval of length 2π.

20.1. Von Mises distribution
Probability density function
If µ ∈ R and κ ∈ R+, then for y ∈ R,

VonMises(y|µ, κ) = exp(κ cos(y − µ))
2πI0(κ) .

In order for this density to properly normalize, y must be restricted to some interval
(c, c+ 2π) of length 2π, because∫ c+2π

c

VonMises(y|µ, κ)dy = 1.

Similarly, if µ is a parameter, it will typically be restricted to the same range as y.

If κ > 0, a von Mises distribution with its 2π interval of support centered around its
location µ will have a single mode at µ; for example, restricting y to (−π, π) and
taking µ = 0 leads to a single local optimum at the mode µ. If the location µ is
not in the center of the support, the density is circularly translated and there will
be a second local maximum at the boundary furthest from the mode. Ideally, the
parameterization and support will be set up so that the bulk of the probability mass
is in a continuous interval around the mean µ.

For κ = 0, the Von Mises distribution corresponds to the circular uniform distribution
with density 1/(2π) (independently of the values of y or µ).

Sampling statement
y ~ von_mises(mu, kappa)

Increment target log probability density with von_mises_lupdf(y | mu, kappa).

Stan functions
R von_mises_lpdf(reals y | reals mu, reals kappa)
The log of the von mises density of y given location mu and scale kappa.

R von_mises_lupdf(reals y | reals mu, reals kappa)
The log of the von mises density of y given location mu and scale kappa dropping
constant additive terms.
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R von_mises_rng(reals mu, reals kappa)
Generate a Von Mises variate with location mu and scale kappa (i.e. returns values in
the interval [(µ mod 2π)− π, (µ mod 2π) + π]); may only be used in transformed
data and generated quantities blocks. For a description of argument and return
types, see section vectorized PRNG functions.

Numerical stability
Evaluating the Von Mises distribution for κ > 100 is numerically unstable in the
current implementation. Nathanael I. Lichti suggested the following workaround on
the Stan users group, based on the fact that as κ→∞,

VonMises(y|µ, κ)→ Normal(µ,
√

1/κ).

The workaround is to replace y ~ von_mises(mu,kappa) with

if (kappa < 100)
y ~ von_mises(mu, kappa);

else
y ~ normal(mu, sqrt(1 / kappa));



21. Bounded Continuous Distributions

The bounded continuous probabilities have support on a finite interval of real
numbers.

21.1. Uniform distribution
Probability density function
If α ∈ R and β ∈ (α,∞), then for y ∈ [α, β],

Uniform(y|α, β) = 1
β − α

.

Sampling statement
y ~ uniform(alpha, beta)

Increment target log probability density with uniform_lupdf(y | alpha, beta).

Stan functions
real uniform_lpdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta

real uniform_lupdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta
dropping constant additive terms

real uniform_cdf(reals y, reals alpha, reals beta)
The uniform cumulative distribution function of y given lower bound alpha and
upper bound beta

real uniform_lcdf(reals y | reals alpha, reals beta)
The log of the uniform cumulative distribution function of y given lower bound alpha
and upper bound beta

real uniform_lccdf(reals y | reals alpha, reals beta)
The log of the uniform complementary cumulative distribution function of y given
lower bound alpha and upper bound beta

R uniform_rng(reals alpha, reals beta)
Generate a uniform variate with lower bound alpha and upper bound beta; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

151



22. Distributions over Unbounded Vectors

The unbounded vector probability distributions have support on all of RK for some
fixed K.

22.1. Multivariate normal distribution
Probability density function
If K ∈ N, µ ∈ RK , and Σ ∈ RK×K is symmetric and positive definite, then for
y ∈ RK ,

MultiNormal(y|µ,Σ) = 1
(2π)K/2

1√
|Σ|

exp
(
−1

2(y − µ)>Σ−1 (y − µ)
)
,

where |Σ| is the absolute determinant of Σ.

Sampling statement
y ~ multi_normal(mu, Sigma)

Increment target log probability density with multi_normal_lupdf(y | mu,
Sigma).

Stan functions
The multivariate normal probability function is overloaded to allow the variate
vector y and location vector µ to be vectors or row vectors (or to mix the two
types). The density function is also vectorized, so it allows arrays of row vectors or
vectors as arguments; see section vectorized function signatures for a description of
vectorization.

real multi_normal_lpdf(vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and covariance matrix Sigma

real multi_normal_lupdf(vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and covariance matrix Sigma dropping constant additive terms

real multi_normal_lpdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma
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real multi_normal_lupdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma dropping constant additive terms

real multi_normal_lpdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma

real multi_normal_lupdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma dropping constant additive terms

real multi_normal_lpdf(row_vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma

real multi_normal_lupdf(row_vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma dropping constant additive terms

Although there is a direct multi-normal RNG function, if more than one result is
required, it’s much more efficient to Cholesky factor the covariance matrix and call
multi_normal_cholesky_rng; see section multi-variate normal, cholesky parame-
terization.

vector multi_normal_rng(vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix
Sigma; may only be used in transformed data and generated quantities blocks

vector multi_normal_rng(row_vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix
Sigma; may only be used in transformed data and generated quantities blocks

vectors multi_normal_rng(vectors mu, matrix Sigma)
Generate an array of multivariate normal variates with locations mu and covariance
matrix Sigma; may only be used in transformed data and generated quantities blocks

vectors multi_normal_rng(row_vectors mu, matrix Sigma)
Generate an array of multivariate normal variates with locations mu and covariance
matrix Sigma; may only be used in transformed data and generated quantities blocks

22.2. Multivariate normal distribution, precision parameteriza-
tion
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Probability density function
If K ∈ N, µ ∈ RK , and Ω ∈ RK×K is symmetric and positive definite, then for
y ∈ RK ,

MultiNormalPrecision(y|µ,Ω) = MultiNormal(y|µ,Ω−1)

Sampling statement
y ~ multi_normal_prec(mu, Omega)

Increment target log probability density with multi_normal_prec_lupdf(y | mu,
Omega).

Stan functions
real multi_normal_prec_lpdf(vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and positive definite precision matrix Omega

real multi_normal_prec_lupdf(vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and positive definite precision matrix Omega dropping constant additive terms

real multi_normal_prec_lpdf(vectors y | row_vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and positive definite precision matrix Omega

real multi_normal_prec_lupdf(vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and positive definite precision matrix Omega dropping constant additive terms

real multi_normal_prec_lpdf(row_vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and positive definite precision matrix Omega

real multi_normal_prec_lupdf(row_vectors y | vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and positive definite precision matrix Omega dropping constant additive terms

real multi_normal_prec_lpdf(row_vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and positive definite precision matrix Omega
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real multi_normal_prec_lupdf(row_vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and positive definite precision matrix Omega dropping constant
additive terms

22.3. Multivariate normal distribution, Cholesky parameteriza-
tion

Probability density function
If K ∈ N, µ ∈ RK , and L ∈ RK×K is lower triangular and such that LL> is positive
definite, then for y ∈ RK ,

MultiNormalCholesky(y|µ,L) = MultiNormal(y|µ,LL>).

If L is lower triangular and LLtop is a K×K positive definite matrix, then Lk,k must
be strictly positive for k ∈ 1:K. If an L is provided that is not the Cholesky factor of
a positive-definite matrix, the probability functions will raise errors.

Sampling statement
y ~ multi_normal_cholesky(mu, L)

Increment target log probability density with multi_normal_cholesky_lupdf(y |
mu, L).

Stan functions
real multi_normal_cholesky_lpdf(vectors y | vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and lower-triangular Cholesky factor of the covariance matrix L

real multi_normal_cholesky_lupdf(vectors y | vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and lower-triangular Cholesky factor of the covariance matrix L dropping constant
additive terms

real multi_normal_cholesky_lpdf(vectors y | row_vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L

real multi_normal_cholesky_lupdf(vectors y | row_vectors mu, matrix
L)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L dropping
constant additive terms
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real multi_normal_cholesky_lpdf(row_vectors y | vectors mu, matrix L)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L

real multi_normal_cholesky_lupdf(row_vectors y | vectors mu, matrix
L)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L dropping
constant additive terms

real multi_normal_cholesky_lpdf(row_vectors y | row_vectors mu,
matrix L)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

real multi_normal_cholesky_lupdf(row_vectors y | row_vectors mu,
matrix L)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L
dropping constant additive terms

vector multi_normal_cholesky_rng(vector mu, matrix L)
Generate a multivariate normal variate with location mu and lower-triangular
Cholesky factor of the covariance matrix L; may only be used in transformed data
and generated quantities blocks

vector multi_normal_cholesky_rng(row_vector mu, matrix L)
Generate a multivariate normal variate with location mu and lower-triangular
Cholesky factor of the covariance matrix L; may only be used in transformed data
and generated quantities blocks

vectors multi_normal_cholesky_rng(vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in trans-
formed data and generated quantities blocks

vectors multi_normal_cholesky_rng(row_vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in trans-
formed data and generated quantities blocks

22.4. Multivariate Gaussian process distribution
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Probability density function
If K,N ∈ N, Σ ∈ RN×N is symmetric, positive definite kernel matrix and w ∈ RK is
a vector of positive inverse scales, then for y ∈ RK×N ,

MultiGP(y|Σ, w) =
K∏
i=1

MultiNormal(yi|0, w−1
i Σ),

where yi is the ith row of y. This is used to efficiently handle Gaussian Processes
with multi-variate outputs where only the output dimensions share a kernel function
but vary based on their scale. Note that this function does not take into account the
mean prediction.

Sampling statement
y ~ multi_gp(Sigma, w)

Increment target log probability density with multi_gp_lupdf(y | Sigma, w).

Stan functions
real multi_gp_lpdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and
inverses scales w

real multi_gp_lupdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and
inverses scales w dropping constant additive terms

22.5. Multivariate Gaussian process distribution, Cholesky pa-
rameterization

Probability density function
If K,N ∈ N, L ∈ RN×N is lower triangular and such that LL> is positive definite
kernel matrix (implying Ln,n > 0 for n ∈ 1:N), and w ∈ RK is a vector of positive
inverse scales, then for y ∈ RK×N ,

MultiGPCholesky(y | L,w) =
K∏
i=1

MultiNormal(yi|0, w−1
i LL>),

where yi is the ith row of y. This is used to efficiently handle Gaussian Processes with
multi-variate outputs where only the output dimensions share a kernel function but
vary based on their scale. If the model allows parameterization in terms of Cholesky
factor of the kernel matrix, this distribution is also more efficient than MultiGP().
Note that this function does not take into account the mean prediction.
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Sampling statement
y ~ multi_gp_cholesky(L, w)

Increment target log probability density with multi_gp_cholesky_lupdf(y | L,
w).

