
Stan Functions Reference
Version 2.30

Stan Development Team

Contents

Overview ix

Built-In Functions 1

1. Void Functions 2

1.1 Print statement 2

1.2 Reject statement 2

2. Integer-Valued Basic Functions 4

2.1 Integer-valued arithmetic operators 4

2.2 Absolute functions 6

2.3 Bound functions 7

2.4 Size functions 7

3. Real-Valued Basic Functions 8

3.1 Vectorization of real-valued functions 8

3.2 Mathematical constants 13

3.3 Special values 14

3.4 Log probability function 14

3.5 Logical functions 15

3.6 Real-valued arithmetic operators 19

3.7 Step-like functions 21

3.8 Power and logarithm functions 23

3.9 Trigonometric functions 25

3.10 Hyperbolic trigonometric functions 26

3.11 Link functions 26

3.12 Probability-related functions 27

3.13 Combinatorial functions 28

3.14 Composed functions 35

3.15 Special functions 37

ii

4. Complex-Valued Basic Functions 39

4.1 Complex assignment and promotion 39

4.2 Complex constructors and accessors 39

4.3 Complex arithmetic operators 40

4.4 Complex comparison operators 42

4.5 Complex (compound) assignment operators 43

4.6 Complex special functions 44

4.7 Complex exponential and power functions 45

4.8 Complex trigonometric functions 46

4.9 Complex hyperbolic trigonometric functions 47

5. Array Operations 49

5.1 Reductions 49

5.2 Array size and dimension function 53

5.3 Array broadcasting 54

5.4 Array concatenation 56

5.5 Sorting functions 56

5.6 Reversing functions 57

6. Matrix Operations 59

6.1 Integer-valued matrix size functions 59

6.2 Matrix arithmetic operators 60

6.3 Transposition operator 63

6.4 Elementwise functions 64

6.5 Dot products and specialized products 66

6.6 Reductions 69

6.7 Broadcast functions 72

6.8 Diagonal matrix functions 73

6.9 Container construction functions 74

6.10 Slicing and blocking functions 76

6.11 Matrix concatenation 78

6.12 Special matrix functions 80

6.13 Gaussian Process Covariance Functions 82

6.14 Linear algebra functions and solvers 88

6.15 Sort functions 95

6.16 Reverse functions 96

7. Complex Matrix Operations 98

7.1 Complex promotion 98

7.2 Integer-valued complex matrix size functions 99

7.3 Complex matrix arithmetic operators 100

7.4 Complex Transposition Operator 104

7.5 Complex elementwise functions 104

7.6 Dot products and specialized products for complex matrices 106

7.7 Complex reductions 109

7.8 Vectorized accessor functions 109

7.9 Complex broadcast functions 110

7.10 Diagonal complex matrix functions 111

7.11 Slicing and blocking functions for complex matrices 112

7.12 Complex matrix concatenation 113

7.13 Complex special matrix functions 115

7.14 Complex linear algebra functions 117

7.15 Reverse functions for complex matrices 118

8. Sparse Matrix Operations 119

8.1 Compressed row storage 119

8.2 Conversion functions 120

8.3 Sparse matrix arithmetic 121

9. Mixed Operations 122

10. Compound Arithmetic and Assignment 129

10.1 Compound addition and assignment 129

10.2 Compound subtraction and assignment 129

10.3 Compound multiplication and assignment 130

10.4 Compound division and assignment 130

10.5 Compound elementwise multiplication and assignment 130

10.6 Compound elementwise division and assignment 130

11. Higher-Order Functions 131

11.1 Algebraic equation solver 131

11.2 Ordinary differential equation (ODE) solvers 134

11.3 Differential-Algebraic equation (DAE) solver 139

11.4 1D integrator 142

11.5 Reduce-sum function 144

11.6 Map-rect function 146

12. Deprecated Functions 148

12.1 multiply_log and binomial_coefficient_log functions 148

12.2 get_lp() function 148

12.3 fabs function 148

12.4 Integer division with operator/ 149

12.5 integrate_ode_rk45, integrate_ode_adams, integrate_ode_bdf ODE Inte-
grators 149

12.6 Exponentiated quadratic covariance functions 152

13. Removed Functions 154

14. Conventions for Probability Functions 155

14.1 Suffix marks type of function 155

14.2 Argument order and the vertical bar 155

14.3 Sampling notation 155

14.4 Finite inputs 156

14.5 Boundary conditions 156

14.6 Pseudorandom number generators 156

14.7 Cumulative distribution functions 157

14.8 Vectorization 158

Discrete Distributions 162

15. Binary Distributions 163

15.1 Bernoulli distribution 163

15.2 Bernoulli distribution, logit parameterization 164

15.3 Bernoulli-logit generalized linear model (Logistic Regression) 165

16. Bounded Discrete Distributions 168

16.1 Binomial distribution 168

16.2 Binomial distribution, logit parameterization 169

16.3 Beta-binomial distribution 170

16.4 Hypergeometric distribution 172

16.5 Categorical distribution 173

16.6 Categorical logit generalized linear model (softmax regression) 174

16.7 Discrete range distribution 176

16.8 Ordered logistic distribution 178

16.9 Ordered logistic generalized linear model (ordinal regression) 179

16.10 Ordered probit distribution 181

17. Unbounded Discrete Distributions 183

17.1 Negative binomial distribution 183

17.2 Negative binomial distribution (alternative parameterization) 184

17.3 Negative binomial distribution (log alternative parameterization) 186

17.4 Negative-binomial-2-log generalized linear model (negative binomial
regression) 187

17.5 Poisson distribution 189

17.6 Poisson distribution, log parameterization 190

17.7 Poisson-log generalized linear model (Poisson regression) 191

18. Multivariate Discrete Distributions 194

18.1 Multinomial distribution 194

18.2 Multinomial distribution, logit parameterization 195

Continuous Distributions 197

19. Unbounded Continuous Distributions 198

19.1 Normal distribution 198

19.2 Normal-id generalized linear model (linear regression) 200

19.3 Exponentially modified normal distribution 204

19.4 Skew normal distribution 205

19.5 Student-t distribution 207

19.6 Cauchy distribution 208

19.7 Double exponential (Laplace) distribution 209

19.8 Logistic distribution 211

19.9 Gumbel distribution 212

19.10 Skew double exponential distribution 213

20. Positive Continuous Distributions 215

20.1 Lognormal distribution 215

20.2 Chi-square distribution 216

20.3 Inverse chi-square distribution 217

20.4 Scaled inverse chi-square distribution 218

20.5 Exponential distribution 219

20.6 Gamma distribution 221

20.7 Inverse gamma Distribution 222

20.8 Weibull distribution 223

20.9 Frechet distribution 224

20.10 Rayleigh distribution 225

20.11 Log-logistic distribution 226

21. Positive Lower-Bounded Distributions 228

21.1 Pareto distribution 228

21.2 Pareto type 2 distribution 229

21.3 Wiener First Passage Time Distribution 230

22. Continuous Distributions on [0, 1] 232

22.1 Beta distribution 232

22.2 Beta proportion distribution 233

23. Circular Distributions 235

23.1 Von Mises distribution 235

24. Bounded Continuous Distributions 238

24.1 Uniform distribution 238

25. Distributions over Unbounded Vectors 240

25.1 Multivariate normal distribution 240

25.2 Multivariate normal distribution, precision parameterization 242

25.3 Multivariate normal distribution, Cholesky parameterization 244

25.4 Multivariate Gaussian process distribution 246

25.5 Multivariate Gaussian process distribution, Cholesky parameteriza-
tion 247

25.6 Multivariate Student-t distribution 248

25.7 Multivariate Student-t distribution, Cholesky parameterization 250

25.8 Gaussian dynamic linear models 251

26. Simplex Distributions 254

26.1 Dirichlet distribution 254

27. Correlation Matrix Distributions 257

27.1 LKJ correlation distribution 257

27.2 Cholesky LKJ correlation distribution 258

28. Covariance Matrix Distributions 261

28.1 Wishart distribution 261

28.2 Wishart distribution, Cholesky Parameterization 262

28.3 Inverse Wishart distribution 263

28.4 Inverse Wishart distribution, Cholesky Parameterization 264

Additional Distributions 266

29. Hidden Markov Models 267

29.1 Stan functions 267

Appendix 269

30. Mathematical Functions 270

30.1 Beta 270

30.2 Incomplete beta 270

30.3 Gamma 270

30.4 Digamma 271

References 272

Index 274

Overview

This is the reference for the functions defined in the Stan math library and available
in the Stan programming language.

The Stan project comprises a domain-specific language for probabilistic programming,
a differentiable mathematics and probability library, algorithms for Bayesian posterior
inference and posterior analysis, along with interfaces and analysis tools in all of the
popular data analysis languages.

In addition to this reference manual, there is a user’s guide and a language reference
manual for the Stan language and algorithms. The Stan User’s Guide provides
example models and programming techniques for coding statistical models in Stan.
The Stan Reference Manual specifies the Stan programming language and inference
algorithms.

There is also a separate installation and getting started guide for each of the Stan
interfaces (R, Python, Julia, Stata, MATLAB, Mathematica, and command line).

Interfaces and platforms

Stan runs under Windows, Mac OS X, and Linux.

Stan uses a domain-specific programming language that is portable across data
analysis languages. Stan has interfaces for R, Python, Julia, MATLAB, Mathematica,
Stata, and the command line, as well as an alternative language interface in Scala.
See the web site https://mc-stan.org for interface-specific links and getting started
instructions

Web site

The official resource for all things related to Stan is the web site:

https://mc-stan.org

The web site links to all of the packages comprising Stan for both users and develop-
ers. This is the place to get started with Stan. Find the interface in the language you
want to use and follow the download, installation, and getting started instructions.

ix

https://mc-stan.org/docs/stan-users-guide/index.html
https://mc-stan.org/docs/reference-manual/index.html
https://mc-stan.org
https://mc-stan.org

GitHub organization

Stan’s source code and much of the developer process is hosted on GitHub. Stan’s
organization is:

https://github.com/stan-dev

Each package has its own repository within the stan-dev organization. The web site
is also hosted and managed through GitHub. This is the place to peruse the source
code, request features, and report bugs. Much of the ongoing design discussion is
hosted on the GitHub Wiki.

Forums

Stan hosts message boards for discussing all things related to Stan.

https://discourse.mc-stan.org

This is the place to ask questions about Stan, including modeling, programming, and
installation.

Licensing

• Computer code: BSD 3-clause license

The core C++ code underlying Stan, including the math library, language, and
inference algorithms, is licensed under the BSD 3-clause licensed as detailed in each
repository and on the web site along with the distribution links.

• Logo: Stan logo usage guidelines

Acknowledgements

The Stan project could not exist without the generous grant funding of many grant
agencies to the participants in the project. For more details of direct funding for the
project, see the web site and project pages of the Stan developers.

The Stan project could also not exist without the generous contributions of its users in
reporting and in many cases fixing bugs in the code and its documentation. We used
to try to list all of those who contributed patches and bug reports for the manual here,
but when that number passed into the hundreds, it became too difficult to manage
reliably. Instead, we will defer to GitHub (link above), where all contributions to the
project are made and tracked.

https://github.com/stan-dev
https://discourse.mc-stan.org
https://opensource.org/licenses/BSD-3-Clause
https://mc-stan.org/about/logo/

xi

Finally, we should all thank the Stan developers, without whom this project could
not exist. We used to try and list the developers here, but like the bug reporters,
once the list grew into the dozens, it became difficult to track. Instead, we will defer
to the Stan web page and GitHub itself for a list of core developers and all developer
contributions respectively.

Built-In Functions

1

1. Void Functions

Stan does not technically support functions that do not return values. It does support
two types of statements, one printing and one for rejecting outputs.

Although print and reject appear to have the syntax of functions, they are actually
special kinds of statements with slightly different form and behavior than other
functions. First, they are the constructs that allow a variable number of arguments.
Second, they are the the only constructs to accept string literals (e.g., "hello
world") as arguments. Third, they have no effect on the log density function and
operate solely through side effects.

The special keyword void is used for their return type because they behave like
variadic functions with void return type, even though they are special kinds of
statements.

1.1. Print statement

Printing has no effect on the model’s log probability function. Its sole purpose is
the side effect (i.e., an effect not represented in a return value) of arguments being
printed to whatever the standard output stream is connected to (e.g., the terminal
in command-line Stan or the R console in RStan).

void print(T1 x1,..., TN xN)
Print the values denoted by the arguments x1 through xN on the output message
stream. There are no spaces between items in the print, but a line feed (LF; Unicode
U+000A; C++ literal '\n') is inserted at the end of the printed line. The types T1
through TN can be any of Stan’s built-in numerical types or double quoted strings of
characters (bytes).
Available since 2.1

1.2. Reject statement

The reject statement has the same syntax as the print statement, accepting an
arbitrary number of arguments of any type (including string literals). The effect
of executing a reject statement is to throw an exception internally that terminates

2

1.2. REJECT STATEMENT 3

the current iteration with a rejection (the behavior of which will depend on the
algorithmic context in which it occurs).

void reject(T1 x1,..., TN xN)
Reject the current iteration and print the values denoted by the arguments x1 through
xN on the output message stream. There are no spaces between items in the print,
but a line feed (LF; Unicode U+000A; C++ literal '\n') is inserted at the end of
the printed line. The types T1 through TN can be any of Stan’s built-in numerical
types or double quoted strings of characters (bytes).
Available since 2.18

2. Integer-Valued Basic Functions

This chapter describes Stan’s built-in function that take various types of arguments
and return results of type integer.

2.1. Integer-valued arithmetic operators

Stan’s arithmetic is based on standard double-precision C++ integer and floating-
point arithmetic. If the arguments to an arithmetic operator are both integers, as
in 2 + 2, integer arithmetic is used. If one argument is an integer and the other a
floating-point value, as in 2.0 + 2 and 2 + 2.0, then the integer is promoted to a
floating point value and floating-point arithmetic is used.

Integer arithmetic behaves slightly differently than floating point arithmetic. The
first difference is how overflow is treated. If the sum or product of two integers over-
flows the maximum integer representable, the result is an undesirable wraparound
behavior at the bit level. If the integers were first promoted to real numbers, they
would not overflow a floating-point representation. There are no extra checks in
Stan to flag overflows, so it is up to the user to make sure it does not occur.

Secondly, because the set of integers is not closed under division and there is no
special infinite value for integers, integer division implicitly rounds the result. If both
arguments are positive, the result is rounded down. For example, 1 / 2 evaluates
to 0 and 5 / 3 evaluates to 1.

If one of the integer arguments to division is negative, the latest C++ specification
(C++11), requires rounding toward zero. This would have 1 / 2 and -1 / 2
evaluate to 0, -7 / 2 evaluate to -3, and 7 / 2 evaluate to 3. Before the C++11
specification, the behavior was platform dependent, allowing rounding up or down.
All compilers recent enough to be able to deal with Stan’s templating should follow
the C++11 specification, but it may be worth testing if you are not sure and plan to
use integer division with negative values.

Unlike floating point division, where 1.0 / 0.0 produces the special positive infinite
value, integer division by zero, as in 1 / 0, has undefined behavior in the C++
standard. For example, the clang++ compiler on Mac OS X returns 3764, whereas
the g++ compiler throws an exception and aborts the program with a warning. As

4

2.1. INTEGER-VALUED ARITHMETIC OPERATORS 5

with overflow, it is up to the user to make sure integer divide-by-zero does not occur.

Binary infix operators

Operators are described using the C++ syntax. For instance, the binary operator
of addition, written X + Y, would have the Stan signature int operator+(int,
int) indicating it takes two real arguments and returns a real value. As noted
previously, the value of integer division is platform-dependent when rounding is
platform dependent before C++11; the descriptions below provide the C++11
definition.

int operator+(int x, int y)
The sum of the addends x and y

operator+(x, y) = (x+ y)

Available since 2.0

int operator-(int x, int y)
The difference between the minuend x and subtrahend y

operator-(x, y) = (x− y)

Available since 2.0

int operator*(int x, int y)
The product of the factors x and y

operator*(x, y) = (x× y)

Available since 2.0

int operator/(int x, int y)
The integer quotient of the dividend x and divisor y

operator/(x, y) =
{
bx/yc if x/y ≥ 0
−bfloor(−x/y)c if x/y < 0.

deprecated; - use operator%/% instead.
Available since 2.0, deprecated in 2.24

6 CHAPTER 2. INTEGER-VALUED BASIC FUNCTIONS

int operator%/%(int x, int y)
The integer quotient of the dividend x and divisor y

operator%/%(x, y) =
{
bx/yc if x/y ≥ 0
−bfloor(−x/y)c if x/y < 0.

Available since 2.24

int operator%(int x, int y)
x modulo y, which is the positive remainder after dividing x by y. If both x and y are
non-negative, so is the result; otherwise, the sign of the result is platform dependent.

operator%(x, y) = x mod y = x− y ∗ bx/yc

Available since 2.13

Unary prefix operators

int operator-(int x)
The negation of the subtrahend x [operator-(x) = -x
Available since 2.0

int operator+(int x)
This is a no-op.

operator+(x) = x

Available since 2.0

2.2. Absolute functions

T abs(T x)
The absolute value of x.

This function works elementwise over containers such as vectors. Given a type T
which is int, or an array of ints, abs returns the same type where each element has
had its absolute value taken.
Available since 2.0, vectorized in 2.30

int int_step(int x)

2.3. BOUND FUNCTIONS 7

int int_step(real x)
Return the step function of x as an integer,

int_step(x) =
{

1 if x > 0
0 if x ≤ 0 or x is NaN

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and
step(NaN) return 1.

See the warning in section step functions about the dangers of step functions applied
to anything other than data.
Available since 2.0

2.3. Bound functions

int min(int x, int y)
Return the minimum of x and y.

min(x, y) =
{
x if x < y

y otherwise

Available since 2.0

int max(int x, int y)
Return the maximum of x and y.

max(x, y) =
{
x if x > y

y otherwise

Available since 2.0

2.4. Size functions

int size(int x)

int size(real x)

Return the size of x which for scalar-valued x is 1
Available since 2.26

3. Real-Valued Basic Functions

This chapter describes built-in functions that take zero or more real or integer
arguments and return real values.

3.1. Vectorization of real-valued functions

Although listed in this chapter, many of Stan’s built-in functions are vectorized so that
they may be applied to any argument type. The vectorized form of these functions is
not any faster than writing an explicit loop that iterates over the elements applying
the function—it’s just easier to read and write and less error prone.

Unary function vectorization

Many of Stan’s unary functions can be applied to any argument type. For example,
the exponential function, exp, can be applied to real arguments or arrays of real
arguments. Other than for integer arguments, the result type is the same as the
argument type, including dimensionality and size. Integer arguments are first
promoted to real values, but the result will still have the same dimensionality and
size as the argument.

Real and real array arguments

When applied to a simple real value, the result is a real value. When applied to
arrays, vectorized functions like exp() are defined elementwise. For example,

// declare some variables for arguments
real x0;
array[5] real x1;
array[4, 7] real x2;
// ...
// declare some variables for results
real y0;
array[5] real y1;
array[4, 7] real y2;
// ...
// calculate and assign results

8

3.1. VECTORIZATION OF REAL-VALUED FUNCTIONS 9

y0 = exp(x0);
y1 = exp(x1);
y2 = exp(x2);

When exp is applied to an array, it applies elementwise. For example, the statement
above,

y2 = exp(x2);

produces the same result for y2 as the explicit loop

for (i in 1:4) {
for (j in 1:7) {
y2[i, j] = exp(x2[i, j]);

}
}

Vector and matrix arguments

Vectorized functions also apply elementwise to vectors and matrices. For example,

vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv;
row_vector[7] yrv;
matrix[10, 20] ym;

yv = exp(xv);
yrv = exp(xrv);
ym = exp(xm);

Arrays of vectors and matrices work the same way. For example,

array[12] matrix[17, 93] u;

array[12] matrix[17, 93] z;

z = exp(u);

10 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

After this has been executed, z[i, j, k] will be equal to exp(u[i, j, k]).

Integer and integer array arguments

Integer arguments are promoted to real values in vectorized unary functions. Thus if
n is of type int, exp(n) is of type real. Arrays work the same way, so that if n2 is a
one dimensional array of integers, then exp(n2) will be a one-dimensional array of
reals with the same number of elements as n2. For example,

array[23] int n1;
array[23] real z1;
z1 = exp(n1);

It would be illegal to try to assign exp(n1) to an array of integers; the return type is
a real array.

Binary function vectorization

Like the unary functions, many of Stan’s binary functions have been vectorized, and
can be applied elementwise to combinations of both scalars or container types.

Scalar and scalar array arguments

When applied to two scalar values, the result is a scalar value. When applied to two
arrays, or combination of a scalar value and an array, vectorized functions like pow()
are defined elementwise. For example,

// declare some variables for arguments
real x00;
real x01;
array[5] real x10;
array[5]real x11;
array[4, 7] real x20;
array[4, 7] real x21;
// ...
// declare some variables for results
real y0;
array[5] real y1;
array[4, 7] real y2;
// ...
// calculate and assign results

3.1. VECTORIZATION OF REAL-VALUED FUNCTIONS 11

y0 = pow(x00, x01);
y1 = pow(x10, x11);
y2 = pow(x20, x21);

When pow is applied to two arrays, it applies elementwise. For example, the statement
above,

y2 = pow(x20, x21);

produces the same result for y2 as the explicit loop

for (i in 1:4) {
for (j in 1:7) {
y2[i, j] = pow(x20[i, j], x21[i, j]);

}
}

Alternatively, if a combination of an array and a scalar are provided, the scalar value
is broadcast to be applied to each value of the array. For example, the following
statement:

y2 = pow(x20, x00);

produces the same result for y2 as the explicit loop:

for (i in 1:4) {
for (j in 1:7) {
y2[i, j] = pow(x20[i, j], x00);

}
}

Vector and matrix arguments

Vectorized binary functions also apply elementwise to vectors and matrices, and to
combinations of these with scalar values. For example,

real x00;
vector[5] xv00;
vector[5] xv01;
row_vector[7] xrv;
matrix[10, 20] xm;

12 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

vector[5] yv;
row_vector[7] yrv;
matrix[10, 20] ym;

yv = pow(xv00, xv01);
yrv = pow(xrv, x00);
ym = pow(x00, xm);

Arrays of vectors and matrices work the same way. For example,

array[12] matrix[17, 93] u;

array[12] matrix[17, 93] z;

z = pow(u, x00);

After this has been executed, z[i, j, k] will be equal to pow(u[i, j, k], x00).

Input & return types

Vectorised binary functions require that both inputs, unless one is a real, be containers
of the same type and size. For example, the following statements are legal:

vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv = pow(xv, xv)
row_vector[7] yrv = pow(xrv, xrv)
matrix[10, 20] = pow(xm, xm)

But the following statements are not:

vector[5] xv;
vector[7] xv2;
row_vector[5] xrv;

// Cannot mix different types
vector[5] yv = pow(xv, xrv)

// Cannot mix different sizes of the same type

3.2. MATHEMATICAL CONSTANTS 13

vector[5] yv = pow(xv, xv2)

While the vectorized binary functions generally require the same input types, the
only exception to this is for binary functions that require one input to be an integer
and the other to be a real (e.g., bessel_first_kind). For these functions, one
argument can be a container of any type while the other can be an integer array, as
long as the dimensions of both are the same. For example, the following statements
are legal:

vector[5] xv;
matrix[5, 5] xm;
array[5] int xi;
array[5, 5] int xii;

vector[5] yv = bessel_first_kind(xi, xv);
matrix[5, 5] ym = bessel_first_kind(xii, xm);

Whereas these are not:

vector[5] xv;
matrix[5, 5] xm;
array[7] int xi;

// Dimensions of containers do not match
vector[5] yv = bessel_first_kind(xi, xv);

// Function requires first argument be an integer type
matrix[5, 5] ym = bessel_first_kind(xm, xm);

3.2. Mathematical constants

Constants are represented as functions with no arguments and must be called as
such. For instance, the mathematical constant π must be written in a Stan program
as pi().

real pi()
π, the ratio of a circle’s circumference to its diameter
Available since 2.0

real e()

14 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

e, the base of the natural logarithm
Available since 2.0

real sqrt2()
The square root of 2
Available since 2.0

real log2()
The natural logarithm of 2
Available since 2.0

real log10()
The natural logarithm of 10
Available since 2.0

3.3. Special values

real not_a_number()
Not-a-number, a special non-finite real value returned to signal an error
Available since 2.0

real positive_infinity()
Positive infinity, a special non-finite real value larger than all finite numbers
Available since 2.0

real negative_infinity()
Negative infinity, a special non-finite real value smaller than all finite numbers
Available since 2.0

real machine_precision()
The smallest number x such that (x + 1) 6= 1 in floating-point arithmetic on the
current hardware platform
Available since 2.0

3.4. Log probability function

The basic purpose of a Stan program is to compute a log probability function
and its derivatives. The log probability function in a Stan model outputs the log
density on the unconstrained scale. A log probability accumulator starts at zero
and is then incremented in various ways by a Stan program. The variables are first
transformed from unconstrained to constrained, and the log Jacobian determinant

3.5. LOGICAL FUNCTIONS 15

added to the log probability accumulator. Then the model block is executed on
the constrained parameters, with each sampling statement (~) and log probability
increment statement (increment_log_prob) adding to the accumulator. At the end
of the model block execution, the value of the log probability accumulator is the log
probability value returned by the Stan program.

Stan provides a special built-in function target() that takes no arguments and
returns the current value of the log probability accumulator.1 This function is
primarily useful for debugging purposes, where for instance, it may be used with
a print statement to display the log probability accumulator at various stages of
execution to see where it becomes ill defined.

real target()
Return the current value of the log probability accumulator.
Available since 2.10

real get_lp()
Return the current value of the log probability accumulator; deprecated; - use
target() instead.
Available since 2.5, scheduled for removal in 2.32.0

Both target and the deprecated get_lp act like other functions ending in _lp,
meaning that they may only may only be used in the model block.

3.5. Logical functions

Like C++, BUGS, and R, Stan uses 0 to encode false, and 1 to encode true. Stan
supports the usual boolean comparison operations and boolean operators. These all
have the same syntax and precedence as in C++; for the full list of operators and
precedences, see the reference manual.

Comparison operators

All comparison operators return boolean values, either 0 or 1. Each operator has
two signatures, one for integer comparisons and one for floating-point comparisons.
Comparing an integer and real value is carried out by first promoting the integer
value.

1This function used to be called get_lp(), but that name has been deprecated; using it will print a
warning. The function get_lp() will be removed in Stan 2.32.0.

16 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

int operator<(int x, int y)

int operator<(real x, real y)
Return 1 if x is less than y and 0 otherwise.

operator<(x, y) =
{

1 if x < y

0 otherwise

Available since 2.0

int operator<=(int x, int y)

int operator<=(real x, real y)
Return 1 if x is less than or equal y and 0 otherwise.

operator<=(x, y) =
{

1 if x ≤ y
0 otherwise

Available since 2.0

int operator>(int x, int y)

int operator>(real x, real y)
Return 1 if x is greater than y and 0 otherwise.

operator> =
{

1 if x > y

0 otherwise

Available since 2.0

int operator>=(int x, int y)

int operator>=(real x, real y)
Return 1 if x is greater than or equal to y and 0 otherwise.

operator>= =
{

1 if x ≥ y
0 otherwise

3.5. LOGICAL FUNCTIONS 17

Available since 2.0

int operator==(int x, int y)

int operator==(real x, real y)
Return 1 if x is equal to y and 0 otherwise.

operator==(x, y) =
{

1 if x = y

0 otherwise

Available since 2.0

int operator!=(int x, int y)

int operator!=(real x, real y)
Return 1 if x is not equal to y and 0 otherwise.

operator!=(x, y) =
{

1 if x 6= y

0 otherwise

Available since 2.0

Boolean operators

Boolean operators return either 0 for false or 1 for true. Inputs may be any real or
integer values, with non-zero values being treated as true and zero values treated as
false. These operators have the usual precedences, with negation (not) binding the
most tightly, conjunction the next and disjunction the weakest; all of the operators
bind more tightly than the comparisons. Thus an expression such as !a && b is
interpreted as (!a) && b, and a < b || c >= d && e != f as (a < b) || (((c
>= d) && (e != f))).

int operator!(int x)

int operator!(real x)
Return 1 if x is zero and 0 otherwise.

operator!(x) =
{

0 if x 6= 0
1 if x = 0

18 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Available since 2.0

int operator&&(int x, int y)

int operator&&(real x, real y)
Return 1 if x is unequal to 0 and y is unequal to 0.

operator&&(x, y) =
{

1 if x 6= 0 and y 6= 0
0 otherwise

Available since 2.0

int operator||(int x, int y)

int operator||(real x, real y)
Return 1 if x is unequal to 0 or y is unequal to 0.

operator||(x, y) =
{

1 if x 6= 0 or y 6= 0
0 otherwise

Available since 2.0

Boolean operator short circuiting

Like in C++, the boolean operators && and || and are implemented to short circuit
directly to a return value after evaluating the first argument if it is sufficient to
resolve the result. In evaluating a || b, if a evaluates to a value other than zero,
the expression returns the value 1 without evaluating the expression b. Similarly,
evaluating a && b first evaluates a, and if the result is zero, returns 0 without
evaluating b.

Logical functions

The logical functions introduce conditional behavior functionally and are primarily
provided for compatibility with BUGS and JAGS.

real step(real x)

3.6. REAL-VALUED ARITHMETIC OPERATORS 19

Return 1 if x is positive and 0 otherwise.

step(x) =
{

0 if x < 0
1 otherwise

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and
step(NaN) return 1.

The step function is often used in BUGS to perform conditional operations. For
instance, step(a-b) evaluates to 1 if a is greater than b and evaluates to 0 otherwise.
step is a step-like functions; see the warning in section step functions applied to
expressions dependent on parameters.
Available since 2.0

int is_inf(real x)
Return 1 if x is infinite (positive or negative) and 0 otherwise.
Available since 2.5

int is_nan(real x)
Return 1 if x is NaN and 0 otherwise.
Available since 2.5

Care must be taken because both of these indicator functions are step-like and
thus can cause discontinuities in gradients when applied to parameters; see section
step-like functions for details.

3.6. Real-valued arithmetic operators

The arithmetic operators are presented using C++ notation. For instance
operator+(x,y) refers to the binary addition operator and operator-(x) to the
unary negation operator. In Stan programs, these are written using the usual infix
and prefix notations as x + y and -x, respectively.

Binary infix operators

real operator+(real x, real y)
Return the sum of x and y.

(x+ y) = operator+(x, y) = x+ y

Available since 2.0

20 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

real operator-(real x, real y)
Return the difference between x and y.

(x− y) = operator-(x, y) = x− y

Available since 2.0

real operator*(real x, real y)
Return the product of x and y.

(x ∗ y) = operator*(x, y) = xy

Available since 2.0

real operator/(real x, real y)
Return the quotient of x and y.

(x/y) = operator/(x, y) = x

y

Available since 2.0

real operatorˆ(real x, real y)
Return x raised to the power of y.

(x∧y) = operator∧(x, y) = xy

Available since 2.5

Unary prefix operators

real operator-(real x)
Return the negation of the subtrahend x.

operator-(x) = (−x)

Available since 2.0

real operator+(real x)
Return the value of x.

operator+(x) = x

Available since 2.0

3.7. STEP-LIKE FUNCTIONS 21

3.7. Step-like functions

Warning: These functions can seriously hinder sampling and optimization efficiency for
gradient-based methods (e.g., NUTS, HMC, BFGS) if applied to parameters (including
transformed parameters and local variables in the transformed parameters or model
block). The problem is that they break gradients due to discontinuities coupled with zero
gradients elsewhere. They do not hinder sampling when used in the data, transformed
data, or generated quantities blocks.

Absolute value functions

T abs(T x)
The absolute value of x.

This function works elementwise over containers such as vectors. Given a type T
which is real vector, row_vector, matrix, or an array of those types, abs returns
the same type where each element has had its absolute value taken.
Available since 2.0, vectorized in 2.30

R fabs(T x)
absolute value of x
Available since 2.0, vectorized in 2.13, deprecated in 2.30

real fdim(real x, real y)
Return the positive difference between x and y, which is x - y if x is greater than y
and 0 otherwise; see warning above.

fdim(x, y) =
{
x− y if x ≥ y
0 otherwise

Available since 2.0

R fdim(T1 x, T2 y)
Vectorized implementation of the fdim function
Available since 2.25

22 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Bounds functions

real fmin(real x, real y)
Return the minimum of x and y; see warning above.

fmin(x, y) =
{
x if x ≤ y
y otherwise

Available since 2.0

R fmin(T1 x, T2 y)
Vectorized implementation of the fmin function
Available since 2.25

real fmax(real x, real y)
Return the maximum of x and y; see warning above.

fmax(x, y) =
{
x if x ≥ y
y otherwise

Available since 2.0

R fmax(T1 x, T2 y)
Vectorized implementation of the fmax function
Available since 2.25

Arithmetic functions

real fmod(real x, real y)
Return the real value remainder after dividing x by y; see warning above.

fmod(x, y) = x−
⌊
x

y

⌋
y

The operator buc is the floor operation; see below.
Available since 2.0

R fmod(T1 x, T2 y)
Vectorized implementation of the fmod function
Available since 2.25

3.8. POWER AND LOGARITHM FUNCTIONS 23

Rounding functions

Warning: Rounding functions convert real values to integers. Because the output is
an integer, any gradient information resulting from functions applied to the integer
is not passed to the real value it was derived from. With MCMC sampling using HMC
or NUTS, the MCMC acceptance procedure will correct for any error due to poor
gradient calculations, but the result is likely to be reduced acceptance probabilities
and less efficient sampling.

The rounding functions cannot be used as indices to arrays because they return real
values. Stan may introduce integer-valued versions of these in the future, but as of
now, there is no good workaround.

R floor(T x)
floor of x, which is the largest integer less than or equal to x, converted to a real
value; see warning at start of section step-like functions
Available since 2.0, vectorized in 2.13

R ceil(T x)
ceiling of x, which is the smallest integer greater than or equal to x, converted to a
real value; see warning at start of section step-like functions
Available since 2.0, vectorized in 2.13

R round(T x)
nearest integer to x, converted to a real value; see warning at start of section step-like
functions
Available since 2.0, vectorized in 2.13

R trunc(T x)
integer nearest to but no larger in magnitude than x, converted to a double value;
see warning at start of section step-like functions
Available since 2.0, vectorized in 2.13

3.8. Power and logarithm functions

R sqrt(T x)
square root of x
Available since 2.0, vectorized in 2.13

R cbrt(T x)
cube root of x
Available since 2.0, vectorized in 2.13

24 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

R square(T x)
square of x
Available since 2.0, vectorized in 2.13

R exp(T x)
natural exponential of x
Available since 2.0, vectorized in 2.13

R exp2(T x)
base-2 exponential of x
Available since 2.0, vectorized in 2.13

R log(T x)
natural logarithm of x
Available since 2.0, vectorized in 2.13

R log2(T x)
base-2 logarithm of x
Available since 2.0, vectorized in 2.13

R log10(T x)
base-10 logarithm of x
Available since 2.0, vectorized in 2.13

real pow(real x, real y)
Return x raised to the power of y.

pow(x, y) = xy

Available since 2.0

R pow(T1 x, T2 y)
Vectorized implementation of the pow function
Available since 2.25

R inv(T x)
inverse of x
Available since 2.0, vectorized in 2.13

R inv_sqrt(T x)
inverse of the square root of x
Available since 2.0, vectorized in 2.13

3.9. TRIGONOMETRIC FUNCTIONS 25

R inv_square(T x)
inverse of the square of x
Available since 2.0, vectorized in 2.13

3.9. Trigonometric functions

real hypot(real x, real y)
Return the length of the hypotenuse of a right triangle with sides of length x and y.

hypot(x, y) =
{√

x2 + y2 if x, y ≥ 0
NaN otherwise

Available since 2.0

R hypot(T1 x, T2 y)
Vectorized implementation of the hypot function
Available since 2.25

R cos(T x)
cosine of the angle x (in radians)
Available since 2.0, vectorized in 2.13

R sin(T x)
sine of the angle x (in radians)
Available since 2.0, vectorized in 2.13

R tan(T x)
tangent of the angle x (in radians)
Available since 2.0, vectorized in 2.13

R acos(T x)
principal arc (inverse) cosine (in radians) of x
Available since 2.0, vectorized in 2.13

R asin(T x)
principal arc (inverse) sine (in radians) of x
Available since 2.0

R atan(T x)
principal arc (inverse) tangent (in radians) of x, with values from −π/2 to π/2
Available since 2.0, vectorized in 2.13

26 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

real atan2(real y, real x)
Return the principal arc (inverse) tangent (in radians) of y divided by x,

atan2(y, x) = arctan
(y
x

)
Available since 2.0, vectorized in 2.13

3.10. Hyperbolic trigonometric functions

R cosh(T x)
hyperbolic cosine of x (in radians)
Available since 2.0, vectorized in 2.13

R sinh(T x)
hyperbolic sine of x (in radians)
Available since 2.0, vectorized in 2.13

R tanh(T x)
hyperbolic tangent of x (in radians)
Available since 2.0, vectorized in 2.13

R acosh(T x)
inverse hyperbolic cosine (in radians)
Available since 2.0, vectorized in 2.13

R asinh(T x)
inverse hyperbolic cosine (in radians)
Available since 2.0, vectorized in 2.13

R atanh(T x)
inverse hyperbolic tangent (in radians) of x
Available since 2.0, vectorized in 2.13

3.11. Link functions

The following functions are commonly used as link functions in generalized linear
models. The function Φ is also commonly used as a link function (see section
probability-related functions).

R logit(T x)
log odds, or logit, function applied to x

3.12. PROBABILITY-RELATED FUNCTIONS 27

Available since 2.0, vectorized in 2.13

R inv_logit(T x)
logistic sigmoid function applied to x
Available since 2.0, vectorized in 2.13

R inv_cloglog(T x)
inverse of the complementary log-log function applied to x
Available since 2.0, vectorized in 2.13

3.12. Probability-related functions

Normal cumulative distribution functions

The error function erf is related to the standard normal cumulative distribution
function Φ by scaling. See section normal distribution for the general normal
cumulative distribution function (and its complement).

R erf(T x)
error function, also known as the Gauss error function, of x
Available since 2.0, vectorized in 2.13

R erfc(T x)
complementary error function of x
Available since 2.0, vectorized in 2.13

R inv_erfc(T x)
inverse of the complementary error function of x
Available since 2.29, vectorized in 2.29

R Phi(T x)
standard normal cumulative distribution function of x
Available since 2.0, vectorized in 2.13

R inv_Phi(T x)
Return the value of the inverse standard normal cdf Φ−1 at the specified quantile x.
The details of the algorithm can be found in (Wichura 1988). Quantile arguments
below 1e-16 are untested; quantiles above 0.999999999 result in increasingly large
errors.
Available since 2.0, vectorized in 2.13

R Phi_approx(T x)
fast approximation of the unit (may replace Phi for probit regression with maximum

28 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

absolute error of 0.00014, see (Bowling et al. 2009) for details)
Available since 2.0, vectorized in 2.13

Other probability-related functions

real binary_log_loss(int y, real y_hat)
Return the log loss function for for predicting ŷ ∈ [0, 1] for boolean outcome y ∈
{0, 1}.

binary_log_loss(y, ŷ) =
{
− log ŷ if y = 1
− log(1− ŷ) otherwise

Available since 2.0

R binary_log_loss(T1 x, T2 y)
Vectorized implementation of the binary_log_loss function
Available since 2.25

real owens_t(real h, real a)
Return the Owen’s T function for the probability of the event X > h and 0 < Y < aX

where X and Y are independent standard normal random variables.

owens_t(h, a) = 1
2π

∫ a

0

exp(− 1
2h

2(1 + x2))
1 + x2 dx

Available since 2.25

R owens_t(T1 x, T2 y)
Vectorized implementation of the owens_t function
Available since 2.25

3.13. Combinatorial functions

real beta(real alpha, real beta)
Return the beta function applied to alpha and beta. The beta function, B(α, β),
computes the normalizing constant for the beta distribution, and is defined for α > 0
and β > 0. See section appendix for definition of B(α, β).
Available since 2.25

R beta(T1 x, T2 y)
Vectorized implementation of the beta function
Available since 2.25

3.13. COMBINATORIAL FUNCTIONS 29

real inc_beta(real alpha, real beta, real x)
Return the regularized incomplete beta function up to x applied to alpha and beta.
See section appendix for a definition.
Available since 2.10

real inv_inc_beta(real alpha, real beta, real p)
Return the inverse of the regularized incomplete beta function. The return value x is
the value that solves p = inc_beta(alpha, beta, x). See section appendix for a
definition of the inc_beta.
Available since 2.30

real lbeta(real alpha, real beta)
Return the natural logarithm of the beta function applied to alpha and beta. The
beta function, B(α, β), computes the normalizing constant for the beta distribution,
and is defined for α > 0 and β > 0.

lbeta(α, β) = log Γ(a) + log Γ(b)− log Γ(a+ b)

See section appendix for definition of B(α, β).
Available since 2.0

R lbeta(T1 x, T2 y)
Vectorized implementation of the lbeta function
Available since 2.25

R tgamma(T x)
gamma function applied to x. The gamma function is the generalization of the
factorial function to continuous variables, defined so that Γ(n+ 1) = n!. See for a
full definition of Γ(x). The function is defined for positive numbers and non-integral
negative numbers,
Available since 2.0, vectorized in 2.13

R lgamma(T x)
natural logarithm of the gamma function applied to x,
Available since 2.0, vectorized in 2.15

R digamma(T x)
digamma function applied to x. The digamma function is the derivative of the natural
logarithm of the Gamma function. The function is defined for positive numbers and
non-integral negative numbers
Available since 2.0, vectorized in 2.13

R trigamma(T x)

30 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

trigamma function applied to x. The trigamma function is the second derivative of
the natural logarithm of the Gamma function
Available since 2.0, vectorized in 2.13

real lmgamma(int n, real x)
Return the natural logarithm of the multivariate gamma function Γn with n dimen-
sions applied to x.

lmgamma(n, x) =
{
n(n−1)

4 log π +
∑n
j=1 log Γ

(
x+ 1−j

2
)

if x 6∈ {. . . ,−3,−2,−1, 0}
error otherwise

Available since 2.0

R lmgamma(T1 x, T2 y)
Vectorized implementation of the lmgamma function
Available since 2.25

real gamma_p(real a, real z)
Return the normalized lower incomplete gamma function of a and z defined for
positive a and nonnegative z.

gamma_p(a, z) =
{

1
Γ(a)

∫ z
0 t

a−1e−tdt if a > 0, z ≥ 0
error otherwise

Available since 2.0

R gamma_p(T1 x, T2 y)
Vectorized implementation of the gamma_p function
Available since 2.25

real gamma_q(real a, real z)
Return the normalized upper incomplete gamma function of a and z defined for
positive a and nonnegative z.

gamma_q(a, z) =


1

Γ(a)
∫∞
z
ta−1e−tdt if a > 0, z ≥ 0

error otherwise

Available since 2.0

R gamma_q(T1 x, T2 y)
Vectorized implementation of the gamma_q function
Available since 2.25

3.13. COMBINATORIAL FUNCTIONS 31

real binomial_coefficient_log(real x, real y)
Warning: This function is deprecated and should be replaced with lchoose. Return
the natural logarithm of the binomial coefficient of x and y. For non-negative
integer inputs, the binomial coefficient function is written as

(
x
y

)
and pronounced “x

choose y.” This function generalizes to real numbers using the gamma function. For
0 ≤ y ≤ x,

binomial_coefficient_log(x, y) = log Γ(x+ 1)− log Γ(y + 1)− log Γ(x− y + 1).

Available since 2.0, deprecated since 2.10, scheduled for removal in 2.32

R binomial_coefficient_log(T1 x, T2 y)
Vectorized implementation of the binomial_coefficient_log function
Available since 2.25

int choose(int x, int y)
Return the binomial coefficient of x and y. For non-negative integer inputs, the
binomial coefficient function is written as

(
x
y

)
and pronounced “x choose y.” In its

the antilog of the lchoose function but returns an integer rather than a real number
with no non-zero decimal places. For 0 ≤ y ≤ x, the binomial coefficient function
can be defined via the factorial function

choose(x, y) = x!
(y!) (x− y)! .

Available since 2.14

R choose(T1 x, T2 y)
Vectorized implementation of the choose function
Available since 2.25

real bessel_first_kind(int v, real x)
Return the Bessel function of the first kind with order v applied to x.

bessel_first_kind(v, x) = Jv(x),

where

Jv(x) =
(

1
2x
)v ∞∑

k=0

(
− 1

4x
2)k

k! Γ(v + k + 1)

Available since 2.5

32 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

R bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the bessel_first_kind function
Available since 2.25

real bessel_second_kind(int v, real x)
Return the Bessel function of the second kind with order v applied to x defined for
positive x and v. For x, v > 0,

bessel_second_kind(v, x) =
{
Yv(x) if x > 0
error otherwise

where

Yv(x) = Jv(x) cos(vπ)− J−v(x)
sin(vπ)

Available since 2.5

R bessel_second_kind(T1 x, T2 y)
Vectorized implementation of the bessel_second_kind function
Available since 2.25

real modified_bessel_first_kind(int v, real z)
Return the modified Bessel function of the first kind with order v applied to z defined
for all z and integer v.

modified_bessel_first_kind(v, z) = Iv(z)

where

Iv(z) =
(

1
2z
)v ∞∑

k=0

(1
4z

2)k
k!Γ(v + k + 1)

Available since 2.1

R modified_bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the modified_bessel_first_kind function
Available since 2.25

real log_modified_bessel_first_kind(real v, real z)
Return the log of the modified Bessel function of the first kind. v does not have to be
an integer.
Available since 2.26

3.13. COMBINATORIAL FUNCTIONS 33

R log_modified_bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the log_modified_bessel_first_kind function
Available since 2.26

real modified_bessel_second_kind(int v, real z)
Return the modified Bessel function of the second kind with order v applied to z
defined for positive z and integer v.

modified_bessel_second_kind(v, z) =
{
Kv(z) if z > 0
error if z ≤ 0

where

Kv(z) = π

2 ·
I−v(z)− Iv(z)

sin(vπ)

Available since 2.1

R modified_bessel_second_kind(T1 x, T2 y)
Vectorized implementation of the modified_bessel_second_kind function
Available since 2.25

real falling_factorial(real x, real n)
Return the falling factorial of x with power n defined for positive x and real n.

falling_factorial(x, n) =
{

(x)n if x > 0
error if x ≤ 0

where

(x)n = Γ(x+ 1)
Γ(x− n+ 1)

Available since 2.0

R falling_factorial(T1 x, T2 y)
Vectorized implementation of the falling_factorial function
Available since 2.25

real lchoose(real x, real y)
Return the natural logarithm of the generalized binomial coefficient of x and y. For
non-negative integer inputs, the binomial coefficient function is written as

(
x
y

)
and

pronounced “x choose y.” This function generalizes to real numbers using the gamma
function. For 0 ≤ y ≤ x,

binomial_coefficient_log(x, y) = log Γ(x+ 1)− log Γ(y + 1)− log Γ(x− y + 1).

34 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Available since 2.10

R lchoose(T1 x, T2 y)
Vectorized implementation of the lchoose function
Available since 2.29

real log_falling_factorial(real x, real n)
Return the log of the falling factorial of x with power n defined for positive x and
real n.

log_falling_factorial(x, n) =
{

log(x)n if x > 0
error if x ≤ 0

Available since 2.0

real rising_factorial(real x, int n)
Return the rising factorial of x with power n defined for positive x and integer n.

rising_factorial(x, n) =
{
x(n) if x > 0
error if x ≤ 0

where

x(n) = Γ(x+ n)
Γ(x)

Available since 2.20

R rising_factorial(T1 x, T2 y)
Vectorized implementation of the rising_factorial function
Available since 2.25

real log_rising_factorial(real x, real n)
Return the log of the rising factorial of x with power n defined for positive x and real
n.

log_rising_factorial(x, n) =
{

log x(n) if x > 0
error if x ≤ 0

Available since 2.0

R log_rising_factorial(T1 x, T2 y)
Vectorized implementation of the log_rising_factorial function
Available since 2.25

3.14. COMPOSED FUNCTIONS 35

3.14. Composed functions

The functions in this section are equivalent in theory to combinations of other func-
tions. In practice, they are implemented to be more efficient and more numerically
stable than defining them directly using more basic Stan functions.

R expm1(T x)
natural exponential of x minus 1
Available since 2.0, vectorized in 2.13

real fma(real x, real y, real z)
Return z plus the result of x multiplied by y.

fma(x, y, z) = (x× y) + z

Available since 2.0

real multiply_log(real x, real y)
Warning: This function is deprecated and should be replaced with lmultiply.
Return the product of x and the natural logarithm of y.

multiply_log(x, y) =


0 if x = y = 0
x log y if x, y 6= 0
NaN otherwise

Available since 2.0, deprecated since 2.10, scheduled for removal in 2.32

R multiply_log(T1 x, T2 y)
Vectorized implementation of the multiply_log function
Available since 2.25

real ldexp(real x, int y)
Return the product of x and two raised to the y power.

ldexp(x, y) = x2y

Available since 2.25

R ldexp(T1 x, T2 y)
Vectorized implementation of the ldexp function
Available since 2.25

36 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

real lmultiply(real x, real y)
Return the product of x and the natural logarithm of y.

lmultiply(x, y) =


0 if x = y = 0
x log y if x, y 6= 0
NaN otherwise

Available since 2.10

R lmultiply(T1 x, T2 y)
Vectorized implementation of the lmultiply function
Available since 2.25

R log1p(T x)
natural logarithm of 1 plus x
Available since 2.0, vectorized in 2.13

R log1m(T x)
natural logarithm of 1 minus x
Available since 2.0, vectorized in 2.13

R log1p_exp(T x)
natural logarithm of one plus the natural exponentiation of x
Available since 2.0, vectorized in 2.13

R log1m_exp(T x)
logarithm of one minus the natural exponentiation of x
Available since 2.0, vectorized in 2.13

real log_diff_exp(real x, real y)
Return the natural logarithm of the difference of the natural exponentiation of x and
the natural exponentiation of y.

log_diff_exp(x, y) =

log(exp(x)− exp(y)) if x > y

NaN otherwise

Available since 2.0

R log_diff_exp(T1 x, T2 y)
Vectorized implementation of the log_diff_exp function
Available since 2.25

3.15. SPECIAL FUNCTIONS 37

real log_mix(real theta, real lp1, real lp2)
Return the log mixture of the log densities lp1 and lp2 with mixing proportion theta,
defined by

log_mix(θ, λ1, λ2) = log(θ exp(λ1) + (1− θ) exp(λ2))

= log_sum_exp(log(θ) + λ1, log(1− θ) + λ2) .

Available since 2.6

R log_mix(T1 theta, T2 lp1, T3 lp3)
Vectorized implementation of the log_mix function
Available since 2.26

real log_sum_exp(real x, real y)
Return the natural logarithm of the sum of the natural exponentiation of x and the
natural exponentiation of y.

log_sum_exp(x, y) = log(exp(x) + exp(y))

Available since 2.0

R log_inv_logit(T x)
natural logarithm of the inverse logit function of x
Available since 2.0, vectorized in 2.13

R log_inv_logit_diff(T1 x, T2 y)
natural logarithm of the difference of the inverse logit function of x and the inverse
logit function of y
Available since 2.25

R log1m_inv_logit(T x)
natural logarithm of 1 minus the inverse logit function of x
Available since 2.0, vectorized in 2.13

3.15. Special functions

R lambert_w0(T x)

38 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Implementation of the W0 branch of the Lambert W function, i.e., solution to the
function W0(x) expW0(x) = x

Available since 2.25

R lambert_wm1(T x)
Implementation of the W−1 branch of the Lambert W function, i.e., solution to the
function W−1(x) expW−1(x) = x

Available since 2.25

4. Complex-Valued Basic Functions

This chapter describes built-in functions that operate on complex numbers, either as
an argument type or a return type. This includes the arithmetic operators generalized
to complex numbers.

4.1. Complex assignment and promotion

Just as integers may be assigned to real variables, real variables may be assigned to
complex numbers, with the result being a zero imaginary component.

int n = 5; // n = 5
real x = a; // x = 5.0
complex z1 = n; // z = 5.0 + 0.0i
complex z2 = x; // z = 5.0 + 0.0i

Complex function arguments

Function arguments of type int or real may be promoted to type complex. The
complex version of functions in this chapter are only used if one of the arguments is
complex. For example, if z is complex, then pow(z, 2) will call the complex verison
of the power function and the integer 2 will be promoted to a complex number with
a real component of 2 and an imaginary component of 0. The same goes for binary
operators like addition and subtraction, where z + 2 will be legal and produce a
complex result. Functions such as arg and conj that are only available for complex
numbers can accept integer or real arguments, promoting them to complex before
applying the function.

4.2. Complex constructors and accessors

Complex constructors

Variables and constants of type complex are constructed from zero, one, or two real
numbers.

complex z1 = to_complex(); // z1 = 0.0 + 0.0i
real re = -2.9;

39

40 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

complex z2 = to_complex(re); // z2 = -2.9 + 0.0i
real im = 1.3;
complex z3 = to_complex(re, im); // z3 = -2.9 + 1.3i

complex to_complex()
Return complex number with real part 0.0 and imaginary part 0.0.
Available since 2.28

complex to_complex(real re)
Return complex number with real part re and imaginary part 0.0.
Available since 2.28

complex to_complex(real re, real im)
Return complex number with real part re and imaginary part im.
Available since 2.28

Z to_complex(T1 re, T2 im)
Vectorized implementation of the to_complex function.

T1 and T2 can either be real containers of the same size, or a real container and a
real, in which case the real value is used for the corresponding component in all
elements of the output.
Available since 2.30

Complex accessors

Given a complex number, its real and imaginary parts can be extracted with the
following functions.

real get_real(complex z)
Return the real part of the complex number z.
Available since 2.28

real get_imag(complex z)
Return the imaginary part of the complex number z.
Available since 2.28

4.3. Complex arithmetic operators

The arithmetic operators have the same precedence for complex and real arguments.
The complex form of an operator will be selected if at least one of its argument is of

4.3. COMPLEX ARITHMETIC OPERATORS 41

type complex. If there are two arguments and only one is of type complex, then the
other will be promoted to type complex before performing the operation.

Unary operators

complex operator+(complex z)
Return the complex argument z,

+z = z.

Available since 2.28

complex operator-(complex z)
Return the negation of the complex argument z, which for z = x+ yi is

−z = −x− yi.

Available since 2.28

Binary operators

complex operator+(complex x, complex y)
Return the sum of x and y,

(x+ y) = operator+(x, y) = x+ y.

Available since 2.28

complex operator-(complex x, complex y)
Return the difference between x and y,

(x− y) = operator-(x, y) = x− y.

Available since 2.28

complex operator*(complex x, complex y)
Return the product of x and y,

(x ∗ y) = operator*(x, y) = x× y.

Available since 2.28

42 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

complex operator/(complex x, complex y)
Return the quotient of x and y,

(x/y) = operator/(x, y) = x

y

Available since 2.28

complex operatorˆ(complex x, complex y)
Return x raised to the power of y,

(x∧y) = operator∧(x, y) = exp(y log(x)).

Available since 2.28

4.4. Complex comparison operators

Complex numbers are equal if and only if both their real and imaginary components
are equal. That is, the conditional

z1 == z2

is equivalent to

get_real(z1) == get_real(z2) && get_imag(z1) == get_imag(z2)

As with other complex functions, if one of the arguments is of type real or int, it
will be promoted to type complex before comparison. For example, if z is of type
complex, then z == 0 will be true if z has real component equal to 0.0 and complex
component equal to 0.0.

Warning: As with real values, it is usually a mistake to compare complex numbers
for equality because their parts are implemented using floating-point arithmetic,
which suffers from precision errors, rendering algebraically equivalent expressions
not equal after evaluation.

int operator==(complex x, complex y)
Return 1 if x is equal to y and 0 otherwise,

(x== y) = operator==(x, y) =
{

1 if x = y, and

0 otherwise.

4.5. COMPLEX (COMPOUND) ASSIGNMENT OPERATORS 43

Available since 2.28

int operator!=(complex x, complex y)
Return 1 if x is not equal to y and 0 otherwise,

(x != y) = operator!=(x, y) =
{

1 if x 6= y, and

0 otherwise.

Available since 2.28

4.5. Complex (compound) assignment operators

The assignment operator only serves as a component in the assignment statement
and is thus not technically a function in the Stan language. With that caveat, it is
documented here for completeness.

Assignment of complex numbers works elementwise. If an expression of type int or
real is assigned to a complex number, it will be promoted before assignment as if
calling to_complex(), so that the imaginary component is 0.0.

void operator=(complex x, complex y)
y = x; assigns a (copy of) the value of y to x.
Available since 2.28

void operator+=(complex x, complex y)
x += y; is equivalent to x = x + y;.
Available since 2.28

void operator-=(complex x, complex y)
x -= y; is equivalent to x = x - y;.
Available since 2.28

void operator*=(complex x, complex y)
x *= y; is equivalent to x = x * y;.
Available since 2.28

void operator/=(complex x, complex y)
x /= y; is equivalent to x = x / y;.
Available since 2.28

44 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

4.6. Complex special functions

The following functions are specific to complex numbers other than absolute value,
which has a specific meaning for complex numbers.

real abs(complex z)
Return the absolute value of z, also known as the modulus or magnitude, which for
z = x+ yi is

abs(z) =
√
x2 + y2.

This function works elementwise over containers, returning the same shape and
kind of the input container but holding reals. For example, a complex_vector[n]
input will return a vector[n] output, with each element transformed by the above
equation.
Available since 2.28, vectorized in 2.30

real arg(complex z)
Return the phase angle (in radians) of z, which for z = x+ yi is

arg(z) = atan2(y, x) = atan(y/x).

Available since 2.28

real norm(complex z)
Return the Euclidean norm of z, which is its absolute value squared, and which for
z = x+ yi is

norm(z) = abs2(z) = x2 + y2.

Available since 2.28

complex conj(complex z)
Return the complex conjugate of z, which negates the imaginary component, so that
if z = x+ yi,

conj(z) = x− yi.

Available since 2.28

complex proj(complex z)
Return the projection of z onto the Riemann sphere, which for z = x+ yi is

proj(z) =
{
z if z is finite, and

0 + sign(y)i otherwise,

4.7. COMPLEX EXPONENTIAL AND POWER FUNCTIONS 45

where sign(y) is -1 if y is negative and 1 otherwise.
Available since 2.28

complex polar(real r, real theta)
Return the complex number with magnitude (absolute value) r and phase angle
theta.
Available since 2.28

4.7. Complex exponential and power functions

The exponential, log, and power functions may be supplied with complex arguments
with specialized meanings that generalize their real counterparts. These versions are
only called when the argument is complex.

complex exp(complex z)
Return the complex natural exponential of z, which for z = x+ yi is

exp z = exp(x)cis(y) = exp(x)(cos(y) + i sin(y)).

Available since 2.28

complex log(complex z)
Return the complex natural logarithm of z, which for z = polar(r, θ) is

log z = log r + θi.

Available since 2.28

complex log10(complex z)
Return the complex common logarithm of z,

log10 z = log z
log 10 .

Available since 2.28

complex pow(complex x, complex y)
Return x raised to the power of y,

pow(x, y) = exp(y log(x)).

46 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

Available since 2.28

Z pow(T1 x, T2 y)
Vectorized implementation of the pow function
Available since 2.30

complex sqrt(complex x)
Return the complex square root of x with branch cut along the negative real axis.
For finite inputs, the result will be in the right half-plane.
Available since 2.28

4.8. Complex trigonometric functions

The standard trigonometric functions are supported for complex numbers.

complex cos(complex z)
Return the complex cosine of z, which is

cos(z) = cosh(z i) = exp(z i) + exp(−z i)
2 .

Available since 2.28

complex sin(complex z)
Return the complex sine of z,

sin(z) = −sinh(z i) i = exp(z i)− exp(−z i)
2 i .

Available since 2.28

complex tan(complex z)
Return the complex tangent of z,

tan(z) = −tanh(z i) i = (exp(−z i)− exp(z i)) i
exp(−z i) + exp(z i) .

Available since 2.28

complex acos(complex z)
Return the complex arc (inverse) cosine of z,

acos(z) = 1
2π + log(z i+

√
1− z2) i.

4.9. COMPLEX HYPERBOLIC TRIGONOMETRIC FUNCTIONS 47

Available since 2.28

complex asin(complex z)
Return the complex arc (inverse) sine of z,

asin(z) = − log(z i+
√

1− z2) i.

Available since 2.28

complex atan(complex z)
Return the complex arc (inverse) tangent of z,

atan(z) = −1
2(log(1− z i)− log(1 + z i)) i.

Available since 2.28

4.9. Complex hyperbolic trigonometric functions

The standard hyperbolic trigonometric functions are supported for complex numbers.

complex cosh(complex z)
Return the complex hyperbolic cosine of z,

cosh(z) = exp(z) + exp(−z)
2 .

Available since 2.28

complex sinh(complex z)
Return the complex hyperbolic sine of z,

sinh(z) = exp(z)− exp(−z)
2 .

Available since 2.28

complex tanh(complex z)
Return the complex hyperbolic tangent of z,

tanh(z) = sinh(z)
cosh(z) = exp(z)− exp(−z)

exp(z) + exp(−z) .

48 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

Available since 2.28

complex acosh(complex z)
Return the complex hyperbolic arc (inverse) cosine of z,

acosh(z) = log(z +
√

(z + 1)(z − 1)).

Available since 2.28

complex asinh(complex z)
Return the complex hyperbolic arc (inverse) sine of z,

asinh(z) = log(z +
√

1 + z2).

Available since 2.28

complex atanh(complex z)
Return the complex hyperbolic arc (inverse) tangent of z,

atanh(z) = log(1 + z)− log(1− z)
2 .

Available since 2.28

5. Array Operations

5.1. Reductions

The following operations take arrays as input and produce single output values.
The boundary values for size 0 arrays are the unit with respect to the combination
operation (min, max, sum, or product).

Minimum and maximum

real min(array[] real x)
The minimum value in x, or +∞ if x is size 0.
Available since 2.0

int min(array[] int x)
The minimum value in x, or error if x is size 0.
Available since 2.0

real max(array[] real x)
The maximum value in x, or −∞ if x is size 0.
Available since 2.0

int max(array[] int x)
The maximum value in x, or error if x is size 0.
Available since 2.0

Sum, product, and log sum of exp

int sum(array[] int x)
The sum of the elements in x, or 0 if the array is empty.
Available since 2.1

real sum(array[] real x)
The sum of the elements in x; see definition above.
Available since 2.0

complex sum(array[] complex x)
The sum of the elements in x; see definition above.
Available since 2.30

49

50 CHAPTER 5. ARRAY OPERATIONS

real prod(array[] real x)
The product of the elements in x, or 1 if x is size 0.
Available since 2.0

real prod(array[] int x)
The product of the elements in x,

product(x) =


∏N
n=1 xn ifN > 0

1 ifN = 0

Available since 2.0

real log_sum_exp(array[] real x)
The natural logarithm of the sum of the exponentials of the elements in x, or −∞ if
the array is empty.
Available since 2.0

Sample mean, variance, and standard deviation

The sample mean, variance, and standard deviation are calculated in the usual way.
For i.i.d. draws from a distribution of finite mean, the sample mean is an unbiased
estimate of the mean of the distribution. Similarly, for i.i.d. draws from a distribution
of finite variance, the sample variance is an unbiased estimate of the variance.1 The
sample deviation is defined as the square root of the sample deviation, but is not
unbiased.

real mean(array[] real x)
The sample mean of the elements in x. For an array x of size N > 0,

mean(x) = x̄ = 1
N

N∑
n=1

xn.

It is an error to the call the mean function with an array of size 0.
Available since 2.0

real variance(array[] real x)
The sample variance of the elements in x. For N > 0,

variance(x) =


1

N−1
∑N
n=1(xn − x̄)2 if N > 1

0 if N = 1
1Dividing by N rather than (N − 1) produces a maximum likelihood estimate of variance, which is

biased to underestimate variance.

5.1. REDUCTIONS 51

It is an error to call the variance function with an array of size 0.
Available since 2.0

real sd(array[] real x)
The sample standard deviation of elements in x.

sd(x) =


√

variance(x) if N > 1

0 if N = 0

It is an error to call the sd function with an array of size 0.
Available since 2.0

Norms

real norm1(vector x)
The L1 norm of x, defined by

norm1(x) =
∑N
n=1(|xn|)

where N is the size of x.
Available since 2.30

real norm1(row_vector x)
The L1 norm of x
Available since 2.30

real norm1(array[] real x)
The L1 norm of x
Available since 2.30

real norm2(vector x)
The L2 norm of x, defined by

norm2(x) =
√∑N

n=1(xn)2

where N is the size of x
Available since 2.30

real norm2(row_vector x)
The L2 norm of x
Available since 2.30

52 CHAPTER 5. ARRAY OPERATIONS

real norm2(array[] real x)
The L2 norm of x
Available since 2.30

Euclidean distance and squared distance

real distance(vector x, vector y)
The Euclidean distance between x and y, defined by

distance(x, y) =
√∑N

n=1(xn − yn)2

where N is the size of x and y. It is an error to call distance with arguments of
unequal size.
Available since 2.2

real distance(vector x, row_vector y)
The Euclidean distance between x and y
Available since 2.2

real distance(row_vector x, vector y)
The Euclidean distance between x and y
Available since 2.2

real distance(row_vector x, row_vector y)
The Euclidean distance between x and y
Available since 2.2

real squared_distance(vector x, vector y)
The squared Euclidean distance between x and y, defined by

squared_distance(x, y) = distance(x, y)2 =
∑N
n=1(xn − yn)2,

where N is the size of x and y. It is an error to call squared_distance with arguments
of unequal size.
Available since 2.7

real squared_distance(vector x, row_vector y)
The squared Euclidean distance between x and y
Available since 2.26

real squared_distance(row_vector x, vector y)
The squared Euclidean distance between x and y
Available since 2.26

5.2. ARRAY SIZE AND DIMENSION FUNCTION 53

real squared_distance(row_vector x, row_vector y)
The Euclidean distance between x and y
Available since 2.26

Quantile

Produces sample quantiles corresponding to the given probabilities. The smallest
observation corresponds to a probability of 0 and the largest to a probability of 1.

Implements algorithm 7 from Hyndman, R. J. and Fan, Y., Sample quantiles in
Statistical Packages (R’s default quantile function).

real quantile(data array[] real x, data real p)
The p-th quantile of x
Available since 2.27

array[] real quantile(data array[] real x, data array[] real p)
An array containing the quantiles of x given by the array of probabilities p
Available since 2.27

5.2. Array size and dimension function

The size of an array or matrix can be obtained using the dims() function. The
dims() function is defined to take an argument consisting of any variable with up
to 8 array dimensions (and up to 2 additional matrix dimensions) and returns an
array of integers with the dimensions. For example, if two variables are declared as
follows,

array[7, 8, 9] real x;
array[7] matrix[8, 9] y;

then calling dims(x) or dims(y) returns an integer array of size 3 containing the
elements 7, 8, and 9 in that order.

The size() function extracts the number of elements in an array. This is just the
top-level elements, so if the array is declared as

array[M, N] real a;

the size of a is M.

The function num_elements, on the other hand, measures all of the elements, so
that the array a above has M ×N elements.

54 CHAPTER 5. ARRAY OPERATIONS

The specialized functions rows() and cols() should be used to extract the dimen-
sions of vectors and matrices.

array[] int dims(T x)
Return an integer array containing the dimensions of x; the type of the argument T
can be any Stan type with up to 8 array dimensions.
Available since 2.0

int num_elements(array[] T x)
Return the total number of elements in the array x including all elements in contained
arrays, vectors, and matrices. T can be any array type. For example, if x is of type
array[4, 3] real then num_elements(x) is 12, and if y is declared as array[5]
matrix[3, 4] y, then size(y) evaluates to 60.
Available since 2.5

int size(array[] T x)
Return the number of elements in the array x; the type of the array T can be any type,
but the size is just the size of the top level array, not the total number of elements
contained. For example, if x is of type array[4, 3] real then size(x) is 4.
Available since 2.0

5.3. Array broadcasting

The following operations create arrays by repeating elements to fill an array of a
specified size. These operations work for all input types T, including reals, integers,
vectors, row vectors, matrices, or arrays.

array[] T rep_array(T x, int n)
Return the n array with every entry assigned to x.
Available since 2.0

array [,] T rep_array(T x, int m, int n)
Return the m by n array with every entry assigned to x.
Available since 2.0

array[„] T rep_array(T x, int k, int m, int n)
Return the k by m by n array with every entry assigned to x.
Available since 2.0

For example, rep_array(1.0,5) produces a real array (type array[] real) of size
5 with all values set to 1.0. On the other hand, rep_array(1,5) produces an
integer array (type array[] int) of size 5 with all values set to 1. This distinction

5.3. ARRAY BROADCASTING 55

is important because it is not possible to assign an integer array to a real array.
For example, the following example contrasts legal with illegal array creation and
assignment

array[5] real y;
array[5] int x;

x = rep_array(1, 5); // ok
y = rep_array(1.0, 5); // ok

x = rep_array(1.0, 5); // illegal
y = rep_array(1, 5); // illegal

x = y; // illegal
y = x; // illegal

If the value being repeated v is a vector (i.e., T is vector), then rep_array(v, 27)
is a size 27 array consisting of 27 copies of the vector v.

vector[5] v;
array[3] vector[5] a;

a = rep_array(v, 3); // fill a with copies of v
a[2, 4] = 9.0; // v[4], a[1, 4], a[3, 4] unchanged

If the type T of x is itself an array type, then the result will be an array with one,
two, or three added dimensions, depending on which of the rep_array functions is
called. For instance, consider the following legal code snippet.

array[5, 6] real a;
array[3, 4, 5, 6] real b;

b = rep_array(a, 3, 4); // make (3 x 4) copies of a
b[1, 1, 1, 1] = 27.9; // a[1, 1] unchanged

After the assignment to b, the value for b[j, k, m, n] is equal to a[m, n] where it
is defined, for j in 1:3, k in 1:4, m in 1:5, and n in 1:6.

56 CHAPTER 5. ARRAY OPERATIONS

5.4. Array concatenation

T append_array(T x, T y)
Return the concatenation of two arrays in the order of the arguments. T must be an
N-dimensional array of any Stan type (with a maximum N of 7). All dimensions but
the first must match.
Available since 2.18

For example, the following code appends two three dimensional arrays of matrices
together. Note that all dimensions except the first match. Any mismatches will cause
an error to be thrown.

array[2, 1, 7] matrix[4, 6] x1;
array[3, 1, 7] matrix[4, 6] x2;
array[5, 1, 7] matrix[4, 6] x3;

x3 = append_array(x1, x2);

5.5. Sorting functions

Sorting can be used to sort values or the indices of those values in either ascending
or descending order. For example, if v is declared as a real array of size 3, with
values

v = (1,−10.3, 20.987),

then the various sort routines produce

sort_asc(v) = (−10.3, 1, 20.987)

sort_desc(v) = (20.987, 1,−10.3)

sort_indices_asc(v) = (2, 1, 3)

sort_indices_desc(v) = (3, 1, 2)

array[] real sort_asc(array[] real v)
Sort the elements of v in ascending order
Available since 2.0

array[] int sort_asc(array[] int v)
Sort the elements of v in ascending order
Available since 2.0

5.6. REVERSING FUNCTIONS 57

array[] real sort_desc(array[] real v)
Sort the elements of v in descending order
Available since 2.0

array[] int sort_desc(array[] int v)
Sort the elements of v in descending order
Available since 2.0

array[] int sort_indices_asc(array[] real v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.
Available since 2.3

array[] int sort_indices_asc(array[] int v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.
Available since 2.3

array[] int sort_indices_desc(array[] real v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.
Available since 2.3

array[] int sort_indices_desc(array[] int v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.
Available since 2.3

int rank(array[] real v, int s)
Number of components of v less than v[s]
Available since 2.0

int rank(array[] int v, int s)
Number of components of v less than v[s]
Available since 2.0

5.6. Reversing functions

Stan provides functions to create a new array by reversing the order of elements in
an existing array. For example, if v is declared as a real array of size 3, with values

v = (1, −10.3, 20.987),

58 CHAPTER 5. ARRAY OPERATIONS

then
reverse(v) = (20.987, −10.3, 1).

array[] T reverse(array[] T v)
Return a new array containing the elements of the argument in reverse order.
Available since 2.23

6. Matrix Operations

6.1. Integer-valued matrix size functions

int num_elements(vector x)
The total number of elements in the vector x (same as function rows)
Available since 2.5

int num_elements(row_vector x)
The total number of elements in the vector x (same as function cols)
Available since 2.5

int num_elements(matrix x)
The total number of elements in the matrix x. For example, if x is a 5 × 3 matrix,
then num_elements(x) is 15
Available since 2.5

int rows(vector x)
The number of rows in the vector x
Available since 2.0

int rows(row_vector x)
The number of rows in the row vector x, namely 1
Available since 2.0

int rows(matrix x)
The number of rows in the matrix x
Available since 2.0

int cols(vector x)
The number of columns in the vector x, namely 1
Available since 2.0

int cols(row_vector x)
The number of columns in the row vector x
Available since 2.0

int cols(matrix x)
The number of columns in the matrix x
Available since 2.0

59

60 CHAPTER 6. MATRIX OPERATIONS

int size(vector x)
The size of x, i.e., the number of elements
Available since 2.26

int size(row_vector x)
The size of x, i.e., the number of elements
Available since 2.26

int size(matrix x)
The size of the matrix x. For example, if x is a 5× 3 matrix, then size(x) is 15
Available since 2.26

6.2. Matrix arithmetic operators

Stan supports the basic matrix operations using infix, prefix and postfix operations.
This section lists the operations supported by Stan along with their argument and
result types.

Negation prefix operators

vector operator-(vector x)
The negation of the vector x.
Available since 2.0

row_vector operator-(row_vector x)
The negation of the row vector x.
Available since 2.0

matrix operator-(matrix x)
The negation of the matrix x.
Available since 2.0

Infix matrix operators

vector operator+(vector x, vector y)
The sum of the vectors x and y.
Available since 2.0

row_vector operator+(row_vector x, row_vector y)
The sum of the row vectors x and y.
Available since 2.0

6.2. MATRIX ARITHMETIC OPERATORS 61

matrix operator+(matrix x, matrix y)
The sum of the matrices x and y
Available since 2.0

vector operator-(vector x, vector y)
The difference between the vectors x and y.
Available since 2.0

row_vector operator-(row_vector x, row_vector y)
The difference between the row vectors x and y
Available since 2.0

matrix operator-(matrix x, matrix y)
The difference between the matrices x and y
Available since 2.0

vector operator*(real x, vector y)
The product of the scalar x and vector y
Available since 2.0

row_vector operator*(real x, row_vector y)
The product of the scalar x and the row vector y
Available since 2.0

matrix operator*(real x, matrix y)
The product of the scalar x and the matrix y
Available since 2.0

vector operator*(vector x, real y)
The product of the scalar y and vector x
Available since 2.0

matrix operator*(vector x, row_vector y)
The product of the vector x and row vector y
Available since 2.0

row_vector operator*(row_vector x, real y)
The product of the scalar y and row vector x
Available since 2.0

real operator*(row_vector x, vector y)
The product of the row vector x and vector y
Available since 2.0

62 CHAPTER 6. MATRIX OPERATIONS

row_vector operator*(row_vector x, matrix y)
The product of the row vector x and matrix y
Available since 2.0

matrix operator*(matrix x, real y)
The product of the scalar y and matrix x
Available since 2.0

vector operator*(matrix x, vector y)
The product of the matrix x and vector y
Available since 2.0

matrix operator*(matrix x, matrix y)
The product of the matrices x and y
Available since 2.0

Broadcast infix operators

vector operator+(vector x, real y)
The result of adding y to every entry in the vector x
Available since 2.0

vector operator+(real x, vector y)
The result of adding x to every entry in the vector y
Available since 2.0

row_vector operator+(row_vector x, real y)
The result of adding y to every entry in the row vector x
Available since 2.0

row_vector operator+(real x, row_vector y)
The result of adding x to every entry in the row vector y
Available since 2.0

matrix operator+(matrix x, real y)
The result of adding y to every entry in the matrix x
Available since 2.0

matrix operator+(real x, matrix y)
The result of adding x to every entry in the matrix y
Available since 2.0

vector operator-(vector x, real y)
The result of subtracting y from every entry in the vector x

6.3. TRANSPOSITION OPERATOR 63

Available since 2.0

vector operator-(real x, vector y)
The result of adding x to every entry in the negation of the vector y
Available since 2.0

row_vector operator-(row_vector x, real y)
The result of subtracting y from every entry in the row vector x
Available since 2.0

row_vector operator-(real x, row_vector y)
The result of adding x to every entry in the negation of the row vector y
Available since 2.0

matrix operator-(matrix x, real y)
The result of subtracting y from every entry in the matrix x
Available since 2.0

matrix operator-(real x, matrix y)
The result of adding x to every entry in negation of the matrix y
Available since 2.0

vector operator/(vector x, real y)
The result of dividing each entry in the vector x by y
Available since 2.0

row_vector operator/(row_vector x, real y)
The result of dividing each entry in the row vector x by y
Available since 2.0

matrix operator/(matrix x, real y)
The result of dividing each entry in the matrix x by y
Available since 2.0

6.3. Transposition operator

Matrix transposition is represented using a postfix operator.

matrix operator'(matrix x)
The transpose of the matrix x, written as x'
Available since 2.0

row_vector operator'(vector x)
The transpose of the vector x, written as x'

64 CHAPTER 6. MATRIX OPERATIONS

Available since 2.0

vector operator'(row_vector x)
The transpose of the row vector x, written as x'
Available since 2.0

6.4. Elementwise functions

Elementwise functions apply a function to each element of a vector or matrix,
returning a result of the same shape as the argument. There are many functions
that are vectorized in addition to the ad hoc cases listed in this section; see section
function vectorization for the general cases.

vector operator.*(vector x, vector y)
The elementwise product of y and x
Available since 2.0

row_vector operator.*(row_vector x, row_vector y)
The elementwise product of y and x
Available since 2.0

matrix operator.*(matrix x, matrix y)
The elementwise product of y and x
Available since 2.0

vector operator./(vector x, vector y)
The elementwise quotient of y and x
Available since 2.0

vector operator./(vector x, real y)
The elementwise quotient of y and x
Available since 2.4

vector operator./(real x, vector y)
The elementwise quotient of y and x
Available since 2.4

row_vector operator./(row_vector x, row_vector y)
The elementwise quotient of y and x
Available since 2.0

row_vector operator./(row_vector x, real y)
The elementwise quotient of y and x

6.4. ELEMENTWISE FUNCTIONS 65

Available since 2.4

row_vector operator./(real x, row_vector y)
The elementwise quotient of y and x
Available since 2.4

matrix operator./(matrix x, matrix y)
The elementwise quotient of y and x
Available since 2.0

matrix operator./(matrix x, real y)
The elementwise quotient of y and x
Available since 2.4

matrix operator./(real x, matrix y)
The elementwise quotient of y and x
Available since 2.4

vector operator.ˆ(vector x, vector y)
The elementwise power of y and x
Available since 2.24

vector operator.ˆ(vector x, real y)
The elementwise power of y and x
Available since 2.24

vector operator.ˆ(real x, vector y)
The elementwise power of y and x
Available since 2.24

row_vector operator.ˆ(row_vector x, row_vector y)
The elementwise power of y and x
Available since 2.24

row_vector operator.ˆ(row_vector x, real y)
The elementwise power of y and x
Available since 2.24

row_vector operator.ˆ(real x, row_vector y)
The elementwise power of y and x
Available since 2.24

matrix operator.ˆ(matrix x, matrix y)
The elementwise power of y and x

66 CHAPTER 6. MATRIX OPERATIONS

Available since 2.24

matrix operator.ˆ(matrix x, real y)
The elementwise power of y and x
Available since 2.24

matrix operator.ˆ(real x, matrix y)
The elementwise power of y and x
Available since 2.24

6.5. Dot products and specialized products

real dot_product(vector x, vector y)
The dot product of x and y
Available since 2.0

real dot_product(vector x, row_vector y)
The dot product of x and y
Available since 2.0

real dot_product(row_vector x, vector y)
The dot product of x and y
Available since 2.0

real dot_product(row_vector x, row_vector y)
The dot product of x and y
Available since 2.0

row_vector columns_dot_product(vector x, vector y)
The dot product of the columns of x and y
Available since 2.0

row_vector columns_dot_product(row_vector x, row_vector y)
The dot product of the columns of x and y
Available since 2.0

row_vector columns_dot_product(matrix x, matrix y)
The dot product of the columns of x and y
Available since 2.0

vector rows_dot_product(vector x, vector y)
The dot product of the rows of x and y
Available since 2.0

6.5. DOT PRODUCTS AND SPECIALIZED PRODUCTS 67

vector rows_dot_product(row_vector x, row_vector y)
The dot product of the rows of x and y
Available since 2.0

vector rows_dot_product(matrix x, matrix y)
The dot product of the rows of x and y
Available since 2.0

real dot_self(vector x)
The dot product of the vector x with itself
Available since 2.0

real dot_self(row_vector x)
The dot product of the row vector x with itself
Available since 2.0

row_vector columns_dot_self(vector x)
The dot product of the columns of x with themselves
Available since 2.0

row_vector columns_dot_self(row_vector x)
The dot product of the columns of x with themselves
Available since 2.0

row_vector columns_dot_self(matrix x)
The dot product of the columns of x with themselves
Available since 2.0

vector rows_dot_self(vector x)
The dot product of the rows of x with themselves
Available since 2.0

vector rows_dot_self(row_vector x)
The dot product of the rows of x with themselves
Available since 2.0

vector rows_dot_self(matrix x)
The dot product of the rows of x with themselves
Available since 2.0

Specialized products

matrix tcrossprod(matrix x)
The product of x postmultiplied by its own transpose, similar to the tcrossprod(x)

68 CHAPTER 6. MATRIX OPERATIONS

function in R. The result is a symmetric matrix x x>.
Available since 2.0

matrix crossprod(matrix x)
The product of x premultiplied by its own transpose, similar to the crossprod(x)
function in R. The result is a symmetric matrix x> x.
Available since 2.0

The following functions all provide shorthand forms for common expressions, which
are also much more efficient.

matrix quad_form(matrix A, matrix B)
The quadratic form, i.e., B' * A * B.
Available since 2.0

real quad_form(matrix A, vector B)
The quadratic form, i.e., B' * A * B.
Available since 2.0

matrix quad_form_diag(matrix m, vector v)
The quadratic form using the column vector v as a diagonal matrix, i.e.,
diag_matrix(v) * m * diag_matrix(v).
Available since 2.3

matrix quad_form_diag(matrix m, row_vector rv)
The quadratic form using the row vector rv as a diagonal matrix, i.e.,
diag_matrix(rv) * m * diag_matrix(rv).
Available since 2.3

matrix quad_form_sym(matrix A, matrix B)
Similarly to quad_form, gives B' * A * B, but additionally checks if A is symmetric
and ensures that the result is also symmetric.
Available since 2.3

real quad_form_sym(matrix A, vector B)
Similarly to quad_form, gives B' * A * B, but additionally checks if A is symmetric
and ensures that the result is also symmetric.
Available since 2.3

real trace_quad_form(matrix A, matrix B)
The trace of the quadratic form, i.e., trace(B' * A * B).
Available since 2.0

real trace_gen_quad_form(matrix D,matrix A, matrix B)

6.6. REDUCTIONS 69

The trace of a generalized quadratic form, i.e., trace(D * B' * A * B).
Available since 2.0

matrix multiply_lower_tri_self_transpose(matrix x)
The product of the lower triangular portion of x (including the diagonal) times its
own transpose; that is, if L is a matrix of the same dimensions as x with L(m,n) equal
to x(m,n) for n ≤ m and L(m,n) equal to 0 if n > m, the result is the symmetric
matrix L L>. This is a specialization of tcrossprod(x) for lower-triangular matrices.
The input matrix does not need to be square.
Available since 2.0

matrix diag_pre_multiply(vector v, matrix m)
Return the product of the diagonal matrix formed from the vector v and the matrix
m, i.e., diag_matrix(v) * m.
Available since 2.0

matrix diag_pre_multiply(row_vector rv, matrix m)
Return the product of the diagonal matrix formed from the vector rv and the matrix
m, i.e., diag_matrix(rv) * m.
Available since 2.0

matrix diag_post_multiply(matrix m, vector v)
Return the product of the matrix m and the diagonal matrix formed from the vector
v, i.e., m * diag_matrix(v).
Available since 2.0

matrix diag_post_multiply(matrix m, row_vector rv)
Return the product of the matrix m and the diagonal matrix formed from the the row
vector rv, i.e., m * diag_matrix(rv).
Available since 2.0

6.6. Reductions

Log sum of exponents

real log_sum_exp(vector x)
The natural logarithm of the sum of the exponentials of the elements in x
Available since 2.0

real log_sum_exp(row_vector x)
The natural logarithm of the sum of the exponentials of the elements in x
Available since 2.0

70 CHAPTER 6. MATRIX OPERATIONS

real log_sum_exp(matrix x)
The natural logarithm of the sum of the exponentials of the elements in x
Available since 2.0

Minimum and maximum

real min(vector x)
The minimum value in x, or +∞ if x is empty
Available since 2.0

real min(row_vector x)
The minimum value in x, or +∞ if x is empty
Available since 2.0

real min(matrix x)
The minimum value in x, or +∞ if x is empty
Available since 2.0

real max(vector x)
The maximum value in x, or −∞ if x is empty
Available since 2.0

real max(row_vector x)
The maximum value in x, or −∞ if x is empty
Available since 2.0

real max(matrix x)
The maximum value in x, or −∞ if x is empty
Available since 2.0

Sums and products

real sum(vector x)
The sum of the values in x, or 0 if x is empty
Available since 2.0

real sum(row_vector x)
The sum of the values in x, or 0 if x is empty
Available since 2.0

real sum(matrix x)
The sum of the values in x, or 0 if x is empty
Available since 2.0

6.6. REDUCTIONS 71

real prod(vector x)
The product of the values in x, or 1 if x is empty
Available since 2.0

real prod(row_vector x)
The product of the values in x, or 1 if x is empty
Available since 2.0

real prod(matrix x)
The product of the values in x, or 1 if x is empty
Available since 2.0

Sample moments

Full definitions are provided for sample moments in section array reductions.

real mean(vector x)
The sample mean of the values in x; see section array reductions for details.
Available since 2.0

real mean(row_vector x)
The sample mean of the values in x; see section array reductions for details.
Available since 2.0

real mean(matrix x)
The sample mean of the values in x; see section array reductions for details.
Available since 2.0

real variance(vector x)
The sample variance of the values in x; see section array reductions for details.
Available since 2.0

real variance(row_vector x)
The sample variance of the values in x; see section array reductions for details.
Available since 2.0

real variance(matrix x)
The sample variance of the values in x; see section array reductions for details.
Available since 2.0

real sd(vector x)
The sample standard deviation of the values in x; see section array reductions for
details.
Available since 2.0

72 CHAPTER 6. MATRIX OPERATIONS

real sd(row_vector x)
The sample standard deviation of the values in x; see section array reductions for
details.
Available since 2.0

real sd(matrix x)
The sample standard deviation of the values in x; see section array reductions for
details.
Available since 2.0

Quantile

Produces sample quantiles corresponding to the given probabilities. The smallest
observation corresponds to a probability of 0 and the largest to a probability of 1.

Implements algorithm 7 from Hyndman, R. J. and Fan, Y., Sample quantiles in
Statistical Packages (R’s default quantile function).

real quantile(data vector x, data real p)
The p-th quantile of x
Available since 2.27

array[] real quantile(data vector x, data array[] real p)
An array containing the quantiles of x given by the array of probabilities p
Available since 2.27

real quantile(data row_vector x, data real p)
The p-th quantile of x
Available since 2.27

array[] real quantile(data row_vector x, data array[] real p)
An array containing the quantiles of x given by the array of probabilities p
Available since 2.27

6.7. Broadcast functions

The following broadcast functions allow vectors, row vectors and matrices to be
created by copying a single element into all of their cells. Matrices may also be
created by stacking copies of row vectors vertically or stacking copies of column
vectors horizontally.

vector rep_vector(real x, int m)

6.8. DIAGONAL MATRIX FUNCTIONS 73

Return the size m (column) vector consisting of copies of x.
Available since 2.0

row_vector rep_row_vector(real x, int n)
Return the size n row vector consisting of copies of x.
Available since 2.0

matrix rep_matrix(real x, int m, int n)
Return the m by n matrix consisting of copies of x.
Available since 2.0

matrix rep_matrix(vector v, int n)
Return the m by n matrix consisting of n copies of the (column) vector v of size m.
Available since 2.0

matrix rep_matrix(row_vector rv, int m)
Return the m by n matrix consisting of m copies of the row vector rv of size n.
Available since 2.0

Unlike the situation with array broadcasting (see section array broadcasting), where
there is a distinction between integer and real arguments, the following two state-
ments produce the same result for vector broadcasting; row vector and matrix
broadcasting behave similarly.

vector[3] x;
x = rep_vector(1, 3);
x = rep_vector(1.0, 3);

There are no integer vector or matrix types, so integer values are automatically
promoted.

Symmetrization

matrix symmetrize_from_lower_tri(matrix A)

Construct a symmetric matrix from the lower triangle of A.
Available since 2.26

6.8. Diagonal matrix functions

matrix add_diag(matrix m, row_vector d)
Add row_vector d to the diagonal of matrix m.

74 CHAPTER 6. MATRIX OPERATIONS

Available since 2.21

matrix add_diag(matrix m, vector d)
Add vector d to the diagonal of matrix m.
Available since 2.21

matrix add_diag(matrix m, real d)
Add scalar d to every diagonal element of matrix m.
Available since 2.21

vector diagonal(matrix x)
The diagonal of the matrix x
Available since 2.0

matrix diag_matrix(vector x)
The diagonal matrix with diagonal x
Available since 2.0

Although the diag_matrix function is available, it is unlikely to ever show up in
an efficient Stan program. For example, rather than converting a diagonal to a full
matrix for use as a covariance matrix,

y ~ multi_normal(mu, diag_matrix(square(sigma)));

it is much more efficient to just use a univariate normal, which produces the same
density,

y ~ normal(mu, sigma);

Rather than writing m * diag_matrix(v) where m is a matrix and v is a vector,
it is much more efficient to write diag_post_multiply(m, v) (and similarly for
pre-multiplication). By the same token, it is better to use quad_form_diag(m, v)
rather than quad_form(m, diag_matrix(v)).

matrix identity_matrix(int k)
Create an identity matrix of size k × k
Available since 2.26

6.9. Container construction functions

array[] real linspaced_array(int n, data real lower, data real upper)
Create a real array of length n of equidistantly-spaced elements between lower and

6.9. CONTAINER CONSTRUCTION FUNCTIONS 75

upper
Available since 2.24

array[] int linspaced_int_array(int n, int lower, int upper)
Create a regularly spaced, increasing integer array of length n between lower and
upper, inclusively. If (upper - lower) / (n - 1) is less than one, repeat each
output (n - 1) / (upper - lower) times. If neither (upper - lower) / (n -
1) or (n - 1) / (upper - lower) are integers, upper is reduced until one of these
is true.
Available since 2.26

vector linspaced_vector(int n, data real lower, data real upper)
Create an n-dimensional vector of equidistantly-spaced elements between lower and
upper
Available since 2.24

row_vector linspaced_row_vector(int n, data real lower, data real
upper)
Create an n-dimensional row-vector of equidistantly-spaced elements between lower
and upper
Available since 2.24

array[] int one_hot_int_array(int n, int k)
Create a one-hot encoded int array of length n with array[k] = 1
Available since 2.26

array[] real one_hot_array(int n, int k)
Create a one-hot encoded real array of length n with array[k] = 1
Available since 2.24

vector one_hot_vector(int n, int k)
Create an n-dimensional one-hot encoded vector with vector[k] = 1
Available since 2.24

row_vector one_hot_row_vector(int n, int k)
Create an n-dimensional one-hot encoded row-vector with row_vector[k] = 1
Available since 2.24

array[] int ones_int_array(int n)
Create an int array of length n of all ones
Available since 2.26

array[] real ones_array(int n)

76 CHAPTER 6. MATRIX OPERATIONS

Create a real array of length n of all ones
Available since 2.26

vector ones_vector(int n)
Create an n-dimensional vector of all ones
Available since 2.26

row_vector ones_row_vector(int n)
Create an n-dimensional row-vector of all ones
Available since 2.26

array[] int zeros_int_array(int n)
Create an int array of length n of all zeros
Available since 2.26

array[] real zeros_array(int n)
Create a real array of length n of all zeros
Available since 2.24

vector zeros_vector(int n)
Create an n-dimensional vector of all zeros
Available since 2.24

row_vector zeros_row_vector(int n)
Create an n-dimensional row-vector of all zeros
Available since 2.24

vector uniform_simplex(int n)
Create an n-dimensional simplex with elements vector[i] = 1 / n for all i ∈
1, . . . , n
Available since 2.24

6.10. Slicing and blocking functions

Stan provides several functions for generating slices or blocks or diagonal entries for
matrices.