Stan functions
real multi_gp_cholesky_lpdf(matrix y | matrix L, vector w)
The log of the multivariate GP density of matrix y given lower-triangular Cholesky
factor of the kernel matrix L and inverses scales w

real multi_gp_cholesky_lupdf(matrix y | matrix L, vector w)
The log of the multivariate GP density of matrix y given lower-triangular Cholesky
factor of the kernel matrix L and inverses scales w dropping constant additive terms

22.6. Multivariate Student-t distribution
Probability density function
If K ∈ N, ν ∈ R+, µ ∈ RK , and Σ ∈ RK×K is symmetric and positive definite, then
for y ∈ RK ,

MultiStudentT(y | ν, µ, Σ)

= 1
πK/2

1
νK/2

Γ((ν+K)/2)
Γ(ν/2)

1√
|Σ|

(
1 + 1

ν (y − µ)> Σ−1 (y − µ)
)−(ν+K)/2

.

Sampling statement
y ~ multi_student_t(nu, mu, Sigma)

Increment target log probability density with multi_student_t_lupdf(y | nu,
mu, Sigma).

Stan functions
real multi_student_t_lpdf(vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location vector(s) mu, and scale matrix Sigma

real multi_student_t_lupdf(vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location vector(s) mu, and scale matrix Sigma dropping constant additive terms

real multi_student_t_lpdf(vectors y | real nu, row_vectors mu, matrix
Sigma)
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The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location row vector(s) mu, and scale matrix Sigma

real multi_student_t_lupdf(vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location row vector(s) mu, and scale matrix Sigma dropping constant additive
terms

real multi_student_t_lpdf(row_vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location vector(s) mu, and scale matrix Sigma

real multi_student_t_lupdf(row_vectors y | real nu, vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location vector(s) mu, and scale matrix Sigma dropping constant
additive terms

real multi_student_t_lpdf(row_vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location row vector(s) mu, and scale matrix Sigma

real multi_student_t_lupdf(row_vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location row vector(s) mu, and scale matrix Sigma dropping constant
additive terms

vector multi_student_t_rng(real nu, vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location
mu, and scale matrix Sigma; may only be used in transformed data and generated
quantities blocks

vector multi_student_t_rng(real nu, row_vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location
mu, and scale matrix Sigma; may only be used in transfomed data and generated
quantities blocks

vectors multi_student_t_rng(real nu, vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
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locations mu, and scale matrix Sigma; may only be used in transformed data and
generated quantities blocks

vectors multi_student_t_rng(real nu, row_vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
locations mu, and scale matrix Sigma; may only be used in transformed data
andgenerated quantities blocks

22.7. Gaussian dynamic linear models
A Gaussian Dynamic Linear model is defined as follows, For t ∈ 1, . . . , T ,

yt ∼ N(F ′θt, V )
θt ∼ N(Gθt−1,W )
θ0 ∼ N(m0, C0)

where y is n × T matrix where rows are variables and columns are observations.
These functions calculate the log-likelihood of the observations marginalizing over
the latent states (p(y|F,G, V,W,m0, C0)). This log-likelihood is a system that is
calculated using the Kalman Filter. If V is diagonal, then a more efficient algorithm
which sequentially processes observations and avoids a matrix inversions can be
used (Durbin and Koopman 2001, sec. 6.4).

Sampling statement
y ~ gaussian_dlm_obs(F, G, V, W, m0, C0)

Increment target log probability density with gaussian_dlm_obs_lupdf(y | F, G,
V, W, m0, C0).

Stan functions
The following two functions differ in the type of their V, the first taking a full
observation covariance matrix V and the second a vector V representing the diagonal
of the observation covariance matrix. The sampling statement defined in the previous
section works with either type of observation V.

real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, matrix V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix F,
transition matrix G, observation covariance matrix V, system covariance matrix W,
and the initial state is distributed normal with mean m0 and covariance C0.

real gaussian_dlm_obs_lupdf(matrix y | matrix F, matrix G, matrix V,
matrix W, vector m0, matrix C0)
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The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix F,
transition matrix G, observation covariance matrix V, system covariance matrix W,
and the initial state is distributed normal with mean m0 and covariance C0. This
function drops constant additive terms.

real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, vector V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix
F, transition matrix G, observation covariance matrix with diagonal V, system
covariance matrix W, and the initial state is distributed normal with mean m0 and
covariance C0.

real gaussian_dlm_obs_lupdf(matrix y | matrix F, matrix G, vector V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation matrix
y in which rows are variables and columns are observations, design matrix F, tran-
sition matrix G, observation covariance matrix with diagonal V, system covariance
matrix W, and the initial state is distributed normal with mean m0 and covariance
C0. This function drops constant additive terms.



23. Simplex Distributions

The simplex probabilities have support on the unit K-simplex for a specified K.
A K-dimensional vector θ is a unit K-simplex if θk ≥ 0 for k ∈ {1, . . . ,K} and∑K

k=1 θk = 1.

23.1. Dirichlet distribution
Probability density function
If K ∈ N and α ∈ (R+)K , then for θ ∈ K-simplex,

Dirichlet(θ|α) =
Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
k .

Warning: If any of the components of θ satisfies θi = 0 or θi = 1, then the probability
is 0 and the log probability is −∞. Similarly, the distribution requires strictly positive
parameters, with αi > 0 for each i.

Meaning of Dirichlet parameters
A symmetric Dirichlet prior is [α, . . . , α]>. To code this in Stan,

data {
int<lower = 1> K;
real<lower = 0> alpha;

}
generated quantities {
vector[K] theta = dirichlet_rng(rep_vector(alpha, K));

}

Taking K = 10, here are the first five draws for α = 1. For α = 1, the distribution is
uniform over simplexes.

1) 0.17 0.05 0.07 0.17 0.03 0.13 0.03 0.03 0.27 0.05
2) 0.08 0.02 0.12 0.07 0.52 0.01 0.07 0.04 0.01 0.06
3) 0.02 0.03 0.22 0.29 0.17 0.10 0.09 0.00 0.05 0.03
4) 0.04 0.03 0.21 0.13 0.04 0.01 0.10 0.04 0.22 0.18
5) 0.11 0.22 0.02 0.01 0.06 0.18 0.33 0.04 0.01 0.01

That does not mean it’s uniform over the marginal probabilities of each element.
As the size of the simplex grows, the marginal draws become more and more
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concentrated below (not around) 1/K. When one component of the simplex is large,
the others must all be relatively small to compensate. For example, in a uniform
distribution on 10-simplexes, the probability that a component is greater than the
mean of 1/10 is only 39%. Most of the posterior marginal probability mass for each
component is in the interval (0, 0.1).

When the α value is small, the draws gravitate to the corners of the simplex. Here
are the first five draws for α = 0.001.

1) 3e-203 0e+00 2e-298 9e-106 1e+000 0e+00 0e+000 1e-047 0e+00 4e-279
2) 1e+000 0e+00 5e-279 2e-014 1e-275 0e+00 3e-285 9e-147 0e+00 0e+000
3) 1e-308 0e+00 1e-213 0e+000 0e+000 8e-75 0e+000 1e+000 4e-58 7e-112
4) 6e-166 5e-65 3e-068 3e-147 0e+000 1e+00 3e-249 0e+000 0e+00 0e+000
5) 2e-091 0e+00 0e+000 0e+000 1e-060 0e+00 4e-312 1e+000 0e+00 0e+000

Each row denotes a draw. Each draw has a single value that rounds to one and other
values that are very close to zero or rounded down to zero.

As α increases, the draws become increasingly uniform. For α = 1000,

1) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
2) 0.10 0.10 0.09 0.10 0.10 0.10 0.11 0.10 0.10 0.10
3) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
4) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
5) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Sampling statement
theta ~ dirichlet(alpha)

Increment target log probability density with dirichlet_lupdf(theta | alpha).

Stan functions
real dirichlet_lpdf(vector theta | vector alpha)
The log of the Dirichlet density for simplex theta given prior counts (plus one) alpha

real dirichlet_lupdf(vector theta | vector alpha)
The log of the Dirichlet density for simplex theta given prior counts (plus one) alpha
dropping constant additive terms

vector dirichlet_rng(vector alpha)
Generate a Dirichlet variate with prior counts (plus one) alpha; may only be used in
transformed data and generated quantities blocks



24. Correlation Matrix Distributions

The correlation matrix distributions have support on the (Cholesky factors of) corre-
lation matrices. A Cholesky factor L for a K ×K correlation matrix Σ of dimension
K has rows of unit length so that the diagonal of LL> is the unit K-vector. Even
though models are usually conceptualized in terms of correlation matrices, it is better
to operationalize them in terms of their Cholesky factors. If you are interested in
the posterior distribution of the correlations, you can recover them in the generated
quantities block via

generated quantities {
corr_matrix[K] Sigma;
Sigma = multiply_lower_tri_self_transpose(L);

}

24.1. LKJ correlation distribution
Probability density function
For η > 0, if Σ a positive-definite, symmetric matrix with unit diagonal (i.e., a
correlation matrix), then

LkjCorr(Σ|η) ∝ det (Σ)(η−1)
.

The expectation is the identity matrix for any positive value of the shape parameter η,
which can be interpreted like the shape parameter of a symmetric beta distribution:

• if η = 1, then the density is uniform over correlation matrices of order K;

• if η > 1, the identity matrix is the modal correlation matrix, with a sharper
peak in the density at the identity matrix for larger η; and

• for 0 < η < 1, the density has a trough at the identity matrix.

• if η were an unknown parameter, the Jeffreys prior is proportional

to
√

2
∑K−1
k=1

(
ψ1
(
η + K−k−1

2
)
− 2ψ1 (2η +K − k − 1)

)
, where ψ1() is the

trigamma function

See (Lewandowski, Kurowicka, and Joe 2009) for definitions. However, it is much
better computationally to work directly with the Cholesky factor of Σ, so this
distribution should never be explicitly used in practice.
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Sampling statement
y ~ lkj_corr(eta)

Increment target log probability density with lkj_corr_lupdf(y | eta).

Stan functions
real lkj_corr_lpdf(matrix y | real eta)
The log of the LKJ density for the correlation matrix y given nonnegative shape eta.
lkj_corr_cholesky_lpdf is faster, more numerically stable, uses less memory, and
should be preferred to this.

real lkj_corr_lupdf(matrix y | real eta)
The log of the LKJ density for the correlation matrix y given nonnegative shape
eta dropping constant additive terms. lkj_corr_cholesky_lupdf is faster, more
numerically stable, uses less memory, and should be preferred to this.

matrix lkj_corr_rng(int K, real eta)
Generate a LKJ random correlation matrix of order K with shape eta; may only be
used in transformed data and generated quantities blocks

24.2. Cholesky LKJ correlation distribution
Stan provides an implicit parameterization of the LKJ correlation matrix density in
terms of its Cholesky factor, which you should use rather than the explicit parameter-
ization in the previous section. For example, if L is a Cholesky factor of a correlation
matrix, then

L ~ lkj_corr_cholesky(2.0); # implies L * L' ~ lkj_corr(2.0);

Because Stan requires models to have support on all valid constrained parameters, L
will almost always1 be a parameter declared with the type of a Cholesky factor for a
correlation matrix; for example,

parameters { cholesky_factor_corr[K] L; # rather than corr_matrix[K] Sigma; // ...

Probability density function
For η > 0, if L is a K ×K lower-triangular Cholesky factor of a symmetric positive-
definite matrix with unit diagonal (i.e., a correlation matrix), then

LkjCholesky(L|η) ∝ |J |det(LL>)(η−1) =
K∏
k=2

LK−k+2η−2
kk .

1It is possible to build up a valid L within Stan, but that would then require Jacobian adjustments to
imply the intended posterior.
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See the previous section for details on interpreting the shape parameter η. Note that
even if η = 1, it is still essential to evaluate the density function because the density
of L is not constant, regardless of the value of η, even though the density of LL> is
constant iff η = 1.

A lower triangular L is a Cholesky factor for a correlation matrix if and only if
Lk,k > 0 for k ∈ 1:K and each row Lk has unit Euclidean length.

Sampling statement
L ~ lkj_corr_cholesky(eta)

Increment target log probability density with lkj_corr_cholesky_lupdf(L | eta).

Stan functions
real lkj_corr_cholesky_lpdf(matrix L | real eta)
The log of the LKJ density for the lower-triangular Cholesky factor L of a correlation
matrix given shape eta

real lkj_corr_cholesky_lupdf(matrix L | real eta)
The log of the LKJ density for the lower-triangular Cholesky factor L of a correlation
matrix given shape eta dropping constant additive terms

matrix lkj_corr_cholesky_rng(int K, real eta)
Generate a random Cholesky factor of a correlation matrix of order K that is dis-
tributed LKJ with shape eta; may only be used in transformed data and generated
quantities blocks



25. Covariance Matrix Distributions

The covariance matrix distributions have support on symmetric, positive-definite
K ×K matrices.

25.1. Wishart distribution
Probability density function
If K ∈ N, ν ∈ (K − 1,∞), and S ∈ RK×K is symmetric and positive definite, then
for symmetric and positive-definite W ∈ RK×K ,

Wishart(W |ν, S) = 1
2νK/2

1
ΓK
(
ν
2
) |S|−ν/2 |W |(ν−K−1)/2 exp

(
−1

2 tr
(
S−1W

))
,

where tr() is the matrix trace function, and ΓK() is the multivariate Gamma function,

ΓK(x) = 1
πK(K−1)/4

K∏
k=1

Γ
(
x+ 1− k

2

)
.

Sampling statement
W ~ wishart(nu, Sigma)

Increment target log probability density with wishart_lupdf(W | nu, Sigma).

Stan functions
real wishart_lpdf(matrix W | real nu, matrix Sigma)
The log of the Wishart density for symmetric and positive-definite matrix W given
degrees of freedom nu and symmetric and positive-definite scale matrix Sigma

real wishart_lupdf(matrix W | real nu, matrix Sigma)
The log of the Wishart density for symmetric and positive-definite matrix W given
degrees of freedom nu and symmetric and positive-definite scale matrix Sigma
dropping constant additive terms

matrix wishart_rng(real nu, matrix Sigma)
Generate a Wishart variate with degrees of freedom nu and symmetric and positive-
definite scale matrix Sigma; may only be used in transformed data and generated
quantities blocks
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25.2. Inverse Wishart distribution
Probability density function
If K ∈ N, ν ∈ (K − 1,∞), and S ∈ RK×K is symmetric and positive definite, then
for symmetric and positive-definite W ∈ RK×K ,

InvWishart(W |ν, S) = 1
2νK/2

1
ΓK
(
ν
2
) |S|ν/2 |W |−(ν+K+1)/2 exp

(
−1

2 tr(SW−1)
)
.

Sampling statement
W ~ inv_wishart(nu, Sigma)

Increment target log probability density with inv_wishart_lupdf(W | nu, Sigma).

Stan functions
real inv_wishart_lpdf(matrix W | real nu, matrix Sigma)
The log of the inverse Wishart density for symmetric and positive-definite matrix W
given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma

real inv_wishart_lupdf(matrix W | real nu, matrix Sigma)
The log of the inverse Wishart density for symmetric and positive-definite matrix W
given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma
dropping constant additive terms

matrix inv_wishart_rng(real nu, matrix Sigma)
Generate an inverse Wishart variate with degrees of freedom nu and symmetric and
positive-definite scale matrix Sigma; may only be used in transformed data and
generated quantities blocks
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26. Hidden Markov Models

An elementary first-order Hidden Markov model is a probabilistic model over N
observations, yn, and N hidden states, xn, which can be fully defined by the condi-
tional distributions p(yn | xn, φ) and p(xn | xn−1, φ). Here we make the dependency
on additional model parameters, φ, explicit. When x is continuous, the user can
explicitly encode these distributions in Stan and use Markov chain Monte Carlo to
integrate x out.

When each state x takes a value over a discrete and finite set, say {1, 2, ...,K}, we
can take advantage of the dependency structure to marginalize x and compute
p(y | φ). We start by defining the conditional observational distribution, stored in a
K ×N matrix ω with

ωkn = p(yn | xn = k, φ).

Next, we introduce the K ×K transition matrix, Γ, with

Γij = p(xn = j | xn−1 = i, φ).

Each row defines a probability distribution and must therefore be a simplex (i.e. its
components must add to 1). Currently, Stan only supports stationary transitions
where a single transition matrix is used for all transitions. Finally we define the
initial state K-vector ρ, with

ρk = p(x0 = k | φ).

The Stan functions that support this type of model are special in that the user does
not explicitly pass y and φ as arguments. Instead, the user passes logω, Γ, and ρ,
which in turn depend on y and φ.

26.1. Stan functions
real hmm_marginal(matrix log_omega, matrix Gamma, vector rho)
Returns the log probability density of y, with xn integrated out at each iteration. The
arguments represent (1) the log density of each output, (2) the transition matrix,
and (3) the initial state vector.

• log_omega : logωkn = log p(yn | xn = k, φ), log density of each output,

• Gamma : Γij = p(xn = j|xn−1 = i, φ), the transition matrix,
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• rho : ρk = p(x0 = k | φ), the initial state probability.

int[] hmm_latent_rng(matrix log_omega, matrix Gamma, vector rho)
Returns a length N array of integers over {1, ...,K}, sampled from the joint posterior
distribution of the hidden states, p(x | φ, y). May be only used in transformed data
and generated quantities.

matrix hmm_hidden_state_prob(matrix log_omega, matrix Gamma, vector
rho)
Returns the matrix of marginal posterior probabilities of each hidden state value.
This will be a K ×N matrix. The nth column is a simplex of probabilities for the nth

variable. Moreover, let A be the output. Then Aij = p(xj = i | φ, y). This function
may only be used in transformed data and generated quantities.
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27. Mathematical Functions

This appendix provides the definition of several mathematical functions used through-
out the manual.

27.1. Beta
The beta function, B(a, b), computes the normalizing constant for the beta distribu-
tion, and is defined for a > 0 and b > 0 by

B(a, b) =
∫ 1

0
ua−1(1− u)b−1 du = Γ(a) Γ(b)

Γ(a+ b) ,

where Γ(x) is the Gamma function.

27.2. Incomplete beta
The incomplete beta function, B(x; a, b), is defined for x ∈ [0, 1] and a, b ≥ 0 such
that a+ b 6= 0 by

B(x; a, b) =
∫ x

0
ua−1 (1− u)b−1 du,

where B(a, b) is the beta function defined in appendix. If x = 1, the incomplete beta
function reduces to the beta function, B(1; a, b) = B(a, b).

The regularized incomplete beta function divides the incomplete beta function by
the beta function,

Ix(a, b) = B(x; a, b)
B(a, b) .

27.3. Gamma
The gamma function, Γ(x), is the generalization of the factorial function to continu-
ous variables, defined so that for positive integers n,

Γ(n+ 1) = n!