Columns and rows

vector col(matrix x, int n)
The n-th column of matrix x
Available since 2.0

6.10. SLICING AND BLOCKING FUNCTIONS 77

row_vector row(matrix x, int m)
The m-th row of matrix x
Available since 2.0

The row function is special in that it may be used as an lvalue in an assignment
statement (i.e., something to which a value may be assigned). The row function is
also special in that the indexing notation x[m] is just an alternative way of writing
row(x,m). The col function may not, be used as an lvalue, nor is there an indexing
based shorthand for it.

Block operations

Matrix slicing operations

Block operations may be used to extract a sub-block of a matrix.

matrix block(matrix x, int i, int j, int n_rows, int n_cols)
Return the submatrix of x that starts at row i and column j and extends n_rows rows
and n_cols columns.
Available since 2.0

The sub-row and sub-column operations may be used to extract a slice of row or
column from a matrix

vector sub_col(matrix x, int i, int j, int n_rows)
Return the sub-column of x that starts at row i and column j and extends n_rows
rows and 1 column.
Available since 2.0

row_vector sub_row(matrix x, int i, int j, int n_cols)
Return the sub-row of x that starts at row i and column j and extends 1 row and
n_cols columns.
Available since 2.0

Vector and array slicing operations

The head operation extracts the first n elements of a vector and the tail operation
the last. The segment operation extracts an arbitrary subvector.

vector head(vector v, int n)
Return the vector consisting of the first n elements of v.
Available since 2.0

78 CHAPTER 6. MATRIX OPERATIONS

row_vector head(row_vector rv, int n)
Return the row vector consisting of the first n elements of rv.
Available since 2.0

array[] T head(array[] T sv, int n)
Return the array consisting of the first n elements of sv; applies to up to three-
dimensional arrays containing any type of elements T.
Available since 2.0

vector tail(vector v, int n)
Return the vector consisting of the last n elements of v.
Available since 2.0

row_vector tail(row_vector rv, int n)
Return the row vector consisting of the last n elements of rv.
Available since 2.0

array[] T tail(array[] T sv, int n)
Return the array consisting of the last n elements of sv; applies to up to three-
dimensional arrays containing any type of elements T.
Available since 2.0

vector segment(vector v, int i, int n)
Return the vector consisting of the n elements of v starting at i; i.e., elements i
through through i + n - 1.
Available since 2.0

row_vector segment(row_vector rv, int i, int n)
Return the row vector consisting of the n elements of rv starting at i; i.e., elements i
through through i + n - 1.
Available since 2.10

array[] T segment(array[] T sv, int i, int n)
Return the array consisting of the n elements of sv starting at i; i.e., elements i
through through i + n - 1. Applies to up to three-dimensional arrays containing any
type of elements T.
Available since 2.0

6.11. Matrix concatenation

Stan’s matrix concatenation operations append_col and append_row are like the
operations cbind and rbind in R.

6.11. MATRIX CONCATENATION 79

Horizontal concatenation

matrix append_col(matrix x, matrix y)
Combine matrices x and y by column. The matrices must have the same number of
rows.
Available since 2.5

matrix append_col(matrix x, vector y)
Combine matrix x and vector y by column. The matrix and the vector must have the
same number of rows.
Available since 2.5

matrix append_col(vector x, matrix y)
Combine vector x and matrix y by column. The vector and the matrix must have the
same number of rows.
Available since 2.5

matrix append_col(vector x, vector y)
Combine vectors x and y by column. The vectors must have the same number of
rows.
Available since 2.5

row_vector append_col(row_vector x, row_vector y)
Combine row vectors x and y of any size into another row vector by appending y to
the end of x.
Available since 2.5

row_vector append_col(real x, row_vector y)
Append x to the front of y, returning another row vector.
Available since 2.12

row_vector append_col(row_vector x, real y)
Append y to the end of x, returning another row vector.
Available since 2.12

Vertical concatenation

matrix append_row(matrix x, matrix y)
Combine matrices x and y by row. The matrices must have the same number of
columns.
Available since 2.5

matrix append_row(matrix x, row_vector y)

80 CHAPTER 6. MATRIX OPERATIONS

Combine matrix x and row vector y by row. The matrix and the row vector must
have the same number of columns.
Available since 2.5

matrix append_row(row_vector x, matrix y)
Combine row vector x and matrix y by row. The row vector and the matrix must
have the same number of columns.
Available since 2.5

matrix append_row(row_vector x, row_vector y)
Combine row vectors x and y by row. The row vectors must have the same number
of columns.
Available since 2.5

vector append_row(vector x, vector y)
Concatenate vectors x and y of any size into another vector.
Available since 2.5

vector append_row(real x, vector y)
Append x to the top of y, returning another vector.
Available since 2.12

vector append_row(vector x, real y)
Append y to the bottom of x, returning another vector.
Available since 2.12

6.12. Special matrix functions

Softmax

The softmax function maps1 y ∈ RK to the K-simplex by

softmax(y) = exp(y)∑K
k=1 exp(yk)

,

1The softmax function is so called because in the limit as yn →∞ with ym for m 6= n held constant,
the result tends toward the “one-hot” vector θ with θn = 1 and θm = 0 for m 6= n, thus providing a “soft”
version of the maximum function.

6.12. SPECIAL MATRIX FUNCTIONS 81

where exp(y) is the componentwise exponentiation of y. Softmax is usually calcu-
lated on the log scale,

log softmax(y) = y − log
K∑
k=1

exp(yk)

= y − log_sum_exp(y).

where the vector y minus the scalar log_sum_exp(y) subtracts the scalar from each
component of y.

Stan provides the following functions for softmax and its log.

vector softmax(vector x)
The softmax of x
Available since 2.0

vector log_softmax(vector x)
The natural logarithm of the softmax of x
Available since 2.0

Cumulative sums

The cumulative sum of a sequence x1, . . . , xN is the sequence y1, . . . , yN , where

yn =
n∑

m=1
xm.

array[] int cumulative_sum(array[] int x)
The cumulative sum of x
Available since 2.30

array[] real cumulative_sum(array[] real x)
The cumulative sum of x
Available since 2.0

vector cumulative_sum(vector v)
The cumulative sum of v
Available since 2.0

row_vector cumulative_sum(row_vector rv)
The cumulative sum of rv
Available since 2.0

82 CHAPTER 6. MATRIX OPERATIONS

6.13. Gaussian Process Covariance Functions

The Gaussian process covariance functions compute the covariance between ob-
servations in an input data set or the cross-covariance between two input data
sets.

For one dimensional GPs, the input data sets are arrays of scalars. The covariance
matrix is given by Kij = k(xi, xj) (where xi is the ith element of the array x) and
the cross-covariance is given by Kij = k(xi, yj).

For multi-dimensional GPs, the input data sets are arrays of vectors. The covariance
matrix is given by Kij = k(xi,xj) (where xi is the ith vector in the array x) and the
cross-covariance is given by Kij = k(xi,yj).

Exponentiated quadratic kernel

With magnitude σ and length scale l, the exponentiated quadratic kernel is:

k(xi,xj) = σ2 exp
(
−|xi − xj |2

2l2

)
matrix gp_exp_quad_cov(array[] real x, real sigma, real length_scale)

Gaussian process covariance with exponentiated quadratic kernel in one dimension.
Available since 2.20

matrix gp_exp_quad_cov(array[] real x1, array[] real x2, real sigma,
real length_scale)

Gaussian process cross-covariance of x1 and x2 with exponentiated quadratic kernel
in one dimension.
Available since 2.20

matrix gp_exp_quad_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with exponentiated quadratic kernel in multiple dimen-
sions.
Available since 2.20

6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS 83

matrix gp_exp_quad_cov(vectors x, real sigma, array[] real
length_scale)

Gaussian process covariance with exponentiated quadratic kernel in multiple dimen-
sions with a length scale for each dimension.
Available since 2.20

matrix gp_exp_quad_cov(vectors x1, vectors x2, real sigma, real
length_scale)

Gaussian process cross-covariance of x1 and x2 with exponentiated quadratic kernel
in multiple dimensions.
Available since 2.20

matrix gp_exp_quad_cov(vectors x1, vectors x2, real sigma, array[]
real length_scale)

Gaussian process cross-covariance of x1 and x2 with exponentiated quadratic kernel
in multiple dimensions with a length scale for each dimension.
Available since 2.20

Dot product kernel

With bias σ0 the dot product kernel is:

k(xi,xj) = σ2
0 + xTi xj

matrix gp_dot_prod_cov(array[] real x, real sigma)

Gaussian process covariance with dot product kernel in one dimension.
Available since 2.20

matrix gp_dot_prod_cov(array[] real x1, array[] real x2, real sigma)

Gaussian process cross-covariance of x1 and x2 with dot product kernel in one
dimension.
Available since 2.20

84 CHAPTER 6. MATRIX OPERATIONS

matrix gp_dot_prod_cov(vectors x, real sigma)

Gaussian process covariance with dot product kernel in multiple dimensions.
Available since 2.20

matrix gp_dot_prod_cov(vectors x1, vectors x2, real sigma)

Gaussian process cross-covariance of x1 and x2 with dot product kernel in multiple
dimensions.
Available since 2.20

Exponential kernel

With magnitude σ and length scale l, the exponential kernel is:

k(xi,xj) = σ2 exp
(
−|xi − xj |

l

)
matrix gp_exponential_cov(array[] real x, real sigma, real
length_scale)

Gaussian process covariance with exponential kernel in one dimension.
Available since 2.20

matrix gp_exponential_cov(array[] real x1, array[] real x2, real
sigma, real length_scale)

Gaussian process cross-covariance of x1 and x2 with exponential kernel in one
dimension.
Available since 2.20

matrix gp_exponential_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with exponential kernel in multiple dimensions.
Available since 2.20

matrix gp_exponential_cov(vectors x, real sigma, array[] real
length_scale)

6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS 85

Gaussian process covariance with exponential kernel in multiple dimensions with a
length scale for each dimension.
Available since 2.20

matrix gp_exponential_cov(vectors x1, vectors x2, real sigma, real
length_scale)

Gaussian process cross-covariance of x1 and x2 with exponential kernel in multiple
dimensions.
Available since 2.20

matrix gp_exponential_cov(vectors x1, vectors x2, real sigma, array[]
real length_scale)

Gaussian process cross-covariance of x1 and x2 with exponential kernel in multiple
dimensions with a length scale for each dimension.
Available since 2.20

Matern 3/2 kernel

With magnitude σ and length scale l, the Matern 3/2 kernel is:

k(xi,xj) = σ2
(

1 +
√

3|xi − xj |
l

)
exp

(
−
√

3|xi − xj |
l

)
matrix gp_matern32_cov(array[] real x, real sigma, real length_scale)

Gaussian process covariance with Matern 3/2 kernel in one dimension.
Available since 2.20

matrix gp_matern32_cov(array[] real x1, array[] real x2, real sigma,
real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in one
dimension.
Available since 2.20

matrix gp_matern32_cov(vectors x, real sigma, real length_scale)

86 CHAPTER 6. MATRIX OPERATIONS

Gaussian process covariance with Matern 3/2 kernel in multiple dimensions.
Available since 2.20

matrix gp_matern32_cov(vectors x, real sigma, array[] real
length_scale)

Gaussian process covariance with Matern 3/2 kernel in multiple dimensions with a
length scale for each dimension.
Available since 2.20

matrix gp_matern32_cov(vectors x1, vectors x2, real sigma, real
length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in multiple
dimensions.
Available since 2.20

matrix gp_matern32_cov(vectors x1, vectors x2, real sigma, array[]
real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in multiple
dimensions with a length scale for each dimension.
Available since 2.20

Matern 5/2 kernel

With magnitude σ and length scale l, the Matern 5/2 kernel is:

k(xi,xj) = σ2
(

1 +
√

5|xi − xj |
l

+ 5|xi − xj |2

3l2

)
exp

(
−
√

5|xi − xj |
l

)
matrix gp_matern52_cov(array[] real x, real sigma, real length_scale)

Gaussian process covariance with Matern 5/2 kernel in one dimension.
Available since 2.20

matrix gp_matern52_cov(array[] real x1, array[] real x2, real sigma,
real length_scale)

6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS 87

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in one
dimension.
Available since 2.20

matrix gp_matern52_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with Matern 5/2 kernel in multiple dimensions.
Available since 2.20

matrix gp_matern52_cov(vectors x, real sigma, array[] real
length_scale)

Gaussian process covariance with Matern 5/2 kernel in multiple dimensions with a
length scale for each dimension.
Available since 2.20

matrix gp_matern52_cov(vectors x1, vectors x2, real sigma, real
length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in multiple
dimensions.
Available since 2.20

matrix gp_matern52_cov(vectors x1, vectors x2, real sigma, array[]
real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in multiple
dimensions with a length scale for each dimension.
Available since 2.20

Periodic kernel

With magnitude σ, length scale l, and period p, the periodic kernel is:

k(xi,xj) = σ2 exp

−2 sin2
(
π
|xi−xj |

p

)
l2



88 CHAPTER 6. MATRIX OPERATIONS

matrix gp_periodic_cov(array[] real x, real sigma, real length_scale,
real period)

Gaussian process covariance with periodic kernel in one dimension.
Available since 2.20

matrix gp_periodic_cov(array[] real x1, array[] real x2, real sigma,
real length_scale, real period)

Gaussian process cross-covariance of x1 and x2 with periodic kernel in one dimen-
sion.
Available since 2.20

matrix gp_periodic_cov(vectors x, real sigma, real length_scale, real
period)

Gaussian process covariance with periodic kernel in multiple dimensions.
Available since 2.20

matrix gp_periodic_cov(vectors x1, vectors x2, real sigma, real
length_scale, real period)

Gaussian process cross-covariance of x1 and x2 with periodic kernel in multiple
dimensions with a length scale for each dimension.
Available since 2.20

6.14. Linear algebra functions and solvers

Matrix division operators and functions

In general, it is much more efficient and also more arithmetically stable to use
matrix division than to multiply by an inverse. There are specialized forms for lower
triangular matrices and for symmetric, positive-definite matrices.

Matrix division operators

row_vector operator/(row_vector b, matrix A)
The right division of b by A; equivalently b * inverse(A)
Available since 2.0

6.14. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 89

matrix operator/(matrix B, matrix A)
The right division of B by A; equivalently B * inverse(A)
Available since 2.5

vector operator\(matrix A, vector b)
The left division of A by b; equivalently inverse(A) * b
Available since 2.18

matrix operator\(matrix A, matrix B)
The left division of A by B; equivalently inverse(A) * B
Available since 2.18

Lower-triangular matrix division functions

There are four division functions which use lower triangular views of a matrix. The
lower triangular view of a matrix tri(A) is used in the definitions and defined by

tri(A)[m,n] =
{

A[m,n] if m ≥ n, and

0 otherwise.

When a lower triangular view of a matrix is used, the elements above the diagonal
are ignored.

vector mdivide_left_tri_low(matrix A, vector b)
The left division of b by a lower-triangular view of A; algebraically equivalent to
the less efficient and stable form inverse(tri(A)) * b, where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.
Available since 2.12

matrix mdivide_left_tri_low(matrix A, matrix B)
The left division of B by a triangular view of A; algebraically equivalent to the
less efficient and stable form inverse(tri(A)) * B, where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.
Available since 2.5

row_vector mdivide_right_tri_low(row_vector b, matrix A)
The right division of b by a triangular view of A; algebraically equivalent to the
less efficient and stable form b * inverse(tri(A)), where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.
Available since 2.12

matrix mdivide_right_tri_low(matrix B, matrix A)
The right division of B by a triangular view of A; algebraically equivalent to the

90 CHAPTER 6. MATRIX OPERATIONS

less efficient and stable form B * inverse(tri(A)), where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.
Available since 2.5

Symmetric positive-definite matrix division functions

There are four division functions which are specialized for efficiency and stability for
symmetric positive-definite matrix dividends. If the matrix dividend argument is not
symmetric and positive definite, these will reject and print warnings.

matrix mdivide_left_spd(matrix A, vector b)
The left division of b by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form inverse(A) * b.
Available since 2.12

vector mdivide_left_spd(matrix A, matrix B)
The left division of B by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form inverse(A) * B.
Available since 2.12

row_vector mdivide_right_spd(row_vector b, matrix A)
The right division of b by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form b *inverse(A).
Available since 2.12

matrix mdivide_right_spd(matrix B, matrix A)
The right division of B by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form B * inverse(A).
Available since 2.12

Matrix exponential

The exponential of the matrix A is formally defined by the convergent power series:

eA =
∞∑
n=0

An

n!

matrix matrix_exp(matrix A)
The matrix exponential of A
Available since 2.13

6.14. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 91

matrix matrix_exp_multiply(matrix A, matrix B)
The multiplication of matrix exponential of A and matrix B; algebraically equivalent
to the less efficient form matrix_exp(A) * B.
Available since 2.18

matrix scale_matrix_exp_multiply(real t, matrix A, matrix B)
The multiplication of matrix exponential of tA and matrix B; algebraically equivalent
to the less efficient form matrix_exp(t * A) * B.
Available since 2.18

Matrix power

Returns the nth power of the specific matrix:

Mn = M1 ∗ ... ∗Mn

matrix matrix_power(matrix A, int B)
Matrix A raised to the power B.
Available since 2.24

Linear algebra functions

Trace

real trace(matrix A)
The trace of A, or 0 if A is empty; A is not required to be diagonal
Available since 2.0

Determinants

real determinant(matrix A)
The determinant of A
Available since 2.0

real log_determinant(matrix A)
The log of the absolute value of the determinant of A
Available since 2.0

real log_determinant_spd(matrix A)
The log of the absolute value of the determinant of the symmetric, positive-definite
matrix A.
Available since 2.30

92 CHAPTER 6. MATRIX OPERATIONS

Inverses

It is almost never a good idea to use matrix inverses directly because they are both
inefficient and arithmetically unstable compared to the alternatives. Rather than
inverting a matrix m and post-multiplying by a vector or matrix a, as in inverse(m)
* a, it is better to code this using matrix division, as in m \ a. The pre-multiplication
case is similar, with b * inverse(m) being more efficiently coded as as b / m. There
are also useful special cases for triangular and symmetric, positive-definite matrices
that use more efficient solvers.

Warning: The function inv(m) is the elementwise inverse function, which returns 1
/ m[i, j] for each element.

matrix inverse(matrix A)
Compute the inverse of A
Available since 2.0

matrix inverse_spd(matrix A)
Compute the inverse of A where A is symmetric, positive definite. This version
is faster and more arithmetically stable when the input is symmetric and positive
definite.
Available since 2.0

matrix chol2inv(matrix L)
Compute the inverse of the matrix whose cholesky factorization is L. That is, for
A = LLT , return A−1.
Available since 2.26

Generalized Inverse

The generalized inverse M+ of a matrix M is a matrix that satisfies MM+M = M .
For an invertible, square matrix M , M+ is equivalent to M−1. The dimensions of
M+ are equivalent to the dimensions of MT . The generalized inverse exists for any
matrix, so the M may be singular or less than full rank.

Even though the generalized inverse exists for any arbitrary matrix, the derivatives
of this function only exist on matrices of locally constant rank (Golub and Pereyra
1973), meaning, the derivatives do not exist if small perturbations make the matrix
change rank. For example, considered the rank of the matrix A as a function of ε:

A =
(

1 + ε 2 1
2 4 2

)

6.14. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 93

When ε = 0, A is rank 1 because the second row is twice the first (and so there
is only one linearly independent row). If ε 6= 0, the rows are no longer linearly
dependent, and the matrix is rank 2. This matrix does not have locally constant rank
at ε = 0, and so the derivatives do not exist at zero. Because HMC depends on the
derivatives existing, this lack of differentiability creates undefined behavior.

matrix generalized_inverse(matrix A)
The generalized inverse of A
Available since 2.26

Eigendecomposition

complex_vector eigenvalues(matrix A)
The complex-valued vector of eigenvalues of the matrix A. The eigenvalues are
repeated according to their algebraic multiplicity, so there are as many eigenvalues
as rows in the matrix. The eigenvalues are not sorted in any particular order.
Available since 2.30

complex_matrix eigenvectors(matrix A)
The matrix with the complex-valued (column) eigenvectors of the matrix A in the
same order as returned by the function eigenvalues
Available since 2.30

vector eigenvalues_sym(matrix A)
The vector of eigenvalues of a symmetric matrix A in ascending order
Available since 2.0

matrix eigenvectors_sym(matrix A)
The matrix with the (column) eigenvectors of symmetric matrix A in the same order
as returned by the function eigenvalues_sym
Available since 2.0

Because multiplying an eigenvector by −1 results in an eigenvector, eigenvectors
returned by a decomposition are only identified up to a sign change. In order to
compare the eigenvectors produced by Stan’s eigendecomposition to others, signs
may need to be normalized in some way, such as by fixing the sign of a component,
or doing comparisons allowing a multiplication by −1.

The condition number of a symmetric matrix is defined to be the ratio of the
largest eigenvalue to the smallest eigenvalue. Large condition numbers lead to
difficulty in numerical algorithms such as computing inverses, and thus known as
“ill conditioned.” The ratio can even be infinite in the case of singular matrices (i.e.,

94 CHAPTER 6. MATRIX OPERATIONS

those with eigenvalues of 0).

QR decomposition

matrix qr_thin_Q(matrix A)
The orthogonal matrix in the thin QR decomposition of A, which implies that the
resulting matrix has the same dimensions as A
Available since 2.18

matrix qr_thin_R(matrix A)
The upper triangular matrix in the thin QR decomposition of A, which implies that
the resulting matrix is square with the same number of columns as A
Available since 2.18

matrix qr_Q(matrix A)
The orthogonal matrix in the fat QR decomposition of A, which implies that the
resulting matrix is square with the same number of rows as A
Available since 2.3

matrix qr_R(matrix A)
The upper trapezoidal matrix in the fat QR decomposition of A, which implies that
the resulting matrix will be rectangular with the same dimensions as A
Available since 2.3

The thin QR decomposition is always preferable because it will consume much less
memory when the input matrix is large than will the fat QR decomposition. Both
versions of the decomposition represent the input matrix as

A = QR.

Multiplying a column of an orthogonal matrix by −1 still results in an orthogonal
matrix, and you can multiply the corresponding row of the upper trapezoidal matrix
by −1 without changing the product. Thus, Stan adopts the normalization that
the diagonal elements of the upper trapezoidal matrix are strictly positive and
the columns of the orthogonal matrix are reflected if necessary. Also, these QR
decomposition algorithms do not utilize pivoting and thus may be numerically
unstable on input matrices that have less than full rank.

Cholesky decomposition

Every symmetric, positive-definite matrix (such as a correlation or covariance matrix)
has a Cholesky decomposition. If Σ is a symmetric, positive-definite matrix, its

6.15. SORT FUNCTIONS 95

Cholesky decomposition is the lower-triangular vector L such that

Σ = LL>.

matrix cholesky_decompose(matrix A)
The lower-triangular Cholesky factor of the symmetric positive-definite matrix A
Available since 2.0

Singular value decomposition

The matrix A can be decomposed into a diagonal matrix of singular values, D, and
matrices of its left and right singular vectors, U and V,

A = UDV T .

The matrices of singular vectors here are thin. That is for an N by P input A,
M = min(N,P), U is size N by M and V is size P by M .

vector singular_values(matrix A)
The singular values of A in descending order
Available since 2.0

matrix svd_U(matrix A)
The left-singular vectors of A
Available since 2.26

matrix svd_V(matrix A)
The right-singular vectors of A
Available since 2.26

6.15. Sort functions

See the sorting functions section for examples of how the functions work.

vector sort_asc(vector v)
Sort the elements of v in ascending order
Available since 2.0

row_vector sort_asc(row_vector v)
Sort the elements of v in ascending order
Available since 2.0

96 CHAPTER 6. MATRIX OPERATIONS

vector sort_desc(vector v)
Sort the elements of v in descending order
Available since 2.0

row_vector sort_desc(row_vector v)
Sort the elements of v in descending order
Available since 2.0

array[] int sort_indices_asc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.
Available since 2.3

array[] int sort_indices_asc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.
Available since 2.3

array[] int sort_indices_desc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.
Available since 2.3

array[] int sort_indices_desc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.
Available since 2.3

int rank(vector v, int s)
Number of components of v less than v[s]
Available since 2.0

int rank(row_vector v, int s)
Number of components of v less than v[s]
Available since 2.0

6.16. Reverse functions

vector reverse(vector v)
Return a new vector containing the elements of the argument in reverse order.
Available since 2.23

6.16. REVERSE FUNCTIONS 97

row_vector reverse(row_vector v)
Return a new row vector containing the elements of the argument in reverse order.
Available since 2.23

7. Complex Matrix Operations

7.1. Complex promotion

This chapter provides the details of functions that operate over complex matrices,
vectors, and row vectors. These mirror the operations over real complex_matrix
types and are defined in the usual way for complex numbers.

Promotion of complex arguments

If an expression e can be assigned to a variable of type T, then it can be used as an
argument to a function that is specified to take arguments of type T. For instance,
sqrt(real) is specified to take a real argument, but an integer expression such as
2 + 2 of type int can be passed to sqrt, so that sqrt(2 + 2) is well defined. This
works by promoting the integer expression 2 + 2 to be of real type.

The rules for promotion in Stan are simple:

• int may be promoted to real,
• real may be promoted to complex,
• vector can be promoted to complex_vector,
• row_vector can be promoted to complex_row_vector,
• matrix can be promoted to complex_matrix,
• if T can be promoted to U and U can be promoted to V, then T can be promoted

to V (transitive), and
• if T can be promoted to U, then T[] can be promoted to U[] (covariant).

Signature selection

When a function is called, the definition requiring the fewest number of promotions
is used. For example, when calling vector + vector, the real-valued signature is
used. When calling any of complex_vector + vector, vector + complex_vector,
or complex_vector + complex_vector, the complex signature is used. If more
than one signature matches with a the minimal number of promotions, the call is
ambiguous, and an error will be raised by the compiler. Promotion ambiguity leading
to ill-defined calls should never happen with Stan built-in functions.

98

7.2. INTEGER-VALUED COMPLEX MATRIX SIZE FUNCTIONS 99

Signatures for complex functions

Complex function signatures will only list the fully complex type. For exam-
ple, with complex vector addition, we will list a single signature, complex
operator+(complex_vector, complex_vector). Through promotion, operator+
may be called with one complex vector and one real vector as well, but the doc-
umentation elides the implied signatures operator+(complex_vector, vector)
and operator+(vector, complex_vector).

Generic functions work for complex containers

Generic functions work for arrays containing complex, complex matrix, complex
vector, or complex row vector types. This includes the functions append_array,
dims, head, num_elements, rep_array, reverse, segment, size, and tail.

7.2. Integer-valued complex matrix size functions

int num_elements(complex_vector x)
The total number of elements in the vector x (same as function rows)
Available since 2.30

int num_elements(complex_row_vector x)
The total number of elements in the vector x (same as function cols)
Available since 2.30

int num_elements(complex_matrix x)
The total number of elements in the matrix x. For example, if x is a 5 × 3 matrix,
then num_elements(x) is 15
Available since 2.30

int rows(complex_vector x)
The number of rows in the vector x
Available since 2.30

int rows(complex_row_vector x)
The number of rows in the row vector x, namely 1
Available since 2.30

int rows(complex_matrix x)
The number of rows in the matrix x
Available since 2.30

100 CHAPTER 7. COMPLEX MATRIX OPERATIONS

int cols(complex_vector x)
The number of columns in the vector x, namely 1
Available since 2.30

int cols(complex_row_vector x)
The number of columns in the row vector x
Available since 2.30

int cols(complex_matrix x)
The number of columns in the matrix x
Available since 2.30

int size(complex_vector x)
The size of x, i.e., the number of elements
Available since 2.30

int size(complex_row_vector x)
The size of x, i.e., the number of elements
Available since 2.30

int size(matrix x)
The size of the matrix x. For example, if x is a 5× 3 matrix, then size(x) is 15.
Available since 2.30

7.3. Complex matrix arithmetic operators

Stan supports all basic complex arithmetic operators using infix, prefix and postfix
operations. This section lists the operations supported by Stan along with their
argument and result types.

Negation prefix operators

complex_vector operator-(complex_vector x)
The negation of the vector x.
Available since 2.30

complex_row_vector operator-(complex_row_vector x)
The negation of the row vector x.
Available since 2.30

complex_matrix operator-(complex_matrix x)
The negation of the matrix x.

7.3. COMPLEX MATRIX ARITHMETIC OPERATORS 101

Available since 2.30

Infix complex_matrix operators

complex_vector operator+(complex_vector x, complex_vector y)
The sum of the vectors x and y.
Available since 2.30

complex_row_vector operator+(complex_row_vector x, complex_row_vector
y)
The sum of the row vectors x and y.
Available since 2.30

complex_matrix operator+(complex_matrix x, complex_matrix y)
The sum of the matrices x and y
Available since 2.30

complex_vector operator-(complex_vector x, complex_vector y)
The difference between the vectors x and y.
Available since 2.30

complex_row_vector operator-(complex_row_vector x, complex_row_vector
y)
The difference between the row vectors x and y
Available since 2.30

complex_matrix operator-(complex_matrix x, complex_matrix y)
The difference between the matrices x and y
Available since 2.30

complex_vector operator*(complex x, complex_vector y)
The product of the scalar x and vector y
Available since 2.30

complex_row_vector operator*(complex x, complex_row_vector y)
The product of the scalar x and the row vector y
Available since 2.30

complex_matrix operator*(complex x, complex_matrix y)
The product of the scalar x and the matrix y
Available since 2.30

complex_vector operator*(complex_vector x, complex y)
The product of the scalar y and vector x

102 CHAPTER 7. COMPLEX MATRIX OPERATIONS

Available since 2.30

complex_matrix operator*(complex_vector x, complex_row_vector y)
The product of the vector x and row vector y
Available since 2.30

complex_row_vector operator*(complex_row_vector x, complex y)
The product of the scalar y and row vector x
Available since 2.30

complex operator*(complex_row_vector x, complex_vector y)
The product of the row vector x and vector y
Available since 2.30

complex_row_vector operator*(complex_row_vector x, complex_matrix y)
The product of the row vector x and matrix y
Available since 2.30

complex_matrix operator*(complex_matrix x, complex y)
The product of the scalar y and matrix x
Available since 2.30

complex_vector operator*(complex_matrix x, complex_vector y)
The product of the matrix x and vector y
Available since 2.30

complex_matrix operator*(complex_matrix x, complex_matrix y)
The product of the matrices x and y
Available since 2.30

Broadcast infix operators

complex_vector operator+(complex_vector x, complex y)
The result of adding y to every entry in the vector x
Available since 2.30

complex_vector operator+(complex x, complex_vector y)
The result of adding x to every entry in the vector y
Available since 2.30

complex_row_vector operator+(complex_row_vector x, complex y)
The result of adding y to every entry in the row vector x
Available since 2.30

7.3. COMPLEX MATRIX ARITHMETIC OPERATORS 103

complex_row_vector operator+(complex x, complex_row_vector y)
The result of adding x to every entry in the row vector y
Available since 2.30

complex_matrix operator+(complex_matrix x, complex y)
The result of adding y to every entry in the matrix x
Available since 2.30

complex_matrix operator+(complex x, complex_matrix y)
The result of adding x to every entry in the matrix y
Available since 2.30

complex_vector operator-(complex_vector x, complex y)
The result of subtracting y from every entry in the vector x
Available since 2.30

complex_vector operator-(complex x, complex_vector y)
The result of adding x to every entry in the negation of the vector y
Available since 2.30

complex_row_vector operator-(complex_row_vector x, complex y)
The result of subtracting y from every entry in the row vector x
Available since 2.30

complex_row_vector operator-(complex x, complex_row_vector y)
The result of adding x to every entry in the negation of the row vector y
Available since 2.30

complex_matrix operator-(complex_matrix x, complex y)
The result of subtracting y from every entry in the matrix x
Available since 2.30

complex_matrix operator-(complex x, complex_matrix y)
The result of adding x to every entry in negation of the matrix y
Available since 2.30

complex_vector operator/(complex_vector x, complex y)
The result of dividing each entry in the vector x by y
Available since 2.30

complex_row_vector operator/(complex_row_vector x, complex y)
The result of dividing each entry in the row vector x by y
Available since 2.30

104 CHAPTER 7. COMPLEX MATRIX OPERATIONS

complex_matrix operator/(complex_matrix x, complex y)
The result of dividing each entry in the matrix x by y
Available since 2.30

7.4. Complex Transposition Operator

Complex complex_matrix transposition is represented using a postfix operator.

complex_matrix operator'(complex_matrix x)
The transpose of the matrix x, written as x'
Available since 2.30

complex_row_vector operator'(complex_vector x)
The transpose of the vector x, written as x'
Available since 2.30

complex_vector operator'(complex_row_vector x)
The transpose of the row vector x, written as x'
Available since 2.30

7.5. Complex elementwise functions

As in the real case, elementwise complex functions apply a function to each element
of a vector or matrix, returning a result of the same shape as the argument.

complex_vector operator.*(complex_vector x, complex_vector y)
The elementwise product of x and y
Available since 2.30

complex_row_vector operator.*(complex_row_vector x,
complex_row_vector y)
The elementwise product of x and y
Available since 2.30

complex_matrix operator.*(complex_matrix x, complex_matrix y)
The elementwise product of x and y
Available since 2.30

complex_vector operator./(complex_vector x, complex_vector y)
The elementwise quotient of x and y
Available since 2.30

7.5. COMPLEX ELEMENTWISE FUNCTIONS 105

complex_vector operator./(complex x, complex_vector y)
The elementwise quotient of x and y
Available since 2.30

complex_vector operator./(complex_vector x, complex y)
The elementwise quotient of x and y
Available since 2.30

complex_row_vector operator./(complex_row_vector x,
complex_row_vector y)
The elementwise quotient of x and y
Available since 2.30

complex_row_vector operator./(complex x, complex_row_vector y)
The elementwise quotient of x and y
Available since 2.30

complex_row_vector operator./(complex_row_vector x, complex y)
The elementwise quotient of x and y
Available since 2.30

complex_matrix operator./(complex_matrix x, complex_matrix y)
The elementwise quotient of x and y
Available since 2.30

complex_matrix operator./(complex x, complex_matrix y)
The elementwise quotient of x and y
Available since 2.30

complex_matrix operator./(complex_matrix x, complex y)
The elementwise quotient of x and y
Available since 2.30

vector operator.ˆ(complex_vector x, complex_vector y)
The elementwise power of y and x
Available since 2.30

vector operator.ˆ(complex_vector x, complex y)
The elementwise power of y and x
Available since 2.30

vector operator.ˆ(complex x, complex_vector y)
The elementwise power of y and x
Available since 2.30

106 CHAPTER 7. COMPLEX MATRIX OPERATIONS

row_vector operator.ˆ(complex_row_vector x, complex_row_vector y)
The elementwise power of y and x
Available since 2.30

row_vector operator.ˆ(complex_row_vector x, complex y)
The elementwise power of y and x
Available since 2.30

row_vector operator.ˆ(complex x, complex_row_vector y)
The elementwise power of y and x
Available since 2.30

matrix operator.ˆ(complex_matrix x, complex_matrix y)
The elementwise power of y and x
Available since 2.30

matrix operator.ˆ(complex_matrix x, complex y)
The elementwise power of y and x
Available since 2.30

matrix operator.ˆ(complex x, complex_matrix y)
The elementwise power of y and x
Available since 2.30

7.6. Dot products and specialized products for complex matri-
ces

complex dot_product(complex_vector x, complex_vector y)
The dot product of x and y
Available since 2.30

complex dot_product(complex_vector x, complex_row_vector y)
The dot product of x and y
Available since 2.30

complex dot_product(complex_row_vector x, complex_vector y)
The dot product of x and y
Available since 2.30

complex dot_product(complex_row_vector x, complex_row_vector y)
The dot product of x and y
Available since 2.30

7.6. DOT PRODUCTS AND SPECIALIZED PRODUCTS FOR COMPLEX MATRICES107

complex_row_vector columns_dot_product(complex_vector x,
complex_vector y)
The dot product of the columns of x and y
Available since 2.30

complex_row_vector columns_dot_product(complex_row_vector x,
complex_row_vector y)
The dot product of the columns of x and y
Available since 2.30

complex_row_vector columns_dot_product(complex_matrix x,
complex_matrix y)
The dot product of the columns of x and y
Available since 2.30

complex_vector rows_dot_product(complex_vector x, complex_vector y)
The dot product of the rows of x and y
Available since 2.30

complex_vector rows_dot_product(complex_row_vector x,
complex_row_vector y)
The dot product of the rows of x and y
Available since 2.30

complex_vector rows_dot_product(complex_matrix x, complex_matrix y)
The dot product of the rows of x and y
Available since 2.30

complex dot_self(complex_vector x)
The dot product of the vector x with itself
Available since 2.30

complex dot_self(complex_row_vector x)
The dot product of the row vector x with itself
Available since 2.30

complex_row_vector columns_dot_self(complex_vector x)
The dot product of the columns of x with themselves
Available since 2.30

complex_row_vector columns_dot_self(complex_row_vector x)
The dot product of the columns of x with themselves
Available since 2.30

108 CHAPTER 7. COMPLEX MATRIX OPERATIONS

complex_row_vector columns_dot_self(complex_matrix x)
The dot product of the columns of x with themselves
Available since 2.30

complex_vector rows_dot_self(complex_vector x)
The dot product of the rows of x with themselves
Available since 2.30

complex_vector rows_dot_self(complex_row_vector x)
The dot product of the rows of x with themselves
Available since 2.30

complex_vector rows_dot_self(complex_matrix x)
The dot product of the rows of x with themselves
Available since 2.30

Specialized products

complex_matrix diag_pre_multiply(complex_vector v, complex_matrix m)
Return the product of the diagonal matrix formed from the vector v and the matrix
m, i.e., diag_matrix(v) * m.
Available since 2.30

complex_matrix diag_pre_multiply(complex_row_vector v, complex_matrix
m)
Return the product of the diagonal matrix formed from the vector rv and the matrix
m, i.e., diag_matrix(rv) * m.
Available since 2.30

complex_matrix diag_post_multiply(complex_matrix m, complex_vector v)
Return the product of the matrix m and the diagonal matrix formed from the vector
v, i.e., m * diag_matrix(v).
Available since 2.30

complex_matrix diag_post_multiply(complex_matrix m,
complex_row_vector v)
Return the product of the matrix m and the diagonal matrix formed from the the row
vector rv, i.e., m * diag_matrix(rv).
Available since 2.30

7.7. COMPLEX REDUCTIONS 109

7.7. Complex reductions

Sums and products

complex sum(complex_vector x)
The sum of the values in x, or 0 if x is empty
Available since 2.30

complex sum(complex_row_vector x)
The sum of the values in x, or 0 if x is empty
Available since 2.30

complex sum(complex_matrix x)
The sum of the values in x, or 0 if x is empty
Available since 2.30

complex prod(complex_vector x)
The product of the values in x, or 1 if x is empty
Available since 2.30

complex prod(complex_row_vector x)
The product of the values in x, or 1 if x is empty
Available since 2.30

complex prod(complex_matrix x)
The product of the values in x, or 1 if x is empty
Available since 2.30

7.8. Vectorized accessor functions

Much like with complex scalars, two functions are defined to get the real and
imaginary components of complex-valued objects.

Type “demotion”

These functions return the same shape (e.g., matrix, vector, row vector, or
array) object as their input, but demoted to a real type. For example,
get_real(complex_matrix M) yields a matrix containing the real component of
each value in M.

The following table contains examples of what this notation can mean:

110 CHAPTER 7. COMPLEX MATRIX OPERATIONS

Type T Type T_demoted

complex real
complex_vector vector
complex_row_vector row_vector
complex_matrix matrix
array[] complex array[] real
array[„] complex array[„] real

Real and imaginary component accessor functions

T_demoted get_real(T x)
Given an object of complex type T, return the same shape object but of type real by
getting the real component of each element of x.
Available since 2.30

T_demoted get_imag(T x)
Given an object of complex type T, return the same shape object but of type real by
getting the imaginary component of each element of x.
Available since 2.30

For example, given the Stan declaration

complex_vector[2] z = [3+4i, 5+6i]';

A call get_real(z) will yield the vector [3, 5]', and a call get_imag(z) will yield
the vector [4, 6]'.

7.9. Complex broadcast functions

The following broadcast functions allow vectors, row vectors and matrices to be
created by copying a single element into all of their cells. Matrices may also be
created by stacking copies of row vectors vertically or stacking copies of column
vectors horizontally.

complex_vector rep_vector(complex z, int m)
Return the size m (column) vector consisting of copies of z.
Available since 2.30

complex_row_vector rep_row_vector(complex z, int n)
Return the size n row vector consisting of copies of z.

7.10. DIAGONAL COMPLEX MATRIX FUNCTIONS 111

Available since 2.30

complex_matrix rep_matrix(complex z, int m, int n)
Return the m by n matrix consisting of copies of z.
Available since 2.30

complex_matrix rep_matrix(complex_vector v, int n)
Return the m by n matrix consisting of n copies of the (column) vector v of size m.
Available since 2.30

complex_matrix rep_matrix(complex_row_vector rv, int m)
Return the m by n matrix consisting of m copies of the row vector rv of size n.
Available since 2.30

Symmetrization

complex_matrix symmetrize_from_lower_tri(complex_matrix A)
Construct a symmetric matrix from the lower triangle of A.
Available since 2.30

7.10. Diagonal complex matrix functions

complex_matrix add_diag(complex_matrix m, complex_row_vector d)
Add row_vector d to the diagonal of matrix m.
Available since 2.30

complex_matrix add_diag(complex_matrix m, complex_vector d)
Add vector d to the diagonal of matrix m.
Available since 2.30

complex_matrix add_diag(complex_matrix m, complex d)
Add scalar d to every diagonal element of matrix m.
Available since 2.30

complex_vector diagonal(complex_matrix x)
The diagonal of the matrix x
Available since 2.30

complex_matrix diag_matrix(complex_vector x)
The diagonal matrix with diagonal x
Available since 2.30

112 CHAPTER 7. COMPLEX MATRIX OPERATIONS

7.11. Slicing and blocking functions for complex matrices

Stan provides several functions for generating slices or blocks or diagonal entries for
matrices.

Columns and rows

complex_vector col(complex_matrix x, int n)
The n-th column of matrix x
Available since 2.30

complex_row_vector row(complex_matrix x, int m)
The m-th row of matrix x
Available since 2.30

Block operations

Matrix slicing operations

complex_matrix block(complex_matrix x, int i, int j, int n_rows, int
n_cols)
Return the submatrix of x that starts at row i and column j and extends n_rows rows
and n_cols columns.
Available since 2.30

complex_vector sub_col(complex_matrix x, int i, int j, int n_rows)
Return the sub-column of x that starts at row i and column j and extends n_rows
rows and 1 column.
Available since 2.30

complex_row_vector sub_row(complex_matrix x, int i, int j, int
n_cols)
Return the sub-row of x that starts at row i and column j and extends 1 row and
n_cols columns.
Available since 2.30

Vector slicing operations.

complex_vector head(complex_vector v, int n)
Return the vector consisting of the first n elements of v.
Available since 2.30

7.12. COMPLEX MATRIX CONCATENATION 113

complex_row_vector head(complex_row_vector rv, int n)
Return the row vector consisting of the first n elements of rv.
Available since 2.30

complex_vector tail(complex_vector v, int n)
Return the vector consisting of the last n elements of v.
Available since 2.30

complex_row_vector tail(complex_row_vector rv, int n)
Return the row vector consisting of the last n elements of rv.
Available since 2.30

complex_vector segment(complex_vector v, int i, int n)
Return the vector consisting of the n elements of v starting at i; i.e., elements i
through through i + n - 1.
Available since 2.30

complex_row_vector segment(complex_row_vector rv, int i, int n)
Return the row vector consisting of the n elements of rv starting at i; i.e., elements i
through through i + n - 1.
Available since 2.30

7.12. Complex matrix concatenation

Horizontal concatenation

complex_matrix append_col(complex_matrix x, complex_matrix y)
Combine matrices x and y by column. The matrices must have the same number of
rows.
Available since 2.30

complex_matrix append_col(complex_matrix x, complex_vector y)
Combine matrix x and vector y by column. The matrix and the vector must have the
same number of rows.
Available since 2.30

complex_matrix append_col(complex_vector x, complex_matrix y)
Combine vector x and matrix y by column. The vector and the matrix must have the
same number of rows.
Available since 2.30

complex_matrix append_col(complex_vector x, complex_vector y)

114 CHAPTER 7. COMPLEX MATRIX OPERATIONS

Combine vectors x and y by column. The vectors must have the same number of
rows.
Available since 2.30

complex_row_vector append_col(complex_row_vector x,
complex_row_vector y)
Combine row vectors x and y (of any size) into another row vector by appending y
to the end of x.
Available since 2.30

complex_row_vector append_col(complex x, complex_row_vector y)
Append x to the front of y, returning another row vector.
Available since 2.30

complex_row_vector append_col(complex_row_vector x, complex y)
Append y to the end of x, returning another row vector.
Available since 2.30

Vertical concatenation

complex_matrix append_row(complex_matrix x, complex_matrix y)
Combine matrices x and y by row. The matrices must have the same number of
columns.
Available since 2.30

complex_matrix append_row(complex_matrix x, complex_row_vector y)
Combine matrix x and row vector y by row. The matrix and the row vector must
have the same number of columns.
Available since 2.30

complex_matrix append_row(complex_row_vector x, complex_matrix y)
Combine row vector x and matrix y by row. The row vector and the matrix must
have the same number of columns.
Available since 2.30

complex_matrix append_row(complex_row_vector x, complex_row_vector y)
Combine row vectors x and y by row. The row vectors must have the same number
of columns.
Available since 2.30

complex_vector append_row(complex_vector x, complex_vector y)
Concatenate vectors x and y of any size into another vector.
Available since 2.30

7.13. COMPLEX SPECIAL MATRIX FUNCTIONS 115

complex_vector append_row(complex x, complex_vector y)
Append x to the top of y, returning another vector.
Available since 2.30

complex_vector append_row(complex_vector x, complex y)
Append y to the bottom of x, returning another vector.
Available since 2.30

7.13. Complex special matrix functions

Fast Fourier transforms

Stan’s fast Fourier transform functions take the standard definition of the discrete
Fourier transform (see the definitions below for specifics) and scale the inverse
transform by one over dimensionality so that the following identities hold for complex
vectors u and v,

fft(inv_fft(u)) == u inv_fft(fft(v)) == v

and in the 2-dimensional case for complex matrices A and B,

fft2(inv_fft2(A)) == A inv_fft2(fft2(B)) == B

Although the FFT functions only accept complex inputs, real vectors and matrices
will be promoted to their complex counterparts before applying the FFT functions.

complex_vector fft(complex_vector v)
Return the discrete Fourier transform of the specified complex vector v. If v ∈ CN is
a complex vector with N elements and u = fft(v), then

un =
∑
m<n

vm · exp
(
−n ·m · 2 · π ·

√
−1

N

)
.