Generalizing to all positive numbers and non-integer negative numbers,

Γ(x) =
∫ ∞

0
ux−1 exp(−u) du.
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27.4. Digamma
The digamma function Ψ is the derivative of the log Γ function,

Ψ(u) = d

du
log Γ(u) = 1

Γ(u)
d

du
Γ(u).
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(int y | matrix x, real alpha,
vector beta): real, 97

(int y | matrix x, vector alpha,
vector beta): real, 97

177
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(int[] y | matrix x, real alpha,
vector beta): real, 98

(int[] y | matrix x, vector alpha,
vector beta): real, 98

(int[] y | row_vector x, real alpha,
vector beta): real, 97

(int[] y | row_vector x, vector
alpha, vector beta): real, 98

bernoulli_logit_lpmf
(ints y | reals alpha): real, 96

bernoulli_logit_lupmf
(ints y | reals alpha): real, 96

bernoulli_logit_rng
(reals alpha): R, 96

bernoulli_lpmf
(ints y | reals theta): real, 95

bernoulli_lupmf
(ints y | reals theta): real, 95

bernoulli_rng
(reals theta): R, 95

bessel_first_kind
(T1 x, T2 y): R, 26
(int v, real x): real, 25

bessel_second_kind
(T1 x, T2 y): R, 26
(int v, real x): real, 26

beta
(T1 x, T2 y): R, 23
(real alpha, real beta): real, 23
sampling statement, 146

beta_binomial
sampling statement, 101

beta_binomial_cdf
(ints n, ints N, reals alpha, reals

beta): real, 101
beta_binomial_lccdf

(ints n | ints N, reals alpha, reals
beta): real, 102

beta_binomial_lcdf
(ints n | ints N, reals alpha, reals

beta): real, 101
beta_binomial_lpmf

(ints n | ints N, reals alpha, reals
beta): real, 101

beta_binomial_lupmf
(ints n | ints N, reals alpha, reals

beta): real, 101
beta_binomial_rng

(ints N, reals alpha, reals beta):

R, 102
beta_cdf

(reals theta, reals alpha, reals
beta): real, 146

beta_lccdf
(reals theta | reals alpha, reals

beta): real, 146
beta_lcdf

(reals theta | reals alpha, reals
beta): real, 146

beta_lpdf
(reals theta | reals alpha, reals

beta): real, 146
beta_lupdf

(reals theta | reals alpha, reals
beta): real, 146

beta_proportion
sampling statement, 147

beta_proportion_lccdf
(reals theta | reals mu, reals

kappa): real, 147
beta_proportion_lcdf

(reals theta | reals mu, reals
kappa): real, 147

beta_proportion_lpdf
(reals theta | reals mu, reals

kappa): real, 147
beta_proportion_lupdf

(reals theta | reals mu, reals
kappa): real, 147

beta_proportion_rng
(reals mu, reals kappa): R, 147

beta_rng
(reals alpha, reals beta): R, 147

binary_log_loss
(T1 x, T2 y): R, 23
(int y, real y_hat): real, 23

binomia_cdf
(ints n, ints N, reals theta): real,

99
binomia_lccdf

(ints n | ints N, reals theta):
real, 100

binomia_lcdf
(ints n | ints N, reals theta):

real, 99
binomia_lpmf

(ints n | ints N, reals theta):
real, 99
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binomia_lupmf
(ints n | ints N, reals theta):

real, 99
binomial

sampling statement, 99
binomial_coefficient_log

(T1 x, T2 y): R, 25
(real x, real y): real, 25

binomial_logit
sampling statement, 100

binomial_logit_lpmf
(ints n | ints N, reals alpha):

real, 101
binomial_logit_lupmf

(ints n | ints N, reals alpha):
real, 101

binomial_rng
(ints N, reals theta): R, 100

block
(matrix x, int i, int j, int n_rows,

int n_cols): matrix, 51
categorical

sampling statement, 103
categorical_logit

sampling statement, 103
categorical_logit_glm

sampling statement, 104
categorical_logit_glm_lpmf

(int y | matrix x, vector alpha,
matrix beta): real, 105

(int y | row_vector x, vector alpha,
matrix beta): real, 104

(int[] y | matrix x, vector alpha,
matrix beta): real, 105

(int[] y | row_vector x, vector
alpha, matrix beta): real, 105

categorical_logit_glm_lupmf
(int y | matrix x, vector alpha,

matrix beta): real, 105
(int y | row_vector x, vector alpha,

matrix beta): real, 104
(int[] y | matrix x, vector alpha,

matrix beta): real, 105
(int[] y | row_vector x, vector

alpha, matrix beta): real, 105
categorical_logit_lpmf

(ints y | vector beta): real, 103
categorical_logit_lupmf

(ints y | vector beta): real, 103

categorical_logit_rng
(vector beta): int, 104

categorical_lpmf
(ints y | vector theta): real, 103

categorical_lupmf
(ints y | vector theta): real, 103

categorical_rng
(vector theta): int, 103

cauchy
sampling statement, 129

cauchy_cdf
(reals y, reals mu, reals sigma):

real, 129
cauchy_lccdf

(reals y | reals mu, reals sigma):
real, 129

cauchy_lcdf
(reals y | reals mu, reals sigma):

real, 129
cauchy_lpdf

(reals y | reals mu, reals sigma):
real, 129

cauchy_lupdf
(reals y | reals mu, reals sigma):

real, 129
cauchy_rng

(reals mu, reals sigma): R, 129
cbrt

(T x): R, 20
ceil

(T x): R, 19
chi_square

sampling statement, 135
chi_square_cdf

(reals y, reals nu): real, 135
chi_square_lccdf

(reals y | reals nu): real, 135
chi_square_lcdf

(reals y | reals nu): real, 135
chi_square_lpdf

(reals y | reals nu): real, 135
chi_square_lupdf

(reals y | reals nu): real, 135
chi_square_rng

(reals nu): R, 135
chol2inv

(matrix L): matrix, 58
cholesky_decompose

(matrix A): matrix, 60
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choose
(T1 x, T2 y): R, 25
(int x, int y): int, 25

col
(matrix x, int n): vector, 51

cols
(matrix x): int, 38
(row_vector x): int, 38
(vector x): int, 38

columns_dot_product
(matrix x, matrix y): row_vector, 43
(row_vector x, row_vector y):

row_vector, 43
(vector x, vector y): row_vector, 43

columns_dot_self
(matrix x): row_vector, 44
(row_vector x): row_vector, 44
(vector x): row_vector, 43

cos
(T x): R, 21

cosh
(T x): R, 21

cov_exp_quad
(real[] x, real alpha, real rho):

matrix, 55
(real[] x1, real[] x2, real alpha,

real rho): matrix, 55
(row_vectors x, real alpha, real

rho): matrix, 55
(row_vectors x1, row_vectors x2,

real alpha, real rho): matrix,
55

(vectors x, real alpha, real rho):
matrix, 55

(vectors x1, vectors x2, real alpha,
real rho): matrix, 55

crossprod
(matrix x): matrix, 44

csr_extract_u
(matrix a): int[], 64

csr_extract_v
(matrix a): int[], 64

csr_extract_w
(matrix a): vector, 64

csr_matrix_times_vector
(int m, int n, vector w, int[] v,

int[] u, vector b): vector, 65
csr_to_dense_matrix

(int m, int n, vector w, int[] v,

int[] u): matrix, 64
cumulative_sum

(real[] x): real[], 54
(row_vector rv): row_vector, 54
(vector v): vector, 54

determinant
(matrix A): real, 58

diag_matrix
(vector x): matrix, 49

diag_post_multiply
(matrix m, row_vector rv): matrix,

45
(matrix m, vector v): matrix, 45

diag_pre_multiply
(row_vector rv, matrix m): matrix,

45
(vector v, matrix m): matrix, 45

diagonal
(matrix x): vector, 48

digamma
(T x): R, 24

dims
(T x): int[], 34

dirichlet
sampling statement, 163

dirichlet_rng
(vector alpha): vector, 163

discrete_range
sampling statement, 106

discrete_range_cdf
(ints n, ints N, reals theta): real,

106
discrete_range_lccdf

(ints n | ints N, reals theta):
real, 106

discrete_range_lcdf
(ints n | ints N, reals theta):

real, 106
discrete_range_lpmf

(ints y | ints l, ints u): real, 106
discrete_range_lupmf

(ints y | ints l, ints u): real, 106
discrete_range_rng

(ints l, ints u): int, 106
distance

(row_vector x, row_vector y): real,
33

(row_vector x, vector y): real, 33
(vector x, row_vector y): real, 33
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(vector x, vector y): real, 32
dot_product

(row_vector x, row_vector y): real,
43

(row_vector x, vector y): real, 43
(vector x, row_vector y): real, 43
(vector x, vector y): real, 43

dot_self
(row_vector x): real, 43
(vector x): real, 43

double_exponential
sampling statement, 130

double_exponential_cdf
(reals y, reals mu, reals sigma):

real, 130
double_exponential_lccdf

(reals y | reals mu, reals sigma):
real, 130

double_exponential_lcdf
(reals y | reals mu, reals sigma):

real, 130
double_exponential_lpdf

(reals y | reals mu, reals sigma):
real, 130

double_exponential_lupdf
(reals y | reals mu, reals sigma):

real, 130
double_exponential_rng

(reals mu, reals sigma): R, 131
e

(): real, 12
eigenvalues_sym

(matrix A): vector, 59
eigenvectors_sym

(matrix A): matrix, 59
erf

(T x): R, 22
erfc

(T x): R, 22
exp

(T x): R, 20
exp2

(T x): R, 20
exp_mod_normal

sampling statement, 126
exp_mod_normal_cdf

(reals y, reals mu, reals sigma,
reals lambda): real, 126

exp_mod_normal_lccdf

(reals y | reals mu, reals sigma,
reals lambda): real, 126

exp_mod_normal_rng
(reals mu, reals sigma, reals

lambda): R, 126
expm1

(T x): R, 28
exponential

sampling statement, 137
exponential_cdf

(reals y, reals beta): real, 137
exponential_lccdf

(reals y | reals beta): real, 138
exponential_lcdf

(reals y | reals beta): real, 138
exponential_lpdf

(reals y | reals beta): real, 137
exponential_lupdf

(reals y | reals beta): real, 137
exponential_rng

(reals beta): R, 138
fabs

(T x): R, 18
falling_factorial

(T1 x, T2 y): R, 27
(real x, real n): real, 27

fdim
(T1 x, T2 y): R, 18
(real x, real y): real, 18

floor
(T x): R, 19

fma
(real x, real y, real z): real, 28

fmax
(T1 x, T2 y): R, 19
(real x, real y): real, 18

fmin
(T1 x, T2 y): R, 18
(real x, real y): real, 18

fmod
(T1 x, T2 y): R, 19
(real x, real y): real, 19

frechet
sampling statement, 141

frechet_cdf
(reals y, reals alpha, reals sigma):

real, 141
frechet_lccdf
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(reals y | reals alpha, reals
sigma): real, 141

frechet_lcdf
(reals y | reals alpha, reals

sigma): real, 141
frechet_lpdf

(reals y | reals alpha, reals
sigma): real, 141

frechet_lupdf
(reals y | reals alpha, reals

sigma): real, 141
frechet_rng

(reals alpha, reals sigma): R, 141
gamma

sampling statement, 138
gamma_cdf

(reals y, reals alpha, reals beta):
real, 138

gamma_lccdf
(reals y | reals alpha, reals beta):