Available since 2.30

complex_matrix fft2(complex_matrix m)
Return the 2D discrete Fourier transform of the specified complex matrix m. The
2D FFT is defined as the result of applying the FFT to each row and then to each
column.
Available since 2.30

complex_vector inv_fft(complex_vector u)
Return the inverse of the discrete Fourier transform of the specified complex vector u.

116 CHAPTER 7. COMPLEX MATRIX OPERATIONS

The inverse FFT (this function) is scaled so that fft(inv_fft(u)) == u. If u ∈ CN
is a complex vector with N elements and v = fft−1(u), then

vn = 1
N

∑
m<n

um · exp
(
n ·m · 2 · π ·

√
−1

N

)
.

This only differs from the FFT by the sign inside the exponential and the scaling.
The 1

N scaling ensures that fft(inv_fft(u)) == u and inv_fft(fft(v)) == v for
complex vectors u and v.
Available since 2.30

complex_matrix inv_fft2(complex_matrix m)
Return the inverse of the 2D discrete Fourier transform of the specified complex
matrix m. The 2D inverse FFT is defined as the result of applying the inverse FFT to
each row and then to each column. The invertible scaling of the inverse FFT ensures
fft2(inv_fft2(A)) == A and inv_fft2(fft2(B)) == B.
Available since 2.30

Cumulative sums

The cumulative sum of a sequence x1, . . . , xN is the sequence y1, . . . , yN , where

yn =
n∑

m=1
xm.

array[] complex cumulative_sum(array[] complex x)
The cumulative sum of x
Available since 2.30

complex_vector cumulative_sum(complex_vector v)
The cumulative sum of v
Available since 2.30

complex_row_vector cumulative_sum(complex_row_vector rv)
The cumulative sum of rv
Available since 2.30

7.14. COMPLEX LINEAR ALGEBRA FUNCTIONS 117

7.14. Complex linear algebra functions

Complex matrix division operators and functions

In general, it is much more efficient and also more arithmetically stable to use matrix
division than to multiply by an inverse.

Complex matrix division operators

complex_row_vector operator/(complex_row_vector b, complex_matrix A)
The right division of b by A; equivalently b * inverse(A)
Available since 2.30

complex_matrix operator/(complex_matrix B, complex_matrix A)
The right division of B by A; equivalently B * inverse(A)
Available since 2.30

Linear algebra functions

Trace

complex trace(complex_matrix A)
The trace of A, or 0 if A is empty; A is not required to be diagonal
Available since 2.30

Eigendecomposition

complex_vector eigenvalues_sym(complex_matrix A)
The vector of eigenvalues of a symmetric matrix A in ascending order
Available since 2.30

complex_matrix eigenvectors_sym(complex_matrix A)
The matrix with the (column) eigenvectors of symmetric matrix A in the same order
as returned by the function eigenvalues_sym
Available since 2.30

Because multiplying an eigenvector by −1 results in an eigenvector, eigenvectors
returned by a decomposition are only identified up to a sign change. In order to
compare the eigenvectors produced by Stan’s eigendecomposition to others, signs
may need to be normalized in some way, such as by fixing the sign of a component,
or doing comparisons allowing a multiplication by −1.

118 CHAPTER 7. COMPLEX MATRIX OPERATIONS

The condition number of a symmetric matrix is defined to be the ratio of the
largest eigenvalue to the smallest eigenvalue. Large condition numbers lead to
difficulty in numerical algorithms such as computing inverses, and thus known as
“ill conditioned.” The ratio can even be infinite in the case of singular matrices (i.e.,
those with eigenvalues of 0).

Singular value decomposition

The matrix A can be decomposed into a diagonal matrix of singular values, D, and
matrices of its left and right singular vectors, U and V,

A = UDV T .

The matrices of singular vectors here are thin. That is for an N by P input A,
M = min(N,P), U is size N by M and V is size P by M .

vector singular_values(complex_matrix A)
The singular values of A in descending order
Available since 2.30

complex_matrix svd_U(complex_matrix A)
The left-singular vectors of A
Available since 2.30

complex_matrix svd_V(complex_matrix A)
The right-singular vectors of A
Available since 2.30

7.15. Reverse functions for complex matrices

complex_vector reverse(complex_vector v)
Return a new vector containing the elements of the argument in reverse order.
Available since 2.30

complex_row_vector reverse(complex_row_vector v)
Return a new row vector containing the elements of the argument in reverse order.
Available since 2.30

8. Sparse Matrix Operations

For sparse matrices, for which many elements are zero, it is more efficient to
use specialized representations to save memory and speed up matrix arithmetic
(including derivative calculations). Given Stan’s implementation, there is substantial
space (memory) savings by using sparse matrices. Because of the ease of optimizing
dense matrix operations, speed improvements only arise at 90% or even greater
sparsity; below that level, dense matrices are faster but use more memory.

Because of this speedup and space savings, it may even be useful to read in a dense
matrix and convert it to a sparse matrix before multiplying it by a vector. This chapter
covers a very specific form of sparsity consisting of a sparse matrix multiplied by a
dense vector.

8.1. Compressed row storage

Sparse matrices are represented in Stan using compressed row storage (CSR). For
example, the matrix

A =


19 27 0 0
0 0 0 0
0 0 0 52
81 0 95 33


is translated into a vector of the non-zero real values, read by row from the matrix
A,

w(A) =
[
19 27 52 81 95 33

]>
,

an array of integer column indices for the values,

v(A) =
[
1 2 4 1 3 4

]
,

and an array of integer indices indicating where in w(A) a given row’s values start,

u(A) =
[
1 3 3 4 7

]
,

with a padded value at the end to guarantee that

u(A)[n+ 1]− u(A)[n]

119

120 CHAPTER 8. SPARSE MATRIX OPERATIONS

is the number of non-zero elements in row n of the matrix (here 2, 0, 1, and 3). Note
that because the second row has no non-zero elements both the second and third
elements of u(A) correspond to the third element of w(A), which is 52. The values
(w(A), v(A), u(A)) are sufficient to reconstruct A.

The values are structured so that there is a real value and integer column index for
each non-zero entry in the array, plus one integer for each row of the matrix, plus
one for padding. There is also underlying storage for internal container pointers
and sizes. The total memory usage is roughly 12K +M bytes plus a small constant
overhead, which is often considerably fewer bytes than the M ×N required to store
a dense matrix. Even more importantly, zero values do not introduce derivatives
under multiplication or addition, so many storage and evaluation steps are saved
when sparse matrices are multiplied.

8.2. Conversion functions

Conversion functions between dense and sparse matrices are provided.

Dense to sparse conversion

Converting a dense matrix m to a sparse representation produces a vector w and
two integer arrays, u and v.

vector csr_extract_w(matrix a)
Return non-zero values in matrix a; see section compressed row storage.
Available since 2.8

array[] int csr_extract_v(matrix a)
Return column indices for values in csr_extract_w(a); see compressed row storage.
Available since 2.8

array[] int csr_extract_u(matrix a)
Return array of row starting indices for entries in csr_extract_w(a) followed by
the size of csr_extract_w(a) plus one; see section compressed row storage.
Available since 2.8

Sparse to dense conversion

To convert a sparse matrix representation to a dense matrix, there is a single function.

matrix csr_to_dense_matrix(int m, int n, vector w, array[] int v,
array[] int u)

8.3. SPARSE MATRIX ARITHMETIC 121

Return dense m×n matrix with non-zero matrix entries w, column indices v, and row
starting indices u; the vector w and array v must be the same size (corresponding to
the total number of nonzero entries in the matrix), array v must have index values
bounded by m, array u must have length equal to m + 1 and contain index values
bounded by the number of nonzeros (except for the last entry, which must be equal
to the number of nonzeros plus one). See section compressed row storage for more
details.
Available since 2.10

8.3. Sparse matrix arithmetic

Sparse matrix multiplication

The only supported operation is the multiplication of a sparse matrix A and a dense
vector b to produce a dense vector Ab. Multiplying a dense row vector b and a sparse
matrix A can be coded using transposition as

bA = (A> b>)>,

but care must be taken to represent A> rather than A as a sparse matrix.

vector csr_matrix_times_vector(int m, int n, vector w, array[] int v,
array[] int u, vector b)
Multiply the m× n matrix represented by values w, column indices v, and row start
indices u by the vector b; see compressed row storage.
Available since 2.18

9. Mixed Operations

These functions perform conversions between Stan containers matrix, vector, row
vector and arrays.

matrix to_matrix(matrix m)
Return the matrix m itself.
Available since 2.3

complex_matrix to_matrix(complex_matrix m)
Return the matrix m itself.
Available since 2.30

matrix to_matrix(vector v)
Convert the column vector v to a size(v) by 1 matrix.
Available since 2.3

complex_matrix to_matrix(complex_vector v)
Convert the column vector v to a size(v) by 1 matrix.
Available since 2.30

matrix to_matrix(row_vector v)
Convert the row vector v to a 1 by size(v) matrix.
Available since 2.3

complex_matrix to_matrix(complex_row_vector v)
Convert the row vector v to a 1 by size(v) matrix.
Available since 2.30

matrix to_matrix(matrix M, int m, int n)
Convert a matrix A to a matrix with m rows and n columns filled in column-major
order.
Available since 2.15

complex_matrix to_matrix(complex_matrix M, int m, int n)
Convert a matrix A to a matrix with m rows and n columns filled in column-major
order.
Available since 2.30

matrix to_matrix(vector v, int m, int n)

122

123

Convert a vector v to a matrix with m rows and n columns filled in column-major
order.
Available since 2.15

complex_matrix to_matrix(complex_vector v, int m, int n)
Convert a vector v to a matrix with m rows and n columns filled in column-major
order.
Available since 2.30

matrix to_matrix(row_vector v, int m, int n)
Convert a row_vector v to a matrix with m rows and n columns filled in column-major
order.
Available since 2.15

complex_matrix to_matrix(complex_row_vector v, int m, int n)
Convert a row vector v to a matrix with m rows and n columns filled in column-major
order.
Available since 2.30

matrix to_matrix(matrix A, int m, int n, int col_major)
Convert a matrix A to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).
Available since 2.15

complex_matrix to_matrix(complex_matrix A, int m, int n, int
col_major)
Convert a matrix A to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).
Available since 2.30

matrix to_matrix(vector v, int m, int n, int col_major)
Convert a vector v to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).
Available since 2.15

complex_matrix to_matrix(complex_vector v, int m, int n, int
col_major)
Convert a vector v to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).
Available since 2.30

matrix to_matrix(row_vector v, int m, int n, int col_major)
Convert a row vector v to a matrix with m rows and n columns filled in row-major

124 CHAPTER 9. MIXED OPERATIONS

order if col_major equals 0 (otherwise, they get filled in column-major order).
Available since 2.15

complex_matrix to_matrix(complex_row_vector v, int m, int n, int
col_major)
Convert a row vector v to a matrix with m rows and n columns filled in row-major
order if col_major equals 0 (otherwise, they get filled in column-major order).
Available since 2.30

matrix to_matrix(array[] real a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.
Available since 2.15

matrix to_matrix(array[] int a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.
Available since 2.15

complex_matrix to_matrix(array[] complex a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.
Available since 2.30

matrix to_matrix(array[] real a, int m, int n, int col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).
Available since 2.15

matrix to_matrix(array[] int a, int m, int n, int col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).
Available since 2.15

complex_matrix to_matrix(array[] complex a, int m, int n, int
col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).
Available since 2.30

125

matrix to_matrix(array[] row_vector vs)
Convert a one-dimensional array of row vectors to a matrix, where the size of the
array is the number of rows of the resulting matrix and the length of row vectors is
the number of columns.
Available since 2.28

complex_matrix to_matrix(array[] complex_row_vector vs)
Convert a one-dimensional array of row vectors to a matrix, where the size of the
array is the number of rows of the resulting matrix and the length of row vectors is
the number of columns.
Available since 2.30

matrix to_matrix(array[,] real a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order.
Available since 2.3

matrix to_matrix(array[,] int a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order. If any of the dimensions of a are zero, the result will be a 0 × 0
matrix.
Available since 2.3

complex_matrix to_matrix(array[,] complex a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order.
Available since 2.30

vector to_vector(matrix m)
Convert the matrix m to a column vector in column-major order.
Available since 2.0

complex_vector to_vector(complex_matrix m)
Convert the matrix m to a column vector in column-major order.
Available since 2.30

vector to_vector(vector v)
Return the column vector v itself.
Available since 2.3

complex_vector to_vector(complex_vector v)
Return the column vector v itself.
Available since 2.30

126 CHAPTER 9. MIXED OPERATIONS

vector to_vector(row_vector v)
Convert the row vector v to a column vector.
Available since 2.3

complex_vector to_vector(complex_row_vector v)
Convert the row vector v to a column vector.
Available since 2.30

vector to_vector(array[] real a)
Convert the one-dimensional array a to a column vector.
Available since 2.3

vector to_vector(array[] int a)
Convert the one-dimensional integer array a to a column vector.
Available since 2.3

complex_vector to_vector(array[] complex a)
Convert the one-dimensional complex array a to a column vector.
Available since 2.30

row_vector to_row_vector(matrix m)
Convert the matrix m to a row vector in column-major order.
Available since 2.3

complex_row_vector to_row_vector(complex_matrix m)
Convert the matrix m to a row vector in column-major order.
Available since 2.30

row_vector to_row_vector(vector v)
Convert the column vector v to a row vector.
Available since 2.3

complex_row_vector to_row_vector(complex_vector v)
Convert the column vector v to a row vector.
Available since 2.30

row_vector to_row_vector(row_vector v)
Return the row vector v itself.
Available since 2.3

complex_row_vector to_row_vector(complex_row_vector v)
Return the row vector v itself.
Available since 2.30

127

row_vector to_row_vector(array[] real a)
Convert the one-dimensional array a to a row vector.
Available since 2.3

row_vector to_row_vector(array[] int a)
Convert the one-dimensional array a to a row vector.
Available since 2.3

complex_row_vector to_row_vector(array[] complex a)
Convert the one-dimensional complex array a to a row vector.
Available since 2.30

array[,] real to_array_2d(matrix m)
Convert the matrix m to a two dimensional array with the same dimensions and
indexing order.
Available since 2.3

array[,] complex to_array_2d(complex_matrix m)
Convert the matrix m to a two dimensional array with the same dimensions and
indexing order.
Available since 2.30

array[] real to_array_1d(vector v)
Convert the column vector v to a one-dimensional array.
Available since 2.3

array[] complex to_array_1d(complex_vector v)
Convert the column vector v to a one-dimensional array.
Available since 2.30

array[] real to_array_1d(row_vector v)
Convert the row vector v to a one-dimensional array.
Available since 2.3

array[] complex to_array_1d(complex_row_vector v)
Convert the row vector v to a one-dimensional array.
Available since 2.30

array[] real to_array_1d(matrix m)
Convert the matrix m to a one-dimensional array in column-major order.
Available since 2.3

array[] real to_array_1d(complex_matrix m)
Convert the matrix m to a one-dimensional array in column-major order.

128 CHAPTER 9. MIXED OPERATIONS

Available since 2.30

array[] real to_array_1d(array[...] real a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.
Available since 2.3

array[] int to_array_1d(array[...] int a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.
Available since 2.3

array[] complex to_array_1d(array[...] complex a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.
Available since 2.30

10. Compound Arithmetic and Assignment

Compound arithmetic and assignment statements combine an arithmetic operation
and assignment, replacing a statement such as

x = x op y;

with the more compact compound form

x op= y;

For example, x = x + 1; may be replaced with x += 1;. This works for all types
that support arithmetic, including the scalar types int, real, complex, the real
matrix types vector, row_vector, and matrix, and the complex matrix types,
complex_vector, complex_row_vector, and complex_matrix.

10.1. Compound addition and assignment

Compound addition and assignment works wherever the corresponding addition
and assignment would be well formed.

void operator+=(T x, U y)
x += y is equivalent to x = x + y. Defined for all types T and U where T = T + U
is well formed.
Available since 2.17, complex signatures added in 2.30

10.2. Compound subtraction and assignment

Compound addition and assignment works wherever the corresponding subtraction
and assignment would be well formed.

void operator-=(T x, U y)
x -= y is equivalent to x = x - y. Defined for all types T and U where T = T - U
is well formed.
Available since 2.17, complex signatures added in 2.30

129

130 CHAPTER 10. COMPOUND ARITHMETIC AND ASSIGNMENT

10.3. Compound multiplication and assignment

Compound multiplication and assignment works wherever the corresponding multi-
plication and assignment would be well formed.

void operator*=(T x, U y)
x *= y is equivalent to x = x * y. Defined for all types T and U where T = T * U
is well formed.
Available since 2.17, complex signatures added in 2.30

10.4. Compound division and assignment

Compound division and assignment works wherever the corresponding division and
assignment would be well formed.

void operator/=(T x, U y)
x /= y is equivalent to x = x / y. Defined for all types T and U where T = T / U
is well formed.
Available since 2.17, complex signatures added in 2.30

10.5. Compound elementwise multiplication and assignment

Compound elementwise multiplication and assignment works wherever the corre-
sponding multiplication and assignment would be well formed.

void operator.*=(T x, U y)
x .*= y is equivalent to x = x .* y. Defined for all types T and U where T = T .*
U is well formed.
Available since 2.17, complex signatures added in 2.30

10.6. Compound elementwise division and assignment

Compound elementwise division and assignment works wherever the corresponding
division and assignment would be well formed.

void operator./=(T x, U y)
x ./= y is equivalent to x = x ./ y. Defined for all types T and U where T = T ./
U is well formed.
Available since 2.17, complex signatures added in 2.30

11. Higher-Order Functions

Stan provides a few higher-order functions that act on other functions. In all cases,
the function arguments to the higher-order functions are defined as functions within
the Stan language and passed by name to the higher-order functions.

11.1. Algebraic equation solver

Stan provides two built-in algebraic equation solvers, respectively based on Powell’s
and Newton’s methods. The Newton method constitutes a more recent addition
to Stan; its use is recommended for most problems. Although they look like other
function applications, algebraic solvers are special in two ways.

First, an algebraic solver is a higher-order function, i.e. it takes another function
as one of its arguments. Other functions in Stan which share this feature are the
ordinary differential equation solvers (see section Ordinary Differential Equation
(ODE) Solvers). Ordinary Stan functions do not allow functions as arguments.

Second, some of the arguments of the algebraic solvers are restricted to data only
expressions. These expressions must not contain variables other than those declared
in the data or transformed data blocks. Ordinary Stan functions place no restriction
on the origin of variables in their argument expressions.

Specifying an algebraic equation as a function

An algebraic system is specified as an ordinary function in Stan within the function
block. The algebraic system function must have this signature:

vector algebra_system(vector y, vector theta,
data array[] real x_r, array[] int x_i)

The algebraic system function should return the value of the algebraic function
which goes to 0, when we plug in the solution to the algebraic system.

The argument of this function are:

• y, the unknowns we wish to solve for

• theta, parameter values used to evaluate the algebraic system

131

132 CHAPTER 11. HIGHER-ORDER FUNCTIONS

• x_r, data values used to evaluate the algebraic system

• x_i, integer data used to evaluate the algebraic system

The algebraic system function separates parameter values, theta, from data values,
x_r, for efficiency in propagating the derivatives through the algebraic system.

Call to the algebraic solver

vector algebra_solver(function algebra_system, vector y_guess, vector
theta, data array[] real x_r, array[] int x_i)
Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm.
Available since 2.17

vector algebra_solver(function algebra_system, vector y_guess, vector
theta, data array[] real x_r, array[] int x_i, data real rel_tol,
data real f_tol, int max_steps)
Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm
with additional control parameters for the solver.
Available since 2.17

Note: In future releases, the function algebra_solver will be deprecated and
replaced with algebra_solver_powell.

vector algebra_solver_newton(function algebra_system, vector y_guess,
vector theta, data array[] real x_r, array[] int x_i)
Solves the algebraic system, given an initial guess, using Newton’s method.
Available since 2.24

vector algebra_solver_newton(function algebra_system, vector y_guess,
vector theta, data array[] real x_r, array[] int x_i, data real
rel_tol, data real f_tol, int max_steps)
Solves the algebraic system, given an initial guess, using Newton’s method with
additional control parameters for the solver.
Available since 2.24

Arguments to the algebraic solver

The arguments to the algebraic solvers are as follows:

• algebra_system : function literal referring to a function specifying the sys-
tem of algebraic equations with signature (vector, vector, array[] real,

11.1. ALGEBRAIC EQUATION SOLVER 133

array[] int):vector. The arguments represent (1) unknowns, (2) param-
eters, (3) real data, and (4) integer data, and the return value contains the
value of the algebraic function, which goes to 0 when we plug in the solution
to the algebraic system,

• y_guess : initial guess for the solution, type vector,

• theta : parameters only, type vector,

• x_r : real data only, type array[] real, and

• x_i : integer data only, type array[] int.

For more fine-grained control of the algebraic solver, these parameters can also be
provided:

• rel_tol : relative tolerance for the algebraic solver, type real, data only,

• function_tol : function tolerance for the algebraic solver, type real, data
only,

• max_num_steps : maximum number of steps to take in the algebraic solver,
type int, data only.

Return value

The return value for the algebraic solver is an object of type vector, with values
which, when plugged in as y make the algebraic function go to 0.

Sizes and parallel arrays

Certain sizes have to be consistent. The initial guess, return value of the solver, and
return value of the algebraic function must all be the same size.

The parameters, real data, and integer data will be passed from the solver directly to
the system function.

Algorithmic details

Stan offers two algebraic solvers: algebra_solver and algebra_solver_newton.
algebra_solver is baed on the Powell hybrid method (Powell 1970), which in turn
uses first-order derivatives. The Stan code builds on the implementation of the
hybrid solver in the unsupported module for nonlinear optimization problems of the
Eigen library (Guennebaud, Jacob, et al. 2010). This solver is in turn based on the
algorithm developed for the package MINPACK-1 (Jorge J. More 1980).

134 CHAPTER 11. HIGHER-ORDER FUNCTIONS

algebra_solver_newton, uses Newton’s method, also a first-order derivative based
numerical solver. The Stan code builds on the implementation in KINSOL from
the SUNDIALS suite (Hindmarsh et al. 2005). For many problems, we find that
algebra_solver_newton is faster than Powell’s method. If however Newton’s
method performs poorly, either failing to or requiring an excessively long time
to converge, the user should be prepared to switch to algebra_solver.

For both solvers, the Jacobian of the solution with respect to auxiliary parameters
is computed using the implicit function theorem. Intermediate Jacobians (of the
algebraic function’s output with respect to the unknowns y and with respect to the
auxiliary parameters theta) are computed using Stan’s automatic differentiation.

11.2. Ordinary differential equation (ODE) solvers

Stan provides several higher order functions for solving initial value problems
specified as Ordinary Differential Equations (ODEs).

Solving an initial value ODE means given a set of differential equations y′(t, θ) =
f(t, y, θ) and initial conditions y(t0, θ), solving for y at a sequence of times t0 < t1 <

t2, · · · < tn. f(t, y, θ) is referred to here as the ODE system function.

f(t, y, θ) will be defined as a function with a certain signature and provided along
with the initial conditions and output times to one of the ODE solver functions.

To make it easier to write ODEs, the solve functions take extra arguments that are
passed along unmodified to the user-supplied system function. Because there can be
any number of these arguments and they can be of different types, they are denoted
below as The types of the arguments represented by ... in the ODE solve
function call must match the types of the arguments represented by ... in the
user-supplied system function.

Non-stiff solver

array[] vector ode_rk45(function ode, vector initial_state, real
initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.
Available since 2.24

array[] vector ode_rk45_tol(function ode, vector initial_state,
real initial_time, array[] real times, data real rel_tol, data real

11.2. ORDINARY DIFFERENTIAL EQUATION (ODE) SOLVERS 135

abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method with additional control parameters for the
solver.
Available since 2.24

array[] vector ode_ckrk(function ode, vector initial_state, real
initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the Cash-Karp algorithm, a
4th/5th order explicit Runge-Kutta method.
Available since 2.27

array[] vector ode_ckrk_tol(function ode, vector initial_state,
real initial_time, array[] real times, data real rel_tol, data real
abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Cash-Karp algorithm, a
4th/5th order explicit Runge-Kutta method with additional control parameters for
the solver.
Available since 2.27

array[] vector ode_adams(function ode, vector initial_state, real
initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the Adams-Moulton method.
Available since 2.24

array[] vector ode_adams_tol(function ode, vector initial_state,
real initial_time, array[] real times, data real rel_tol, data real
abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Adams-Moulton method
with additional control parameters for the solver.
Available since 2.24

Stiff solver

array[] vector ode_bdf(function ode, vector initial_state, real
initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method.
Available since 2.24

array[] vector ode_bdf_tol(function ode, vector initial_state, real

136 CHAPTER 11. HIGHER-ORDER FUNCTIONS

initial_time, array[] real times, data real rel_tol, data real
abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.
Available since 2.24

Adjoint solver

array[] vector ode_adjoint_tol_ctl(function ode, vector
initial_state, real initial_time, array[] real times, data
real rel_tol_forward, data vector abs_tol_forward, data real
rel_tol_backward, data vector abs_tol_backward, int max_num_steps,
int num_steps_between_checkpoints, int interpolation_polynomial, int
solver_forward, int solver_backward, ...)

Solves the ODE system for the times provided using the adjoint ODE solver method
from CVODES. The adjoint ODE solver requires a checkpointed forward in time ODE
integration, a backwards in time integration that makes uses of an interpolated ver-
sion of the forward solution, and the solution of a quadrature problem (the number
of which depends on the number of parameters passed to the solve). The tolerances
and numeric methods used for the forward solve, backward solve, quadratures, and
interpolation can all be configured.
Available since 2.27

ODE system function

The first argument to one of the ODE solvers is always the ODE system function. The
ODE system function must have a vector return type, and the first two arguments
must be a real and vector in that order. These two arguments are followed by the
variadic arguments that are passed through from the ODE solve function call:

vector ode(real time, vector state, ...)

The ODE system function should return the derivative of the state with respect to
time at the time and state provided. The length of the returned vector must match
the length of the state input into the function.

The arguments to this function are:

• time, the time to evaluate the ODE system

11.2. ORDINARY DIFFERENTIAL EQUATION (ODE) SOLVERS 137

• state, the state of the ODE system at the time specified

• ..., sequence of arguments passed unmodified from the ODE solve function
call. The types here must match the types in the ... arguments of the ODE
solve function call.

Arguments to the ODE solvers

The arguments to the ODE solvers in both the stiff and non-stiff solvers are the same.
The arguments to the adjoint ODE solver are different; see Arguments to the adjoint
ODE solvers.

• ode : ODE system function,

• initial_state : initial state, type vector,

• initial_time : initial time, type real,

• times : solution times, type array[] real,

• ... : sequence of arguments that will be passed through unmodified to the ODE
system function. The types here must match the types in the ... arguments of
the ODE system function.

For the versions of the ode solver functions ending in _tol, these three parameters
must be provided after times and before the ... arguments:

• data rel_tol : relative tolerance for the ODE solver, type real, data only,

• data abs_tol : absolute tolerance for the ODE solver, type real, data only,
and

• max_num_steps : maximum number of steps to take between output times in
the ODE solver, type int, data only.

Because the tolerances are data arguments, they must be defined in either the data
or transformed data blocks. They cannot be parameters, transformed parameters or
functions of parameters or transformed parameters.

Arguments to the adjoint ODE solver

The arguments to the adjoint ODE solver are different from those for the other
functions (for those see Arguments to the adjoint ODE solvers).

• ode : ODE system function,

138 CHAPTER 11. HIGHER-ORDER FUNCTIONS

• initial_state : initial state, type vector,

• initial_time : initial time, type real,

• times : solution times, type array[] real,

• data rel_tol_forward : Relative tolerance for forward solve, type real, data
only,

• data abs_tol_forward : Absolute tolerance vector for each state for forward
solve, type vector, data only,

• data rel_tol_backward : Relative tolerance for backward solve, type real,
data only,

• data abs_tol_backward : Absolute tolerance vector for each state for back-
ward solve, type vector, data only,

• data rel_tol_quadrature : Relative tolerance for backward quadrature, type
real, data only,

• data abs_tol_quadrature : Absolute tolerance for backward quadrature, type
real, data only,

• data max_num_steps : Maximum number of time-steps to take in integrating
the ODE solution between output time points for forward and backward solve,
type int, data only,

• num_steps_between_checkpoints : number of steps between checkpointing
forward solution, type int, data only,

• interpolation_polynomial : can be 1 for hermite or 2 for polynomial inter-
polation method of CVODES, type int, data only,

• solver_forward : solver used for forward ODE problem: 1=Adams (non-stiff),
2=BDF (stiff), type int, data only,

• solver_backward : solver used for backward ODE problem: 1=Adams (non-
stiff), 2=BDF (stiff), type int, data only.

• ... : sequence of arguments that will be passed through unmodified to the ODE
system function. The types here must match the types in the ... arguments of
the ODE system function.

Because the tolerances are data arguments, they must be defined in either the data
or transformed data blocks. They cannot be parameters, transformed parameters or

11.3. DIFFERENTIAL-ALGEBRAIC EQUATION (DAE) SOLVER 139

functions of parameters or transformed parameters.

Return values

The return value for the ODE solvers is an array of vectors (type array[] vector),
one vector representing the state of the system at every time in specified in the times
argument.

Array and vector sizes

The sizes must match, and in particular, the following groups are of the same size:

• state variables passed into the system function, derivatives returned by the
system function, initial state passed into the solver, and length of each vector
in the output,

• number of solution times and number of vectors in the output.

11.3. Differential-Algebraic equation (DAE) solver

Stan provides two higher order functions for solving initial value problems specified
as Differential-Algebraic Equations (DAEs) with index-1 (Serban et al. 2021).

Solving an initial value DAE means given a set of residual functions
r(y′(t, θ), y(t, θ), t) and initial conditions (y(t0, θ), y′(t0, θ)), solving for y at a se-
quence of times t0 < t1 ≤ t2, · · · ≤ tn. The residual function r(y′, y, t, θ) will be
defined as a function with a certain signature and provided along with the initial
conditions and output times to one of the DAE solver functions.

Similar to ODE solvers, the DAE solver function takes extra arguments that are
passed along unmodified to the user-supplied system function. Because there can be
any number of these arguments and they can be of different types, they are denoted
below as ..., and the types of these arguments, also represented by ... in the
DAE solver call, must match the types of the arguments represented by ... in the
user-supplied system function.

The DAE solver

array[] vector dae(function residual, vector initial_state, vector
initial_state_derivative, real initial_time, array[] real times,
...)
Solves the DAE system using the backward differentiation formula (BDF) method

140 CHAPTER 11. HIGHER-ORDER FUNCTIONS

(Serban et al. 2021).
Available since 2.29

array[] vector dae_tol(function residual, vector initial_state,
vector initial_state_derivative, real initial_time, array[] real
times, data real rel_tol, data real abs_tol, int max_num_steps, ...)
Solves the DAE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.
Available since 2.29

DAE system function

The first argument to the DAE solver is the DAE residual function. The DAE residual
function must have a vector return type, and the first three arguments must be a
real, vector, and vector, in that order. These three arguments are followed by the
variadic arguments that are passed through from the DAE solver function call:

vector residual(real time, vector state, vector state_derivative, ...)

The DAE residual function should return the residuals at the time and state provided.
The length of the returned vector must match the length of the state input into the
function.

The arguments to this function are:

• time, the time to evaluate the DAE system

• state, the state of the DAE system at the time specified

• state_derivative, the time derivatives of the state of the DAE system at the
time specified

• ..., sequence of arguments passed unmodified from the DAE solve function
call. The types here must match the types in the ... arguments of the DAE
solve function call.

Arguments to the DAE solver

The arguments to the DAE solver are

• residual : DAE residual function,

• initial_state : initial state, type vector,

• initial_state_derivative : time derivative of the initial state, type vector,

11.3. DIFFERENTIAL-ALGEBRAIC EQUATION (DAE) SOLVER 141

• initial_time : initial time, type real,

• times : solution times, type array[] real,

• ... : sequence of arguments that will be passed through unmodified to the DAE
residual function. The types here must match the types in the ... arguments
of the DAE residual function.

For dae_tol, the following three parameters must be provided after times and
before the ... arguments:

• data rel_tol : relative tolerance for the DAE solver, type real, data only,

• data abs_tol : absolute tolerance for the DAE solver, type real, data only,
and

• max_num_steps : maximum number of steps to take between output times in
the DAE solver, type int, data only.

Because the tolerances are data arguments, they must be supplied as primitive
numerics or defined in either the data or transformed data blocks. They cannot
be parameters, transformed parameters or functions of parameters or transformed
parameters.

Consistency of the initial conditions

The user is responsible to ensure the residual function becomes zero at the initial
time, t0, when the arguments initial_state and initial_state_derivative are
introduced as state and state_derivative, respectively.

Return values

The return value for the DAE solvers is an array of vectors (type array[] vector),
one vector representing the state of the system at every time specified in the times
argument.

Array and vector sizes

The sizes must match, and in particular, the following groups are of the same size:

• state variables and state derivatives passed into the residual function, the resid-
ual returned by the residual function, initial state and initial state derivatives
passed into the solver, and length of each vector in the output,

• number of solution times and number of vectors in the output.

142 CHAPTER 11. HIGHER-ORDER FUNCTIONS

11.4. 1D integrator

Stan provides a built-in mechanism to perform 1D integration of a function via
quadrature methods.

It operates similarly to the algebraic solver and the ordinary differential equations
solver in that it allows as an argument a function.

Like both of those utilities, some of the arguments are limited to data only expres-
sions. These expressions must not contain variables other than those declared in the
data or transformed data blocks.

Specifying an integrand as a function

Performing a 1D integration requires the integrand to be specified somehow. This is
done by defining a function in the Stan functions block with the special signature:

real integrand(real x, real xc, array[] real theta,
array[] real x_r, array[] int x_i)

The function should return the value of the integrand evaluated at the point x.

The argument of this function are:

• x, the independent variable being integrated over

• xc, a high precision version of the distance from x to the nearest endpoint in a
definite integral (for more into see section Precision Loss).

• theta, parameter values used to evaluate the integral

• x_r, data values used to evaluate the integral

• x_i, integer data used to evaluate the integral

Like algebraic solver and the differential equations solver, the 1D integrator separates
parameter values, theta, from data values, x_r.

Call to the 1D integrator

real integrate_1d (function integrand, real a, real b, array[] real
theta, array[] real x_r, array[] int x_i)
Integrates the integrand from a to b.
Available since 2.23

11.4. 1D INTEGRATOR 143

real integrate_1d (function integrand, real a, real b, array[] real
theta, array[] real x_r, array[] int x_i, real relative_tolerance)
Integrates the integrand from a to b with the given relative tolerance.
Available since 2.23

Arguments to the 1D integrator

The arguments to the 1D integrator are as follows:

• integrand : function literal referring to a function specifying the
integrand with signature (real, real, array[] real, array[] real,
array[] int):real The arguments represent

– (1) where integrand is evaluated,
– (2) distance from evaluation point to integration limit for definite inte-

grals,
– (3) parameters,
– (4) real data
– (5) integer data, and the return value is the integrand evaluated at the

given point,
• a : left limit of integration, may be negative infinity, type real,
• b : right limit of integration, may be positive infinity, type real,
• theta : parameters only, type array[] real,
• x_r : real data only, type array[] real,
• x_i : integer data only, type array[] int.

A relative_tolerance argument can optionally be provided for more control over
the algorithm:

• relative_tolerance : relative tolerance for the 1d integrator, type real, data
only.

Return value

The return value for the 1D integrator is a real, the value of the integral.

Zero-crossing integrals

For numeric stability, integrals on the (possibly infinite) interval (a, b) that cross zero
are split into two integrals, one from (a, 0) and one from (0, b). Each integral is
separately integrated to the given relative_tolerance.

144 CHAPTER 11. HIGHER-ORDER FUNCTIONS

Precision loss near limits of integration in definite integrals

When integrating certain definite integrals, there can be significant precision loss
in evaluating the integrand near the endpoints. This has to do with the breakdown
in precision of double precision floating point values when adding or subtracting a
small number from a number much larger than it in magnitude (for instance, 1.0
- x). xc (as passed to the integrand) is a high-precision version of the distance
between x and the definite integral endpoints and can be used to address this issue.
More information (and an example where this is useful) is given in the User’s Guide.
For zero crossing integrals, xc will be a high precision version of the distance to the
endpoints of the two smaller integrals. For any integral with an endpoint at negative
infinity or positive infinity, xc is set to NaN.

Algorithmic details

Internally the 1D integrator uses the double-exponential methods in the Boost 1D
quadrature library. Boost in turn makes use of quadrature methods developed in
(Takahasi and Mori 1974), (Mori 1978), (Bailey, Jeyabalan, and Li 2005), and
(Tanaka et al. 2009).

The gradients of the integral are computed in accordance with the Leibniz integral
rule. Gradients of the integrand are computed internally with Stan’s automatic
differentiation.

11.5. Reduce-sum function

Stan provides a higher-order reduce function for summation. A function which
returns a scalar g: U -> real is mapped to every element of a list of type array[]
U, { x1, x2, ... } and all the results are accumulated,

g(x1) + g(x2) + ...

For efficiency reasons the reduce function doesn’t work with the element-wise
evaluated function g itself, but instead works through evaluating partial sums, f:
array[] U -> real, where:

f({ x1 }) = g(x1)
f({ x1, x2 }) = g(x1) + g(x2)
f({ x1, x2, ... }) = g(x1) + g(x2) + ...

Mathematically the summation reduction is associative and forming arbitrary partial
sums in an arbritrary order will not change the result. However, floating point

11.5. REDUCE-SUM FUNCTION 145

numerics on computers only have a limited precision such that associativity does
not hold exactly. This implies that the order of summation determines the exact
numerical result. For this reason, the higher-order reduce function is available in
two variants:

• reduce_sum: Automatically choose partial sums partitioning based on a dy-
namic scheduling algorithm.

• reduce_sum_static: Compute the same sum as reduce_sum, but partition the
input in the same way for given data set (in reduce_sum this partitioning might
change depending on computer load). This should result in stable numerical
evaluations.

Specifying the reduce-sum function

The higher-order reduce function takes a partial sum function f, an array argument
x (with one array element for each term in the sum), a recommended grainsize,
and a set of shared arguments. This representation allows parallelization of the
resultant sum.

real reduce_sum(F f, array[] T x, int grainsize, T1 s1, T2 s2, ...)
real reduce_sum_static(F f, array[] T x, int grainsize, T1 s1, T2 s2,
...)

Returns the equivalent of f(x, 1, size(x), s1, s2, ...), but computes the
result in parallel by breaking the array x into independent partial sums. s1, s2,
... are shared between all terms in the sum.
Available since 2.23

• f : function literal referring to a function specifying the partial sum operation.
Refer to the partial sum function.

• x : array of T, one for each term of the reduction, T can be any type,
• grainsize : For reduce_sum, grainsize is the recommended size of

the partial sum (grainsize = 1 means pick totally automatically). For
reduce_sum_static, grainsize determines the maximum size of the partial
sums, type int,

• s1 : first (optional) shared argument, type T1, where T1 can be any type
• s2 : second (optional) shared argument, type T2, where T2 can be any type,
• ... : remainder of shared arguments, each of which can be any type.

146 CHAPTER 11. HIGHER-ORDER FUNCTIONS

The partial sum function

The partial sum function must have the following signature where the type T, and
the types of all the shared arguments (T1, T2, . . .) match those of the original
reduce_sum (reduce_sum_static) call.

(array[] T x_subset, int start, int end, T1 s1, T2 s2, ...):real

The partial sum function returns the sum of the start to end terms (inclusive) of
the overall calculations. The arguments to the partial sum function are:

• x_subset, the subset of x a given partial sum is responsible for com-
puting, type array[] T, where T matches the type of x in reduce_sum
(reduce_sum_static)

• start, the index of the first term of the partial sum, type int

• end, the index of the last term of the partial sum (inclusive), type int

• s1, first shared argument, type T1, matching type of s1 in reduce_sum
(reduce_sum_static)

• s2, second shared argument, type T2, matching type of s2 in reduce_sum
(reduce_sum_static)

• ..., remainder of shared arguments, with types matching those in reduce_sum
(reduce_sum_static)

11.6. Map-rect function

Stan provides a higher-order map function. This allows map-reduce functionality to
be coded in Stan as described in the user’s guide.

Specifying the mapped function

The function being mapped must have a signature identical to that of the function f
in the following declaration.

vector f(vector phi, vector theta,
data array[] real x_r, data array[] int x_i);

The map function returns the sequence of results for the particular shard being
evaluated. The arguments to the mapped function are:

• phi, the sequence of parameters shared across shards

11.6. MAP-RECT FUNCTION 147

• theta, the sequence of parameters specific to this shard

• x_r, sequence of real-valued data

• x_i, sequence of integer data

All input for the mapped function must be packed into these sequences and all output
from the mapped function must be packed into a single vector. The vector of output
from each mapped function is concatenated into the final result.

Rectangular map

The rectangular map function operates on rectangular (not ragged) data structures,
with parallel data structures for job-specific parameters, job-specific real data, and
job-specific integer data.

vector map_rect(F f, vector phi, array[] vector theta, data array[,]
real x_r, data array[,] int x_i)
Return the concatenation of the results of applying the function f, of
type (vector, vector, array[] real, array[] int):vector elementwise, i.e.,
f(phi, theta[n], x_r[n], x_i[n]) for each n in 1:N, where N is the size of the
parallel arrays of job-specific/local parameters theta, real data x_r, and integer
data x_r. The shared/global parameters phi are passed to each invocation of f.
Available since 2.18

12. Deprecated Functions

This appendix lists currently deprecated functionality along with how to replace it.

Starting in Stan 2.29, deprecated functions with drop in replacements (such as
the renaming of get_lp or multiply_log) will be removed 3 versions later e.g.,
functions deprecated in Stan 2.20 will be removed in Stan 2.23 and placed in
Removed Functions. The Stan compiler can automatically update these on the behalf
of the user.

12.1. multiply_log and binomial_coefficient_log functions

Deprecated: Currently two non-conforming functions ending in suffix _log.

Replacement: Replace multiply_log(...) with lmultiply(...). Replace
binomial_coefficient_log(...) with lchoose(...).

Scheduled Removal: Stan 2.32

12.2. get_lp() function

Deprecated: The built-in no-argument function get_lp() is deprecated.

Replacement: Use the no-argument function target() instead.

Scheduled Removal: Stan 2.32

12.3. fabs function

Deprecated: The unary function fabs is deprecated.

Replacement: Use the unary function abs instead. Note that the return type for abs
is different for integer overloads, but this replacement is safe due to Stan’s type
promotion rules.

Scheduled Removal: Stan 2.33

148

https://mc-stan.org/docs/stan-users-guide/stanc-pretty-printing.html

12.4. INTEGER DIVISION WITH OPERATOR/ 149

12.4. Integer division with operator/

Deprecated: Using / with two integer arguments is interpreted as integer floor
division, such that

1/2 = 0

This is deprecated due to its confusion with real-valued division, where

1.0/2.0 = 0.5

Replacement: Use the integer division operator operator%/% instead.

12.5. integrate_ode_rk45, integrate_ode_adams, inte-
grate_ode_bdf ODE Integrators

These ODE integrator functions have been replaced by those described in:

Specifying an ordinary differential equation as a function

A system of ODEs is specified as an ordinary function in Stan within the functions
block. The ODE system function must have this function signature:

array[] real ode(real time, array[] real state, array[] real theta,
array[] real x_r, array[] int x_i);

The ODE system function should return the derivative of the state with respect to
time at the time provided. The length of the returned real array must match the
length of the state input into the function.

The arguments to this function are:

• time, the time to evaluate the ODE system

• state, the state of the ODE system at the time specified

• theta, parameter values used to evaluate the ODE system

• x_r, data values used to evaluate the ODE system

• x_i, integer data values used to evaluate the ODE system.

150 CHAPTER 12. DEPRECATED FUNCTIONS

The ODE system function separates parameter values, theta, from data values, x_r,
for efficiency in computing the gradients of the ODE.

Non-stiff solver

array[,] real integrate_ode_rk45(function ode, array[] real
initial_state, real initial_time, array[] real times, array[] real
theta, array[] real x_r, array[] int x_i)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.
Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_rk45(function ode, array[] real
initial_state, real initial_time, array[] real times, array[]
real theta, array[] real x_r, array[] int x_i, real rel_tol, real
abs_tol, int max_num_steps)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method with additional control parameters for the
solver.
Available since 2.10, deprecated in 2.24

array[,] real integrate_ode(function ode, array[] real initial_state,
real initial_time, array[] real times, array[] real theta, array[]
real x_r, array[] int x_i)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.
Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_adams(function ode, array[] real
initial_state, real initial_time, array[] real times, array[] real
theta, data array[] real x_r, data array[] int x_i)
Solves the ODE system for the times provided using the Adams-Moulton method.
Available since 2.23, deprecated in 2.24

array[,] real integrate_ode_adams(function ode, array[] real
initial_state, real initial_time, array[] real times, array[]
real theta, data array[] real x_r, data array[] int x_i, data real
rel_tol, data real abs_tol, data int max_num_steps)
Solves the ODE system for the times provided using the Adams-Moulton method
with additional control parameters for the solver.
Available since 2.23, deprecated in 2.24

12.5. INTEGRATE_ODE_RK45, INTEGRATE_ODE_ADAMS, INTEGRATE_ODE_BDF ODE INTEGRATORS151

Stiff solver

array[,] real integrate_ode_bdf(function ode, array[] real
initial_state, real initial_time, array[] real times, array[] real
theta, data array[] real x_r, data array[] int x_i)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method.
Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_bdf(function ode, array[] real
initial_state, real initial_time, array[] real times, array[]
real theta, data array[] real x_r, data array[] int x_i, data real
rel_tol, data real abs_tol, data int max_num_steps)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.
Available since 2.10, deprecated in 2.24

Arguments to the ODE solvers

The arguments to the ODE solvers in both the stiff and non-stiff cases are as follows.