real, 138
gamma_lcdf

(reals y | reals alpha, reals beta):
real, 138

gamma_lpdf
(reals y | reals alpha, reals beta):

real, 138
gamma_lupdf

(reals y | reals alpha, reals beta):
real, 138

gamma_p
(T1 x, T2 y): R, 24
(real a, real z): real, 24

gamma_q
(T1 x, T2 y): R, 25
(real a, real z): real, 24

gamma_rng
(reals alpha, reals beta): R, 139

gaussian_dlm_obs
sampling statement, 160

gaussian_dlm_obs_lpdf
(matrix y | matrix F, matrix G,

matrix V, matrix W, vector m0,
matrix C0): real, 160

(matrix y | matrix F, matrix G,
vector V, matrix W, vector m0,
matrix C0): real, 161

gaussian_dlm_obs_lupdf
(matrix y | matrix F, matrix G,

matrix V, matrix W, vector m0,
matrix C0): real, 160

(matrix y | matrix F, matrix G,
vector V, matrix W, vector m0,
matrix C0): real, 161

generalized_inverse
(matrix A): matrix, 59

get_lp
(): real, 13

gumbel
sampling statement, 132

gumbel_cdf
(reals y, reals mu, reals beta):

real, 132
gumbel_lccdf

(reals y | reals mu, reals beta):
real, 132

gumbel_lcdf
(reals y | reals mu, reals beta):

real, 132
gumbel_lpdf

(reals y | reals mu, reals beta):
real, 132

gumbel_lupdf
(reals y | reals mu, reals beta):

real, 132
gumbel_rng

(reals mu, reals beta): R, 132
head

(T[] sv, int n): T[], 51
(row_vector rv, int n): row_vector,

51
(vector v, int n): vector, 51

hmm_hidden_state_prob
(matrix log_omega, matrix Gamma,

vector rho): matrix, 171
hmm_latent_rng

(matrix log_omega, matrix Gamma,
vector rho): int[], 171

hmm_marginal
(matrix log_omega, matrix Gamma,

vector rho): real, 170
hypergeometric

sampling statement, 102
hypergeometric_rng

(int N, int a, int2 b): int, 102
hypot

(T1 x, T2 y): R, 21
(real x, real y): real, 21
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identity_matrix_matrix
(int k): matrix, 49

inc_beta
(real alpha, real beta, real x):

real, 23
int_step

(int x): int, 6
(real x): int, 6

integrate_1d
(function integrand, real a, real b,

real[] theta, real[] x_r, int[]
x_i): real, 80

(function integrand, real a, real b,
real[] theta, real[] x_r, int[]
x_i, real relative_tolerance):
real, 80

integrate_ode
(function ode, real[] initial_state,

real initial_time, real[]
times, real[] theta, real[]
x_r, int[] x_i): real[ , ], 86

integrate_ode_adams
(function ode, real[] initial_state,

real initial_time, real[]
times, real[] theta, data
real[] x_r, data int[] x_i):
real[ , ], 86

(function ode, real[] initial_state,
real initial_time, real[]
times, real[] theta, data
real[] x_r, data int[]
x_i, data real rel_tol,
data real abs_tol, data int
max_num_steps): real[ , ], 86

integrate_ode_bdf
(function ode, real[] initial_state,

real initial_time, real[]
times, real[] theta, data
real[] x_r, data int[] x_i):
real[ , ], 86

(function ode, real[] initial_state,
real initial_time, real[]
times, real[] theta, data
real[] x_r, data int[]
x_i, data real rel_tol,
data real abs_tol, data int
max_num_steps): real[ , ], 86

integrate_ode_rk45
(function ode, real[] initial_state,

real initial_time, real[]
times, real[] theta, real[]
x_r, int[] x_i): real[ , ], 85

(function ode, real[] initial_state,
real initial_time, real[]
times, real[] theta,
real[] x_r, int[] x_i, real
rel_tol, real abs_tol, int
max_num_steps): real[ , ], 85

inv
(T x): R, 20

inv_chi_square
sampling statement, 136

inv_chi_square_cdf
(reals y, reals nu): real, 136

inv_chi_square_lccdf
(reals y | reals nu): real, 136

inv_chi_square_lcdf
(reals y | reals nu): real, 136

inv_chi_square_lpdf
(reals y | reals nu): real, 136

inv_chi_square_lupdf
(reals y | reals nu): real, 136

inv_chi_square_rng
(reals nu): R, 136

inv_cloglog
(T x): R, 22

inv_gamma
sampling statement, 139

inv_gamma_cdf
(reals y, reals alpha, reals beta):

real, 139
inv_gamma_lccdf

(reals y | reals alpha, reals beta):
real, 139

inv_gamma_lcdf
(reals y | reals alpha, reals beta):

real, 139
inv_gamma_lpdf

(reals y | reals alpha, reals beta):
real, 139

inv_gamma_lupdf
(reals y | reals alpha, reals beta):

real, 139
inv_gamma_rng

(reals alpha, reals beta): R, 139
inv_logit

(T x): R, 22
inv_phi
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(T x): R, 22
inv_sqrt

(T x): R, 20
inv_square

(T x): R, 20
inv_wishart

sampling statement, 168
inv_wishart_lpdf

(matrix W | real nu, matrix Sigma):
real, 168

inv_wishart_lupdf
(matrix W | real nu, matrix Sigma):

real, 168
inv_wishart_rng

(real nu, matrix Sigma): matrix, 168
inverse

(matrix A): matrix, 58
inverse_spd

(matrix A): matrix, 58
is_inf

(real x): int, 16
is_nan

(real x): int, 16
lambert_w0

(T x): R, 30
lambert_wm1

(T x): R, 30
lbeta

(T1 x, T2 y): R, 23
(real alpha, real beta): real, 23

lchoose
(real x, real y): real, 27

ldexp
(T1 x, T2 y): R, 28
(real x, int y): real, 28

lgamma
(T x): R, 24

linspaced_array
(int n, data real lower, data real

upper): real[], 49
linspaced_int_array

(int n, int lower, int upper):
real[], 49

linspaced_row_vector
(int n, data real lower, data real

upper): row_vector, 49
linspaced_vector

(int n, data real lower, data real
upper): vector, 49

lkj_corr
sampling statement, 165

lkj_corr_cholesky
sampling statement, 166

lkj_corr_cholesky_lpdf
(matrix L | real eta): real, 166

lkj_corr_cholesky_lupdf
(matrix L | real eta): real, 166

lkj_corr_cholesky_rng
(int K, real eta): matrix, 166

lkj_corr_lpdf
(matrix y | real eta): real, 165

lkj_corr_lupdf
(matrix y | real eta): real, 165

lkj_corr_rng
(int K, real eta): matrix, 165

lmgamma
(T1 x, T2 y): R, 24
(int n, real x): real, 24

lmultiply
(T1 x, T2 y): R, 29
(real x, real y): real, 29

log
(T x): R, 20

log10
(): real, 12
(T x): R, 20

log1m
(T x): R, 29

log1m_exp
(T x): R, 29

log1m_inv_logit
(T x): R, 30

log1p
(T x): R, 29

log1p_exp
(T x): R, 29

log2
(): real, 12
(T x): R, 20

log_determinant
(matrix A): real, 58

log_diff_exp
(T1 x, T2 y): R, 29
(real x, real y): real, 29

log_falling_factorial
(real x, real n): real, 27

log_inv_logit
(T x): R, 30
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log_inv_logit_diff
(T1 x, T2 y): R, 30

log_mix
(real theta, real lp1, real lp2):

real, 29
log_modified_bessel_first_kind

(T1 x, T2 y): R, 26
(real v, real z): real, 26

log_rising_factorial
(T1 x, T2 y): R, 28
(real x, real n): real, 28

log_softmax
(vector x): vector, 54

log_sum_exp
(matrix x): real, 45
(real x, real y): real, 29
(real[] x): real, 32
(row_vector x): real, 45
(vector x): real, 45

logistic
sampling statement, 131

logistic_cdf
(reals y, reals mu, reals sigma):

real, 131
logistic_lccdf

(reals y | reals mu, reals sigma):
real, 131

logistic_lcdf
(reals y | reals mu, reals sigma):

real, 131
logistic_lpdf

(reals y | reals mu, reals sigma):
real, 131

logistic_lupdf
(reals y | reals mu, reals sigma):

real, 131
logistic_rng

(reals mu, reals sigma): R, 131
logit

(T x): R, 22
lognormal

sampling statement, 134
lognormal_cdf

(reals y, reals mu, reals sigma):
real, 134

lognormal_lccdf
(reals y | reals mu, reals sigma):

real, 134
lognormal_lcdf

(reals y | reals mu, reals sigma):
real, 134

lognormal_lpdf
(reals y | reals mu, reals sigma):

real, 134
lognormal_lupdf

(reals y | reals mu, reals sigma):
real, 134

lognormal_rng
(reals mu, reals sigma): R, 134

machine_precision
(): real, 12

map_rect
(F f, vector phi, vector[] theta,

data real[,] x_r, data int[,]
x_i): vector, 84

matrix_exp
(matrix A): matrix, 57

matrix_exp_multiply
(matrix A, matrix B): matrix, 57

matrix_power
(matrix A, int B): matrix, 57

max
(int x, int y): int, 6
(int[] x): int, 31
(matrix x): real, 46
(real[] x): real, 31
(row_vector x): real, 46
(vector x): real, 46

mdivide_left_spd
(matrix A, matrix B): vector, 57
(matrix A, vector b): matrix, 57

mdivide_left_tri_low
(matrix A, matrix B): matrix, 56
(matrix A, vector b): vector, 56

mdivide_right_spd
(matrix B, matrix A): matrix, 57
(row_vector b, matrix A): row_vector,