• ode : function literal referring to a function specifying the system of differential
equations with signature:

(real, array[] real, array[] real, data array[] real, data array[] int):array[] real

The arguments represent (1) time, (2) system state, (3) parameters, (4) real data,
and (5) integer data, and the return value contains the derivatives with respect to
time of the state,

• initial_state : initial state, type array[] real,

• initial_time : initial time, type int or real,

• times : solution times, type array[] real,

• theta : parameters, type array[] real,

• data x_r : real data, type array[] real, data only, and

• data x_i : integer data, type array[] int, data only.

For more fine-grained control of the ODE solvers, these parameters can also be
provided:

152 CHAPTER 12. DEPRECATED FUNCTIONS

• data rel_tol : relative tolerance for the ODE solver, type real, data only,

• data abs_tol : absolute tolerance for the ODE solver, type real, data only,
and

• data max_num_steps : maximum number of steps to take in the ODE solver,
type int, data only.

Return values

The return value for the ODE solvers is an array of type array[,] real, with values
consisting of solutions at the specified times.

Sizes and parallel arrays

The sizes must match, and in particular, the following groups are of the same size:

• state variables passed into the system function, derivatives returned by the
system function, initial state passed into the solver, and rows of the return
value of the solver,

• solution times and number of rows of the return value of the solver,

• parameters, real data and integer data passed to the solver will be passed to
the system function

12.6. Exponentiated quadratic covariance functions

These covariance functions have been replaced by those described in:

With magnitude α and length scale l, the exponentiated quadratic kernel is:

k(xi, xj) = α2 exp
(
− 1

2ρ2

D∑
d=1

(xi,d − xj,d)2

)

matrix cov_exp_quad(row_vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.
Available since 2.16, deprecated since 2.20, scheduled for removal in 2.32

matrix cov_exp_quad(vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.
Available since 2.16, deprecated since 2.20, scheduled for removal in 2.32

12.6. EXPONENTIATED QUADRATIC COVARIANCE FUNCTIONS 153

matrix cov_exp_quad(array[] real x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.
Available since 2.16, deprecated since 2.20, scheduled for removal in 2.32

matrix cov_exp_quad(row_vectors x1, row_vectors x2, real alpha, real
rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.
Available since 2.18, deprecated since 2.20, scheduled for removal in 2.32

matrix cov_exp_quad(vectors x1, vectors x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.
Available since 2.18, deprecated since 2.20, scheduled for removal in 2.32

matrix cov_exp_quad(array[] real x1, array[] real x2, real alpha,
real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.
Available since 2.18, deprecated since 2.20, scheduled for removal in 2.32

13. Removed Functions

Functions which once existed in the Stan language and have since been replaced or
removed will be listed here.

As of the current version of Stan, there are no such functions.

154

14. Conventions for Probability Functions

Functions associated with distributions are set up to follow the same naming con-
ventions for both built-in distributions and for user-defined distributions.

14.1. Suffix marks type of function

The suffix is determined by the type of function according to the following table.

function outcome suffix

log probability mass function discrete _lpmf
log probability density function continuous _lpdf
log cumulative distribution function any _lcdf
log complementary cumulative distribution function any _lccdf
random number generator any _rng

For example, normal_lpdf is the log of the normal probability density function (pdf)
and bernoulli_lpmf is the log of the bernoulli probability mass function (pmf). The
log of the corresponding cumulative distribution functions (cdf) use the same suffix,
normal_lcdf and bernoulli_lcdf.

14.2. Argument order and the vertical bar

Each probability function has a specific outcome value and a number of parameters.
Following conditional probability notation, probability density and mass functions
use a vertical bar to separate the outcome from the parameters of the distribution. For
example, normal_lpdf(y | mu, sigma) returns the value of mathematical formula
log Normal(y |µ, σ). Cumulative distribution functions separate the outcome from
the parameters in the same way (e.g., normal_lcdf(y_low | mu, sigma)

14.3. Sampling notation

The notation

155

156 CHAPTER 14. CONVENTIONS FOR PROBABILITY FUNCTIONS

y ~ normal(mu, sigma);

provides the same (proportional) contribution to the model log density as the explicit
target density increment,

target += normal_lpdf(y | mu, sigma);

In both cases, the effect is to add terms to the target log density. The only difference
is that the example with the sampling (~) notation drops all additive constants
in the log density; the constants are not necessary for any of Stan’s sampling,
approximation, or optimization algorithms.

14.4. Finite inputs

All of the distribution functions are configured to throw exceptions (effectively
rejecting samples or optimization steps) when they are supplied with non-finite
arguments. The two cases of non-finite arguments are the infinite values and not-a-
number value—these are standard in floating-point arithmetic.

14.5. Boundary conditions

Many distributions are defined with support or constraints on parameters forming an
open interval. For example, the normal density function accepts a scale parameter
σ > 0. If σ = 0, the probability function will throw an exception.

This is true even for (complementary) cumulative distribution functions, which will
throw exceptions when given input that is out of the support.

14.6. Pseudorandom number generators

For most of the probability functions, there is a matching pseudorandom number gen-
erator (PRNG) with the suffix _rng. For example, the function normal_rng(real,
real) accepts two real arguments, an unconstrained location µ and positive scale
σ > 0, and returns an unconstrained pseudorandom value drawn from Normal(µ, σ).
There are also vectorized forms of random number generators which return more
than one random variate at a time.

14.7. CUMULATIVE DISTRIBUTION FUNCTIONS 157

Restricted to transformed data and generated quantities

Unlike regular functions, the PRNG functions may only be used in the transformed
data or generated quantities blocks.

Limited vectorization

Unlike the probability functions, only some of the PRNG functions are vectorized.

14.7. Cumulative distribution functions

For most of the univariate probability functions, there is a corresponding cumulative
distribution function, log cumulative distribution function, and log complementary
cumulative distribution function.

For a univariate random variable Y with probability function pY (y | θ), the cumulative
distribution function (CDF) FY is defined by

FY (y) = Pr[Y ≤ y] =
∫ y

−∞
p(y | θ) dy.

The complementary cumulative distribution function (CCDF) is defined as

Pr[Y > y] = 1− FY (y).

The reason to use CCDFs instead of CDFs in floating-point arithmetic is that it is
possible to represent numbers very close to 0 (the closest you can get is roughly
10−300), but not numbers very close to 1 (the closest you can get is roughly 1−10−15).

In Stan, there is a cumulative distribution function for each probability function. For
instance, normal_cdf(y, mu, sigma) is defined by∫ y

−∞
Normal(y |µ, σ) dy.

There are also log forms of the CDF and CCDF for most univariate distributions. For
example, normal_lcdf(y | mu, sigma) is defined by

log
(∫ y

−∞
Normal(y |µ, σ) dy

)
and normal_lccdf(y | mu, sigma) is defined by

log
(

1−
∫ y

−∞
Normal(y |µ, σ) dy

)
.

158 CHAPTER 14. CONVENTIONS FOR PROBABILITY FUNCTIONS

14.8. Vectorization

Stan’s univariate log probability functions, including the log density functions, log
mass functions, log CDFs, and log CCDFs, all support vectorized function application,
with results defined to be the sum of the elementwise application of the function.
Some of the PRNG functions support vectorization, see section vectorized PRNG
functions for more details.

In all cases, matrix operations are at least as fast and usually faster than loops and
vectorized log probability functions are faster than their equivalent form defined with
loops. This isn’t because loops are slow in Stan, but because more efficient automatic
differentiation can be used. The efficiency comes from the fact that a vectorized log
probability function only introduces one new node into the expression graph, thus
reducing the number of virtual function calls required to compute gradients in C++,
as well as from allowing caching of repeated computations.

Stan also overloads the multivariate normal distribution, including the Cholesky-
factor form, allowing arrays of row vectors or vectors for the variate and location
parameter. This is a huge savings in speed because the work required to solve the
linear system for the covariance matrix is only done once.

Stan also overloads some scalar functions, such as log and exp, to apply to vectors
(arrays) and return vectors (arrays). These vectorizations are defined elementwise
and unlike the probability functions, provide only minimal efficiency speedups over
repeated application and assignment in a loop.

Vectorized function signatures

Vectorized scalar arguments

The normal probability function is specified with the signature

normal_lpdf(reals | reals, reals);

The pseudotype reals is used to indicate that an argument position may be vec-
torized. Argument positions declared as reals may be filled with a real, a one-
dimensional array, a vector, or a row-vector. If there is more than one array or vector
argument, their types can be anything but their size must match. For instance, it is
legal to use normal_lpdf(row_vector | vector, real) as long as the vector and
row vector have the same size.

14.8. VECTORIZATION 159

Vectorized vector and row vector arguments

The multivariate normal distribution accepting vector or array of vector arguments
is written as

multi_normal_lpdf(vectors | vectors, matrix);

These arguments may be row vectors, column vectors, or arrays of row vectors or
column vectors.

Vectorized integer arguments

The pseudotype ints is used for vectorized integer arguments. Where it appears
either an integer or array of integers may be used.

Evaluating vectorized log probability functions

The result of a vectorized log probability function is equivalent to the sum of the
evaluations on each element. Any non-vector argument, namely real or int, is
repeated. For instance, if y is a vector of size N, mu is a vector of size N, and sigma is
a scalar, then

ll = normal_lpdf(y | mu, sigma);

is just a more efficient way to write

ll = 0;
for (n in 1:N) {

ll = ll + normal_lpdf(y[n] | mu[n], sigma);
}

With the same arguments, the vectorized sampling statement

y ~ normal(mu, sigma);

has the same effect on the total log probability as

for (n in 1:N) {
y[n] ~ normal(mu[n], sigma);

}

160 CHAPTER 14. CONVENTIONS FOR PROBABILITY FUNCTIONS

Evaluating vectorized PRNG functions

Some PRNG functions accept sequences as well as scalars as arguments. Such
functions are indicated by argument pseudotypes reals or ints. In cases of sequence
arguments, the output will also be a sequence. For example, the following is allowed
in the transformed data and generated quantities blocks.

vector[3] mu = // ...
array[3] real x = normal_rng(mu, 3);

Argument types

In the case of PRNG functions, arguments marked ints may be integers or integer
arrays, whereas arguments marked reals may be integers or reals, integer or real
arrays, vectors, or row vectors.

pseudotype allowable PRNG arguments

ints int, array[] int
reals int, array[] int, real, array[] real, vector, row_vector

Dimension matching

In general, if there are multiple non-scalar arguments, they must all have the same
dimensions, but need not have the same type. For example, the normal_rng function
may be called with one vector argument and one real array argument as long as they
have the same number of elements.

vector[3] mu = // ...
array[3] real sigma = // ...
array[3] real x = normal_rng(mu, sigma);

Return type

The result of a vectorized PRNG function depends on the size of the arguments and
the distribution’s support. If all arguments are scalars, then the return type is a scalar.
For a continuous distribution, if there are any non-scalar arguments, the return type
is a real array (array[] real) matching the size of any of the non-scalar arguments,
as all non-scalar arguments must have matching size. Discrete distributions return
ints and continuous distributions return reals, each of appropriate size. The

14.8. VECTORIZATION 161

symbol R denotes such a return type.

Discrete Distributions

162

15. Binary Distributions

Binary probability distributions have support on {0, 1}, where 1 represents the value
true and 0 the value false.

15.1. Bernoulli distribution

Probability mass function

If θ ∈ [0, 1], then for y ∈ {0, 1},

Bernoulli(y | θ) =
{
θ if y = 1, and
1− θ if y = 0.

Sampling statement

y ~ bernoulli(theta)

Increment target log probability density with bernoulli_lupmf(y | theta).
Available since 2.0

Stan Functions

real bernoulli_lpmf(ints y | reals theta)
The log Bernoulli probability mass of y given chance of success theta
Available since 2.12

real bernoulli_lupmf(ints y | reals theta)
The log Bernoulli probability mass of y given chance of success theta dropping
constant additive terms
Available since 2.25

real bernoulli_cdf(ints y, reals theta)
The Bernoulli cumulative distribution function of y given chance of success theta
Available since 2.0

real bernoulli_lcdf(ints y | reals theta)
The log of the Bernoulli cumulative distribution function of y given chance of success

163

164 CHAPTER 15. BINARY DISTRIBUTIONS

theta
Available since 2.12

real bernoulli_lccdf(ints y | reals theta)
The log of the Bernoulli complementary cumulative distribution function of y given
chance of success theta
Available since 2.12

R bernoulli_rng(reals theta)
Generate a Bernoulli variate with chance of success theta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

15.2. Bernoulli distribution, logit parameterization

Stan also supplies a direct parameterization in terms of a logit-transformed chance-
of-success parameter. This parameterization is more numerically stable if the chance-
of-success parameter is on the logit scale, as with the linear predictor in a logistic
regression.

Probability mass function

If α ∈ R, then for y ∈ {0, 1},

BernoulliLogit(y | α) = Bernoulli(y|logit−1(α)) =
{

logit−1(α) if y = 1, and
1− logit−1(α) if y = 0.

Sampling statement

y ~ bernoulli_logit(alpha)

Increment target log probability density with bernoulli_logit_lupmf(y |
alpha).
Available since 2.0

Stan Functions

real bernoulli_logit_lpmf(ints y | reals alpha)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha)
Available since 2.12

15.3. BERNOULLI-LOGIT GENERALIZED LINEAR MODEL (LOGISTIC REGRESSION)165

real bernoulli_logit_lupmf(ints y | reals alpha)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha)
dropping constant additive terms
Available since 2.25

R bernoulli_logit_rng(reals alpha)
Generate a Bernoulli variate with chance of success logit−1(α); may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

15.3. Bernoulli-logit generalized linear model (Logistic Regres-
sion)

Stan also supplies a single function for a generalized linear model with Bernoulli
likelihood and logit link function, i.e. a function for a logistic regression. This
provides a more efficient implementation of logistic regression than a manually
written regression in terms of a Bernoulli likelihood and matrix multiplication.

Probability mass function

If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, then for y ∈ {0, 1}n,

BernoulliLogitGLM(y | x, α, β) =
∏

1≤i≤n
Bernoulli(yi | logit−1(αi + xi · β))

=
∏

1≤i≤n

{
logit−1(αi +

∑
1≤j≤m xij · βj) if yi = 1, and

1− logit−1(αi +
∑

1≤j≤m xij · βj) if yi = 0.

Sampling statement

y ~ bernoulli_logit_glm(x, alpha, beta)

Increment target log probability density with bernoulli_logit_glm_lupmf(y | x,
alpha, beta).
Available since 2.25

Stan Functions

real bernoulli_logit_glm_lpmf(int y | matrix x, real alpha, vector
beta)

166 CHAPTER 15. BINARY DISTRIBUTIONS

The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).
Available since 2.23

real bernoulli_logit_glm_lupmf(int y | matrix x, real alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.
Available since 2.25

real bernoulli_logit_glm_lpmf(int y | matrix x, vector alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).
Available since 2.23

real bernoulli_logit_glm_lupmf(int y | matrix x, vector alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.
Available since 2.25

real bernoulli_logit_glm_lpmf(array[] int y | row_vector x, real
alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).
Available since 2.23

real bernoulli_logit_glm_lupmf(array[] int y | row_vector x, real
alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.
Available since 2.25

real bernoulli_logit_glm_lpmf(array[] int y | row_vector x, vector
alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).
Available since 2.23

real bernoulli_logit_glm_lupmf(array[] int y | row_vector x, vector
alpha, vector beta)

15.3. BERNOULLI-LOGIT GENERALIZED LINEAR MODEL (LOGISTIC REGRESSION)167

The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.
Available since 2.25

real bernoulli_logit_glm_lpmf(array[] int y | matrix x, real alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).
Available since 2.18

real bernoulli_logit_glm_lupmf(array[] int y | matrix x, real alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.
Available since 2.25

real bernoulli_logit_glm_lpmf(array[] int y | matrix x, vector alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta).
Available since 2.18

real bernoulli_logit_glm_lupmf(array[] int y | matrix x, vector
alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha +
x * beta) dropping constant additive terms.
Available since 2.25

array[] int bernoulli_logit_glm_rng(matrix x, vector alpha, vector
beta)
Generate an array of Bernoulli variates with chances of success inv_logit(alpha +
x * beta); may only be used in transformed data and generated quantities blocks.
Available since 2.29

array[] int bernoulli_logit_glm_rng(row_vector x, vector alpha,
vector beta)
Generate an array of Bernoulli variates with chances of success inv_logit(alpha +
x * beta); may only be used in transformed data and generated quantities blocks.
Available since 2.29

16. Bounded Discrete Distributions

Bounded discrete probability functions have support on {0, . . . , N} for some upper
bound N .

16.1. Binomial distribution

Probability mass function

Suppose N ∈ N and θ ∈ [0, 1], and n ∈ {0, . . . , N}.

Binomial(n | N, θ) =
(
N

n

)
θn(1− θ)N−n.

Log probability mass function

log Binomial(n | N, θ) = log Γ(N + 1)− log Γ(n+ 1)− log Γ(N − n+ 1)

+ n log θ + (N − n) log(1− θ),

Gradient of log probability mass function

∂

∂θ
log Binomial(n | N, θ) = n

θ
− N − n

1− θ

Sampling statement

n ~ binomial(N, theta)

Increment target log probability density with binomial_lupmf(n | N, theta).
Available since 2.0

Stan functions

real binomial_lpmf(ints n | ints N, reals theta)
The log binomial probability mass of n successes in N trials given chance of success

168

16.2. BINOMIAL DISTRIBUTION, LOGIT PARAMETERIZATION 169

theta
Available since 2.12

real binomial_lupmf(ints n | ints N, reals theta)
The log binomial probability mass of n successes in N trials given chance of success
theta dropping constant additive terms
Available since 2.25

real binomial_cdf(ints n, ints N, reals theta)
The binomial cumulative distribution function of n successes in N trials given chance
of success theta
Available since 2.0

real binomial_lcdf(ints n | ints N, reals theta)
The log of the binomial cumulative distribution function of n successes in N trials
given chance of success theta
Available since 2.12

real binomial_lccdf(ints n | ints N, reals theta)
The log of the binomial complementary cumulative distribution function of n suc-
cesses in N trials given chance of success theta
Available since 2.12

R binomial_rng(ints N, reals theta)
Generate a binomial variate with N trials and chance of success theta; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.
Available since 2.18

16.2. Binomial distribution, logit parameterization

Stan also provides a version of the binomial probability mass function distribution
with the chance of success parameterized on the unconstrained logistic scale.

Probability mass function

Suppose N ∈ N, α ∈ R, and n ∈ {0, . . . , N}. Then

BinomialLogit(n | N,α) = Binomial(n | N, logit−1(α))

=
(
N

n

)(
logit−1(α)

)n (
1− logit−1(α)

)N−n
.

170 CHAPTER 16. BOUNDED DISCRETE DISTRIBUTIONS

Log probability mass function

log BinomialLogit(n | N,α) = log Γ(N + 1)− log Γ(n+ 1)− log Γ(N − n+ 1)

+ n log logit−1(α) + (N − n) log
(

1− logit−1(α)
)
,

Gradient of log probability mass function

∂

∂α
log BinomialLogit(n | N,α) = n

logit−1(−α)
− N − n

logit−1(α)

Sampling statement

n ~ binomial_logit(N, alpha)

Increment target log probability density with binomial_logit_lupmf(n | N,
alpha).
Available since 2.0

Stan functions

real binomial_logit_lpmf(ints n | ints N, reals alpha)
The log binomial probability mass of n successes in N trials given logit-scaled chance
of success alpha
Available since 2.12

real binomial_logit_lupmf(ints n | ints N, reals alpha)
The log binomial probability mass of n successes in N trials given logit-scaled chance
of success alpha dropping constant additive terms
Available since 2.25

16.3. Beta-binomial distribution

Probability mass function

If N ∈ N, α ∈ R+, and β ∈ R+, then for n ∈ 0, . . . , N ,

BetaBinomial(n | N,α, β) =
(
N

n

)
B(n+ α,N − n+ β)

B(α, β) ,

16.3. BETA-BINOMIAL DISTRIBUTION 171

where the beta function B(u, v) is defined for u ∈ R+ and v ∈ R+ by

B(u, v) = Γ(u) Γ(v)
Γ(u+ v) .

Sampling statement

n ~ beta_binomial(N, alpha, beta)

Increment target log probability density with beta_binomial_lupmf(n | N,
alpha, beta).
Available since 2.0

Stan functions

real beta_binomial_lpmf(ints n | ints N, reals alpha, reals beta)
The log beta-binomial probability mass of n successes in N trials given prior success
count (plus one) of alpha and prior failure count (plus one) of beta
Available since 2.12

real beta_binomial_lupmf(ints n | ints N, reals alpha, reals beta)
The log beta-binomial probability mass of n successes in N trials given prior success
count (plus one) of alpha and prior failure count (plus one) of beta dropping constant
additive terms
Available since 2.25

real beta_binomial_cdf(ints n, ints N, reals alpha, reals beta)
The beta-binomial cumulative distribution function of n successes in N trials given
prior success count (plus one) of alpha and prior failure count (plus one) of beta
Available since 2.0

real beta_binomial_lcdf(ints n | ints N, reals alpha, reals beta)
The log of the beta-binomial cumulative distribution function of n successes in N
trials given prior success count (plus one) of alpha and prior failure count (plus one)
of beta
Available since 2.12

real beta_binomial_lccdf(ints n | ints N, reals alpha, reals beta)
The log of the beta-binomial complementary cumulative distribution function of n
successes in N trials given prior success count (plus one) of alpha and prior failure
count (plus one) of beta
Available since 2.12

172 CHAPTER 16. BOUNDED DISCRETE DISTRIBUTIONS

R beta_binomial_rng(ints N, reals alpha, reals beta)
Generate a beta-binomial variate with N trials, prior success count (plus one) of
alpha, and prior failure count (plus one) of beta; may only be used in transformed
data and generated quantities blocks. For a description of argument and return
types, see section vectorized PRNG functions.
Available since 2.18

16.4. Hypergeometric distribution

Probability mass function

If a ∈ N, b ∈ N, and N ∈ {0, . . . , a+b}, then for n ∈ {max(0, N −b), . . . ,min(a,N)},

Hypergeometric(n | N, a, b) =
(
a
n

)(
b

N−n
)(

a+b
N

) .

Sampling statement

n ~ hypergeometric(N, a, b)

Increment target log probability density with hypergeometric_lupmf(n | N, a,
b).
Available since 2.0

Stan functions

real hypergeometric_lpmf(int n | int N, int a, int b)
The log hypergeometric probability mass of n successes in N trials given total success
count of a and total failure count of b
Available since 2.12

real hypergeometric_lupmf(int n | int N, int a, int b)
The log hypergeometric probability mass of n successes in N trials given total success
count of a and total failure count of b dropping constant additive terms
Available since 2.25

int hypergeometric_rng(int N, int a, int b)
Generate a hypergeometric variate with N trials, total success count of a, and total
failure count of b; may only be used in transformed data and generated quantities
blocks
Available since 2.18

16.5. CATEGORICAL DISTRIBUTION 173

16.5. Categorical distribution

Probability mass functions

If N ∈ N, N > 0, and if θ ∈ RN forms an N -simplex (i.e., has nonnegative entries
summing to one), then for y ∈ {1, . . . , N},

Categorical(y | θ) = θy.

In addition, Stan provides a log-odds scaled categorical distribution,

CategoricalLogit(y | β) = Categorical(y | softmax(β)).

See the definition of softmax for the definition of the softmax function.

Sampling statement

y ~ categorical(theta)

Increment target log probability density with categorical_lupmf(y | theta) drop-
ping constant additive terms.
Available since 2.0

Sampling statement

y ~ categorical_logit(beta)

Increment target log probability density with categorical_logit_lupmf(y |
beta).
Available since 2.4

Stan functions

All of the categorical distributions are vectorized so that the outcome y can be a
single integer (type int) or an array of integers (type array[] int).

real categorical_lpmf(ints y | vector theta)
The log categorical probability mass function with outcome(s) y in 1 : N given N -
vector of outcome probabilities theta. The parameter theta must have non-negative
entries that sum to one, but it need not be a variable declared as a simplex.
Available since 2.12

real categorical_lupmf(ints y | vector theta)
The log categorical probability mass function with outcome(s) y in 1 : N given

174 CHAPTER 16. BOUNDED DISCRETE DISTRIBUTIONS

N -vector of outcome probabilities theta dropping constant additive terms. The
parameter theta must have non-negative entries that sum to one, but it need not be
a variable declared as a simplex.
Available since 2.25

real categorical_logit_lpmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta.
Available since 2.12

real categorical_logit_lupmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta dropping constant additive terms.
Available since 2.25

int categorical_rng(vector theta)
Generate a categorical variate with N -simplex distribution parameter theta; may
only be used in transformed data and generated quantities blocks
Available since 2.0

int categorical_logit_rng(vector beta)
Generate a categorical variate with outcome in range 1 : N from log-odds vector
beta; may only be used in transformed data and generated quantities blocks
Available since 2.16

16.6. Categorical logit generalized linear model (softmax re-
gression)

Stan also supplies a single function for a generalized linear model with categorical
likelihood and logit link function, i.e. a function for a softmax regression. This
provides a more efficient implementation of softmax regression than a manually
written regression in terms of a Categorical likelihood and matrix multiplication.

Note that the implementation does not put any restrictions on the coefficient matrix
β. It is up to the user to use a reference category, a suitable prior or some other
means of identifiability. See Multi-logit in the Stan User’s Guide.

https://mc-stan.org/users/documentation/

16.6. CATEGORICAL LOGIT GENERALIZED LINEAR MODEL (SOFTMAX REGRESSION)175

Probability mass functions

If N,M,K ∈ N, N,M,K > 0, and if x ∈ RM×K , α ∈ RN , β ∈ RK·N , then for
y ∈ {1, . . . , N}M ,

CategoricalLogitGLM(y | x, α, β) =
∏

1≤i≤M
CategoricalLogit(yi | α+xi·β) =

∏
1≤i≤M

Categorical(yi | softmax(α+xi·β)).

See the definition of softmax for the definition of the softmax function.

Sampling statement

y ~ categorical_logit_glm(x, alpha, beta)

Increment target log probability density with categorical_logit_glm_lupmf(y |
x, alpha, beta).
Available since 2.23

Stan functions

real categorical_logit_glm_lpmf(int y | row_vector x, vector alpha,
matrix beta)
The log categorical probability mass function with outcome y in 1 : N given N -vector
of log-odds of outcomes alpha + x * beta.
Available since 2.23

real categorical_logit_glm_lupmf(int y | row_vector x, vector alpha,
matrix beta)
The log categorical probability mass function with outcome y in 1 : N given N -vector
of log-odds of outcomes alpha + x * beta dropping constant additive terms.
Available since 2.25

real categorical_logit_glm_lpmf(int y | matrix x, vector alpha,
matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N -vector of log-odds of outcomes alpha + x * beta.
Available since 2.23

real categorical_logit_glm_lupmf(int y | matrix x, vector alpha,
matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given

176 CHAPTER 16. BOUNDED DISCRETE DISTRIBUTIONS

N -vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.
Available since 2.25

real categorical_logit_glm_lpmf(array[] int y | row_vector x, vector
alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given N -
vector of log-odds of outcomes alpha + x * beta.
Available since 2.23

real categorical_logit_glm_lupmf(array[] int y | row_vector x, vector
alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given N -
vector of log-odds of outcomes alpha + x * beta dropping constant additive terms.
Available since 2.25

real categorical_logit_glm_lpmf(array[] int y | matrix x, vector
alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N -vector of log-odds of outcomes alpha + x * beta.
Available since 2.23

real categorical_logit_glm_lupmf(array[] int y | matrix x, vector
alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N -vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.
Available since 2.25

16.7. Discrete range distribution

Probability mass functions

If l, u ∈ Z are lower and upper bounds (l ≤ u), then for any integer y ∈ {l, . . . , u},

DiscreteRange(y | l, u) = 1
u− l + 1 .

Sampling statement

y ~ discrete_range(l, u)

16.7. DISCRETE RANGE DISTRIBUTION 177

Increment the target log probability density with discrete_range_lupmf(y | l,
u) dropping constant additive terms.
Available since 2.26

Stan functions

All of the discrete range distributions are vectorized so that the outcome y and the
bounds l, u can be a single integer (type int) or an array of integers (type array[]
int).

real discrete_range_lpmf(ints y | ints l, ints u)
The log probability mass function with outcome(s) y in l : u.
Available since 2.26

real discrete_range_lupmf(ints y | ints l, ints u)
The log probability mass function with outcome(s) y in l : u dropping constant
additive terms.
Available since 2.26

real discrete_range_cdf(ints y, ints l, ints u)
The discrete range cumulative distribution function for the given y, lower and upper
bounds.
Available since 2.26

real discrete_range_lcdf(ints y | ints l, ints u)
The log of the discrete range cumulative distribution function for the given y, lower
and upper bounds.
Available since 2.26

real discrete_range_lccdf(ints y | ints l, ints u)
The log of the discrete range complementary cumulative distribution function for
the given y, lower and upper bounds.
Available since 2.26

int discrete_range_rng(ints l, ints u)
Generate a discrete variate between the given lower and upper bounds; may only be
used in transformed data and generated quantities blocks.
Available since 2.26

178 CHAPTER 16. BOUNDED DISCRETE DISTRIBUTIONS

16.8. Ordered logistic distribution

Probability mass function

If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . ,K − 2}, and
η ∈ R, then for k ∈ {1, . . . ,K},

OrderedLogistic(k | η, c) =


1− logit−1(η − c1) if k = 1,

logit−1(η − ck−1)− logit−1(η − ck) if 1 < k < K, and

logit−1(η − cK−1)− 0 if k = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the k = 1 and k = K edge cases can be subsumed into the
general definition by setting c0 = −∞ and cK = +∞ with logit−1(−∞) = 0 and
logit−1(∞) = 1.

Sampling statement

k ~ ordered_logistic(eta, c)

Increment target log probability density with ordered_logistic_lupmf(k | eta,
c).
Available since 2.0

Stan functions

real ordered_logistic_lpmf(ints k | vector eta, vectors c)
The log ordered logistic probability mass of k given linear predictors eta, and
cutpoints c.
Available since 2.18

real ordered_logistic_lupmf(ints k | vector eta, vectors c)
The log ordered logistic probability mass of k given linear predictors eta, and
cutpoints c dropping constant additive terms.
Available since 2.25

int ordered_logistic_rng(real eta, vector c)
Generate an ordered logistic variate with linear predictor eta and cutpoints c; may
only be used in transformed data and generated quantities blocks
Available since 2.0

16.9. ORDERED LOGISTIC GENERALIZED LINEAR MODEL (ORDINAL REGRESSION)179

16.9. Ordered logistic generalized linear model (ordinal regres-
sion)

Probability mass function

If N,M,K ∈ N with N,M > 0, K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈
{1, . . . ,K − 2}, and x ∈ RN×M , β ∈ RM , then for y ∈ {1, . . . ,K}N ,

OrderedLogisticGLM(y | x, β, c) =
∏

1≤i≤N
OrderedLogistic(yi | xi·β, c) =

∏
1≤i≤N


1− logit−1(xi · β − c1) if y = 1,

logit−1(xi · β − cy−1)− logit−1(xi · β − cy) if 1 < y < K, and

logit−1(xi · β − cK−1)− 0 if y = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the y = 1 and y = K edge cases can be subsumed into the
general definition by setting c0 = −∞ and cK = +∞ with logit−1(−∞) = 0 and
logit−1(∞) = 1.

Sampling statement

y ~ ordered_logistic_glm(x, beta, c)

Increment target log probability density with ordered_logistic_lupmf(y | x,
beta, c).
Available since 2.23

Stan functions

real ordered_logistic_glm_lpmf(int y | row_vector x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c. The cutpoints c must be ordered.
Available since 2.23

real ordered_logistic_glm_lupmf(int y | row_vector x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c dropping constant additive terms. The cutpoints c must be ordered.
Available since 2.25

180 CHAPTER 16. BOUNDED DISCRETE DISTRIBUTIONS

real ordered_logistic_glm_lpmf(int y | matrix x, vector beta, vector
c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c. The cutpoints c must be ordered.
Available since 2.23

real ordered_logistic_glm_lupmf(int y | matrix x, vector beta, vector
c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c dropping constant additive terms. The cutpoints c must be ordered.
Available since 2.25

real ordered_logistic_glm_lpmf(array[] int y | row_vector x, vector
beta, vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c. The cutpoints c must be ordered.
Available since 2.23

real ordered_logistic_glm_lupmf(array[] int y | row_vector x, vector
beta, vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c dropping constant additive terms. The cutpoints c must be ordered.
Available since 2.25

real ordered_logistic_glm_lpmf(array[] int y | matrix x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c. The cutpoints c must be ordered.
Available since 2.23

real ordered_logistic_glm_lupmf(array[] int y | matrix x, vector
beta, vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta, and
cutpoints c dropping constant additive terms. The cutpoints c must be ordered.
Available since 2.25

16.10. ORDERED PROBIT DISTRIBUTION 181

16.10. Ordered probit distribution

Probability mass function

If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . ,K − 2}, and
η ∈ R, then for k ∈ {1, . . . ,K},

OrderedProbit(k | η, c) =


1− Φ(η − c1) if k = 1,
Φ(η − ck−1)− Φ(η − ck) if 1 < k < K, and

Φ(η − cK−1)− 0 if k = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the k = 1 and k = K edge cases can be subsumed into
the general definition by setting c0 = −∞ and cK = +∞ with Φ(−∞) = 0 and
Φ(∞) = 1.

Sampling statement

k ~ ordered_probit(eta, c)

Increment target log probability density with ordered_probit_lupmf(k | eta,
c).
Available since 2.19

Stan functions

real ordered_probit_lpmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cutpoints
c.
Available since 2.18

real ordered_probit_lupmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cutpoints
c dropping constant additive terms.
Available since 2.25

real ordered_probit_lpmf(ints k | real eta, vectors c)
The log ordered probit probability mass of k given linear predictor eta, and cutpoints
c.
Available since 2.19

182 CHAPTER 16. BOUNDED DISCRETE DISTRIBUTIONS

real ordered_probit_lupmf(ints k | real eta, vectors c)
The log ordered probit probability mass of k given linear predictor eta, and cutpoints
c dropping constant additive terms.
Available since 2.19

int ordered_probit_rng(real eta, vector c)
Generate an ordered probit variate with linear predictor eta and cutpoints c; may
only be used in transformed data and generated quantities blocks
Available since 2.18

17. Unbounded Discrete Distributions

The unbounded discrete distributions have support over the natural numbers (i.e.,
the non-negative integers).

17.1. Negative binomial distribution

For the negative binomial distribution Stan uses the parameterization described
in Gelman et al. (2013). For alternative parameterizations, see section negative
binomial glm.

Probability mass function

If α ∈ R+ and β ∈ R+, then for n ∈ N,

NegBinomial(n | α, β) =
(
n+ α− 1
α− 1

) (
β

β + 1

)α (1
β + 1

)n
.

The mean and variance of a random variable n ∼ NegBinomial(α, β) are given by

E[n] = α

β
and Var[n] = α

β2 (β + 1).

Sampling statement

n ~ neg_binomial(alpha, beta)

Increment target log probability density with neg_binomial_lupmf(n | alpha,
beta).
Available since 2.0

Stan functions

real neg_binomial_lpmf(ints n | reals alpha, reals beta)
The log negative binomial probability mass of n given shape alpha and inverse scale
beta
Available since 2.12

183

184 CHAPTER 17. UNBOUNDED DISCRETE DISTRIBUTIONS

real neg_binomial_lupmf(ints n | reals alpha, reals beta)
The log negative binomial probability mass of n given shape alpha and inverse scale
beta dropping constant additive terms
Available since 2.25

real neg_binomial_cdf(ints n, reals alpha, reals beta)
The negative binomial cumulative distribution function of n given shape alpha and
inverse scale beta
Available since 2.0

real neg_binomial_lcdf(ints n | reals alpha, reals beta)
The log of the negative binomial cumulative distribution function of n given shape
alpha and inverse scale beta
Available since 2.12

real neg_binomial_lccdf(ints n | reals alpha, reals beta)
The log of the negative binomial complementary cumulative distribution function of
n given shape alpha and inverse scale beta
Available since 2.12

R neg_binomial_rng(reals alpha, reals beta)
Generate a negative binomial variate with shape alpha and inverse scale beta; may
only be used in transformed data and generated quantities blocks. alpha / beta
must be less than 229. For a description of argument and return types, see section
vectorized function signatures.
Available since 2.18

17.2. Negative binomial distribution (alternative parameteriza-
tion)

Stan also provides an alternative parameterization of the negative binomial distribu-
tion directly using a mean (i.e., location) parameter and a parameter that controls
overdispersion relative to the square of the mean. Section combinatorial functions,
below, provides a second alternative parameterization directly in terms of the log
mean.

17.2. NEGATIVE BINOMIAL DISTRIBUTION (ALTERNATIVE PARAMETERIZATION)185

Probability mass function

The first parameterization is for µ ∈ R+ and φ ∈ R+, which for n ∈ N is defined as

NegBinomial2(n |µ, φ) =
(
n+ φ− 1

n

) (
µ

µ+ φ

)n (
φ

µ+ φ

)φ
.

The mean and variance of a random variable n ∼ NegBinomial2(n | µ, φ) are

E[n] = µ and Var[n] = µ+ µ2

φ
.

Recall that Poisson(µ) has variance µ, so µ2/φ > 0 is the additional variance of
the negative binomial above that of the Poisson with mean µ. So the inverse of
parameter φ controls the overdispersion, scaled by the square of the mean, µ2.

Sampling statement

n ~ neg_binomial_2(mu, phi)

Increment target log probability density with neg_binomial_2_lupmf(n | mu,
phi).
Available since 2.3

Stan functions

real neg_binomial_2_lpmf(ints n | reals mu, reals phi)
The negative binomial probability mass of n given location mu and precision phi.
Available since 2.20

real neg_binomial_2_lupmf(ints n | reals mu, reals phi)
The negative binomial probability mass of n given location mu and precision phi
dropping constant additive terms.
Available since 2.25

real neg_binomial_2_cdf(ints n, reals mu, reals phi)
The negative binomial cumulative distribution function of n given location mu and
precision phi.
Available since 2.6

real neg_binomial_2_lcdf(ints n | reals mu, reals phi)
The log of the negative binomial cumulative distribution function of n given location

186 CHAPTER 17. UNBOUNDED DISCRETE DISTRIBUTIONS

mu and precision phi.
Available since 2.12

real neg_binomial_2_lccdf(ints n | reals mu, reals phi)
The log of the negative binomial complementary cumulative distribution function of
n given location mu and precision phi.
Available since 2.12

R neg_binomial_2_rng(reals mu, reals phi)
Generate a negative binomial variate with location mu and precision phi; may only
be used in transformed data and generated quantities blocks. mu must be less than
229. For a description of argument and return types, see section vectorized function
signatures.
Available since 2.18

17.3. Negative binomial distribution (log alternative parameter-
ization)

Related to the parameterization in section negative binomial, alternative parame-
terization, the following parameterization uses a log mean parameter η = log(µ),
defined for η ∈ R, φ ∈ R+, so that for n ∈ N,

NegBinomial2Log(n | η, φ) = NegBinomial2(n| exp(η), φ).

This alternative may be used for sampling, as a function, and for random number
generation, but as of yet, there are no CDFs implemented for it. This is especially
useful for log-linear negative binomial regressions.

Sampling statement

n ~ neg_binomial_2_log(eta, phi)

Increment target log probability density with neg_binomial_2_log_lupmf(n |
eta, phi).
Available since 2.3

Stan functions

real neg_binomial_2_log_lpmf(ints n | reals eta, reals phi)
The log negative binomial probability mass of n given log-location eta and inverse
overdispersion parameter phi.
Available since 2.20

17.4. NEGATIVE-BINOMIAL-2-LOG GENERALIZED LINEAR MODEL (NEGATIVE BINOMIAL REGRESSION)187

real neg_binomial_2_log_lupmf(ints n | reals eta, reals phi)
The log negative binomial probability mass of n given log-location eta and inverse
overdispersion parameter phi dropping constant additive terms.
Available since 2.25

R neg_binomial_2_log_rng(reals eta, reals phi)
Generate a negative binomial variate with log-location eta and inverse overdisper-
sion control phi; may only be used in transformed data and generated quantities
blocks. eta must be less than 29 log 2. For a description of argument and return
types, see section vectorized function signatures.
Available since 2.18

17.4. Negative-binomial-2-log generalized linear model (nega-
tive binomial regression)

Stan also supplies a single function for a generalized linear model with negative
binomial likelihood and log link function, i.e. a function for a negative binomial
regression. This provides a more efficient implementation of negative binomial
regression than a manually written regression in terms of a negative binomial
likelihood and matrix multiplication.

Probability mass function

If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, φ ∈ R+, then for y ∈ Nn,

NegBinomial2LogGLM(y | x, α, β, φ) =
∏

1≤i≤n
NegBinomial2(yi | exp(αi+xi ·β), φ).

Sampling statement

y ~ neg_binomial_2_log_glm(x, alpha, beta, phi)

Increment target log probability density with neg_binomial_2_log_glm_lupmf(y
| x, alpha, beta, phi).
Available since 2.19

Stan functions

real neg_binomial_2_log_glm_lpmf(int y | matrix x, real alpha, vector
beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *

188 CHAPTER 17. UNBOUNDED DISCRETE DISTRIBUTIONS

beta and inverse overdispersion parameter phi.
Available since 2.23

real neg_binomial_2_log_glm_lupmf(int y | matrix x, real alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.
Available since 2.25

real neg_binomial_2_log_glm_lpmf(int y | matrix x, vector alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.
Available since 2.23

real neg_binomial_2_log_glm_lupmf(int y | matrix x, vector alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.
Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | row_vector x, real
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.
Available since 2.23

real neg_binomial_2_log_glm_lupmf(array[] int y | row_vector x, real
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.
Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | row_vector x, vector
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.
Available since 2.23

real neg_binomial_2_log_glm_lupmf(array[] int y | row_vector x,
vector alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *

17.5. POISSON DISTRIBUTION 189

beta and inverse overdispersion parameter phi dropping constant additive terms.
Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | matrix x, real
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.
Available since 2.18

real neg_binomial_2_log_glm_lupmf(array[] int y | matrix x, real
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.
Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | matrix x, vector
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.
Available since 2.18

real neg_binomial_2_log_glm_lupmf(array[] int y | matrix x, vector
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.
Available since 2.25

17.5. Poisson distribution

Probability mass function

If λ ∈ R+, then for n ∈ N,

Poisson(n|λ) = 1
n! λ

n exp(−λ).

Sampling statement

n ~ poisson(lambda)

Increment target log probability density with poisson_lupmf(n | lambda).
Available since 2.0

190 CHAPTER 17. UNBOUNDED DISCRETE DISTRIBUTIONS

Stan functions

real poisson_lpmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda
Available since 2.12

real poisson_lupmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda dropping constant additive
terms
Available since 2.25

real poisson_cdf(ints n, reals lambda)
The Poisson cumulative distribution function of n given rate lambda
Available since 2.0

real poisson_lcdf(ints n | reals lambda)
The log of the Poisson cumulative distribution function of n given rate lambda
Available since 2.12

real poisson_lccdf(ints n | reals lambda)
The log of the Poisson complementary cumulative distribution function of n given
rate lambda
Available since 2.12

R poisson_rng(reals lambda)
Generate a Poisson variate with rate lambda; may only be used in transformed data
and generated quantities blocks. lambda must be less than 230. For a description of
argument and return types, see section vectorized function signatures.
Available since 2.18

17.6. Poisson distribution, log parameterization

Stan also provides a parameterization of the Poisson using the log rate α = log λ as
a parameter. This is useful for log-linear Poisson regressions so that the predictor
does not need to be exponentiated and passed into the standard Poisson probability
function.

Probability mass function

If α ∈ R, then for n ∈ N,

PoissonLog(n|α) = 1
n! exp (nα− exp(α)) .

17.7. POISSON-LOG GENERALIZED LINEAR MODEL (POISSON REGRESSION)191

Sampling statement

n ~ poisson_log(alpha)

Increment target log probability density with poisson_log_lupmf(n | alpha).
Available since 2.0

Stan functions

real poisson_log_lpmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha
Available since 2.12

real poisson_log_lupmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha dropping constant additive
terms
Available since 2.25

R poisson_log_rng(reals alpha)
Generate a Poisson variate with log rate alpha; may only be used in transformed data
and generated quantities blocks. alpha must be less than 30 log 2. For a description
of argument and return types, see section vectorized function signatures.
Available since 2.18

17.7. Poisson-log generalized linear model (Poisson regression)

Stan also supplies a single function for a generalized linear model with Poisson
likelihood and log link function, i.e. a function for a Poisson regression. This
provides a more efficient implementation of Poisson regression than a manually
written regression in terms of a Poisson likelihood and matrix multiplication.

Probability mass function

If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, then for y ∈ Nn,

PoisonLogGLM(y|x, α, β) =
∏

1≤i≤n
Poisson(yi| exp(αi + xi · β)).

Sampling statement

y ~ poisson_log_glm(x, alpha, beta)

192 CHAPTER 17. UNBOUNDED DISCRETE DISTRIBUTIONS

Increment target log probability density with poisson_log_glm_lupmf(y | x,
alpha, beta).
Available since 2.19

Stan functions

real poisson_log_glm_lpmf(int y | matrix x, real alpha, vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.
Available since 2.23

real poisson_log_glm_lupmf(int y | matrix x, real alpha, vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.
Available since 2.25

real poisson_log_glm_lpmf(int y | matrix x, vector alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.
Available since 2.23

real poisson_log_glm_lupmf(int y | matrix x, vector alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.
Available since 2.25

real poisson_log_glm_lpmf(array[] int y | row_vector x, real alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.
Available since 2.23

real poisson_log_glm_lupmf(array[] int y | row_vector x, real alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.
Available since 2.25

real poisson_log_glm_lpmf(array[] int y | row_vector x, vector alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.
Available since 2.23

real poisson_log_glm_lupmf(array[] int y | row_vector x, vector

17.7. POISSON-LOG GENERALIZED LINEAR MODEL (POISSON REGRESSION)193

alpha, vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.
Available since 2.25

real poisson_log_glm_lpmf(array[] int y | matrix x, real alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.
Available since 2.18

real poisson_log_glm_lupmf(array[] int y | matrix x, real alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.
Available since 2.25

real poisson_log_glm_lpmf(array[] int y | matrix x, vector alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.
Available since 2.18

real poisson_log_glm_lupmf(array[] int y | matrix x, vector alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping
constant additive terms.
Available since 2.25

18. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are
expressed in Stan as arrays.