57
mdivide_right_tri_low

(matrix B, matrix A): matrix, 56
(row_vector b, matrix A): row_vector,

56
mean

(matrix x): real, 46
(real[] x): real, 32
(row_vector x): real, 46
(vector x): real, 46

min
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(int x, int y): int, 6
(int[] x): int, 31
(matrix x): real, 46
(real[] x): real, 31
(row_vector x): real, 46
(vector x): real, 46

modified_bessel_first_kind
(T1 x, T2 y): R, 26
(int v, real z): real, 26

modified_bessel_second_kind
(T1 x, T2 y): R, 27
(int v, real z): real, 26

multi_gp
sampling statement, 157

multi_gp_cholesky
sampling statement, 158

multi_gp_cholesky_lpdf
(matrix y | matrix L, vector w):

real, 158
multi_gp_cholesky_lupdf

(matrix y | matrix L, vector w):
real, 158

multi_gp_lpdf
(matrix y | matrix Sigma, vector w):

real, 157
multi_gp_lupdf

(matrix y | matrix Sigma, vector w):
real, 157

multi_normal
sampling statement, 152

multi_normal_cholesky
sampling statement, 155

multi_normal_cholesky_lpdf
(row_vectors y | row_vectors mu,

matrix L): real, 156
(row_vectors y | vectors mu, matrix

L): real, 155
(vectors y | row_vectors mu, matrix

L): real, 155
(vectors y | vectors mu, matrix L):

real, 155
multi_normal_cholesky_lupdf

(row_vectors y | row_vectors mu,
matrix L): real, 156

(row_vectors y | vectors mu, matrix
L): real, 156

(vectors y | row_vectors mu, matrix
L): real, 155

(vectors y | vectors mu, matrix L):

real, 155
multi_normal_cholesky_rng

(row_vector mu, matrix L): vector,
156

(row_vectors mu, matrix L): vectors,
156

(vector mu, matrix L): vector, 156
(vectors mu, matrix L): vectors, 156

multi_normal_lpdf
(row_vectors y | row_vectors mu,

matrix Sigma): real, 153
(row_vectors y | vectors mu, matrix

Sigma): real, 153
(vectors y | row_vectors mu, matrix

Sigma): real, 152
(vectors y | vectors mu, matrix

Sigma): real, 152
multi_normal_lupdf

(row_vectors y | row_vectors mu,
matrix Sigma): real, 153

(row_vectors y | vectors mu, matrix
Sigma): real, 153

(vectors y | row_vectors mu, matrix
Sigma): real, 152

(vectors y | vectors mu, matrix
Sigma): real, 152

multi_normal_prec
sampling statement, 154

multi_normal_prec_lpdf
(row_vectors y | row_vectors mu,

matrix Omega): real, 154
(row_vectors y | vectors mu, matrix

Omega): real, 154
(vectors y | row_vectors mu, matrix

Omega): real, 154
(vectors y | vectors mu, matrix

Omega): real, 154
multi_normal_prec_lupdf

(row_vectors y | row_vectors mu,
matrix Omega): real, 154

(row_vectors y | vectors mu, matrix
Omega): real, 154

(vectors y | row_vectors mu, matrix
Omega): real, 154

(vectors y | vectors mu, matrix
Omega): real, 154

multi_normal_rng
(row_vector mu, matrix Sigma):

vector, 153



INDEX 187

(row_vectors mu, matrix Sigma):
vectors, 153

(vector mu, matrix Sigma): vector,
153

(vectors mu, matrix Sigma): vectors,
153

multi_student_t
sampling statement, 158

multi_student_t_lpdf
(row_vectors y | real nu,

row_vectors mu, matrix Sigma):
real, 159

(row_vectors y | real nu, vectors
mu, matrix Sigma): real, 159

(vectors y | real nu, row_vectors
mu, matrix Sigma): real, 158

(vectors y | real nu, vectors mu,
matrix Sigma): real, 158

multi_student_t_lupdf
(row_vectors y | real nu,

row_vectors mu, matrix Sigma):
real, 159

(row_vectors y | real nu, vectors
mu, matrix Sigma): real, 159

(vectors y | real nu, row_vectors
mu, matrix Sigma): real, 159

(vectors y | real nu, vectors mu,
matrix Sigma): real, 158

multi_student_t_rng
(real nu, row_vector mu, matrix

Sigma): vector, 159
(real nu, row_vectors mu, matrix

Sigma): vectors, 160
(real nu, vector mu, matrix Sigma):

vector, 159
(real nu, vectors mu, matrix Sigma):

vectors, 159
multinomial

sampling statement, 119
multinomial_logit

sampling statement, 120
multinomial_logit_lpmf

(int[] y | vector theta): real, 120
multinomial_logit_lupmf

(int[] y | vector theta): real, 120
multinomial_logit_rng

(vector theta, int N): int[], 120
multinomial_lpmf

(int[] y | vector theta): real, 119

multinomial_lupmf
(int[] y | vector theta): real, 119

multinomial_rng
(vector theta, int N): int[], 119

multiply_log
(T1 x, T2 y): R, 28
(real x, real y): real, 28

multiply_lower_tri_self_transpose
(matrix x): matrix, 45

neg_binomial
sampling statement, 110

neg_binomial_2
sampling statement, 111

neg_binomial_2_cdf
(ints n, reals mu, reals phi): real,

112
neg_binomial_2_lccdf

(ints n | reals mu, reals phi):
real, 112

neg_binomial_2_lcdf
(ints n | reals mu, reals phi):

real, 112
neg_binomial_2_log

sampling statement, 112
neg_binomial_2_log_glm

sampling statement, 113
neg_binomial_2_log_glm_lpmf

(int y | matrix x, real alpha,
vector beta, real phi): real,
113

(int y | matrix x, vector alpha,
vector beta, real phi): real,
114

(int[] y | matrix x, real alpha,
vector beta, real phi): real,
114

(int[] y | matrix x, vector alpha,
vector beta, real phi): real,
114

(int[] y | row_vector x, real alpha,
vector beta, real phi): real,
114

(int[] y | row_vector x, vector
alpha, vector beta, real phi):
real, 114

neg_binomial_2_log_glm_lupmf
(int y | matrix x, real alpha,

vector beta, real phi): real,
113
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(int y | matrix x, vector alpha,
vector beta, real phi): real,
114

(int[] y | matrix x, real alpha,
vector beta, real phi): real,
114

(int[] y | matrix x, vector alpha,
vector beta, real phi): real,
115

(int[] y | row_vector x, real alpha,
vector beta, real phi): real,
114

(int[] y | row_vector x, vector
alpha, vector beta, real phi):
real, 114

neg_binomial_2_log_lpmf
(ints n | reals eta, reals phi):

real, 113
neg_binomial_2_log_lupmf

(ints n | reals eta, reals phi):
real, 113

neg_binomial_2_log_rng
(reals eta, reals phi): R, 113

neg_binomial_2_lpmf
(ints n | reals mu, reals phi):

real, 112
neg_binomial_2_lupmf

(ints n | reals mu, reals phi):
real, 112

neg_binomial_2_rng
(reals mu, reals phi): R, 112

neg_binomial_cdf
(ints n, reals alpha, reals beta):

real, 110
neg_binomial_lccdf

(ints n | reals alpha, reals beta):
real, 111

neg_binomial_lcdf
(ints n | reals alpha, reals beta):

real, 110
neg_binomial_lpmf

(ints n | reals alpha, reals beta):
real, 110

neg_binomial_lupmf
(ints n | reals alpha, reals beta):

real, 110
neg_binomial_rng

(reals alpha, reals beta): R, 111
negative_infinity

(): real, 12
normal

sampling statement, 122
normal_cdf

(reals y, reals mu, reals sigma):
real, 122

normal_id_glm
sampling statement, 124

normal_id_glm_lpdf
(real y | matrix x, real alpha,

vector beta, real sigma): real,
124

(real y | matrix x, vector alpha,
vector beta, real sigma): real,
124

(vector y | matrix x, real alpha,
vector beta, real sigma): real,
125

(vector y | matrix x, vector alpha,
vector beta, real sigma): real,
125

(vector y | row_vector x, real
alpha, vector beta, real
sigma): real, 125

(vector y | row_vector x, vector
alpha, vector beta, real
sigma): real, 125

normal_id_glm_lupdf
(real y | matrix x, real alpha,

vector beta, real sigma): real,
124

(real y | matrix x, vector alpha,
vector beta, real sigma): real,
125

(vector y | matrix x, real alpha,
vector beta, real sigma): real,
125

(vector y | matrix x, vector alpha,
vector beta, real sigma): real,
126

(vector y | row_vector x, real
alpha, vector beta, real
sigma): real, 125

(vector y | row_vector x, vector
alpha, vector beta, real
sigma): real, 125

normal_lccdf
(reals y | reals mu, reals sigma):

real, 122
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normal_lcdf
(reals y | reals mu, reals sigma):

real, 122
normal_lpdf

(reals y | reals mu, reals sigma):
real, 122

normal_lupdf
(reals y | reals mu, reals sigma):

real, 122
normal_rng

(reals mu, reals sigma): R, 123
not_a_number

(): real, 12
num_elements

(T[] x): int, 34
(matrix x): int, 38
(row_vector x): int, 38
(vector x): int, 38

ode_adams
(function ode, vector initial_state,

real initial_time, real[]
times, ...): vector[], 76

ode_adams_tol
(function ode, vector initial_state,

real initial_time, real[]
times, data real rel_tol,
data real abs_tol, data int
max_num_steps, ...): vector[],
76

ode_bdf
(function ode, vector initial_state,

real initial_time, real[]
times, ...): vector[], 76

ode_bdf_tol
(function ode, vector initial_state,

real initial_time, real[]
times, data real rel_tol,
data real abs_tol, int
max_num_steps, ...): vector[],
76

(function ode, vector initial_state,
real initial_time,
real[] times, data real
rel_tol_forward, data vector
abs_tol_forward, data real
rel_tol_backward, data vector
abs_tol_backward, data real
rel_tol_quadrature, data
real abs_tol_quadrature,

int max_num_steps, int
num_steps_between_checkpoints,
int interpolation_polynomial,
int solver_forward, int
solver_backward, ...):
vector[], 76

ode_ckrk
(function ode, real[] initial_state,

real initial_time, real[]
times, ...): vector[], 75

ode_ckrk_tol
(function ode, vector initial_state,

real initial_time, real[]
times, data real rel_tol,
data real abs_tol, int
max_num_steps, ...): vector[],
75

ode_rk45
(function ode, real[] initial_state,

real initial_time, real[]
times, ...): vector[], 75

ode_rk45_tol
(function ode, vector initial_state,

real initial_time, real[]
times, data real rel_tol,
data real abs_tol, int
max_num_steps, ...): vector[],
75

one_hot_array
(int n, int k): real[], 50

one_hot_int_array
(int n, int k): int[], 49

one_hot_row_vector
(int n, int k): row_vector, 50

one_hot_vector
(int n, int k): vector, 50

ones_array
(int n): real[], 50

ones_int_array
(int n): int[], 50

ones_row_vector
(int n): row_vector, 50

ones_vector
(int n): vector, 50

operator_add
(int x): int, 5
(int x, int y): int, 5
(matrix x, matrix y): matrix, 39
(matrix x, real y): matrix, 40
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(real x): real, 18
(real x, matrix y): matrix, 40
(real x, real y): real, 17
(real x, row_vector y): row_vector,

40
(real x, vector y): vector, 40
(row_vector x, real y): row_vector,

40
(row_vector x, row_vector y):

row_vector, 39
(vector x, real y): vector, 40
(vector x, vector y): vector, 39

operator_compound_add
(int x, int y): void, 69
(matrix x, matrix y): void, 69
(matrix x, real y): void, 69
(real x, real y): void, 69
(row_vector x, real y): void, 69
(row_vector x, row_vector y): void,

69
(vector x, real y): void, 69
(vector x, vector y): void, 69

operator_compound_divide
(int x, int y): void, 71
(matrix x, real y): void, 71
(real x, real y): void, 71
(row_vector x, real y): void, 71
(vector x, real y): void, 71

operator_compound_elt_divide
(matrix x, matrix y): void, 71
(matrix x, real y): void, 71
(row_vector x, real y): void, 71
(row_vector x, row_vector y): void,

71
(vector x, real y): void, 71
(vector x, vector y): void, 71

operator_compound_elt_multiply
(matrix x, matrix y): void, 71
(row_vector x, row_vector y): void,

71
(vector x, vector y): void, 71

operator_compound_multiply
(int x, int y): void, 70
(matrix x, matrix y): void, 70
(matrix x, real y): void, 70
(real x, real y): void, 70
(row_vector x, matrix y): void, 70
(row_vector x, real y): void, 70
(vector x, real y): void, 70

operator_compound_subtract
(int x, int y): void, 70
(matrix x, matrix y): void, 70
(matrix x, real y): void, 70
(real x, real y): void, 70
(row_vector x, real y): void, 70
(row_vector x, row_vector y): void,

70
(vector x, real y): void, 70
(vector x, vector y): void, 70

operator_divide
(int x, int y): int, 5
(matrix B, matrix A): matrix, 56
(matrix x, real y): matrix, 41
(real x, real y): real, 17
(row_vector b, matrix A): row_vector,

56
(row_vector x, real y): row_vector,

41
(vector x, real y): vector, 41

operator_elt_divide
(matrix x, matrix y): matrix, 42
(matrix x, real y): matrix, 42
(real x, matrix y): matrix, 42
(real x, row_vector y): row_vector,

42
(real x, vector y): vector, 42
(row_vector x, real y): row_vector,

42
(row_vector x, row_vector y):

row_vector, 42
(vector x, real y): vector, 42
(vector x, vector y): vector, 42

operator_elt_multiply
(matrix x, matrix y): matrix, 41
(row_vector x, row_vector y):

row_vector, 41
(vector x, vector y): vector, 41

operator_elt_pow
(matrix x, matrix y): matrix, 42
(matrix x, real y): matrix, 43
(real x, matrix y): matrix, 43
(real x, row_vector y): row_vector,

42
(real x, vector y): vector, 42
(row_vector x, real y): row_vector,

42
(row_vector x, row_vector y):

row_vector, 42
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(vector x, real y): vector, 42
(vector x, vector y): vector, 42

operator_left_div
(matrix A, matrix B): matrix, 56
(matrix A, vector b): vector, 56

operator_logial_equal
(int x, int y): int, 14
(real x, real y): int, 14

operator_logical_and
(int x, int y): int, 15
(real x, real y): int, 15

operator_logical_greater_than
(int x, int y): int, 14
(real x, real y): int, 14

operator_logical_greater_than_equal
(int x, int y): int, 14
(real x, real y): int, 14

operator_logical_less_than
(int x, int y): int, 13
(real x, real y): int, 14

operator_logical_less_than_equal
(int x, int y): int, 14
(real x, real y): int, 14

operator_logical_not_equal
(int x, int y): int, 15
(real x, real y): int, 15

operator_logical_or
(int x, int y): int, 16
(real x, real y): int, 16

operator_mod
(int x, int y): int, 5

operator_multiply
(int x, int y): int, 5
(matrix x, matrix y): matrix, 40
(matrix x, real y): matrix, 40
(matrix x, vector y): vector, 40
(real x, matrix y): matrix, 39
(real x, real y): real, 17
(real x, row_vector y): row_vector,

39
(real x, vector y): vector, 39
(row_vector x, matrix y):

row_vector, 40
(row_vector x, real y): row_vector,

40
(row_vector x, vector y): real, 40
(vector x, real y): vector, 39
(vector x, row_vector y): matrix, 39

operator_negation

(int x): int, 15
(real x): int, 15

operator_pow
(real x, real y): real, 17

operator_subtract
(int x): int, 5
(int x, int y): int, 5
(matrix x): matrix, 39
(matrix x, matrix y): matrix, 39
(matrix x, real y): matrix, 41
(real x): real, 17
(real x, matrix y): matrix, 41
(real x, real y): real, 17
(real x, row_vector y): row_vector,

41
(real x, vector y): vector, 40
(row_vector x): row_vector, 39
(row_vector x, real y): row_vector,

40
(row_vector x, row_vector y):

row_vector, 39
(vector x): vector, 39
(vector x, real y): vector, 40
(vector x, vector y): vector, 39

operator_transpose
(matrix x): matrix, 41
(row_vector x): vector, 41
(vector x): row_vector, 41

ordered_logistic
sampling statement, 107

ordered_logistic_glm
sampling statement, 108

ordered_logistic_glm_lpmf
(int y | matrix x, vector beta,

vector c): real, 108
(int y | row_vector x, vector beta,

vector c): real, 108
(int[] y | matrix x, vector beta,

vector c): real, 108
(int[] y | row_vector x, vector

beta, vector c): real, 108
ordered_logistic_glm_lupmf

(int y | matrix x, vector beta,
vector c): real, 108

(int y | row_vector x, vector beta,
vector c): real, 108

(int[] y | matrix x, vector beta,
vector c): real, 108

(int[] y | row_vector x, vector
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beta, vector c): real, 108
ordered_logistic_lpmf

(ints k | vector eta, vectors c):
real, 107

ordered_logistic_lupmf
(ints k | vector eta, vectors c):

real, 107
ordered_logistic_rng

(real eta, vector c): int, 107
ordered_probit

sampling statement, 109
ordered_probit_lpmf

(ints k | vector eta, vectors c):
real, 109

ordered_probit_lupmf
(ints k | vector eta, vectors c):

real, 109
ordered_probit_rng

(real eta, vector c): int, 109
owens_t

(T1 x, T2 y): R, 23
(real h, real a): real, 23

pareto
sampling statement, 143

pareto_cdf
(reals y, reals y_min, reals alpha):

real, 143
pareto_lccdf

(reals y | reals y_min, reals
alpha): real, 143

pareto_lcdf
(reals y | reals y_min, reals

alpha): real, 143
pareto_lpdf

(reals y | reals y_min, reals
alpha): real, 143

pareto_lupdf
(reals y | reals y_min, reals

alpha): real, 143
pareto_rng

(reals y_min, reals alpha): R, 143
pareto_type_2

sampling statement, 144
pareto_type_2_cdf

(reals y, reals mu, reals lambda,
reals alpha): real, 144

pareto_type_2_lccdf
(reals y | reals mu, reals lambda,

reals alpha): real, 144

pareto_type_2_lcdf
(reals y | reals mu, reals lambda,

reals alpha): real, 144
pareto_type_2_lpdf

(reals y | reals mu, reals lambda,
reals alpha): real, 144

pareto_type_2_lupdf
(reals y | reals mu, reals lambda,

reals alpha): real, 144
pareto_type_2_rng

(reals mu, reals lambda, reals
alpha): R, 144

phi
(T x): R, 22

phi_approx
(T x): R, 22

pi
(): real, 12

poisson
sampling statement, 115

poisson_cdf
(ints n, reals lambda): real, 115

poisson_lccdf
(ints n | reals lambda): real, 115

poisson_lcdf
(ints n | reals lambda): real, 115

poisson_log
sampling statement, 116

poisson_log_glm
sampling statement, 117

poisson_log_glm_lpmf
(int y | matrix x, real alpha,

vector beta): real, 117
(int y | matrix x, vector alpha,

vector beta): real, 117
(int[] y | matrix x, real alpha,

vector beta): real, 117
(int[] y | matrix x, vector alpha,

vector beta): real, 118
(int[] y | row_vector x, real alpha,

vector beta): real, 117
(int[] y | row_vector x, vector

alpha, vector beta): real, 117
poisson_log_glm_lupmf

(int y | matrix x, real alpha,
vector beta): real, 117

(int y | matrix x, vector alpha,
vector beta): real, 117

(int[] y | matrix x, real alpha,
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vector beta): real, 117
(int[] y | matrix x, vector alpha,

vector beta): real, 118
(int[] y | row_vector x, real alpha,

vector beta): real, 117
(int[] y | row_vector x, vector

alpha, vector beta): real, 117
poisson_log_lpmf

(ints n | reals alpha): real, 116
poisson_log_lupmf

(ints n | reals alpha): real, 116
poisson_log_rng

(reals alpha): R, 116
poisson_rng

(reals lambda): R, 115
positive_infinity

(): real, 12
pow

(T1 x, T2 y): R, 20
(real x, real y): real, 20

print
(T1 x1,..., TN xN): void, 2

prod
(int[] x): real, 31
(matrix x): real, 46
(real[] x): real, 31
(row_vector x): real, 46
(vector x): real, 46

qr_q
(matrix A): matrix, 60

qr_r
(matrix A): matrix, 60

qr_thin_q
(matrix A): matrix, 60

qr_thin_r
(matrix A): matrix, 60

quad_form
(matrix A, matrix B): matrix, 44
(matrix A, vector B): real, 44

quad_form_diag
(matrix m, row_vector rv): matrix,

44
(matrix m, vector v): matrix, 44

quad_form_sym
(matrix A, matrix B): matrix, 44
(matrix A, vector B): real, 45

quantile
(data real[] x, data real p): real,

33

(data real[] x, data real[] p):
real, 33

(data row_vector x, data real p):
real, 47

(data row_vector x, data real[] p):
real, 47

(data vector x, data real p): real,
47

(data vector x, data real[] p):
real, 47

rank
(int[] v, int s): int, 37
(real[] v, int s): int, 37
(row_vector v, int s): int, 62
(vector v, int s): int, 62

rayleigh
sampling statement, 142

rayleigh_cdf
(real y, real sigma): real, 142

rayleigh_lccdf
(real y | real sigma): real, 142

rayleigh_lcdf
(real y | real sigma): real, 142

rayleigh_lpdf
(reals y | reals sigma): real, 142

rayleigh_lupdf
(reals y | reals sigma): real, 142

rayleigh_rng
(reals sigma): R, 142

reduce_sum
(F f, T[] x, int grainsize, T1 s1,

T2 s2, ...): real, 82
reject

(T1 x1,..., TN xN): void, 2
rep_array

(T x, int k, int m, int n): T[„], 35
(T x, int m, int n): T[,], 34
(T x, int n): T[], 34

rep_matrix
(real x, int m, int n): matrix, 48
(row_vector rv, int m): matrix, 48
(vector v, int n): matrix, 48

rep_row_vector
(real x, int n): row_vector, 48

rep_vector
(real x, int m): vector, 48

reverse
(T[] v): T[], 37
(row_vector v): row_vector, 62
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(vector v): vector, 62
rising_factorial