18.1. Multinomial distribution

Probability mass function

If K ∈ N, N ∈ N, and θ ∈ K-simplex, then for y ∈ NK such that
∑K
k=1 yk = N ,

Multinomial(y|θ) =
(

N

y1, . . . , yK

) K∏
k=1

θyk

k ,

where the multinomial coefficient is defined by(
N

y1, . . . , yk

)
= N !∏K

k=1 yk!
.

Sampling statement

y ~ multinomial(theta)

Increment target log probability density with multinomial_lupmf(y | theta).
Available since 2.0

Stan functions

real multinomial_lpmf(array[] int y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter theta and (implicit) total count N = sum(y)
Available since 2.12

real multinomial_lupmf(array[] int y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter theta and (implicit) total count N = sum(y)
dropping constant additive terms
Available since 2.25

194

18.2. MULTINOMIAL DISTRIBUTION, LOGIT PARAMETERIZATION 195

array[] int multinomial_rng(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter theta and total
count N ; may only be used in transformed data and generated quantities blocks
Available since 2.8

18.2. Multinomial distribution, logit parameterization

Stan also provides a version of the multinomial probability mass function distribution
with the K-simplex for the event count probabilities per category given on the
unconstrained logistic scale.

Probability mass function

If K ∈ N, N ∈ N, and softmax(θ) ∈ K-simplex, then for y ∈ NK such that∑K
k=1 yk = N ,

MultinomialLogit(y | γ) = Multinomial(y | softmax(γ)) =
(

N

y1, . . . , yK

) K∏
k=1

[softmax(γk)]yk ,

where the multinomial coefficient is defined by(
N

y1, . . . , yk

)
= N !∏K

k=1 yk!
.

Sampling statement

y ~ multinomial_logit(gamma)

Increment target log probability density with multinomial_logit_lupmf(y |
gamma).
Available since 2.24

Stan functions

real multinomial_logit_lpmf(array[] int y | vector gamma)
The log multinomial probability mass function with outcome array y of size K given
the log K-simplex distribution parameter γ and (implicit) total count N = sum(y)
Available since 2.24

real multinomial_logit_lupmf(array[] int y | vector gamma)
The log multinomial probability mass function with outcome array y of size K given

196 CHAPTER 18. MULTIVARIATE DISCRETE DISTRIBUTIONS

the log K-simplex distribution parameter γ and (implicit) total count N = sum(y)
dropping constant additive terms
Available since 2.25

array[] int multinomial_logit_rng(vector gamma, int N)
Generate a variate from a multinomial distribution with probabilities
softmax(gamma) and total count N; may only be used in transformed data and
generated quantities blocks.
Available since 2.24

Continuous Distributions

197

19. Unbounded Continuous Distributions

The unbounded univariate continuous probability distributions have support on all
real numbers.

19.1. Normal distribution

Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Normal(y|µ, σ) = 1√
2π σ

exp
(
− 1

2

(
y − µ
σ

)2
)
.

Sampling statement

y ~ normal(mu, sigma)

Increment target log probability density with normal_lupdf(y | mu, sigma).
Available since 2.0

Stan functions

real normal_lpdf(reals y | reals mu, reals sigma)
The log of the normal density of y given location mu and scale sigma
Available since 2.12

real normal_lupdf(reals y | reals mu, reals sigma)
The log of the normal density of y given location mu and scale sigma dropping
constant additive terms.
Available since 2.25

real normal_cdf(reals y, reals mu, reals sigma)
The cumulative normal distribution of y given location mu and scale sigma; nor-
mal_cdf will underflow to 0 for y−µ

σ below -37.5 and overflow to 1 for y−µ
σ above

8.25; the function Phi_approx is more robust in the tails, but must be scaled and
translated for anything other than a standard normal.
Available since 2.0

198

19.1. NORMAL DISTRIBUTION 199

real normal_lcdf(reals y | reals mu, reals sigma)
The log of the cumulative normal distribution of y given location mu and scale sigma;
normal_lcdf will underflow to −∞ for y−µ

σ below -37.5 and overflow to 0 for y−µ
σ

above 8.25; log(Phi_approx(...)) is more robust in the tails, but must be scaled
and translated for anything other than a standard normal.
Available since 2.12

real normal_lccdf(reals y | reals mu, reals sigma)
The log of the complementary cumulative normal distribution of y given location mu
and scale sigma; normal_lccdf will overflow to 0 for y−µ

σ below -37.5 and underflow
to −∞ for y−µ

σ above 8.25; log1m(Phi_approx(...)) is more robust in the tails,
but must be scaled and translated for anything other than a standard normal.
Available since 2.15

R normal_rng(reals mu, reals sigma)
Generate a normal variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

Standard normal distribution

The standard normal distribution is so-called because its parameters are the units
for their respective operations—the location (mean) is zero and the scale (standard
deviation) one. The standard normal is parameter-free, and the unit parameters
allow considerable simplification of the expression for the density.

StdNormal(y) = Normal(y | 0, 1) = 1√
2π

exp
(
−y2

2

)
.

Up to a proportion on the log scale, where Stan computes,

log Normal(y | 0, 1) = −y2

2 + const.

With no logarithm, no subtraction, and no division by a parameter, the standard
normal log density is much more efficient to compute than the normal log density
with constant location 0 and scale 1.

Sampling statement

y ~ std_normal()

200 CHAPTER 19. UNBOUNDED CONTINUOUS DISTRIBUTIONS

Increment target log probability density with std_normal_lupdf(y).
Available since 2.19

Stan functions

real std_normal_lpdf(reals y)
The standard normal (location zero, scale one) log probability density of y.
Available since 2.18

real std_normal_lupdf(reals y)
The standard normal (location zero, scale one) log probability density of y dropping
constant additive terms.
Available since 2.25

real std_normal_cdf(reals y)
The cumulative standard normal distribution of y; std_normal_cdf will underflow to
0 for y below -37.5 and overflow to 1 for y above 8.25; the function Phi_approx is
more robust in the tails.
Available since 2.21

real std_normal_lcdf(reals y)
The log of the cumulative standard normal distribution of y; std_normal_lcdf
will underflow to −∞ for y below -37.5 and overflow to 0 for y above 8.25;
log(Phi_approx(...)) is more robust in the tails.
Available since 2.21

real std_normal_lccdf(reals y)
The log of the complementary cumulative standard normal distribution of y;
std_normal_lccdf will overflow to 0 for y below -37.5 and underflow to −∞ for y
above 8.25; log1m(Phi_approx(...)) is more robust in the tails.
Available since 2.21

real std_normal_rng()
Generate a normal variate with location zero and scale one; may only be used in
transformed data and generated quantities blocks.
Available since 2.21

19.2. Normal-id generalized linear model (linear regression)

Stan also supplies a single function for a generalized linear model with normal
likelihood and identity link function, i.e. a function for a linear regression. This

19.2. NORMAL-ID GENERALIZED LINEAR MODEL (LINEAR REGRESSION) 201

provides a more efficient implementation of linear regression than a manually written
regression in terms of a normal likelihood and matrix multiplication.

Probability distribution function

If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, σ ∈ R+, then for y ∈ Rn,

NormalIdGLM(y|x, α, β, σ) =
∏

1≤i≤n
Normal(yi|αi + xi · β, σ).

Sampling statement

y ~ normal_id_glm(x, alpha, beta, sigma)

Increment target log probability density with normal_id_glm_lupdf(y | x,
alpha, beta, sigma).
Available since 2.19

Stan functions

real normal_id_glm_lpdf(real y | matrix x, real alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.29

real normal_id_glm_lupdf(real y | matrix x, real alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
Available since 2.29

real normal_id_glm_lpdf(real y | matrix x, vector alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.29

real normal_id_glm_lupdf(real y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale

202 CHAPTER 19. UNBOUNDED CONTINUOUS DISTRIBUTIONS

sigma dropping constant additive terms.
Available since 2.29

real normal_id_glm_lpdf(real y | matrix x, real alpha, vector beta,
vector sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.23

real normal_id_glm_lupdf(real y | matrix x, real alpha, vector beta,
vector sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
Available since 2.25

real normal_id_glm_lpdf(real y | matrix x, vector alpha, vector beta,
vector sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.23

real normal_id_glm_lupdf(real y | matrix x, vector alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
Available since 2.25

real normal_id_glm_lpdf(vector y | row_vector x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.29

real normal_id_glm_lupdf(vector y | row_vector x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
Available since 2.29

real normal_id_glm_lpdf(vector y | row_vector x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale

19.2. NORMAL-ID GENERALIZED LINEAR MODEL (LINEAR REGRESSION) 203

sigma.
Available since 2.29

real normal_id_glm_lupdf(vector y | row_vector x, vector alpha,
vector beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
Available since 2.29

real normal_id_glm_lpdf(vector y | matrix x, real alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.23

real normal_id_glm_lupdf(vector y | matrix x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
Available since 2.23

real normal_id_glm_lpdf(vector y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.23

real normal_id_glm_lupdf(vector y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
Available since 2.23

real normal_id_glm_lpdf(vector y | matrix x, real alpha, vector beta,
vector sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.30

real normal_id_glm_lupdf(vector y | matrix x, real alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and scale

204 CHAPTER 19. UNBOUNDED CONTINUOUS DISTRIBUTIONS

sigma dropping constant additive terms.
Available since 2.30

real normal_id_glm_lpdf(vector y | matrix x, vector alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.
Available since 2.30

real normal_id_glm_lupdf(vector y | matrix x, vector alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma dropping constant additive terms.
Available since 2.30

19.3. Exponentially modified normal distribution

Probability density function

If µ ∈ R, σ ∈ R+, and λ ∈ R+, then for y ∈ R,

ExpModNormal(y|µ, σ, λ) = λ

2 exp
(
λ

2
(
2µ+ λσ2 − 2y

))
erfc

(
µ+ λσ2 − y√

2σ

)
.

Sampling statement

y ~ exp_mod_normal(mu, sigma, lambda)

Increment target log probability density with exp_mod_normal_lupdf(y | mu,
sigma, lambda).
Available since 2.0

Stan functions

real exp_mod_normal_lpdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal density of y given location mu, scale
sigma, and shape lambda
Available since 2.18

real exp_mod_normal_lupdf(reals y | reals mu, reals sigma, reals
lambda)

19.4. SKEW NORMAL DISTRIBUTION 205

The log of the exponentially modified normal density of y given location mu, scale
sigma, and shape lambda dropping constant additive terms
Available since 2.25

real exp_mod_normal_cdf(reals y, reals mu, reals sigma, reals lambda)
The exponentially modified normal cumulative distribution function of y given
location mu, scale sigma, and shape lambda
Available since 2.0

real exp_mod_normal_lcdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal cumulative distribution function of y
given location mu, scale sigma, and shape lambda
Available since 2.18

real exp_mod_normal_lccdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal complementary cumulative distribution
function of y given location mu, scale sigma, and shape lambda
Available since 2.18

R exp_mod_normal_rng(reals mu, reals sigma, reals lambda)
Generate a exponentially modified normal variate with location mu, scale sigma,
and shape lambda; may only be used in transformed data and generated quantities
blocks. For a description of argument and return types, see section vectorized PRNG
functions.
Available since 2.18

19.4. Skew normal distribution

Probability density function

If ξ ∈ R, ω ∈ R+, and α ∈ R, then for y ∈ R,

SkewNormal(y | ξ, ω, α) = 1
ω
√

2π
exp

(
− 1

2

(
y − ξ
ω

)2
) (

1 + erf
(
α

(
y − ξ
ω
√

2

)))
.

Sampling statement

y ~ skew_normal(xi, omega, alpha)

206 CHAPTER 19. UNBOUNDED CONTINUOUS DISTRIBUTIONS

Increment target log probability density with skew_normal_lupdf(y | xi, omega,
alpha).
Available since 2.0

Stan functions

real skew_normal_lpdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal density of y given location xi, scale omega, and shape
alpha
Available since 2.16

real skew_normal_lupdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal density of y given location xi, scale omega, and shape
alpha dropping constant additive terms
Available since 2.25

real skew_normal_cdf(reals y, reals xi, reals omega, reals alpha)
The skew normal distribution function of y given location xi, scale omega, and shape
alpha
Available since 2.16

real skew_normal_lcdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal cumulative distribution function of y given location xi,
scale omega, and shape alpha
Available since 2.18

real skew_normal_lccdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal complementary cumulative distribution function of y
given location xi, scale omega, and shape alpha
Available since 2.18

R skew_normal_rng(reals xi, reals omega, real alpha)
Generate a skew normal variate with location xi, scale omega, and shape alpha; may
only be used in transformed data and generated quantities blocks. For a description
of argument and return types, see section vectorized PRNG functions.
Available since 2.18

19.5. STUDENT-T DISTRIBUTION 207

19.5. Student-t distribution

Probability density function

If ν ∈ R+, µ ∈ R, and σ ∈ R+, then for y ∈ R,

StudentT(y|ν, µ, σ) = Γ ((ν + 1)/2)
Γ(ν/2)

1√
νπ σ

(
1 + 1

ν

(
y − µ
σ

)2
)−(ν+1)/2

.

Sampling statement

y ~ student_t(nu, mu, sigma)

Increment target log probability density with student_t_lupdf(y | nu, mu,
sigma).
Available since 2.0

Stan functions

real student_t_lpdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and
scale sigma
Available since 2.12

real student_t_lupdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and
scale sigma dropping constant additive terms
Available since 2.25

real student_t_cdf(reals y, reals nu, reals mu, reals sigma)
The Student-t cumulative distribution function of y given degrees of freedom nu,
location mu, and scale sigma
Available since 2.0

real student_t_lcdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t cumulative distribution function of y given degrees of
freedom nu, location mu, and scale sigma
Available since 2.12

real student_t_lccdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t complementary cumulative distribution function of y given

208 CHAPTER 19. UNBOUNDED CONTINUOUS DISTRIBUTIONS

degrees of freedom nu, location mu, and scale sigma
Available since 2.12

R student_t_rng(reals nu, reals mu, reals sigma)
Generate a Student-t variate with degrees of freedom nu, location mu, and scale
sigma; may only be used in transformed data and generated quantities blocks. For a
description of argument and return types, see section vectorized PRNG functions.
Available since 2.18

19.6. Cauchy distribution

Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Cauchy(y|µ, σ) = 1
πσ

1
1 + ((y − µ)/σ)2 .

Sampling statement

y ~ cauchy(mu, sigma)

Increment target log probability density with cauchy_lupdf(y | mu, sigma).
Available since 2.0

Stan functions

real cauchy_lpdf(reals y | reals mu, reals sigma)
The log of the Cauchy density of y given location mu and scale sigma
Available since 2.12

real cauchy_lupdf(reals y | reals mu, reals sigma)
The log of the Cauchy density of y given location mu and scale sigma dropping
constant additive terms
Available since 2.25

real cauchy_cdf(reals y, reals mu, reals sigma)
The Cauchy cumulative distribution function of y given location mu and scale sigma
Available since 2.0

real cauchy_lcdf(reals y | reals mu, reals sigma)
The log of the Cauchy cumulative distribution function of y given location mu and

19.7. DOUBLE EXPONENTIAL (LAPLACE) DISTRIBUTION 209

scale sigma
Available since 2.12

real cauchy_lccdf(reals y | reals mu, reals sigma)
The log of the Cauchy complementary cumulative distribution function of y given
location mu and scale sigma
Available since 2.12

R cauchy_rng(reals mu, reals sigma)
Generate a Cauchy variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

19.7. Double exponential (Laplace) distribution

Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

DoubleExponential(y|µ, σ) = 1
2σ exp

(
− |y − µ|

σ

)
.

Note that the double exponential distribution is parameterized in terms of the scale,
in contrast to the exponential distribution (see section exponential distribution),
which is parameterized in terms of inverse scale.

The double-exponential distribution can be defined as a compound exponential-
normal distribution (Ding and Blitzstein 2018). Using the inverse scale parameteri-
zation for the exponential distribution, and the standard deviation parameterization
for the normal distribution, one can write

α ∼ Exponential
(

1
2σ2

)
and

β | α ∼ Normal(µ,
√
α),

then
β ∼ DoubleExponential(µ, σ).

This may be used to code a non-centered parameterization by taking

βraw ∼ Normal(0, 1)

210 CHAPTER 19. UNBOUNDED CONTINUOUS DISTRIBUTIONS

and defining
β = µ+ αβraw.

Sampling statement

y ~ double_exponential(mu, sigma)

Increment target log probability density with double_exponential_lupdf(y | mu,
sigma).
Available since 2.0

Stan functions

real double_exponential_lpdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma
Available since 2.12

real double_exponential_lupdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma
dropping constant additive terms
Available since 2.25

real double_exponential_cdf(reals y, reals mu, reals sigma)
The double exponential cumulative distribution function of y given location mu and
scale sigma
Available since 2.0

real double_exponential_lcdf(reals y | reals mu, reals sigma)
The log of the double exponential cumulative distribution function of y given location
mu and scale sigma
Available since 2.12

real double_exponential_lccdf(reals y | reals mu, reals sigma)
The log of the double exponential complementary cumulative distribution function
of y given location mu and scale sigma
Available since 2.12

R double_exponential_rng(reals mu, reals sigma)
Generate a double exponential variate with location mu and scale sigma; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.
Available since 2.18

19.8. LOGISTIC DISTRIBUTION 211

19.8. Logistic distribution

Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Logistic(y|µ, σ) = 1
σ

exp
(
− y − µ

σ

) (
1 + exp

(
− y − µ

σ

))−2
.

Sampling statement

y ~ logistic(mu, sigma)

Increment target log probability density with logistic_lupdf(y | mu, sigma).
Available since 2.0

Stan functions

real logistic_lpdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma
Available since 2.12

real logistic_lupdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma dropping
constant additive terms
Available since 2.25

real logistic_cdf(reals y, reals mu, reals sigma)
The logistic cumulative distribution function of y given location mu and scale sigma
Available since 2.0

real logistic_lcdf(reals y | reals mu, reals sigma)
The log of the logistic cumulative distribution function of y given location mu and
scale sigma
Available since 2.12

real logistic_lccdf(reals y | reals mu, reals sigma)
The log of the logistic complementary cumulative distribution function of y given
location mu and scale sigma
Available since 2.12

R logistic_rng(reals mu, reals sigma)
Generate a logistic variate with location mu and scale sigma; may only be used in

212 CHAPTER 19. UNBOUNDED CONTINUOUS DISTRIBUTIONS

transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

19.9. Gumbel distribution

Probability density function

If µ ∈ R and β ∈ R+, then for y ∈ R,

Gumbel(y|µ, β) = 1
β

exp
(
−y − µ

β
− exp

(
−y − µ

β

))
.

Sampling statement

y ~ gumbel(mu, beta)

Increment target log probability density with gumbel_lupdf(y | mu, beta).
Available since 2.0

Stan functions

real gumbel_lpdf(reals y | reals mu, reals beta)
The log of the gumbel density of y given location mu and scale beta
Available since 2.12

real gumbel_lupdf(reals y | reals mu, reals beta)
The log of the gumbel density of y given location mu and scale beta dropping
constant additive terms
Available since 2.25

real gumbel_cdf(reals y, reals mu, reals beta)
The gumbel cumulative distribution function of y given location mu and scale beta
Available since 2.0

real gumbel_lcdf(reals y | reals mu, reals beta)
The log of the gumbel cumulative distribution function of y given location mu and
scale beta
Available since 2.12

real gumbel_lccdf(reals y | reals mu, reals beta)
The log of the gumbel complementary cumulative distribution function of y given

19.10. SKEW DOUBLE EXPONENTIAL DISTRIBUTION 213

location mu and scale beta
Available since 2.12

R gumbel_rng(reals mu, reals beta)
Generate a gumbel variate with location mu and scale beta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

19.10. Skew double exponential distribution

Probability density function

If µ ∈ R, σ ∈ R+ and τ ∈ [0, 1], then for y ∈ R,

SkewDoubleExponential(y|µ, σ, τ) =
2τ(1− τ)

σ
exp

[
− 2
σ

[(1− τ) I(y < µ)(µ− y) + τI(y > µ)(y − µ)]
]

Sampling statement

y ~ skew_double_exponential(mu, sigma, tau)

Increment target log probability density with skew_double_exponential(y | mu,
sigma, tau)
Available since 2.28

Stan functions

real skew_double_exponential_lpdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential density of y given location mu, scale sigma
and skewness tau
Available since 2.28

real skew_double_exponential_lupdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential density of y given location mu, scale sigma
and skewness tau dropping constant additive terms
Available since 2.28

214 CHAPTER 19. UNBOUNDED CONTINUOUS DISTRIBUTIONS

real skew_double_exponential_cdf(reals y, reals mu, reals sigma,
reals tau)
The skew double exponential cumulative distribution function of y given location
mu, scale sigma and skewness tau
Available since 2.28

real skew_double_exponential_lcdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential cumulative distribution function of y given
location mu, scale sigma and skewness tau
Available since 2.28

real skew_double_exponential_lccdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential complementary cumulative distribution
function of y given location mu, scale sigma and skewness tau
Available since 2.28

R skew_double_exponential_rng(reals mu, reals sigma, reals tau)
Generate a skew double exponential variate with location mu, scale sigma and
skewness tau; may only be used in transformed data and generated quantities
blocks. For a description of argument and return types, see section vectorized PRNG
functions.
Available since 2.28

20. Positive Continuous Distributions

The positive continuous probability functions have support on the positive real
numbers.

20.1. Lognormal distribution

Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R+,

LogNormal(y|µ, σ) = 1√
2π σ

1
y

exp
(
− 1

2

(
log y − µ

σ

)2
)
.

Sampling statement

y ~ lognormal(mu, sigma)

Increment target log probability density with lognormal_lupdf(y | mu, sigma).
Available since 2.0

Stan functions

real lognormal_lpdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma
Available since 2.12

real lognormal_lupdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma dropping
constant additive terms
Available since 2.25

real lognormal_cdf(reals y, reals mu, reals sigma)
The cumulative lognormal distribution function of y given location mu and scale
sigma
Available since 2.0

real lognormal_lcdf(reals y | reals mu, reals sigma)
The log of the lognormal cumulative distribution function of y given location mu

215

216 CHAPTER 20. POSITIVE CONTINUOUS DISTRIBUTIONS

and scale sigma
Available since 2.12

real lognormal_lccdf(reals y | reals mu, reals sigma)
The log of the lognormal complementary cumulative distribution function of y given
location mu and scale sigma
Available since 2.12

R lognormal_rng(reals mu, reals sigma)
Generate a lognormal variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.22

20.2. Chi-square distribution

Probability density function

If ν ∈ R+, then for y ∈ R+,

ChiSquare(y|ν) = 2−ν/2

Γ(ν/2) y
ν/2−1 exp

(
− 1

2 y
)
.

Sampling statement

y ~ chi_square(nu)

Increment target log probability density with chi_square_lupdf(y | nu).
Available since 2.0

Stan functions

real chi_square_lpdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu
Available since 2.12

real chi_square_lupdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu dropping constant
additive terms
Available since 2.25

20.3. INVERSE CHI-SQUARE DISTRIBUTION 217

real chi_square_cdf(reals y, reals nu)
The Chi-square cumulative distribution function of y given degrees of freedom nu
Available since 2.0

real chi_square_lcdf(reals y | reals nu)
The log of the Chi-square cumulative distribution function of y given degrees of
freedom nu
Available since 2.12

real chi_square_lccdf(reals y | reals nu)
The log of the complementary Chi-square cumulative distribution function of y given
degrees of freedom nu
Available since 2.12

R chi_square_rng(reals nu)
Generate a Chi-square variate with degrees of freedom nu; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

20.3. Inverse chi-square distribution

Probability density function

If ν ∈ R+, then for y ∈ R+,

InvChiSquare(y | ν) = 2−ν/2

Γ(ν/2) y
−ν/2−1 exp

(
− 1

2
1
y

)
.

Sampling statement

y ~ inv_chi_square(nu)

Increment target log probability density with inv_chi_square_lupdf(y | nu).
Available since 2.0

Stan functions

real inv_chi_square_lpdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu
Available since 2.12

218 CHAPTER 20. POSITIVE CONTINUOUS DISTRIBUTIONS

real inv_chi_square_lupdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu dropping
constant additive terms
Available since 2.25

real inv_chi_square_cdf(reals y, reals nu)
The inverse Chi-squared cumulative distribution function of y given degrees of
freedom nu
Available since 2.0

real inv_chi_square_lcdf(reals y | reals nu)
The log of the inverse Chi-squared cumulative distribution function of y given degrees
of freedom nu
Available since 2.12

real inv_chi_square_lccdf(reals y | reals nu)
The log of the inverse Chi-squared complementary cumulative distribution function
of y given degrees of freedom nu
Available since 2.12

R inv_chi_square_rng(reals nu)
Generate an inverse Chi-squared variate with degrees of freedom nu; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.
Available since 2.18

20.4. Scaled inverse chi-square distribution

Probability density function

If ν ∈ R+ and σ ∈ R+, then for y ∈ R+,

ScaledInvChiSquare(y|ν, σ) = (ν/2)ν/2

Γ(ν/2) σν y−(ν/2+1) exp
(
− 1

2 ν σ
2 1
y

)
.

Sampling statement

y ~ scaled_inv_chi_square(nu, sigma)

Increment target log probability density with scaled_inv_chi_square_lupdf(y |
nu, sigma).
Available since 2.0

20.5. EXPONENTIAL DISTRIBUTION 219

Stan functions

real scaled_inv_chi_square_lpdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu
and scale sigma
Available since 2.12

real scaled_inv_chi_square_lupdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu
and scale sigma dropping constant additive terms
Available since 2.25

real scaled_inv_chi_square_cdf(reals y, reals nu, reals sigma)
The scaled inverse Chi-square cumulative distribution function of y given degrees of
freedom nu and scale sigma
Available since 2.0

real scaled_inv_chi_square_lcdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square cumulative distribution function of y given
degrees of freedom nu and scale sigma
Available since 2.12

real scaled_inv_chi_square_lccdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square complementary cumulative distribution
function of y given degrees of freedom nu and scale sigma
Available since 2.12

R scaled_inv_chi_square_rng(reals nu, reals sigma)
Generate a scaled inverse Chi-squared variate with degrees of freedom nu and scale
sigma; may only be used in transformed data and generated quantities blocks. For a
description of argument and return types, see section vectorized PRNG functions.
Available since 2.18

20.5. Exponential distribution

Probability density function

If β ∈ R+, then for y ∈ R+,

Exponential(y|β) = β exp(−β y).

220 CHAPTER 20. POSITIVE CONTINUOUS DISTRIBUTIONS

Sampling statement

y ~ exponential(beta)

Increment target log probability density with exponential_lupdf(y | beta).
Available since 2.0

Stan functions

real exponential_lpdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta
Available since 2.12

real exponential_lupdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta dropping constant
additive terms
Available since 2.25

real exponential_cdf(reals y, reals beta)
The exponential cumulative distribution function of y given inverse scale beta
Available since 2.0

real exponential_lcdf(reals y | reals beta)
The log of the exponential cumulative distribution function of y given inverse scale
beta
Available since 2.12

real exponential_lccdf(reals y | reals beta)
The log of the exponential complementary cumulative distribution function of y
given inverse scale beta
Available since 2.12

R exponential_rng(reals beta)
Generate an exponential variate with inverse scale beta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

20.6. GAMMA DISTRIBUTION 221

20.6. Gamma distribution

Probability density function

If α ∈ R+ and β ∈ R+, then for y ∈ R+,

Gamma(y|α, β) = βα

Γ(α) y
α−1 exp(−β y).

Sampling statement

y ~ gamma(alpha, beta)

Increment target log probability density with gamma_lupdf(y | alpha, beta).
Available since 2.0

Stan functions

real gamma_lpdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta
Available since 2.12

real gamma_lupdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta dropping
constant additive terms
Available since 2.25

real gamma_cdf(reals y, reals alpha, reals beta)
The cumulative gamma distribution function of y given shape alpha and inverse
scale beta
Available since 2.0

real gamma_lcdf(reals y | reals alpha, reals beta)
The log of the cumulative gamma distribution function of y given shape alpha and
inverse scale beta
Available since 2.12

real gamma_lccdf(reals y | reals alpha, reals beta)
The log of the complementary cumulative gamma distribution function of y given
shape alpha and inverse scale beta
Available since 2.12

R gamma_rng(reals alpha, reals beta)
Generate a gamma variate with shape alpha and inverse scale beta; may only be used

222 CHAPTER 20. POSITIVE CONTINUOUS DISTRIBUTIONS

in transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

20.7. Inverse gamma Distribution

Probability density function

If α ∈ R+ and β ∈ R+, then for y ∈ R+,

InvGamma(y|α, β) = βα

Γ(α) y
−(α+1) exp

(
−β 1

y

)
.

Sampling statement

y ~ inv_gamma(alpha, beta)

Increment target log probability density with inv_gamma_lupdf(y | alpha,
beta).
Available since 2.0

Stan functions

real inv_gamma_lpdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta
Available since 2.12

real inv_gamma_lupdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta dropping
constant additive terms
Available since 2.25

real inv_gamma_cdf(reals y, reals alpha, reals beta)
The inverse gamma cumulative distribution function of y given shape alpha and
scale beta
Available since 2.0

real inv_gamma_lcdf(reals y | reals alpha, reals beta)
The log of the inverse gamma cumulative distribution function of y given shape
alpha and scale beta
Available since 2.12

20.8. WEIBULL DISTRIBUTION 223

real inv_gamma_lccdf(reals y | reals alpha, reals beta)
The log of the inverse gamma complementary cumulative distribution function of y
given shape alpha and scale beta
Available since 2.12

R inv_gamma_rng(reals alpha, reals beta)
Generate an inverse gamma variate with shape alpha and scale beta; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.
Available since 2.18

20.8. Weibull distribution

Probability density function

If α ∈ R+ and σ ∈ R+, then for y ∈ [0,∞),

Weibull(y|α, σ) = α

σ

(y
σ

)α−1
exp
(
−
(y
σ

)α)
.

Note that if Y ∝Weibull(α, σ), then Y −1 ∝ Frechet(α, σ−1).

Sampling statement

y ~ weibull(alpha, sigma)

Increment target log probability density with weibull_lupdf(y | alpha, sigma).
Available since 2.0

Stan functions

real weibull_lpdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma
Available since 2.12

real weibull_lupdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma dropping
constant additive terms
Available since 2.25

real weibull_cdf(reals y, reals alpha, reals sigma)
The Weibull cumulative distribution function of y given shape alpha and scale sigma
Available since 2.0

224 CHAPTER 20. POSITIVE CONTINUOUS DISTRIBUTIONS

real weibull_lcdf(reals y | reals alpha, reals sigma)
The log of the Weibull cumulative distribution function of y given shape alpha and
scale sigma
Available since 2.12

real weibull_lccdf(reals y | reals alpha, reals sigma)
The log of the Weibull complementary cumulative distribution function of y given
shape alpha and scale sigma
Available since 2.12

R weibull_rng(reals alpha, reals sigma)
Generate a weibull variate with shape alpha and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

20.9. Frechet distribution

Probability density function

If α ∈ R+ and σ ∈ R+, then for y ∈ R+,

Frechet(y|α, σ) = α

σ

(y
σ

)−α−1
exp
(
−
(y
σ

)−α)
.

Note that if Y ∝ Frechet(α, σ), then Y −1 ∝Weibull(α, σ−1).

Sampling statement

y ~ frechet(alpha, sigma)

Increment target log probability density with frechet_lupdf(y | alpha, sigma).
Available since 2.5

Stan functions

real frechet_lpdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma
Available since 2.12

real frechet_lupdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma dropping

20.10. RAYLEIGH DISTRIBUTION 225

constant additive terms
Available since 2.25

real frechet_cdf(reals y, reals alpha, reals sigma)
The Frechet cumulative distribution function of y given shape alpha and scale sigma
Available since 2.5

real frechet_lcdf(reals y | reals alpha, reals sigma)
The log of the Frechet cumulative distribution function of y given shape alpha and
scale sigma
Available since 2.12

real frechet_lccdf(reals y | reals alpha, reals sigma)
The log of the Frechet complementary cumulative distribution function of y given
shape alpha and scale sigma
Available since 2.12

R frechet_rng(reals alpha, reals sigma)
Generate a Frechet variate with shape alpha and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18

20.10. Rayleigh distribution

Probability density function

If σ ∈ R+, then for y ∈ [0,∞),

Rayleigh(y|σ) = y

σ2 exp(−y2/2σ2).

Sampling statement

y ~ rayleigh(sigma)

Increment target log probability density with rayleigh_lupdf(y | sigma).
Available since 2.0

Stan functions

real rayleigh_lpdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma

226 CHAPTER 20. POSITIVE CONTINUOUS DISTRIBUTIONS

Available since 2.12

real rayleigh_lupdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma dropping constant additive
terms
Available since 2.25

real rayleigh_cdf(real y, real sigma)
The Rayleigh cumulative distribution of y given scale sigma
Available since 2.0

real rayleigh_lcdf(real y | real sigma)
The log of the Rayleigh cumulative distribution of y given scale sigma
Available since 2.12

real rayleigh_lccdf(real y | real sigma)
The log of the Rayleigh complementary cumulative distribution of y given scale
sigma
Available since 2.12

R rayleigh_rng(reals sigma)
Generate a Rayleigh variate with scale sigma; may only be used in generated quanti-
ties block. For a description of argument and return types, see section vectorized
PRNG functions.
Available since 2.18

20.11. Log-logistic distribution

Probability density function

If α, β ∈ R+, then for y ∈ R+,

Log-Logistic(y|α, β) =

(
β
α

) (
y
α

)β−1(
1 +

(
y
α

)β)2 .

Sampling statement

y ~ loglogistic(alpha, beta)

Increment target log probability density with unnormalized version of
loglogistic_lpdf(y | alpha, beta)

20.11. LOG-LOGISTIC DISTRIBUTION 227

Available since 2.29

Stan functions

real loglogistic_lpdf(reals y | reals alpha, reals beta)
The log of the log-logistic density of y given scale alpha and shape beta
Available since 2.29

real loglogistic_cdf(reals y, reals alpha, reals beta)
The log-logistic cumulative distribution function of y given scale alpha and shape
beta
Available since 2.29

R loglogistic_rng(reals alpha, reals beta)
Generate a log-logistic variate with scale alpha and shape beta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.29

21. Positive Lower-Bounded Distributions

The positive lower-bounded probabilities have support on real values above some
positive minimum value.

21.1. Pareto distribution

Probability density function

If ymin ∈ R+ and α ∈ R+, then for y ∈ R+ with y ≥ ymin,

Pareto(y|ymin, α) = α yαmin

yα+1 .

Sampling statement

y ~ pareto(y_min, alpha)

Increment target log probability density with pareto_lupdf(y | y_min, alpha).
Available since 2.0

Stan functions

real pareto_lpdf(reals y | reals y_min, reals alpha)
The log of the Pareto density of y given positive minimum value y_min and shape
alpha
Available since 2.12

real pareto_lupdf(reals y | reals y_min, reals alpha)
The log of the Pareto density of y given positive minimum value y_min and shape
alpha dropping constant additive terms
Available since 2.25

real pareto_cdf(reals y, reals y_min, reals alpha)
The Pareto cumulative distribution function of y given positive minimum value y_min
and shape alpha
Available since 2.0

228

21.2. PARETO TYPE 2 DISTRIBUTION 229

real pareto_lcdf(reals y | reals y_min, reals alpha)
The log of the Pareto cumulative distribution function of y given positive minimum
value y_min and shape alpha
Available since 2.12

real pareto_lccdf(reals y | reals y_min, reals alpha)
The log of the Pareto complementary cumulative distribution function of y given
positive minimum value y_min and shape alpha
Available since 2.12

R pareto_rng(reals y_min, reals alpha)
Generate a Pareto variate with positive minimum value y_min and shape alpha; may
only be used in transformed data and generated quantities blocks. For a description
of argument and return types, see section vectorized PRNG functions.
Available since 2.18

21.2. Pareto type 2 distribution

Probability density function

If µ ∈ R, λ ∈ R+, and α ∈ R+, then for y ≥ µ,

Pareto_Type_2(y|µ, λ, α) = α

λ

(
1 + y − µ

λ

)−(α+1)
.

Note that the Lomax distribution is a Pareto Type 2 distribution with µ = 0.

Sampling statement

y ~ pareto_type_2(mu, lambda, alpha)

Increment target log probability density with pareto_type_2_lupdf(y | mu,
lambda, alpha).
Available since 2.5

Stan functions

real pareto_type_2_lpdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 density of y given location mu, scale lambda, and shape

230 CHAPTER 21. POSITIVE LOWER-BOUNDED DISTRIBUTIONS

alpha
Available since 2.18

real pareto_type_2_lupdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 density of y given location mu, scale lambda, and shape
alpha dropping constant additive terms
Available since 2.25

real pareto_type_2_cdf(reals y, reals mu, reals lambda, reals alpha)
The Pareto Type 2 cumulative distribution function of y given location mu, scale
lambda, and shape alpha
Available since 2.5

real pareto_type_2_lcdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 cumulative distribution function of y given location mu,
scale lambda, and shape alpha
Available since 2.18

real pareto_type_2_lccdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 complementary cumulative distribution function of y
given location mu, scale lambda, and shape alpha
Available since 2.18

R pareto_type_2_rng(reals mu, reals lambda, reals alpha)
Generate a Pareto Type 2 variate with location mu, scale lambda, and shape alpha;
may only be used in transformed data and generated quantities blocks. For a
description of argument and return types, see section vectorized PRNG functions.
Available since 2.18

21.3. Wiener First Passage Time Distribution

Probability density function

If α ∈ R+, τ ∈ R+, β ∈ [0, 1] and δ ∈ R, then for y > τ ,

Wiener(y|α, τ, β, δ) = α3

(y − τ)3/2 exp
(
−δαβ − δ2(y − τ)

2

) ∞∑
k=−∞

(2k+β)φ
(

2kα+ β√
y − τ

)

21.3. WIENER FIRST PASSAGE TIME DISTRIBUTION 231

where φ(x) denotes the standard normal density function; see (Feller 1968),
(Navarro and Fuss 2009).

Sampling statement

y ~ wiener(alpha, tau, beta, delta)

Increment target log probability density with wiener_lupdf(y | alpha, tau,
beta, delta).
Available since 2.7

Stan functions

real wiener_lpdf(reals y | reals alpha, reals tau, reals beta, reals
delta)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta and drift rate delta
Available since 2.18

real wiener_lupdf(reals y | reals alpha, reals tau, reals beta, reals
delta)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta and drift rate delta dropping constant
additive terms
Available since 2.25

boundaries

Stan returns the first passage time of the accumulation process over the upper
boundary only. To get the result for the lower boundary, use

wiener(y|α, τ, 1− β,−δ)

For more details, see the appendix of Vandekerckhove and Wabersich (2014).

22. Continuous Distributions on [0, 1]

The continuous distributions with outcomes in the interval [0, 1] are used to charac-
terized bounded quantities, including probabilities.

22.1. Beta distribution

Probability density function

If α ∈ R+ and β ∈ R+, then for θ ∈ (0, 1),

Beta(θ|α, β) = 1
B(α, β) θ

α−1 (1− θ)β−1,

where the beta function B() is as defined in section combinatorial functions.

Warning: If θ = 0 or θ = 1, then the probability is 0 and the log probability is −∞.
Similarly, the distribution requires strictly positive parameters, α, β > 0.

Sampling statement

theta ~ beta(alpha, beta)

Increment target log probability density with beta_lupdf(theta | alpha, beta).
Available since 2.0

Stan functions

real beta_lpdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0, 1] given positive prior successes (plus one)
alpha and prior failures (plus one) beta
Available since 2.12

real beta_lupdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0, 1] given positive prior successes (plus one)
alpha and prior failures (plus one) beta dropping constant additive terms
Available since 2.25

real beta_cdf(reals theta, reals alpha, reals beta)
The beta cumulative distribution function of theta in [0, 1] given positive prior

232

22.2. BETA PROPORTION DISTRIBUTION 233

successes (plus one) alpha and prior failures (plus one) beta
Available since 2.0

real beta_lcdf(reals theta | reals alpha, reals beta)
The log of the beta cumulative distribution function of theta in [0, 1] given positive
prior successes (plus one) alpha and prior failures (plus one) beta
Available since 2.12

real beta_lccdf(reals theta | reals alpha, reals beta)
The log of the beta complementary cumulative distribution function of theta in [0, 1]
given positive prior successes (plus one) alpha and prior failures (plus one) beta
Available since 2.12

R beta_rng(reals alpha, reals beta)
Generate a beta variate with positive prior successes (plus one) alpha and prior
failures (plus one) beta; may only be used in transformed data and generated
quantities blocks. For a description of argument and return types, see section
vectorized PRNG functions.
Available since 2.18

22.2. Beta proportion distribution

Probability density function

If µ ∈ (0, 1) and κ ∈ R+, then for θ ∈ (0, 1),

Beta_Proportion(θ|µ, κ) = 1
B(µκ, (1− µ)κ) θ

µκ−1 (1− θ)(1−µ)κ−1,

where the beta function B() is as defined in section combinatorial functions.

Warning: If θ = 0 or θ = 1, then the probability is 0 and the log probability is −∞.
Similarly, the distribution requires µ ∈ (0, 1) and strictly positive parameter, κ > 0.

Sampling statement

theta ~ beta_proportion(mu, kappa)

Increment target log probability density with beta_proportion_lupdf(theta |
mu, kappa).
Available since 2.19

234 CHAPTER 22. CONTINUOUS DISTRIBUTIONS ON [0, 1]

Stan functions

real beta_proportion_lpdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta in (0, 1) given mean mu and precision
kappa
Available since 2.19

real beta_proportion_lupdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta in (0, 1) given mean mu and precision
kappa dropping constant additive terms
Available since 2.25

real beta_proportion_lcdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion cumulative distribution function of theta in (0, 1)
given mean mu and precision kappa
Available since 2.18

real beta_proportion_lccdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion complementary cumulative distribution function of
theta in (0, 1) given mean mu and precision kappa
Available since 2.18

R beta_proportion_rng(reals mu, reals kappa)
Generate a beta_proportion variate with mean mu and precision kappa; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.
Available since 2.18

23. Circular Distributions

Circular distributions are defined for finite values y in any interval of length 2π.

23.1. Von Mises distribution

Probability density function

If µ ∈ R and κ ∈ R+, then for y ∈ R,

VonMises(y|µ, κ) = exp(κ cos(y − µ))
2πI0(κ) .

In order for this density to properly normalize, y must be restricted to some interval
(c, c+ 2π) of length 2π, because∫ c+2π

c

VonMises(y|µ, κ)dy = 1.

Similarly, if µ is a parameter, it will typically be restricted to the same range as y.

If κ > 0, a von Mises distribution with its 2π interval of support centered around its
location µ will have a single mode at µ; for example, restricting y to (−π, π) and
taking µ = 0 leads to a single local optimum at the mode µ. If the location µ is
not in the center of the support, the density is circularly translated and there will
be a second local maximum at the boundary furthest from the mode. Ideally, the
parameterization and support will be set up so that the bulk of the probability mass
is in a continuous interval around the mean µ.

For κ = 0, the Von Mises distribution corresponds to the circular uniform distribution
with density 1/(2π) (independently of the values of y or µ).

Sampling statement

y ~ von_mises(mu, kappa)

Increment target log probability density with von_mises_lupdf(y | mu, kappa).
Available since 2.0

235

236 CHAPTER 23. CIRCULAR DISTRIBUTIONS

Stan functions

R von_mises_lpdf(reals y | reals mu, reals kappa)
The log of the von mises density of y given location mu and scale kappa.
Available since 2.18

R von_mises_lupdf(reals y | reals mu, reals kappa)
The log of the von mises density of y given location mu and scale kappa dropping
constant additive terms.
Available since 2.25

R von_mises_cdf(reals y | reals mu, reals kappa)
The von mises cumulative distribution function of y given location mu and scale
kappa.
Available since 2.29

R von_mises_lcdf(reals y | reals mu, reals kappa)
The log of the von mises cumulative distribution function of y given location mu and
scale kappa.
Available since 2.29

R von_mises_lccdf(reals y | reals mu, reals kappa)
The log of the von mises complementary cumulative distribution function of y given
location mu and scale kappa.
Available since 2.29

R von_mises_rng(reals mu, reals kappa)
Generate a Von Mises variate with location mu and scale kappa (i.e. returns values in
the interval [(µ mod 2π)− π, (µ mod 2π) + π]); may only be used in transformed
data and generated quantities blocks. For a description of argument and return
types, see section vectorized PRNG functions.
Available since 2.18

Numerical stability

Evaluating the Von Mises distribution for κ > 100 is numerically unstable in the
current implementation. Nathanael I. Lichti suggested the following workaround on
the Stan users group, based on the fact that as κ→∞,

VonMises(y|µ, κ)→ Normal(µ,
√

1/κ).

The workaround is to replace y ~ von_mises(mu,kappa) with

23.1. VON MISES DISTRIBUTION 237

if (kappa < 100) {
y ~ von_mises(mu, kappa);

} else {
y ~ normal(mu, sqrt(1 / kappa));

}

24. Bounded Continuous Distributions

The bounded continuous probabilities have support on a finite interval of real
numbers.

24.1. Uniform distribution

Probability density function

If α ∈ R and β ∈ (α,∞), then for y ∈ [α, β],

Uniform(y|α, β) = 1
β − α

.

Sampling statement

y ~ uniform(alpha, beta)

Increment target log probability density with uniform_lupdf(y | alpha, beta).
Available since 2.0

Stan functions

real uniform_lpdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta
Available since 2.12

real uniform_lupdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta
dropping constant additive terms
Available since 2.25

real uniform_cdf(reals y, reals alpha, reals beta)
The uniform cumulative distribution function of y given lower bound alpha and
upper bound beta
Available since 2.0

real uniform_lcdf(reals y | reals alpha, reals beta)
The log of the uniform cumulative distribution function of y given lower bound alpha

238

24.1. UNIFORM DISTRIBUTION 239

and upper bound beta
Available since 2.12

real uniform_lccdf(reals y | reals alpha, reals beta)
The log of the uniform complementary cumulative distribution function of y given
lower bound alpha and upper bound beta
Available since 2.12

R uniform_rng(reals alpha, reals beta)
Generate a uniform variate with lower bound alpha and upper bound beta; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.
Available since 2.18

25. Distributions over Unbounded Vectors

The unbounded vector probability distributions have support on all of RK for some
fixed K.

25.1. Multivariate normal distribution

Probability density function

If K ∈ N, µ ∈ RK , and Σ ∈ RK×K is symmetric and positive definite, then for
y ∈ RK ,

MultiNormal(y|µ,Σ) = 1
(2π)K/2

1√
|Σ|

exp
(
−1

2(y − µ)>Σ−1 (y − µ)
)
,

where |Σ| is the absolute determinant of Σ.

Sampling statement

y ~ multi_normal(mu, Sigma)

Increment target log probability density with multi_normal_lupdf(y | mu,
Sigma).
Available since 2.0

Stan functions

The multivariate normal probability function is overloaded to allow the variate
vector y and location vector µ to be vectors or row vectors (or to mix the two
types). The density function is also vectorized, so it allows arrays of row vectors or
vectors as arguments; see section vectorized function signatures for a description of
vectorization.

real multi_normal_lpdf(vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and covariance matrix Sigma
Available since 2.12

240

25.1. MULTIVARIATE NORMAL DISTRIBUTION 241

real multi_normal_lupdf(vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and covariance matrix Sigma dropping constant additive terms
Available since 2.25

real multi_normal_lpdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma
Available since 2.12

real multi_normal_lupdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma dropping constant additive terms
Available since 2.25

real multi_normal_lpdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma
Available since 2.12

real multi_normal_lupdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma dropping constant additive terms
Available since 2.25

real multi_normal_lpdf(row_vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma
Available since 2.12

real multi_normal_lupdf(row_vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma dropping constant additive terms
Available since 2.25

Although there is a direct multi-normal RNG function, if more than one result is
required, it’s much more efficient to Cholesky factor the covariance matrix and call
multi_normal_cholesky_rng; see section multi-variate normal, cholesky parame-
terization.

vector multi_normal_rng(vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix

242 CHAPTER 25. DISTRIBUTIONS OVER UNBOUNDED VECTORS

Sigma; may only be used in transformed data and generated quantities blocks
Available since 2.0

vector multi_normal_rng(row_vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix
Sigma; may only be used in transformed data and generated quantities blocks
Available since 2.18

vectors multi_normal_rng(vectors mu, matrix Sigma)
Generate an array of multivariate normal variates with locations mu and covariance
matrix Sigma; may only be used in transformed data and generated quantities blocks
Available since 2.18

vectors multi_normal_rng(row_vectors mu, matrix Sigma)
Generate an array of multivariate normal variates with locations mu and covariance
matrix Sigma; may only be used in transformed data and generated quantities blocks
Available since 2.18

25.2. Multivariate normal distribution, precision parameteriza-
tion

Probability density function

If K ∈ N, µ ∈ RK , and Ω ∈ RK×K is symmetric and positive definite, then for
y ∈ RK ,

MultiNormalPrecision(y|µ,Ω) = MultiNormal(y|µ,Ω−1)

Sampling statement

y ~ multi_normal_prec(mu, Omega)

Increment target log probability density with multi_normal_prec_lupdf(y | mu,
Omega).
Available since 2.3

Stan functions

real multi_normal_prec_lpdf(vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and positive definite precision matrix Omega
Available since 2.18

25.2. MULTIVARIATE NORMAL DISTRIBUTION, PRECISION PARAMETERIZATION243

real multi_normal_prec_lupdf(vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and positive definite precision matrix Omega dropping constant additive terms
Available since 2.25

real multi_normal_prec_lpdf(vectors y | row_vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and positive definite precision matrix Omega
Available since 2.18

real multi_normal_prec_lupdf(vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and positive definite precision matrix Omega dropping constant additive terms
Available since 2.25

real multi_normal_prec_lpdf(row_vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and positive definite precision matrix Omega
Available since 2.18

real multi_normal_prec_lupdf(row_vectors y | vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and positive definite precision matrix Omega dropping constant additive terms
Available since 2.25

real multi_normal_prec_lpdf(row_vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and positive definite precision matrix Omega
Available since 2.18

real multi_normal_prec_lupdf(row_vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and positive definite precision matrix Omega dropping constant
additive terms
Available since 2.25

244 CHAPTER 25. DISTRIBUTIONS OVER UNBOUNDED VECTORS

25.3. Multivariate normal distribution, Cholesky parameteriza-
tion

Probability density function

If K ∈ N, µ ∈ RK , and L ∈ RK×K is lower triangular and such that LL> is positive
definite, then for y ∈ RK ,

MultiNormalCholesky(y|µ,L) = MultiNormal(y|µ,LL>).

If L is lower triangular and LLtop is a K×K positive definite matrix, then Lk,k must
be strictly positive for k ∈ 1:K. If an L is provided that is not the Cholesky factor of
a positive-definite matrix, the probability functions will raise errors.

Sampling statement

y ~ multi_normal_cholesky(mu, L)

Increment target log probability density with multi_normal_cholesky_lupdf(y |
mu, L).
Available since 2.0

Stan functions

real multi_normal_cholesky_lpdf(vectors y | vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and lower-triangular Cholesky factor of the covariance matrix L
Available since 2.18

real multi_normal_cholesky_lupdf(vectors y | vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and lower-triangular Cholesky factor of the covariance matrix L dropping constant
additive terms
Available since 2.25

real multi_normal_cholesky_lpdf(vectors y | row_vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L
Available since 2.18

real multi_normal_cholesky_lupdf(vectors y | row_vectors mu, matrix
L)

25.3. MULTIVARIATE NORMAL DISTRIBUTION, CHOLESKY PARAMETERIZATION245

The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L dropping
constant additive terms
Available since 2.25

real multi_normal_cholesky_lpdf(row_vectors y | vectors mu, matrix L)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L
Available since 2.18

real multi_normal_cholesky_lupdf(row_vectors y | vectors mu, matrix
L)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L dropping
constant additive terms
Available since 2.25

real multi_normal_cholesky_lpdf(row_vectors y | row_vectors mu,
matrix L)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L
Available since 2.18

real multi_normal_cholesky_lupdf(row_vectors y | row_vectors mu,
matrix L)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L
dropping constant additive terms
Available since 2.25

vector multi_normal_cholesky_rng(vector mu, matrix L)
Generate a multivariate normal variate with location mu and lower-triangular
Cholesky factor of the covariance matrix L; may only be used in transformed data
and generated quantities blocks
Available since 2.3

vector multi_normal_cholesky_rng(row_vector mu, matrix L)
Generate a multivariate normal variate with location mu and lower-triangular
Cholesky factor of the covariance matrix L; may only be used in transformed data
and generated quantities blocks
Available since 2.18

246 CHAPTER 25. DISTRIBUTIONS OVER UNBOUNDED VECTORS

vectors multi_normal_cholesky_rng(vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in trans-
formed data and generated quantities blocks
Available since 2.18

vectors multi_normal_cholesky_rng(row_vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in trans-
formed data and generated quantities blocks
Available since 2.18

25.4. Multivariate Gaussian process distribution

Probability density function

If K,N ∈ N, Σ ∈ RN×N is symmetric, positive definite kernel matrix and w ∈ RK is
a vector of positive inverse scales, then for y ∈ RK×N ,

MultiGP(y|Σ, w) =
K∏
i=1

MultiNormal(yi|0, w−1
i Σ),

where yi is the ith row of y. This is used to efficiently handle Gaussian Processes
with multi-variate outputs where only the output dimensions share a kernel function
but vary based on their scale. Note that this function does not take into account the
mean prediction.

Sampling statement

y ~ multi_gp(Sigma, w)

Increment target log probability density with multi_gp_lupdf(y | Sigma, w).
Available since 2.3

Stan functions

real multi_gp_lpdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and
inverses scales w
Available since 2.12

25.5. MULTIVARIATE GAUSSIAN PROCESS DISTRIBUTION, CHOLESKY PARAMETERIZATION247

real multi_gp_lupdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and
inverses scales w dropping constant additive terms
Available since 2.25

25.5. Multivariate Gaussian process distribution, Cholesky pa-
rameterization

Probability density function

If K,N ∈ N, L ∈ RN×N is lower triangular and such that LL> is positive definite
kernel matrix (implying Ln,n > 0 for n ∈ 1:N), and w ∈ RK is a vector of positive
inverse scales, then for y ∈ RK×N ,

MultiGPCholesky(y | L,w) =
K∏
i=1

MultiNormal(yi|0, w−1
i LL>),

where yi is the ith row of y. This is used to efficiently handle Gaussian Processes with
multi-variate outputs where only the output dimensions share a kernel function but
vary based on their scale. If the model allows parameterization in terms of Cholesky
factor of the kernel matrix, this distribution is also more efficient than MultiGP().
Note that this function does not take into account the mean prediction.

Sampling statement

y ~ multi_gp_cholesky(L, w)

Increment target log probability density with multi_gp_cholesky_lupdf(y | L,
w).
Available since 2.5

Stan functions

real multi_gp_cholesky_lpdf(matrix y | matrix L, vector w)
The log of the multivariate GP density of matrix y given lower-triangular Cholesky
factor of the kernel matrix L and inverses scales w
Available since 2.12

real multi_gp_cholesky_lupdf(matrix y | matrix L, vector w)
The log of the multivariate GP density of matrix y given lower-triangular Cholesky

248 CHAPTER 25. DISTRIBUTIONS OVER UNBOUNDED VECTORS

factor of the kernel matrix L and inverses scales w dropping constant additive terms
Available since 2.25

25.6. Multivariate Student-t distribution

Probability density function

If K ∈ N, ν ∈ R+, µ ∈ RK , and Σ ∈ RK×K is symmetric and positive definite, then
for y ∈ RK ,

MultiStudentT(y | ν, µ, Σ)

= 1
πK/2

1
νK/2

Γ((ν+K)/2)
Γ(ν/2)

1√
|Σ|

(
1 + 1

ν (y − µ)> Σ−1 (y − µ)
)−(ν+K)/2

.

Sampling statement

y ~ multi_student_t(nu, mu, Sigma)

Increment target log probability density with multi_student_t_lupdf(y | nu,
mu, Sigma).
Available since 2.0

Stan functions

real multi_student_t_lpdf(vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location vector(s) mu, and scale matrix Sigma
Available since 2.18

real multi_student_t_lupdf(vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location vector(s) mu, and scale matrix Sigma dropping constant additive terms
Available since 2.25

real multi_student_t_lpdf(vectors y | real nu, row_vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location row vector(s) mu, and scale matrix Sigma
Available since 2.18

25.6. MULTIVARIATE STUDENT-T DISTRIBUTION 249

real multi_student_t_lupdf(vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location row vector(s) mu, and scale matrix Sigma dropping constant additive
terms
Available since 2.25

real multi_student_t_lpdf(row_vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location vector(s) mu, and scale matrix Sigma
Available since 2.18

real multi_student_t_lupdf(row_vectors y | real nu, vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location vector(s) mu, and scale matrix Sigma dropping constant
additive terms
Available since 2.25

real multi_student_t_lpdf(row_vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location row vector(s) mu, and scale matrix Sigma
Available since 2.18

real multi_student_t_lupdf(row_vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location row vector(s) mu, and scale matrix Sigma dropping constant
additive terms
Available since 2.25

vector multi_student_t_rng(real nu, vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location
mu, and scale matrix Sigma; may only be used in transformed data and generated
quantities blocks
Available since 2.0

vector multi_student_t_rng(real nu, row_vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location
mu, and scale matrix Sigma; may only be used in transfomed data and generated

250 CHAPTER 25. DISTRIBUTIONS OVER UNBOUNDED VECTORS

quantities blocks
Available since 2.18

vectors multi_student_t_rng(real nu, vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
locations mu, and scale matrix Sigma; may only be used in transformed data and
generated quantities blocks
Available since 2.18

vectors multi_student_t_rng(real nu, row_vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
locations mu, and scale matrix Sigma; may only be used in transformed data
andgenerated quantities blocks
Available since 2.18

25.7. Multivariate Student-t distribution, Cholesky parameteri-
zation

Probability density function

Let K ∈ N, ν ∈ R+, µ ∈ RK , and L a K ×K lower-triangular matrix with strictly
positive, finite diagonal then

MultiStudentTCholesky(y | ν, µ, L)

= 1
πK/2

1
νK/2

Γ((ν+K)/2)
Γ(ν/2)

1
|L|

(
1 + 1

ν (y − µ)> L−TL−1 (y − µ)
)−(ν+K)/2

.

Sampling statement

y ~ multi_student_t_cholesky(nu, mu, L)

Increment target log probability density with multi_student_t_cholesky_lupdf(y
| nu, mu, L).
Available since 2.30

Stan functions

real multi_student_t_cholesky_lpdf(vectors y | real nu, vectors mu,
matrix L)
The log of the multivariate Student-t density of vector or array of vectors y given
degrees of freedom nu, location vector or array of vectors mu, and Cholesky factor of

25.8. GAUSSIAN DYNAMIC LINEAR MODELS 251

the scale matrix L. For a definition of the arguments compatible with the vectors
type, see the probability vectorization section.
Available since 2.30

real multi_student_t_cholesky_lupdf(vectors y | real nu, vectors mu,
matrix L)
The log of the multivariate Student-t density of vector or vector array y given degrees
of freedom nu, location vector or vector array mu, and Cholesky factor of the scale
matrix L, dropping constant additive terms. For a definition of arguments compatible
with the vectors type, see the probability vectorization section.
Available since 2.30

vector multi_student_t_cholesky_rng(real nu, vector mu, matrix L)
Generate a multivariate Student-t variate with degrees of freedom nu, location mu,
and Cholesky factor of the scale matrix L; may only be used in transformed data and
generated quantities blocks.
Available since 2.30

array[] vector multi_student_t_cholesky_rng(real nu, array[] vector
mu, matrix L)
Generate a multivariate Student-t variate with degrees of freedom nu, location array
mu, and Cholesky factor of the scale matrix L; may only be used in transfomed data
and generated quantities blocks.
Available since 2.30

array[] vector multi_student_t_cholesky_rng(real nu, array[]
row_vector mu, matrix L)
Generate an array of multivariate Student-t variate with degrees of freedom nu,
location array mu, and Cholesky factor of the scale matrix L; may only be used in
transfomed data and generated quantities blocks.
Available since 2.30

25.8. Gaussian dynamic linear models

A Gaussian Dynamic Linear model is defined as follows, For t ∈ 1, . . . , T ,

yt ∼ N(F ′θt, V)
θt ∼ N(Gθt−1,W)
θ0 ∼ N(m0, C0)

252 CHAPTER 25. DISTRIBUTIONS OVER UNBOUNDED VECTORS

where y is n × T matrix where rows are variables and columns are observations.
These functions calculate the log-likelihood of the observations marginalizing over
the latent states (p(y|F,G, V,W,m0, C0)). This log-likelihood is a system that is
calculated using the Kalman Filter. If V is diagonal, then a more efficient algorithm
which sequentially processes observations and avoids a matrix inversions can be
used (Durbin and Koopman 2001, sec. 6.4).

Sampling statement

y ~ gaussian_dlm_obs(F, G, V, W, m0, C0)

Increment target log probability density with gaussian_dlm_obs_lupdf(y | F, G,
V, W, m0, C0).
Available since 2.0

Stan functions

The following two functions differ in the type of their V, the first taking a full
observation covariance matrix V and the second a vector V representing the diagonal
of the observation covariance matrix. The sampling statement defined in the previous
section works with either type of observation V.

real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, matrix V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix F,
transition matrix G, observation covariance matrix V, system covariance matrix W,
and the initial state is distributed normal with mean m0 and covariance C0.
Available since 2.12

real gaussian_dlm_obs_lupdf(matrix y | matrix F, matrix G, matrix V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix F,
transition matrix G, observation covariance matrix V, system covariance matrix W,
and the initial state is distributed normal with mean m0 and covariance C0. This
function drops constant additive terms.
Available since 2.25

real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, vector V,
matrix W, vector m0, matrix C0)

25.8. GAUSSIAN DYNAMIC LINEAR MODELS 253

The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix
F, transition matrix G, observation covariance matrix with diagonal V, system
covariance matrix W, and the initial state is distributed normal with mean m0 and
covariance C0.
Available since 2.12

real gaussian_dlm_obs_lupdf(matrix y | matrix F, matrix G, vector V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation matrix
y in which rows are variables and columns are observations, design matrix F, tran-
sition matrix G, observation covariance matrix with diagonal V, system covariance
matrix W, and the initial state is distributed normal with mean m0 and covariance
C0. This function drops constant additive terms.
Available since 2.25

26. Simplex Distributions

The simplex probabilities have support on the unit K-simplex for a specified K.
A K-dimensional vector θ is a unit K-simplex if θk ≥ 0 for k ∈ {1, . . . ,K} and∑K

k=1 θk = 1.

26.1. Dirichlet distribution

Probability density function

If K ∈ N and α ∈ (R+)K , then for θ ∈ K-simplex,

Dirichlet(θ|α) =
Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
k .

Warning: If any of the components of θ satisfies θi = 0 or θi = 1, then the probability
is 0 and the log probability is −∞. Similarly, the distribution requires strictly positive
parameters, with αi > 0 for each i.

Meaning of Dirichlet parameters

A symmetric Dirichlet prior is [α, . . . , α]>. To code this in Stan,

data {
int<lower=1> K;
real<lower=0> alpha;

}
generated quantities {
vector[K] theta = dirichlet_rng(rep_vector(alpha, K));

}

Taking K = 10, here are the first five draws for α = 1. For α = 1, the distribution is
uniform over simplexes.

1) 0.17 0.05 0.07 0.17 0.03 0.13 0.03 0.03 0.27 0.05
2) 0.08 0.02 0.12 0.07 0.52 0.01 0.07 0.04 0.01 0.06
3) 0.02 0.03 0.22 0.29 0.17 0.10 0.09 0.00 0.05 0.03

254

26.1. DIRICHLET DISTRIBUTION 255

4) 0.04 0.03 0.21 0.13 0.04 0.01 0.10 0.04 0.22 0.18
5) 0.11 0.22 0.02 0.01 0.06 0.18 0.33 0.04 0.01 0.01

That does not mean it’s uniform over the marginal probabilities of each element.
As the size of the simplex grows, the marginal draws become more and more
concentrated below (not around) 1/K. When one component of the simplex is large,
the others must all be relatively small to compensate. For example, in a uniform
distribution on 10-simplexes, the probability that a component is greater than the
mean of 1/10 is only 39%. Most of the posterior marginal probability mass for each
component is in the interval (0, 0.1).

When the α value is small, the draws gravitate to the corners of the simplex. Here
are the first five draws for α = 0.001.

1) 3e-203 0e+00 2e-298 9e-106 1e+000 0e+00 0e+000 1e-047 0e+00 4e-279
2) 1e+000 0e+00 5e-279 2e-014 1e-275 0e+00 3e-285 9e-147 0e+00 0e+000
3) 1e-308 0e+00 1e-213 0e+000 0e+000 8e-75 0e+000 1e+000 4e-58 7e-112
4) 6e-166 5e-65 3e-068 3e-147 0e+000 1e+00 3e-249 0e+000 0e+00 0e+000
5) 2e-091 0e+00 0e+000 0e+000 1e-060 0e+00 4e-312 1e+000 0e+00 0e+000

Each row denotes a draw. Each draw has a single value that rounds to one and other
values that are very close to zero or rounded down to zero.

As α increases, the draws become increasingly uniform. For α = 1000,

1) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
2) 0.10 0.10 0.09 0.10 0.10 0.10 0.11 0.10 0.10 0.10
3) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
4) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
5) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Sampling statement

theta ~ dirichlet(alpha)

Increment target log probability density with dirichlet_lupdf(theta | alpha).
Available since 2.0

Stan functions

real dirichlet_lpdf(vector theta | vector alpha)
The log of the Dirichlet density for simplex theta given prior counts (plus one) alpha
Available since 2.12

256 CHAPTER 26. SIMPLEX DISTRIBUTIONS

real dirichlet_lupdf(vector theta | vector alpha)
The log of the Dirichlet density for simplex theta given prior counts (plus one) alpha
dropping constant additive terms
Available since 2.25

vector dirichlet_rng(vector alpha)
Generate a Dirichlet variate with prior counts (plus one) alpha; may only be used in
transformed data and generated quantities blocks
Available since 2.0

27. Correlation Matrix Distributions

The correlation matrix distributions have support on the (Cholesky factors of) corre-
lation matrices. A Cholesky factor L for a K ×K correlation matrix Σ of dimension
K has rows of unit length so that the diagonal of LL> is the unit K-vector. Even
though models are usually conceptualized in terms of correlation matrices, it is better
to operationalize them in terms of their Cholesky factors. If you are interested in
the posterior distribution of the correlations, you can recover them in the generated
quantities block via

generated quantities {
corr_matrix[K] Sigma;
Sigma = multiply_lower_tri_self_transpose(L);

}

27.1. LKJ correlation distribution

Probability density function

For η > 0, if Σ a positive-definite, symmetric matrix with unit diagonal (i.e., a
correlation matrix), then

LkjCorr(Σ|η) ∝ det (Σ)(η−1)
.

The expectation is the identity matrix for any positive value of the shape parameter η,
which can be interpreted like the shape parameter of a symmetric beta distribution:

• if η = 1, then the density is uniform over correlation matrices of order K;

• if η > 1, the identity matrix is the modal correlation matrix, with a sharper
peak in the density at the identity matrix for larger η; and

• for 0 < η < 1, the density has a trough at the identity matrix.

• if η were an unknown parameter, the Jeffreys prior is proportional

to
√

2
∑K−1
k=1

(
ψ1
(
η + K−k−1

2
)
− 2ψ1 (2η +K − k − 1)

)
, where ψ1() is the

trigamma function

257

258 CHAPTER 27. CORRELATION MATRIX DISTRIBUTIONS

See (Lewandowski, Kurowicka, and Joe 2009) for definitions. However, it is much
better computationally to work directly with the Cholesky factor of Σ, so this
distribution should never be explicitly used in practice.

Sampling statement

y ~ lkj_corr(eta)

Increment target log probability density with lkj_corr_lupdf(y | eta).
Available since 2.3

Stan functions

real lkj_corr_lpdf(matrix y | real eta)
The log of the LKJ density for the correlation matrix y given nonnegative shape eta.
lkj_corr_cholesky_lpdf is faster, more numerically stable, uses less memory, and
should be preferred to this.
Available since 2.12

real lkj_corr_lupdf(matrix y | real eta)
The log of the LKJ density for the correlation matrix y given nonnegative shape
eta dropping constant additive terms. lkj_corr_cholesky_lupdf is faster, more
numerically stable, uses less memory, and should be preferred to this.
Available since 2.25

matrix lkj_corr_rng(int K, real eta)
Generate a LKJ random correlation matrix of order K with shape eta; may only be
used in transformed data and generated quantities blocks
Available since 2.0

27.2. Cholesky LKJ correlation distribution

Stan provides an implicit parameterization of the LKJ correlation matrix density in
terms of its Cholesky factor, which you should use rather than the explicit parameter-
ization in the previous section. For example, if L is a Cholesky factor of a correlation
matrix, then

L ~ lkj_corr_cholesky(2.0); # implies L * L' ~ lkj_corr(2.0);

Because Stan requires models to have support on all valid constrained parameters, L

27.2. CHOLESKY LKJ CORRELATION DISTRIBUTION 259

will almost always1 be a parameter declared with the type of a Cholesky factor for a
correlation matrix; for example,

parameters { cholesky_factor_corr[K] L; # rather than corr_matrix[K] Sigma; // ...

Probability density function

For η > 0, if L is a K ×K lower-triangular Cholesky factor of a symmetric positive-
definite matrix with unit diagonal (i.e., a correlation matrix), then

LkjCholesky(L|η) ∝ |J |det(LL>)(η−1) =
K∏
k=2

LK−k+2η−2
kk .

See the previous section for details on interpreting the shape parameter η. Note that
even if η = 1, it is still essential to evaluate the density function because the density
of L is not constant, regardless of the value of η, even though the density of LL> is
constant iff η = 1.

A lower triangular L is a Cholesky factor for a correlation matrix if and only if
Lk,k > 0 for k ∈ 1:K and each row Lk has unit Euclidean length.

Sampling statement

L ~ lkj_corr_cholesky(eta)

Increment target log probability density with lkj_corr_cholesky_lupdf(L |
eta).
Available since 2.4

Stan functions

real lkj_corr_cholesky_lpdf(matrix L | real eta)
The log of the LKJ density for the lower-triangular Cholesky factor L of a correlation
matrix given shape eta
Available since 2.12

real lkj_corr_cholesky_lupdf(matrix L | real eta)
The log of the LKJ density for the lower-triangular Cholesky factor L of a correlation
matrix given shape eta dropping constant additive terms
Available since 2.25

1It is possible to build up a valid L within Stan, but that would then require Jacobian adjustments to
imply the intended posterior.

260 CHAPTER 27. CORRELATION MATRIX DISTRIBUTIONS

matrix lkj_corr_cholesky_rng(int K, real eta)
Generate a random Cholesky factor of a correlation matrix of order K that is dis-
tributed LKJ with shape eta; may only be used in transformed data and generated
quantities blocks
Available since 2.4

28. Covariance Matrix Distributions

The covariance matrix distributions have support on symmetric, positive-definite
K ×K matrices or their Cholesky factors (square, lower triangular matrices with
positive diagonal elements).

28.1. Wishart distribution

Probability density function

If K ∈ N, ν ∈ (K − 1,∞), and S ∈ RK×K is symmetric and positive definite, then
for symmetric and positive-definite W ∈ RK×K ,

Wishart(W | ν, S) = 1
2νK/2

1
ΓK
(
ν
2
) |S|−ν/2 |W |(ν−K−1)/2 exp

(
−1

2 tr
(
S−1W

))
,

where tr() is the matrix trace function, and ΓK() is the multivariate Gamma function,

ΓK(x) = 1
πK(K−1)/4

K∏
k=1

Γ
(
x+ 1− k

2

)
.

Sampling statement

W ~ wishart(nu, Sigma)

Increment target log probability density with wishart_lupdf(W | nu, Sigma).
Available since 2.0

Stan functions

real wishart_lpdf(matrix W | real nu, matrix Sigma)
Return the log of the Wishart density for symmetric and positive-definite matrix W
given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma.
Available since 2.12

real wishart_lupdf(matrix W | real nu, matrix Sigma)
Return the log of the Wishart density for symmetric and positive-definite matrix W
given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma

261

262 CHAPTER 28. COVARIANCE MATRIX DISTRIBUTIONS

dropping constant additive terms.
Available since 2.25

matrix wishart_rng(real nu, matrix Sigma)
Generate a Wishart variate with degrees of freedom nu and symmetric and positive-
definite scale matrix Sigma; may only be used in transformed data and generated
quantities blocks.
Available since 2.0

28.2. Wishart distribution, Cholesky Parameterization

The Cholesky parameterization of the Wishart distribution uses a Cholesky factor for
both the variate and the parameter. If S and W are positive definite matrices with
Cholesky factors LS and LW (i.e., S = LSL

>
S and W = LWL

>
W), then the Cholesky

parameterization is defined so that

LW ∼WishartCholesky(ν, LS)

if and only if
W ∼Wishart(ν, S).

Probability density function

If K ∈ N, ν ∈ (K − 1,∞), and LS , LW ∈ RK×K are lower triangular matrixes with
positive diagonal elements, then the Cholesky parameterized Wishart density is

WishartCholesky(LW | ν, LS) = Wishart(LWL>W | ν, LSL>S)
∣∣Jf−1

∣∣ ,
where Jf−1 is the Jacobian of the (inverse) transform of the variate, f−1(LW) =
LWL

>
W . The log absolute determinant is

log
∣∣Jf−1

∣∣ = K log(2)
K∑
k=1

(K − k + 1) logLWk, k
.

The probability functions will raise errors if ν ≤ K − 1 or if LS and LW are not
Cholesky factors (square, lower-triangular matrices with positive diagonal elements)
of the same size.

28.3. INVERSE WISHART DISTRIBUTION 263

Stan functions

real wishart_cholesky_lpdf(matrix L_W | real nu, matrix L_S)
Return the log of the Wishart density for lower-triangular Cholesky factor L_W given
degrees of freedom nu and lower-triangular Cholesky factor of the scale matrix L_S.
Available since 2.30

real wishart_cholesky_lupdf(matrix L_W | real nu, matrix L_S)
Return the log of the Wishart density for lower-triangular Cholesky factor of L_W
given degrees of freedom nu and lower-triangular Cholesky factor of the scale matrix
L_S dropping constant additive terms.
Available since 2.30

matrix wishart_cholesky_rng(real nu, matrix L_S)
Generate the Cholesky factor of a Wishart variate with degrees of freedom nu
and lower-triangular Cholesky factor of the scale matrix L_S; may only be used in
transformed data and generated quantities blocks
Available since 2.30

28.3. Inverse Wishart distribution

Probability density function

If K ∈ N, ν ∈ (K − 1,∞), and S ∈ RK×K is symmetric and positive definite, then
for symmetric and positive-definite W ∈ RK×K ,

InvWishart(W | ν, S) = 1
2νK/2

1
ΓK
(
ν
2
) |S|ν/2 |W |−(ν+K+1)/2 exp

(
−1

2 tr(SW−1)
)
.

Sampling statement

W ~ inv_wishart(nu, Sigma)

Increment target log probability density with inv_wishart_lupdf(W | nu,
Sigma).
Available since 2.0

Stan functions

real inv_wishart_lpdf(matrix W | real nu, matrix Sigma)
Return the log of the inverse Wishart density for symmetric and positive-definite

264 CHAPTER 28. COVARIANCE MATRIX DISTRIBUTIONS

matrix W given degrees of freedom nu and symmetric and positive-definite scale
matrix Sigma.
Available since 2.12

real inv_wishart_lupdf(matrix W | real nu, matrix Sigma)
Return the log of the inverse Wishart density for symmetric and positive-definite
matrix W given degrees of freedom nu and symmetric and positive-definite scale
matrix Sigma dropping constant additive terms.
Available since 2.25

matrix inv_wishart_rng(real nu, matrix Sigma)
Generate an inverse Wishart variate with degrees of freedom nu and symmetric
and positive-definite scale matrix Sigma; may only be used in transformed data and
generated quantities blocks.
Available since 2.0

28.4. Inverse Wishart distribution, Cholesky Parameterization

The Cholesky parameterization of the inverse Wishart distribution uses a Cholesky
factor for both the variate and the parameter. If S and W are positive definite
matrices with Cholesky factors LS and LW (i.e., S = LSL

>
S and W = LWL

>
W), then

the Cholesky parameterization is defined so that

LW ∼ InvWishartCholesky(ν, LS)

if and only if
W ∼ InvWishart(ν, S).

Probability density function

If K ∈ N, ν ∈ (K − 1,∞), and LS , LW ∈ RK×K are lower triangular matrixes with
positive diagonal elements, then the Cholesky parameterized inverse Wishart density
is

InvWishartCholesky(LW | ν, LS) = InvWishart(LWL>W | ν, LSL>S)
∣∣Jf−1

∣∣ ,
where Jf−1 is the Jacobian of the (inverse) transform of the variate, f−1(LW) =
LWL

>
W . The log absolute determinant is

log
∣∣Jf−1

∣∣ = K log(2)
K∑
k=1

(K − k + 1) logLWk, k
.

28.4. INVERSE WISHART DISTRIBUTION, CHOLESKY PARAMETERIZATION 265

The probability functions will raise errors if ν ≤ K − 1 or if LS and LW are not
Cholesky factors (square, lower-triangular matrices with positive diagonal elements)
of the same size.

Stan functions

real inv_wishart_cholesky_lpdf(matrix L_W | real nu, matrix L_S)
Return the log of the inverse Wishart density for lower-triangular Cholesky factor
L_W given degrees of freedom nu and lower-triangular Cholesky factor of the scale
matrix L_S.
Available since 2.30

real inv_wishart_cholesky_lupdf(matrix L_W | real nu, matrix L_S)
Return the log of the inverse Wishart density for lower-triangular Cholesky factor of
L_W given degrees of freedom nu and lower-triangular Cholesky factor of the scale
matrix L_S dropping constant additive terms.
Available since 2.30

matrix inv_wishart_cholesky_rng(real nu, matrix L_S)
Generate the Cholesky factor of an inverse Wishart variate with degrees of freedom
nu and lower-triangular Cholesky factor of the scale matrix L_S; may only be used in
transformed data and generated quantities blocks.
Available since 2.30

Additional Distributions

266

29. Hidden Markov Models

An elementary first-order Hidden Markov model is a probabilistic model over N
observations, yn, and N hidden states, xn, which can be fully defined by the condi-
tional distributions p(yn | xn, φ) and p(xn | xn−1, φ). Here we make the dependency
on additional model parameters, φ, explicit. When x is continuous, the user can
explicitly encode these distributions in Stan and use Markov chain Monte Carlo to
integrate x out.

When each state x takes a value over a discrete and finite set, say {1, 2, ...,K}, we
can take advantage of the dependency structure to marginalize x and compute
p(y | φ). We start by defining the conditional observational distribution, stored in a
K ×N matrix ω with

ωkn = p(yn | xn = k, φ).

Next, we introduce the K ×K transition matrix, Γ, with

Γij = p(xn = j | xn−1 = i, φ).

Each row defines a probability distribution and must therefore be a simplex (i.e. its
components must add to 1). Currently, Stan only supports stationary transitions
where a single transition matrix is used for all transitions. Finally we define the
initial state K-vector ρ, with

ρk = p(x0 = k | φ).

The Stan functions that support this type of model are special in that the user does
not explicitly pass y and φ as arguments. Instead, the user passes logω, Γ, and ρ,
which in turn depend on y and φ.

29.1. Stan functions

real hmm_marginal(matrix log_omega, matrix Gamma, vector rho)
Returns the log probability density of y, with xn integrated out at each iteration.
Available since 2.24

The arguments represent (1) the log density of each output, (2) the transition matrix,
and (3) the initial state vector.

267

268 CHAPTER 29. HIDDEN MARKOV MODELS

• log_omega : logωkn = log p(yn | xn = k, φ), log density of each output,

• Gamma : Γij = p(xn = j|xn−1 = i, φ), the transition matrix,

• rho : ρk = p(x0 = k | φ), the initial state probability.

array[] int hmm_latent_rng(matrix log_omega, matrix Gamma, vector
rho)
Returns a length N array of integers over {1, ...,K}, sampled from the joint posterior
distribution of the hidden states, p(x | φ, y). May be only used in transformed data
and generated quantities.
Available since 2.24

matrix hmm_hidden_state_prob(matrix log_omega, matrix Gamma, vector
rho)
Returns the matrix of marginal posterior probabilities of each hidden state value.
This will be a K ×N matrix. The nth column is a simplex of probabilities for the nth

variable. Moreover, let A be the output. Then Aij = p(xj = i | φ, y). This function
may only be used in transformed data and generated quantities.
Available since 2.24

Appendix

269

30. Mathematical Functions

This appendix provides the definition of several mathematical functions used through-
out the manual.

30.1. Beta

The beta function, B(a, b), computes the normalizing constant for the beta distribu-
tion, and is defined for a > 0 and b > 0 by

B(a, b) =
∫ 1

0
ua−1(1− u)b−1 du = Γ(a) Γ(b)

Γ(a+ b) ,

where Γ(x) is the Gamma function.

30.2. Incomplete beta

The incomplete beta function, B(x; a, b), is defined for x ∈ [0, 1] and a, b ≥ 0 such
that a+ b 6= 0 by

B(x; a, b) =
∫ x

0
ua−1 (1− u)b−1 du,

where B(a, b) is the beta function defined in appendix. If x = 1, the incomplete beta
function reduces to the beta function, B(1; a, b) = B(a, b).

The regularized incomplete beta function divides the incomplete beta function by
the beta function,

Ix(a, b) = B(x; a, b)
B(a, b) .

30.3. Gamma

The gamma function, Γ(x), is the generalization of the factorial function to continu-
ous variables, defined so that for positive integers n,

Γ(n+ 1) = n!

270

30.4. DIGAMMA 271

Generalizing to all positive numbers and non-integer negative numbers,

Γ(x) =
∫ ∞

0
ux−1 exp(−u) du.

30.4. Digamma

The digamma function Ψ is the derivative of the log Γ function,

Ψ(u) = d

du
log Γ(u) = 1

Γ(u)
d

du
Γ(u).

References

Bailey, David H., Karthik Jeyabalan, and Xiaoye S. Li. 2005. “A Comparison of
Three High-Precision Quadrature Schemes.” Experiment. Math. 14 (3): 317–29.
https://projecteuclid.org:443/euclid.em/1128371757.

Bowling, Shannon R., Mohammad T. Khasawneh, Sittichai Kaewkuekool, and Byung
Rae Cho. 2009. “A Logistic Approximation to the Cumulative Normal Distribu-
tion.” Journal of Industrial Engineering and Management 2 (1): 114–27.

Ding, Peng, and Joseph K. Blitzstein. 2018. “On the Gaussian Mixture Representation
of the Laplace Distribution.” The American Statistician 72 (2): 172–74. https:
//doi.org/10.1080/00031305.2017.1291448.

Durbin, J., and S. J. Koopman. 2001. Time Series Analysis by State Space Methods.
New York: Oxford University Press.

Feller, William. 1968. An Introduction to Probability Theory and Its Applications. Vol.
1. 3. Wiley, New York.

Gelman, Andrew, J. B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald
B. Rubin. 2013. Bayesian Data Analysis. Third Edition. London: Chapman & Hall
/ CRC Press.

Golub, G. H., and V. Pereyra. 1973. “The Differentiation of Pseudo-Inverses and
Nonlinear Least Squares Problems Whose Variables Separate.” SIAM Journal on
Numerical Analysis 10 (2): 413–32. https://doi.org/10.1137/0710036.

Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.” http://eigen.tuxfamily.org.
Hindmarsh, Alan C, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban, Dan

E Shumaker, and Carol S Woodward. 2005. “SUNDIALS: Suite of Nonlinear
and Differential/Algebraic Equation Solvers.” ACM Transactions on Mathematical
Software (TOMS) 31 (3): 363–96.

Jorge J. More, Kenneth E. Hillstrom, Burton S. Garbow. 1980. User Guide for
MINPACK-1. 9700 South Cass Avenue, Argonne, Illinois 60439: Argonne National
Laboratory.

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. “Generating Random
Correlation Matrices Based on Vines and Extended Onion Method.” Journal of
Multivariate Analysis 100: 1989–2001.

Mori, Masatake. 1978. “An IMT-Type Double Exponential Formula for Numerical
Integration.” Publications of the Research Institute for Mathematical Sciences 14
(3): 713–29. https://doi.org/10.2977/prims/1195188835.

Navarro, Danielle J, and Ian G Fuss. 2009. “Fast and Accurate Calculations for First-

272

https://projecteuclid.org:443/euclid.em/1128371757
https://doi.org/10.1080/00031305.2017.1291448
https://doi.org/10.1080/00031305.2017.1291448
https://doi.org/10.1137/0710036
https://doi.org/10.2977/prims/1195188835

30.4. DIGAMMA 273

Passage Times in Wiener Diffusion Models.” Journal of Mathematical Psychology
53 (4): 222–30.

Powell, Michael J. D. 1970. “A Hybrid Method for Nonlinear Equations.” In Numerical
Methods for Nonlinear Algebraic Equations, edited by P. Rabinowitz. Gordon;
Breach.

Serban, Radu, Cosmin Petra, Alan C. Hindmarsh, Cody J. Balos, David J. Gardner,
Daniel R. Reynolds, and Carol S. Woodward. 2021. “User Documentation for
IDAS V5.0.0.” Lawrence Livermore National Laboratory.

Takahasi, Hidetosi, and Masatake Mori. 1974. “Double Exponential Formulas for
Numerical Integration.” Publications of the Research Institute for Mathematical
Sciences 9 (3): 721–41. https://doi.org/10.2977/prims/1195192451.

Tanaka, Ken’ichiro, Masaaki Sugihara, Kazuo Murota, and Masatake Mori. 2009.
“Function Classes for Double Exponential Integration Formulas.” Numerische
Mathematik 111 (4): 631–55. https://doi.org/10.1007/s00211-008-0195-1.

Vandekerckhove, Joachim, and Dominik Wabersich. 2014. “The RWiener Package:
An R Package Providing Distribution Functions for the Wiener Diffusion Model.”
The R Journal 6/1. http://journal.r-project.org/archive/2014-1/vandekerckhove-
wabersich.pdf.