(T1 x, T2 y): R, 28
(real x, int n): real, 27

round
(T x): R, 19

row
(matrix x, int m): row_vector, 51

rows
(matrix x): int, 38
(row_vector x): int, 38
(vector x): int, 38

rows_dot_product
(matrix x, matrix y): vector, 43
(row_vector x, row_vector y):

vector, 43
(vector x, vector y): vector, 43

rows_dot_self
(matrix x): vector, 44
(row_vector x): vector, 44
(vector x): vector, 44

scale_matrix_exp_multiply
(real t, matrix A, matrix B): matrix,

57
scaled_inv_chi_square

sampling statement, 136
scaled_inv_chi_square_cdf

(reals y, reals nu, reals sigma):
real, 137

scaled_inv_chi_square_lccdf
(reals y | reals nu, reals sigma):

real, 137
scaled_inv_chi_square_lcdf

(reals y | reals nu, reals sigma):
real, 137

scaled_inv_chi_square_lpdf
(reals y | reals nu, reals sigma):

real, 137
scaled_inv_chi_square_lupdf

(reals y | reals nu, reals sigma):
real, 137

scaled_inv_chi_square_rng
(reals nu, reals sigma): R, 137

sd
(matrix x): real, 47
(real[] x): real, 32
(row_vector x): real, 47
(vector x): real, 47

segment

(T[] sv, int i, int n): T[], 52
(row_vector rv, int i, int n):

row_vector, 52
(vector v, int i, int n): vector, 52

sin
(T x): R, 21

singular_values
(matrix A): vector, 61

sinh
(T x): R, 21

size
(T[] x): int, 34
(int x): int, 6
(matrix x): int, 38
(real x): int, 6
(row_vector x): int, 38
(vector x): int, 38

skew_double_exponential
sampling statement, 133

skew_double_exponential_cdf
(reals y, reals mu, reals sigma,

reals tau): real, 133
skew_double_exponential_lccdf

(reals y | reals mu, reals sigma,
reals tau): real, 133

skew_double_exponential_lcdf
(reals y | reals mu, reals sigma,

reals tau): real, 133
skew_double_exponential_lpdf

(reals y | reals mu, reals sigma,
reals tau): real, 133

skew_double_exponential_lupdf
(reals y | reals mu, reals sigma,

reals tau): real, 133
skew_double_exponential_rng

(reals mu, reals sigma, reals tau):
R, 133

skew_normal
sampling statement, 127

skew_normal_cdf
(reals y, reals xi, reals omega,

reals alpha): real, 127
skew_normal_lccdf

(reals y | reals xi, reals omega,
reals alpha): real, 127

skew_normal_lcdf
(reals y | reals xi, reals omega,

reals alpha): real, 127
skew_normal_lpdf
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(reals y | reals xi, reals omega,
reals alpha): real, 127

skew_normal_lupdf
(reals y | reals xi, reals omega,

reals alpha): real, 127
skew_normal_rng

(reals xi, reals omega, real alpha):
R, 127

softmax
(vector x): vector, 54

sort_asc
(int[] v): int[], 36
(real[] v): real[], 36
(row_vector v): row_vector, 61
(vector v): vector, 61

sort_desc
(int[] v): int[], 36
(real[] v): real[], 36
(row_vector v): row_vector, 61
(vector v): vector, 61

sort_indices_asc
(int[] v): int[], 37
(real[] v): int[], 37
(row_vector v): int[], 61
(vector v): int[], 61

sort_indices_desc
(int[] v): int[], 37
(real[] v): int[], 37
(row_vector v): int[], 62
(vector v): int[], 61

sqrt
(T x): R, 20

sqrt2
(): real, 12

square
(T x): R, 20

squared_distance
(row_vector x, row_vector y): real,

33
(row_vector x, vector y): real, 33
(vector x, row_vector y): real, 33
(vector x, vector y): real, 33

std_normal
sampling statement, 123

std_normal_cdf
(reals y): real, 123

std_normal_lccdf
(reals y): real, 124

std_normal_lcdf

(reals y): real, 123
std_normal_lpdf

(reals y): real, 123
std_normal_lupdf

(reals y): real, 123
std_normal_rng

(): real, 124
step

(real x): real, 16
student_t

sampling statement, 128
student_t_cdf

(reals y, reals nu, reals mu, reals
sigma): real, 128

student_t_lccdf
(reals y | reals nu, reals mu, reals

sigma): real, 128
student_t_lcdf

(reals y | reals nu, reals mu, reals
sigma): real, 128

student_t_lpdf
(reals y | reals nu, reals mu, reals

sigma): real, 128
student_t_lupdf

(reals y | reals nu, reals mu, reals
sigma): real, 128

student_t_rng
(reals nu, reals mu, reals sigma):

R, 128
sub_col

(matrix x, int i, int j, int
n_rows): vector, 51

sub_row
(matrix x, int i, int j, int

n_cols): row_vector, 51
sum

(int[] x): int, 31
(matrix x): real, 46
(real[] x): real, 31
(row_vector x): real, 46
(vector x): real, 46

svd_U
(matrix A): vector, 61

svd_V
(matrix A): vector, 61

symmetrize_from_lower_tri
(matrix A): matrix, 48

tail
(T[] sv, int n): T[], 52
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(row_vector rv, int n): row_vector,
52

(vector v, int n): vector, 52
tan

(T x): R, 21
tanh

(T x): R, 21
target

(): real, 13
tcrossprod

(matrix x): matrix, 44
tgamma

(T x): R, 24
to_array_1d

(int[...] a): int[], 68
(matrix m): real[], 68
(real[...] a): real[], 68
(row_vector v): real[], 68
(vector v): real[], 68

to_array_2d
(matrix m): real[,], 68

to_matrix
(int[,] a): matrix, 67
(int[] a, int m, int n): matrix, 66
(int[] a, int m, int n, int

col_major): matrix, 67
(matrix m): matrix, 66
(matrix m, int m, int n): matrix, 66
(matrix m, int m, int n, int

col_major): matrix, 66
(real[,] a): matrix, 67
(real[] a, int m, int n): matrix, 66
(real[] a, int m, int n, int

col_major): matrix, 67
(row_vector v): matrix, 66
(row_vector v, int m, int n):

matrix, 66
(row_vector v, int m, int n, int

col_major): matrix, 66
(vector v): matrix, 66
(vector v, int m, int n): matrix, 66
(vector v, int m, int n, int

col_major): matrix, 66
to_row_vector

(int[] a): row_vector, 68
(matrix m): row_vector, 67
(real[] a): row_vector, 68
(row_vector v): row_vector, 67
(vector v): row_vector, 67

to_vector
(int[] a): vector, 67
(matrix m): vector, 67
(real[] a): vector, 67
(row_vector v): vector, 67
(vector v): vector, 67

trace
(matrix A): real, 58

trace_gen_quad_form
(matrix D,matrix A, matrix B): real,

45
trace_quad_form

(matrix A, matrix B): real, 45
trigamma

(T x): R, 24
trunc

(T x): R, 19
uniform

sampling statement, 151
uniform_cdf

(reals y, reals alpha, reals beta):
real, 151

uniform_lccdf
(reals y | reals alpha, reals beta):

real, 151
uniform_lcdf

(reals y | reals alpha, reals beta):
real, 151

uniform_lpdf
(reals y | reals alpha, reals beta):

real, 151
uniform_lupdf

(reals y | reals alpha, reals beta):
real, 151

uniform_rng
(reals alpha, reals beta): R, 151

uniform_simplex
(int n): vector, 50

variance
(matrix x): real, 47
(real[] x): real, 32
(row_vector x): real, 47
(vector x): real, 47

von_mises
sampling statement, 149

von_mises_lpdf
(reals y | reals mu, reals kappa):

R, 149
von_mises_lupdf
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(reals y | reals mu, reals kappa):
R, 149

von_mises_rng
(reals mu, reals kappa): R, 149

weibull
sampling statement, 140

weibull_cdf
(reals y, reals alpha, reals sigma):

real, 140
weibull_lccdf

(reals y | reals alpha, reals
sigma): real, 140

weibull_lcdf
(reals y | reals alpha, reals

sigma): real, 140
weibull_lpdf

(reals y | reals alpha, reals
sigma): real, 140

weibull_lupdf
(reals y | reals alpha, reals

sigma): real, 140
weibull_rng

(reals alpha, reals sigma): R, 140
wiener

sampling statement, 145
wiener_lpdf

(reals y | reals alpha, reals tau,
reals beta, reals delta): real,
145

wiener_lupdf
(reals y | reals alpha, reals tau,

reals beta, reals delta): real,
145

wishart
sampling statement, 167

wishart_lpdf
(matrix W | real nu, matrix Sigma):

real, 167
wishart_lupdf

(matrix W | real nu, matrix Sigma):
real, 167

wishart_rng
(real nu, matrix Sigma): matrix, 167

zeros_array
(int n): real[], 50

zeros_int_array
(int n): int[], 50

zeros_row_vector
(int n): row_vector, 50

zeros_vector
(int n): vector, 50
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