Wichura, Michael J. 1988. “Algorithm AS 241: The Percentage Points of the Normal
Distribution.” Journal of the Royal Statistical Society. Series C (Applied Statistics)
37 (3): 477–84. http://www.jstor.org/stable/2347330.

https://doi.org/10.2977/prims/1195192451
https://doi.org/10.1007/s00211-008-0195-1
http://journal.r-project.org/archive/2014-1/vandekerckhove-wabersich.pdf
http://journal.r-project.org/archive/2014-1/vandekerckhove-wabersich.pdf
http://www.jstor.org/stable/2347330

Index

abs
(T x): T, 6, 21
(complex z): real, 44

acos
(T x): R, 25
(complex z): complex, 46

acosh
(T x): R, 26
(complex z): complex, 48

add_diag
(complex_matrix m, complex d):

complex_matrix, 111
(complex_matrix m,

complex_row_vector d):
complex_matrix, 111

(complex_matrix m, complex_vector
d): complex_matrix, 111

(matrix m, real d): matrix, 74
(matrix m, row_vector d): matrix, 73
(matrix m, vector d): matrix, 74

algebra_solver
(function algebra_system, vector

y_guess, vector theta, data
array[] real x_r, array[] int
x_i, data real rel_tol, data
real f_tol, int max_steps):
vector, 132

(function algebra_system, vector
y_guess, vector theta, data
array[] real x_r, array[] int
x_i): vector, 132

algebra_solver_newton
(function algebra_system, vector

y_guess, vector theta, data
array[] real x_r, array[] int
x_i): vector, 132

(function algebra_system, vector
y_guess, vector theta, data
array[] real x_r, array[] int
x_i, data real rel_tol, data
real f_tol, int max_steps):
vector, 132

append_array
(T x, T y): T, 56

append_col

(complex x, complex_row_vector y):
complex_row_vector, 114

(complex_matrix x, complex_matrix
y): complex_matrix, 113

(complex_matrix x, complex_vector
y): complex_matrix, 113

(complex_row_vector x, complex y):
complex_row_vector, 114

(complex_row_vector x,
complex_row_vector y):
complex_row_vector, 114

(complex_vector x, complex_matrix
y): complex_matrix, 113

(complex_vector x, complex_vector
y): complex_matrix, 113

(matrix x, matrix y): matrix, 79
(matrix x, vector y): matrix, 79
(real x, row_vector y): row_vector,

79
(row_vector x, real y): row_vector,

79
(row_vector x, row_vector y):

row_vector, 79
(vector x, matrix y): matrix, 79
(vector x, vector y): matrix, 79

append_row
(complex x, complex_vector y):

complex_vector, 114
(complex_matrix x, complex_matrix

y): complex_matrix, 114
(complex_matrix x,

complex_row_vector y):
complex_matrix, 114

(complex_row_vector x,
complex_matrix y):
complex_matrix, 114

(complex_row_vector x,
complex_row_vector y):
complex_matrix, 114

(complex_vector x, complex y):
complex_vector, 115

(complex_vector x, complex_vector
y): complex_vector, 114

(matrix x, matrix y): matrix, 79
(matrix x, row_vector y): matrix, 79

274

INDEX 275

(real x, vector y): vector, 80
(row_vector x, matrix y): matrix, 80
(row_vector x, row_vector y):

matrix, 80
(vector x, real y): vector, 80
(vector x, vector y): vector, 80

arg
(complex z): real, 44

asin
(T x): R, 25
(complex z): complex, 47

asinh
(T x): R, 26
(complex z): complex, 48

atan
(T x): R, 25
(complex z): complex, 47

atan2
(real y, real x): real, 25

atanh
(T x): R, 26
(complex z): complex, 48

bernoulli
sampling statement, 163

bernoulli_cdf
(ints y, reals theta): real, 163

bernoulli_lccdf
(ints y | reals theta): real, 164

bernoulli_lcdf
(ints y | reals theta): real, 163

bernoulli_logit
sampling statement, 164

bernoulli_logit_glm
sampling statement, 165

bernoulli_logit_glm_lpmf
(array[] int y | matrix x, real

alpha, vector beta): real, 167
(array[] int y | matrix x, vector

alpha, vector beta): real, 167
(array[] int y | row_vector x, real

alpha, vector beta): real, 166
(array[] int y | row_vector x,

vector alpha, vector beta):
real, 166

(int y | matrix x, real alpha,
vector beta): real, 165

(int y | matrix x, vector alpha,
vector beta): real, 166

bernoulli_logit_glm_lupmf
(array[] int y | matrix x, real

alpha, vector beta): real, 167
(array[] int y | matrix x, vector

alpha, vector beta): real, 167
(array[] int y | row_vector x, real

alpha, vector beta): real, 166
(array[] int y | row_vector x,

vector alpha, vector beta):
real, 166

(int y | matrix x, real alpha,
vector beta): real, 166

(int y | matrix x, vector alpha,
vector beta): real, 166

bernoulli_logit_glm_rng
(matrix x, vector alpha, vector

beta): array[] int, 167
(row_vector x, vector alpha, vector

beta): array[] int, 167
bernoulli_logit_lpmf

(ints y | reals alpha): real, 164
bernoulli_logit_lupmf

(ints y | reals alpha): real, 164
bernoulli_logit_rng

(reals alpha): R, 165
bernoulli_lpmf

(ints y | reals theta): real, 163
bernoulli_lupmf

(ints y | reals theta): real, 163
bernoulli_rng

(reals theta): R, 164
bessel_first_kind

(T1 x, T2 y): R, 31
(int v, real x): real, 31

bessel_second_kind
(T1 x, T2 y): R, 32
(int v, real x): real, 32

beta
(T1 x, T2 y): R, 28
(real alpha, real beta): real, 28
sampling statement, 232

beta_binomial
sampling statement, 171

beta_binomial_cdf
(ints n, ints N, reals alpha, reals

beta): real, 171
beta_binomial_lccdf

(ints n | ints N, reals alpha, reals

276 INDEX

beta): real, 171
beta_binomial_lcdf

(ints n | ints N, reals alpha, reals
beta): real, 171

beta_binomial_lpmf
(ints n | ints N, reals alpha, reals

beta): real, 171
beta_binomial_lupmf

(ints n | ints N, reals alpha, reals
beta): real, 171

beta_binomial_rng
(ints N, reals alpha, reals beta):

R, 171
beta_cdf

(reals theta, reals alpha, reals
beta): real, 232

beta_lccdf
(reals theta | reals alpha, reals

beta): real, 233
beta_lcdf

(reals theta | reals alpha, reals
beta): real, 233

beta_lpdf
(reals theta | reals alpha, reals

beta): real, 232
beta_lupdf

(reals theta | reals alpha, reals
beta): real, 232

beta_proportion
sampling statement, 233

beta_proportion_lccdf
(reals theta | reals mu, reals

kappa): real, 234
beta_proportion_lcdf

(reals theta | reals mu, reals
kappa): real, 234

beta_proportion_lpdf
(reals theta | reals mu, reals

kappa): real, 234
beta_proportion_lupdf

(reals theta | reals mu, reals
kappa): real, 234

beta_proportion_rng
(reals mu, reals kappa): R, 234

beta_rng
(reals alpha, reals beta): R, 233

binary_log_loss
(T1 x, T2 y): R, 28

(int y, real y_hat): real, 28
binomia_cdf

(ints n, ints N, reals theta): real,
169

binomia_lccdf
(ints n | ints N, reals theta):

real, 169
binomia_lcdf

(ints n | ints N, reals theta):
real, 169

binomia_lpmf
(ints n | ints N, reals theta):

real, 168
binomia_lupmf

(ints n | ints N, reals theta):
real, 169

binomial
sampling statement, 168

binomial_coefficient_log
(T1 x, T2 y): R, 31
(real x, real y): real, 30

binomial_logit
sampling statement, 170

binomial_logit_lpmf
(ints n | ints N, reals alpha):

real, 170
binomial_logit_lupmf

(ints n | ints N, reals alpha):
real, 170

binomial_rng
(ints N, reals theta): R, 169

block
(complex_matrix x, int i, int

j, int n_rows, int n_cols):
complex_matrix, 112

(matrix x, int i, int j, int n_rows,
int n_cols): matrix, 77

categorical
sampling statement, 173

categorical_logit
sampling statement, 173

categorical_logit_glm
sampling statement, 175

categorical_logit_glm_lpmf
(array[] int y | matrix x, vector

alpha, matrix beta): real, 176
(array[] int y | row_vector x,

vector alpha, matrix beta):

INDEX 277

real, 176
(int y | matrix x, vector alpha,

matrix beta): real, 175
(int y | row_vector x, vector alpha,

matrix beta): real, 175
categorical_logit_glm_lupmf

(array[] int y | matrix x, vector
alpha, matrix beta): real, 176

(array[] int y | row_vector x,
vector alpha, matrix beta):
real, 176

(int y | matrix x, vector alpha,
matrix beta): real, 175

(int y | row_vector x, vector alpha,
matrix beta): real, 175

categorical_logit_lpmf
(ints y | vector beta): real, 174

categorical_logit_lupmf
(ints y | vector beta): real, 174

categorical_logit_rng
(vector beta): int, 174

categorical_lpmf
(ints y | vector theta): real, 173

categorical_lupmf
(ints y | vector theta): real, 173

categorical_rng
(vector theta): int, 174

cauchy
sampling statement, 208

cauchy_cdf
(reals y, reals mu, reals sigma):

real, 208
cauchy_lccdf

(reals y | reals mu, reals sigma):
real, 209

cauchy_lcdf
(reals y | reals mu, reals sigma):

real, 208
cauchy_lpdf

(reals y | reals mu, reals sigma):
real, 208

cauchy_lupdf
(reals y | reals mu, reals sigma):

real, 208
cauchy_rng

(reals mu, reals sigma): R, 209
cbrt

(T x): R, 23

ceil
(T x): R, 23

chi_square
sampling statement, 216

chi_square_cdf
(reals y, reals nu): real, 216

chi_square_lccdf
(reals y | reals nu): real, 217

chi_square_lcdf
(reals y | reals nu): real, 217

chi_square_lpdf
(reals y | reals nu): real, 216

chi_square_lupdf
(reals y | reals nu): real, 216

chi_square_rng
(reals nu): R, 217

chol2inv
(matrix L): matrix, 92

cholesky_decompose
(matrix A): matrix, 95

choose
(T1 x, T2 y): R, 31
(int x, int y): int, 31

col
(complex_matrix x, int n):

complex_vector, 112
(matrix x, int n): vector, 76

cols
(complex_matrix x): int, 100
(complex_row_vector x): int, 100
(complex_vector x): int, 99
(matrix x): int, 59
(row_vector x): int, 59
(vector x): int, 59

columns_dot_product
(complex_matrix x, complex_matrix

y): complex_row_vector, 107
(complex_row_vector x,

complex_row_vector y):
complex_row_vector, 107

(complex_vector x, complex_vector
y): complex_row_vector, 106

(matrix x, matrix y): row_vector, 66
(row_vector x, row_vector y):

row_vector, 66
(vector x, vector y): row_vector, 66

columns_dot_self
(complex_matrix x):

278 INDEX

complex_row_vector, 107
(complex_row_vector x):

complex_row_vector, 107
(complex_vector x):

complex_row_vector, 107
(matrix x): row_vector, 67
(row_vector x): row_vector, 67
(vector x): row_vector, 67

conj
(complex z): complex, 44

cos
(T x): R, 25
(complex z): complex, 46

cosh
(T x): R, 26
(complex z): complex, 47

cov_exp_quad
(array[] real x, real alpha, real

rho): matrix, 152
(array[] real x1, array[] real x2,

real alpha, real rho): matrix,
153

(row_vectors x, real alpha, real
rho): matrix, 152

(row_vectors x1, row_vectors x2,
real alpha, real rho): matrix,
153

(vectors x, real alpha, real rho):
matrix, 152

(vectors x1, vectors x2, real alpha,
real rho): matrix, 153

crossprod
(matrix x): matrix, 68

csr_extract_u
(matrix a): array[] int, 120

csr_extract_v
(matrix a): array[] int, 120

csr_extract_w
(matrix a): vector, 120

csr_matrix_times_vector
(int m, int n, vector w, array[] int

v, array[] int u, vector b):
vector, 121

csr_to_dense_matrix
(int m, int n, vector w, array[] int

v, array[] int u): matrix, 120
cumulative_sum

(array[] complex x): array[] real,

116
(array[] int x): array[] int, 81
(array[] real x): array[] real, 81
(complex_row_vector rv):

complex_row_vector, 116
(complex_vector v): complex_vector,

116
(row_vector rv): row_vector, 81
(vector v): vector, 81

dae
(function residual, vector

initial_state, vector
initial_state_derivative,
real initial_time, array[] real
times, ...): array[] vector,
139

dae_tol
(function residual, vector

initial_state, vector
initial_state_derivative,
real initial_time, array[] real
times, data real rel_tol,
data real abs_tol, int
max_num_steps, ...): array[]
vector, 140

determinant
(matrix A): real, 91

diag_matrix
(complex_vector x): complex_matrix,

111
(vector x): matrix, 74

diag_post_multiply
(complex_matrix m,

complex_row_vector v):
complex_matrix, 108

(complex_matrix m, complex_vector
v): complex_matrix, 108

(matrix m, row_vector rv): matrix,
69

(matrix m, vector v): matrix, 69
diag_pre_multiply

(complex_row_vector v,
complex_matrix m):
complex_matrix, 108

(complex_vector v, complex_matrix
m): complex_matrix, 108

(row_vector rv, matrix m): matrix,
69

INDEX 279

(vector v, matrix m): matrix, 69
diagonal

(complex_matrix x): complex_vector,
111

(matrix x): vector, 74
digamma

(T x): R, 29
dims

(T x): array[] int, 54
dirichlet

sampling statement, 255
dirichlet_rng

(vector alpha): vector, 256
discrete_range

sampling statement, 177
discrete_range_cdf

(ints n, ints N, reals theta): real,
177

discrete_range_lccdf
(ints n | ints N, reals theta):

real, 177
discrete_range_lcdf

(ints n | ints N, reals theta):
real, 177

discrete_range_lpmf
(ints y | ints l, ints u): real, 177

discrete_range_lupmf
(ints y | ints l, ints u): real, 177

discrete_range_rng
(ints l, ints u): int, 177

distance
(row_vector x, row_vector y): real,

52
(row_vector x, vector y): real, 52
(vector x, row_vector y): real, 52
(vector x, vector y): real, 52

dot_product
(complex_row_vector x,

complex_row_vector y): complex,
106

(complex_row_vector x,
complex_vector y): complex,
106

(complex_vector x,
complex_row_vector y): complex,
106

(complex_vector x, complex_vector
y): complex, 106

(row_vector x, row_vector y): real,
66

(row_vector x, vector y): real, 66
(vector x, row_vector y): real, 66
(vector x, vector y): real, 66

dot_self
(complex_row_vector x): complex, 107
(complex_vector x): complex, 107
(row_vector x): real, 67
(vector x): real, 67

double_exponential
sampling statement, 210

double_exponential_cdf
(reals y, reals mu, reals sigma):

real, 210
double_exponential_lccdf

(reals y | reals mu, reals sigma):
real, 210

double_exponential_lcdf
(reals y | reals mu, reals sigma):

real, 210
double_exponential_lpdf

(reals y | reals mu, reals sigma):
real, 210

double_exponential_lupdf
(reals y | reals mu, reals sigma):

real, 210
double_exponential_rng

(reals mu, reals sigma): R, 210
e

(): real, 13
eigenvalues

(matrix A): complex_vector, 93
eigenvalues_sym

(complex_matrix A): complex_vector,
117

(matrix A): vector, 93
eigenvectors

(matrix A): complex_matrix, 93
eigenvectors_sym

(complex_matrix A): complex_matrix,
117

(matrix A): matrix, 93
erf

(T x): R, 27
erfc

(T x): R, 27
exp

280 INDEX

(T x): R, 24
(complex z): complex, 45

exp2
(T x): R, 24

exp_mod_normal
sampling statement, 204

exp_mod_normal_cdf
(reals y, reals mu, reals sigma,

reals lambda): real, 205
exp_mod_normal_lccdf

(reals y | reals mu, reals sigma,
reals lambda): real, 205

exp_mod_normal_rng
(reals mu, reals sigma, reals

lambda): R, 205
expm1

(T x): R, 35
exponential

sampling statement, 220
exponential_cdf

(reals y, reals beta): real, 220
exponential_lccdf

(reals y | reals beta): real, 220
exponential_lcdf

(reals y | reals beta): real, 220
exponential_lpdf

(reals y | reals beta): real, 220
exponential_lupdf

(reals y | reals beta): real, 220
exponential_rng

(reals beta): R, 220
fabs

(T x): R, 21
falling_factorial

(T1 x, T2 y): R, 33
(real x, real n): real, 33

fdim
(T1 x, T2 y): R, 21
(real x, real y): real, 21

fft
(complex_vector v): complex_vector,

115
fft2

(complex_matrix m): complex_matrix,
115

floor
(T x): R, 23

fma

(real x, real y, real z): real, 35
fmax

(T1 x, T2 y): R, 22
(real x, real y): real, 22

fmin
(T1 x, T2 y): R, 22
(real x, real y): real, 22

fmod
(T1 x, T2 y): R, 22
(real x, real y): real, 22

frechet
sampling statement, 224

frechet_cdf
(reals y, reals alpha, reals sigma):

real, 225
frechet_lccdf

(reals y | reals alpha, reals
sigma): real, 225

frechet_lcdf
(reals y | reals alpha, reals

sigma): real, 225
frechet_lpdf

(reals y | reals alpha, reals
sigma): real, 224

frechet_lupdf
(reals y | reals alpha, reals

sigma): real, 224
frechet_rng

(reals alpha, reals sigma): R, 225
gamma

sampling statement, 221
gamma_cdf

(reals y, reals alpha, reals beta):
real, 221

gamma_lccdf
(reals y | reals alpha, reals beta):

real, 221
gamma_lcdf

(reals y | reals alpha, reals beta):
real, 221

gamma_lpdf
(reals y | reals alpha, reals beta):

real, 221
gamma_lupdf

(reals y | reals alpha, reals beta):
real, 221

gamma_p
(T1 x, T2 y): R, 30

INDEX 281

(real a, real z): real, 30
gamma_q

(T1 x, T2 y): R, 30
(real a, real z): real, 30

gamma_rng
(reals alpha, reals beta): R, 221

gaussian_dlm_obs
sampling statement, 252

gaussian_dlm_obs_lpdf
(matrix y | matrix F, matrix G,

matrix V, matrix W, vector m0,
matrix C0): real, 252

(matrix y | matrix F, matrix G,
vector V, matrix W, vector m0,
matrix C0): real, 252

gaussian_dlm_obs_lupdf
(matrix y | matrix F, matrix G,

matrix V, matrix W, vector m0,
matrix C0): real, 252

(matrix y | matrix F, matrix G,
vector V, matrix W, vector m0,
matrix C0): real, 253

generalized_inverse
(matrix A): matrix, 93

get_imag
(T x): T_demoted, 110
(complex z): real, 40

get_lp
(): real, 15

get_real
(T x): T_demoted, 110
(complex z): real, 40

gp_dot_prod_cov
(array[] real x, real sigma):

matrix, 83
(array[] real x1, array[] real x2,

real sigma): matrix, 83
(vectors x, real sigma): matrix, 83
(vectors x1, vectors x2, real

sigma): matrix, 84
gp_exp_quad_cov

(array[] real x, real sigma, real
length_scale): matrix, 82

(array[] real x1, array[] real x2,
real sigma, real length_scale):
matrix, 82

(vectors x, real sigma, array[] real
length_scale): matrix, 82

(vectors x, real sigma, real
length_scale): matrix, 82

(vectors x1, vectors x2, real sigma,
array[] real length_scale):
matrix, 83

(vectors x1, vectors x2, real sigma,
real length_scale): matrix, 83

gp_exponential_cov
(array[] real x, real sigma, real

length_scale): matrix, 84
(array[] real x1, array[] real x2,

real sigma, real length_scale):
matrix, 84

(vectors x, real sigma, array[] real
length_scale): matrix, 84

(vectors x, real sigma, real
length_scale): matrix, 84

(vectors x1, vectors x2, real sigma,
array[] real length_scale):
matrix, 85

(vectors x1, vectors x2, real sigma,
real length_scale): matrix, 85

gp_matern32_cov
(array[] real x, real sigma, real

length_scale): matrix, 85
(array[] real x1, array[] real x2,

real sigma, real length_scale):
matrix, 85

(vectors x, real sigma, array[] real
length_scale): matrix, 86

(vectors x, real sigma, real
length_scale): matrix, 85

(vectors x1, vectors x2, real sigma,
array[] real length_scale):
matrix, 86

(vectors x1, vectors x2, real sigma,
real length_scale): matrix, 86

gp_matern52_cov
(array[] real x, real sigma, real

length_scale): matrix, 86
(array[] real x1, array[] real x2,

real sigma, real length_scale):
matrix, 86

(vectors x, real sigma, array[] real
length_scale): matrix, 87

(vectors x, real sigma, real
length_scale): matrix, 87

(vectors x1, vectors x2, real sigma,

282 INDEX

array[] real length_scale):
matrix, 87

(vectors x1, vectors x2, real sigma,
real length_scale): matrix, 87

gp_periodic_cov
(array[] real x, real sigma, real

length_scale, real period):
matrix, 87

(array[] real x1, array[] real x2,
real sigma, real length_scale,
real period): matrix, 88

(vectors x, real sigma, real
length_scale, real period):
matrix, 88

(vectors x1, vectors x2, real
sigma, real length_scale, real
period): matrix, 88

gumbel
sampling statement, 212

gumbel_cdf
(reals y, reals mu, reals beta):

real, 212
gumbel_lccdf

(reals y | reals mu, reals beta):
real, 212

gumbel_lcdf
(reals y | reals mu, reals beta):

real, 212
gumbel_lpdf

(reals y | reals mu, reals beta):
real, 212

gumbel_lupdf
(reals y | reals mu, reals beta):

real, 212
gumbel_rng

(reals mu, reals beta): R, 213
head

(array[] T sv, int n): array[] T, 78
(complex_row_vector rv, int n):

complex_row_vector, 112
(complex_vector v, int n):

complex_vector, 112
(row_vector rv, int n): row_vector,

77
(vector v, int n): vector, 77

hmm_hidden_state_prob
(matrix log_omega, matrix Gamma,

vector rho): matrix, 268

hmm_latent_rng
(matrix log_omega, matrix Gamma,

vector rho): array[] int, 268
hmm_marginal

(matrix log_omega, matrix Gamma,
vector rho): real, 267

hypergeometric
sampling statement, 172

hypergeometric_rng
(int N, int a, int2 b): int, 172

hypot
(T1 x, T2 y): R, 25
(real x, real y): real, 25

identity_matrix_matrix
(int k): matrix, 74

inc_beta
(real alpha, real beta, real x):

real, 28
int_step

(int x): int, 6
(real x): int, 6

integrate_1d
(function integrand, real a, real

b, array[] real theta, array[]
real x_r, array[] int x_i):
real, 142

(function integrand, real a, real
b, array[] real theta, array[]
real x_r, array[] int x_i, real
relative_tolerance): real, 142

integrate_ode
(function ode, array[] real

initial_state, real
initial_time, array[] real
times, array[] real theta,
array[] real x_r, array[] int
x_i): array[,] real, 150

integrate_ode_adams
(function ode, array[] real

initial_state, real
initial_time, array[] real
times, array[] real theta, data
array[] real x_r, data array[]
int x_i): array[,] real, 150

(function ode, array[] real
initial_state, real
initial_time, array[] real
times, array[] real theta, data

INDEX 283

array[] real x_r, data array[]
int x_i, data real rel_tol,
data real abs_tol, data int
max_num_steps): array[,] real,
150

integrate_ode_bdf
(function ode, array[] real

initial_state, real
initial_time, array[] real
times, array[] real theta, data
array[] real x_r, data array[]
int x_i): array[,] real, 151

(function ode, array[] real
initial_state, real
initial_time, array[] real
times, array[] real theta, data
array[] real x_r, data array[]
int x_i, data real rel_tol,
data real abs_tol, data int
max_num_steps): array[,] real,
151

integrate_ode_rk45
(function ode, array[] real

initial_state, real
initial_time, array[] real
times, array[] real theta,
array[] real x_r, array[] int
x_i): array[,] real, 150

(function ode, array[] real
initial_state, real
initial_time, array[] real
times, array[] real theta,
array[] real x_r, array[]
int x_i, real rel_tol, real
abs_tol, int max_num_steps):
array[,] real, 150

inv
(T x): R, 24

inv_chi_square
sampling statement, 217

inv_chi_square_cdf
(reals y, reals nu): real, 218

inv_chi_square_lccdf
(reals y | reals nu): real, 218

inv_chi_square_lcdf
(reals y | reals nu): real, 218

inv_chi_square_lpdf
(reals y | reals nu): real, 217

inv_chi_square_lupdf
(reals y | reals nu): real, 217

inv_chi_square_rng
(reals nu): R, 218

inv_cloglog
(T x): R, 27

inv_erfc
(T x): R, 27

inv_fft
(complex_vector u): complex_vector,

115
inv_fft2

(complex_matrix m): complex_matrix,
116

inv_gamma
sampling statement, 222

inv_gamma_cdf
(reals y, reals alpha, reals beta):

real, 222
inv_gamma_lccdf

(reals y | reals alpha, reals beta):
real, 222

inv_gamma_lcdf
(reals y | reals alpha, reals beta):

real, 222
inv_gamma_lpdf

(reals y | reals alpha, reals beta):
real, 222

inv_gamma_lupdf
(reals y | reals alpha, reals beta):

real, 222
inv_gamma_rng

(reals alpha, reals beta): R, 223
inv_inc_beta

(real alpha, real beta, real p):
real, 29

inv_logit
(T x): R, 27

inv_phi
(T x): R, 27

inv_sqrt
(T x): R, 24

inv_square
(T x): R, 24

inv_wishart
sampling statement, 263

inv_wishart_cholesky_lpdf
(matrix L_W | real nu, matrix L_S):

284 INDEX

real, 265
inv_wishart_lpdf

(matrix W | real nu, matrix Sigma):
real, 263

inv_wishart_lupdf
(matrix L_W | real nu, matrix L_S):

real, 265
(matrix W | real nu, matrix Sigma):

real, 264
inv_wishart_rng

(real nu, matrix L_S): matrix, 265
(real nu, matrix Sigma): matrix, 264

inverse
(matrix A): matrix, 92

inverse_spd
(matrix A): matrix, 92

is_inf
(real x): int, 19

is_nan
(real x): int, 19

lambert_w0
(T x): R, 37

lambert_wm1
(T x): R, 38

lbeta
(T1 x, T2 y): R, 29
(real alpha, real beta): real, 29

lchoose
(T1 x, T2 y): R, 34
(real x, real y): real, 33

ldexp
(T1 x, T2 y): R, 35
(real x, int y): real, 35

lgamma
(T x): R, 29

linspaced_array
(int n, data real lower, data real

upper): array[] real, 74
linspaced_int_array

(int n, int lower, int upper):
array[] real, 75

linspaced_row_vector
(int n, data real lower, data real

upper): row_vector, 75
linspaced_vector

(int n, data real lower, data real
upper): vector, 75

lkj_corr

sampling statement, 258
lkj_corr_cholesky

sampling statement, 259
lkj_corr_cholesky_lpdf

(matrix L | real eta): real, 259
lkj_corr_cholesky_lupdf

(matrix L | real eta): real, 259
lkj_corr_cholesky_rng

(int K, real eta): matrix, 259
lkj_corr_lpdf

(matrix y | real eta): real, 258
lkj_corr_lupdf

(matrix y | real eta): real, 258
lkj_corr_rng

(int K, real eta): matrix, 258
lmgamma

(T1 x, T2 y): R, 30
(int n, real x): real, 30

lmultiply
(T1 x, T2 y): R, 36
(real x, real y): real, 35

log
(T x): R, 24
(complex z): complex, 45

log10
(): real, 14
(T x): R, 24
(complex z): complex, 45

log1m
(T x): R, 36

log1m_exp
(T x): R, 36

log1m_inv_logit
(T x): R, 37

log1p
(T x): R, 36

log1p_exp
(T x): R, 36

log2
(): real, 14
(T x): R, 24

log_determinant
(matrix A): real, 91

log_diff_exp
(T1 x, T2 y): R, 36
(real x, real y): real, 36

log_falling_factorial
(real x, real n): real, 34

INDEX 285

log_inv_logit
(T x): R, 37

log_inv_logit_diff
(T1 x, T2 y): R, 37

log_mix
(T1 theta, T2 lp1, T3 lp2): real, 37
(real theta, real lp1, real lp2):

real, 36
log_modified_bessel_first_kind

(T1 x, T2 y): R, 32
(real v, real z): real, 32

log_rising_factorial
(T1 x, T2 y): R, 34
(real x, real n): real, 34

log_softmax
(vector x): vector, 81

log_sum_exp
(array[] real x): real, 50
(matrix x): real, 69
(real x, real y): real, 37
(row_vector x): real, 69
(vector x): real, 69

logistic
sampling statement, 211

logistic_cdf
(reals y, reals mu, reals sigma):

real, 211
logistic_lccdf

(reals y | reals mu, reals sigma):
real, 211

logistic_lcdf
(reals y | reals mu, reals sigma):

real, 211
logistic_lpdf

(reals y | reals mu, reals sigma):
real, 211

logistic_lupdf
(reals y | reals mu, reals sigma):

real, 211
logistic_rng

(reals mu, reals sigma): R, 211
logit

(T x): R, 26
loglogistic

sampling statement, 227
loglogistic_cdf

(reals y, reals alpha, reals beta):
real, 227

loglogistic_lpdf
(reals y | reals alpha, reals beta):

real, 227
loglogistic_rng

(reals alpha, reals beta): R, 227
lognormal

sampling statement, 215
lognormal_cdf

(reals y, reals mu, reals sigma):
real, 215

lognormal_lccdf
(reals y | reals mu, reals sigma):

real, 216
lognormal_lcdf

(reals y | reals mu, reals sigma):
real, 215

lognormal_lpdf
(reals y | reals mu, reals sigma):

real, 215
lognormal_lupdf

(reals y | reals mu, reals sigma):
real, 215

lognormal_rng
(reals mu, reals sigma): R, 216

machine_precision
(): real, 14

map_rect
(F f, vector phi, array[] vector

theta, data array[,] real x_r,
data array[,] int x_i): vector,
147

matrix_exp
(matrix A): matrix, 90

matrix_exp_multiply
(matrix A, matrix B): matrix, 90

matrix_power
(matrix A, int B): matrix, 91

max
(array[] int x): int, 49
(array[] real x): real, 49
(int x, int y): int, 7
(matrix x): real, 70
(row_vector x): real, 70
(vector x): real, 70

mdivide_left_spd
(matrix A, matrix B): vector, 90
(matrix A, vector b): matrix, 90

mdivide_left_tri_low

286 INDEX

(matrix A, matrix B): matrix, 89
(matrix A, vector b): vector, 89

mdivide_right_spd
(matrix B, matrix A): matrix, 90
(row_vector b, matrix A): row_vector,

90
mdivide_right_tri_low

(matrix B, matrix A): matrix, 89
(row_vector b, matrix A): row_vector,

89
mean

(array[] real x): real, 50
(matrix x): real, 71
(row_vector x): real, 71
(vector x): real, 71

min
(array[] int x): int, 49
(array[] real x): real, 49
(int x, int y): int, 7
(matrix x): real, 70
(row_vector x): real, 70
(vector x): real, 70

modified_bessel_first_kind
(T1 x, T2 y): R, 32
(int v, real z): real, 32

modified_bessel_second_kind
(T1 x, T2 y): R, 33
(int v, real z): real, 33

multi_gp
sampling statement, 246

multi_gp_cholesky
sampling statement, 247

multi_gp_cholesky_lpdf
(matrix y | matrix L, vector w):

real, 247
multi_gp_cholesky_lupdf

(matrix y | matrix L, vector w):
real, 247

multi_gp_lpdf
(matrix y | matrix Sigma, vector w):

real, 246
multi_gp_lupdf

(matrix y | matrix Sigma, vector w):
real, 246

multi_normal
sampling statement, 240

multi_normal_cholesky
sampling statement, 244

multi_normal_cholesky_lpdf
(row_vectors y | row_vectors mu,

matrix L): real, 245
(row_vectors y | vectors mu, matrix

L): real, 245
(vectors y | row_vectors mu, matrix

L): real, 244
(vectors y | vectors mu, matrix L):

real, 244
multi_normal_cholesky_lupdf

(row_vectors y | row_vectors mu,
matrix L): real, 245

(row_vectors y | vectors mu, matrix
L): real, 245

(vectors y | row_vectors mu, matrix
L): real, 244

(vectors y | vectors mu, matrix L):
real, 244

multi_normal_cholesky_rng
(row_vector mu, matrix L): vector,

245
(row_vectors mu, matrix L): vectors,

246
(vector mu, matrix L): vector, 245
(vectors mu, matrix L): vectors, 245

multi_normal_lpdf
(row_vectors y | row_vectors mu,

matrix Sigma): real, 241
(row_vectors y | vectors mu, matrix

Sigma): real, 241
(vectors y | row_vectors mu, matrix

Sigma): real, 241
(vectors y | vectors mu, matrix

Sigma): real, 240
multi_normal_lupdf

(row_vectors y | row_vectors mu,
matrix Sigma): real, 241

(row_vectors y | vectors mu, matrix
Sigma): real, 241

(vectors y | row_vectors mu, matrix
Sigma): real, 241

(vectors y | vectors mu, matrix
Sigma): real, 240

multi_normal_prec
sampling statement, 242

multi_normal_prec_lpdf
(row_vectors y | row_vectors mu,

matrix Omega): real, 243

INDEX 287

(row_vectors y | vectors mu, matrix
Omega): real, 243

(vectors y | row_vectors mu, matrix
Omega): real, 243

(vectors y | vectors mu, matrix
Omega): real, 242

multi_normal_prec_lupdf
(row_vectors y | row_vectors mu,

matrix Omega): real, 243
(row_vectors y | vectors mu, matrix

Omega): real, 243
(vectors y | row_vectors mu, matrix

Omega): real, 243
(vectors y | vectors mu, matrix

Omega): real, 242
multi_normal_rng

(row_vector mu, matrix Sigma):
vector, 242

(row_vectors mu, matrix Sigma):
vectors, 242

(vector mu, matrix Sigma): vector,
241

(vectors mu, matrix Sigma): vectors,
242

multi_student_t
sampling statement, 248

multi_student_t_cholesky
sampling statement, 250

multi_student_t_cholesky_lpdf
(vectors y | real nu, vectors mu,

matrix L): real, 250
multi_student_t_cholesky_lupdf

(vectors y | real nu, vectors mu,
matrix L): real, 251

multi_student_t_cholesky_rng
(real nu, row_vectors mu, matrix L):

vector, 251
(real nu, vector mu, matrix L):

vector, 251
multi_student_t_lpdf

(row_vectors y | real nu,
row_vectors mu, matrix Sigma):
real, 249

(row_vectors y | real nu, vectors
mu, matrix Sigma): real, 249

(vectors y | real nu, row_vectors
mu, matrix Sigma): real, 248

(vectors y | real nu, vectors mu,

matrix Sigma): real, 248
multi_student_t_lupdf

(row_vectors y | real nu,
row_vectors mu, matrix Sigma):
real, 249

(row_vectors y | real nu, vectors
mu, matrix Sigma): real, 249

(vectors y | real nu, row_vectors
mu, matrix Sigma): real, 248

(vectors y | real nu, vectors mu,
matrix Sigma): real, 248

multi_student_t_rng
(real nu, row_vector mu, matrix

Sigma): vector, 249
(real nu, row_vectors mu, matrix

Sigma): vectors, 250
(real nu, vector mu, matrix Sigma):

vector, 249
(real nu, vectors mu, matrix Sigma):

vectors, 250
multinomial

sampling statement, 194
multinomial_logit

sampling statement, 195
multinomial_logit_lpmf

(array[] int y | vector gamma):
real, 195

multinomial_logit_lupmf
(array[] int y | vector gamma):

real, 195
multinomial_logit_rng

(vector gamma, int N): array[] int,
196

multinomial_lpmf
(array[] int y | vector theta):

real, 194
multinomial_lupmf

(array[] int y | vector theta):
real, 194

multinomial_rng
(vector theta, int N): array[] int,

194
multiply_log

(T1 x, T2 y): R, 35
(real x, real y): real, 35

multiply_lower_tri_self_transpose
(matrix x): matrix, 69

neg_binomial

288 INDEX

sampling statement, 183
neg_binomial_2

sampling statement, 185
neg_binomial_2_cdf

(ints n, reals mu, reals phi): real,
185

neg_binomial_2_lccdf
(ints n | reals mu, reals phi):

real, 186
neg_binomial_2_lcdf

(ints n | reals mu, reals phi):
real, 185

neg_binomial_2_log
sampling statement, 186

neg_binomial_2_log_glm
sampling statement, 187

neg_binomial_2_log_glm_lpmf
(array[] int y | matrix x, real

alpha, vector beta, real phi):
real, 189

(array[] int y | matrix x, vector
alpha, vector beta, real phi):
real, 189

(array[] int y | row_vector x, real
alpha, vector beta, real phi):
real, 188

(array[] int y | row_vector x,
vector alpha, vector beta, real
phi): real, 188

(int y | matrix x, real alpha,
vector beta, real phi): real,
187

(int y | matrix x, vector alpha,
vector beta, real phi): real,
188

neg_binomial_2_log_glm_lupmf
(array[] int y | matrix x, real

alpha, vector beta, real phi):
real, 189

(array[] int y | matrix x, vector
alpha, vector beta, real phi):
real, 189

(array[] int y | row_vector x, real
alpha, vector beta, real phi):
real, 188

(array[] int y | row_vector x,
vector alpha, vector beta, real
phi): real, 188

(int y | matrix x, real alpha,
vector beta, real phi): real,
188

(int y | matrix x, vector alpha,
vector beta, real phi): real,
188

neg_binomial_2_log_lpmf
(ints n | reals eta, reals phi):

real, 186
neg_binomial_2_log_lupmf

(ints n | reals eta, reals phi):
real, 186

neg_binomial_2_log_rng
(reals eta, reals phi): R, 187

neg_binomial_2_lpmf
(ints n | reals mu, reals phi):

real, 185
neg_binomial_2_lupmf

(ints n | reals mu, reals phi):
real, 185

neg_binomial_2_rng
(reals mu, reals phi): R, 186

neg_binomial_cdf
(ints n, reals alpha, reals beta):

real, 184
neg_binomial_lccdf

(ints n | reals alpha, reals beta):
real, 184

neg_binomial_lcdf
(ints n | reals alpha, reals beta):

real, 184
neg_binomial_lpmf

(ints n | reals alpha, reals beta):
real, 183

neg_binomial_lupmf
(ints n | reals alpha, reals beta):

real, 183
neg_binomial_rng

(reals alpha, reals beta): R, 184
negative_infinity

(): real, 14
norm

(complex z): real, 44
norm1

(array[] real x): real, 51
(row_vector x): real, 51
(vector x): real, 51

norm2

INDEX 289

(array[] real x): real, 51
(row_vector x): real, 51
(vector x): real, 51

normal
sampling statement, 198

normal_cdf
(reals y, reals mu, reals sigma):

real, 198
normal_id_glm

sampling statement, 201
normal_id_glm_lpdf

(real y | matrix x, real alpha,
vector beta, real sigma): real,
201

(real y | matrix x, real alpha,
vector beta, vector sigma):
real, 202

(real y | matrix x, vector alpha,
vector beta, real sigma): real,
201

(real y | matrix x, vector alpha,
vector beta, vector sigma):
real, 202

(vector y | matrix x, real alpha,
vector beta, real sigma): real,
203

(vector y | matrix x, real alpha,
vector beta, vector sigma):
real, 203

(vector y | matrix x, vector alpha,
vector beta, real sigma): real,
203

(vector y | matrix x, vector alpha,
vector beta, vector sigma):
real, 204

(vector y | row_vector x, real
alpha, vector beta, real
sigma): real, 202

(vector y | row_vector x, vector
alpha, vector beta, real
sigma): real, 202

normal_id_glm_lupdf
(real y | matrix x, real alpha,

vector beta, real sigma): real,
201

(real y | matrix x, real alpha,
vector beta, vector sigma):
real, 202

(real y | matrix x, vector alpha,
vector beta, real sigma): real,
201

(real y | matrix x, vector alpha,
vector beta, vector sigma):
real, 202

(vector y | matrix x, real alpha,
vector beta, real sigma): real,
203

(vector y | matrix x, real alpha,
vector beta, vector sigma):
real, 203

(vector y | matrix x, vector alpha,
vector beta, real sigma): real,
203

(vector y | matrix x, vector alpha,
vector beta, vector sigma):
real, 204

(vector y | row_vector x, real
alpha, vector beta, real
sigma): real, 202

(vector y | row_vector x, vector
alpha, vector beta, real
sigma): real, 203

normal_lccdf
(reals y | reals mu, reals sigma):

real, 199
normal_lcdf

(reals y | reals mu, reals sigma):
real, 198

normal_lpdf
(reals y | reals mu, reals sigma):

real, 198
normal_lupdf

(reals y | reals mu, reals sigma):
real, 198

normal_rng
(reals mu, reals sigma): R, 199

not_a_number
(): real, 14

num_elements
(array[] T x): int, 54
(complex_matrix x): int, 99
(complex_row_vector x): int, 99
(complex_vector x): int, 99
(matrix x): int, 59
(row_vector x): int, 59
(vector x): int, 59

290 INDEX

ode_adams
(function ode, vector initial_state,

real initial_time, array[] real
times, ...): array[] vector,
135

ode_adams_tol
(function ode, vector initial_state,

real initial_time, array[]
real times, data real rel_tol,
data real abs_tol, data int
max_num_steps, ...): array[]
vector, 135

ode_bdf
(function ode, vector initial_state,

real initial_time, array[] real
times, ...): array[] vector,
135

ode_bdf_tol
(function ode, vector initial_state,

real initial_time, array[] real
times, data real rel_tol,
data real abs_tol, int
max_num_steps, ...): array[]
vector, 135

(function ode, vector initial_state,
real initial_time, array[]
real times, data real
rel_tol_forward, data vector
abs_tol_forward, data real
rel_tol_backward, data vector
abs_tol_backward, data real
rel_tol_quadrature, data
real abs_tol_quadrature,
int max_num_steps, int
num_steps_between_checkpoints,
int interpolation_polynomial,
int solver_forward, int
solver_backward, ...): array[]
vector, 136

ode_ckrk
(function ode, array[] real

initial_state, real
initial_time, array[] real
times, ...): array[] vector,
135

ode_ckrk_tol
(function ode, vector initial_state,

real initial_time, array[] real

times, data real rel_tol,
data real abs_tol, int
max_num_steps, ...): array[]
vector, 135

ode_rk45
(function ode, array[] real

initial_state, real
initial_time, array[] real
times, ...): array[] vector,
134

ode_rk45_tol
(function ode, vector initial_state,

real initial_time, array[] real
times, data real rel_tol,
data real abs_tol, int
max_num_steps, ...): array[]
vector, 134

one_hot_array
(int n, int k): array[] real, 75

one_hot_int_array
(int n, int k): array[] int, 75

one_hot_row_vector
(int n, int k): row_vector, 75

one_hot_vector
(int n, int k): vector, 75

ones_array
(int n): array[] real, 75

ones_int_array
(int n): array[] int, 75

ones_row_vector
(int n): row_vector, 76

ones_vector
(int n): vector, 76

operator/
(complex_matrix B, complex_matrix

A): complex_matrix, 117
(complex_row_vector b,

complex_matrix A):
complex_row_vector, 117

operator_add
(complex x, complex y): complex, 41
(complex x, complex_matrix y):

complex_matrix, 103
(complex x, complex_vector y):

complex_vector, 102
(complex x, row_complex_vector y):

row_complex_vector, 102
(complex_matrix x, complex y):

INDEX 291

complex_matrix, 103
(complex_matrix x, complex_matrix

y): complex_matrix, 101
(complex_vector x, complex y):

complex_vector, 102
(complex_vector x, complex_vector

y): complex_vector, 101
(int x): int, 6
(int x, int y): int, 5
(matrix x, matrix y): matrix, 60
(matrix x, real y): matrix, 62
(real x): real, 20
(real x, matrix y): matrix, 62
(real x, real y): real, 19
(real x, row_vector y): row_vector,

62
(real x, vector y): vector, 62
(row_complex_vector x, complex y):

row_complex_vector, 102
(row_complex_vector x,

row_complex_vector y):
row_complex_vector, 101

(row_vector x, real y): row_vector,
62

(row_vector x, row_vector y):
row_vector, 60

(vector x, real y): vector, 62
(vector x, vector y): vector, 60

operator_add
(complex z): complex, 41

operator_assign
(complex x, complex y): void, 43

operator_compound_add
(T x, U y): void, 129
(complex x, complex y): void, 43

operator_compound_divide
(T x, U y): void, 130
(complex x, complex y): void, 43

operator_compound_elt_divide
(T x, U y): void, 130

operator_compound_elt_mulitply
(T x, U y): void, 130

operator_compound_mulitply
(T x, U y): void, 130

operator_compound_multiply
(complex x, complex y): void, 43

operator_compound_subtract
(T x, U y): void, 129

(complex x, complex y): void, 43
operator_divide

(complex x, complex y): complex, 41
(complex_matrix x, complex y):

complex_matrix, 103
(complex_vector x, complex y):

complex_vector, 103
(int x, int y): int, 5
(matrix B, matrix A): matrix, 88
(matrix x, real y): matrix, 63
(real x, real y): real, 20
(row_complex_vector x, complex y):

row_complex_vector, 103
(row_vector b, matrix A): row_vector,

88
(row_vector x, real y): row_vector,

63
(vector x, real y): vector, 63

operator_elt_divide
(complex x, complex_matrix y):

complex_matrix, 105
(complex x, complex_row_vector y):

complex_row_vector, 105
(complex x, complex_vector y):

complex_vector, 104
(complex_matrix x, complex y):

complex_matrix, 105
(complex_matrix x, complex_matrix

y): complex_matrix, 105
(complex_row_vector x, complex y):

complex_row_vector, 105
(complex_row_vector x,

complex_row_vector y):
complex_row_vector, 105

(complex_vector x, complex y):
complex_vector, 105

(complex_vector x, complex_vector
y): complex_vector, 104

(matrix x, matrix y): matrix, 65
(matrix x, real y): matrix, 65
(real x, matrix y): matrix, 65
(real x, row_vector y): row_vector,

65
(real x, vector y): vector, 64
(row_vector x, real y): row_vector,

64
(row_vector x, row_vector y):

row_vector, 64

292 INDEX

(vector x, real y): vector, 64
(vector x, vector y): vector, 64

operator_elt_multiply
(complex_matrix x, complex_matrix

y): complex_matrix, 104
(complex_row_vector x,

complex_row_vector y):
complex_row_vector, 104

(complex_vector x, complex_vector
y): complex_vector, 104

(matrix x, matrix y): matrix, 64
(row_vector x, row_vector y):

row_vector, 64
(vector x, vector y): vector, 64

operator_elt_pow
(complex_matrix x, complex y):

matrix, 106
(complex_matrix x, complex_matrix

y): matrix, 106
(complex x, complex_matrix y):

matrix, 106
(complex x, complex_row_vector y):

complex_row_vector, 106
(complex x, complex_vector y):

vector, 105
(complex_row_vector x, complex y):

complex_row_vector, 106
(complex_row_vector x,

complex_row_vector y):
complex_row_vector, 105

(complex_vector x, complex y):
vector, 105

(complex_vector x, complex_vector
y): vector, 105

(matrix x, matrix y): matrix, 65
(matrix x, real y): matrix, 66
(real x, matrix y): matrix, 66
(real x, row_vector y): row_vector,

65
(real x, vector y): vector, 65
(row_vector x, real y): row_vector,

65
(row_vector x, row_vector y):

row_vector, 65
(vector x, real y): vector, 65
(vector x, vector y): vector, 65

operator_int_divide
(int x, int y): int, 5

operator_left_div
(matrix A, matrix B): matrix, 89
(matrix A, vector b): vector, 89

operator_logical_and
(int x, int y): int, 18
(real x, real y): int, 18

operator_logical_equal
(complex x, complex y): int, 42
(int x, int y): int, 17
(real x, real y): int, 17

operator_logical_greater_than
(int x, int y): int, 16
(real x, real y): int, 16

operator_logical_greater_than_equal
(int x, int y): int, 16
(real x, real y): int, 16

operator_logical_less_than
(int x, int y): int, 15
(real x, real y): int, 16

operator_logical_less_than_equal
(int x, int y): int, 16
(real x, real y): int, 16

operator_logical_not_equal
(complex x, complex y): int, 43
(int x, int y): int, 17
(real x, real y): int, 17

operator_logical_or
(int x, int y): int, 18
(real x, real y): int, 18

operator_mod
(int x, int y): int, 6

operator_multiply
(complex x, complex y): complex, 41
(complex x, complex_matrix y):

complex_matrix, 101
(complex x, complex_vector y):

complex_vector, 101
(complex x, row_complex_vector y):

row_complex_vector, 101
(complex_matrix x, complex y):

complex_matrix, 102
(complex_matrix x, complex_matrix

y): complex_matrix, 102
(complex_matrix x, complex_vector

y): complex_vector, 102
(complex_vector x, complex y):

complex_vector, 101
(complex_vector x,

INDEX 293

row_complex_vector y):
complex_matrix, 102

(int x, int y): int, 5
(matrix x, matrix y): matrix, 62
(matrix x, real y): matrix, 62
(matrix x, vector y): vector, 62
(real x, matrix y): matrix, 61
(real x, real y): real, 20
(real x, row_vector y): row_vector,

61
(real x, vector y): vector, 61
(row_complex_vector x, complex y):

row_complex_vector, 102
(row_complex_vector x,

complex_matrix y):
row_complex_vector, 102

(row_complex_vector x,
complex_vector y): complex,
102

(row_vector x, matrix y):
row_vector, 61

(row_vector x, real y): row_vector,
61

(row_vector x, vector y): real, 61
(vector x, real y): vector, 61
(vector x, row_vector y): matrix, 61

operator_negation
(int x): int, 17
(real x): int, 17

operator_pow
(complex x, complex y): complex, 42
(real x, real y): real, 20

operator_subtract
(complex x, complex y): complex, 41
(complex x, complex_matrix y):

complex_matrix, 103
(complex x, complex_vector y):

complex_vector, 103
(complex x, row_complex_vector y):

row_complex_vector, 103
(complex_matrix x): complex_matrix,

100
(complex_matrix x, complex y):

complex_matrix, 103
(complex_matrix x, complex_matrix

y): complex_matrix, 101
(complex_vector x): complex_vector,

100

(complex_vector x, complex y):
complex_vector, 103

(complex_vector x, complex_vector
y): complex_vector, 101

(int x): int, 6
(int x, int y): int, 5
(matrix x): matrix, 60
(matrix x, matrix y): matrix, 61
(matrix x, real y): matrix, 63
(real x): real, 20
(real x, matrix y): matrix, 63
(real x, real y): real, 19
(real x, row_vector y): row_vector,

63
(real x, vector y): vector, 63
(row_complex_vector x):

row_complex_vector, 100
(row_complex_vector x, complex y):

row_complex_vector, 103
(row_complex_vector x,

row_complex_vector y):
row_complex_vector, 101

(row_vector x): row_vector, 60
(row_vector x, real y): row_vector,

63
(row_vector x, row_vector y):

row_vector, 61
(vector x): vector, 60
(vector x, real y): vector, 62
(vector x, vector y): vector, 61

operator_subtract
(complex z): complex, 41

operator_transpose
(complex_matrix x): complex_matrix,

104
(complex_vector x):

row_complex_vector, 104
(matrix x): matrix, 63
(row_complex_vector x):

complex_vector, 104
(row_vector x): vector, 64
(vector x): row_vector, 63

ordered_logistic
sampling statement, 178

ordered_logistic_glm
sampling statement, 179

ordered_logistic_glm_lpmf
(array[] int y | matrix x, vector

294 INDEX

beta, vector c): real, 180
(array[] int y | row_vector x,

vector beta, vector c): real,
180

(int y | matrix x, vector beta,
vector c): real, 179

(int y | row_vector x, vector beta,
vector c): real, 179

ordered_logistic_glm_lupmf
(array[] int y | matrix x, vector

beta, vector c): real, 180
(array[] int y | row_vector x,

vector beta, vector c): real,
180

(int y | matrix x, vector beta,
vector c): real, 180

(int y | row_vector x, vector beta,
vector c): real, 179

ordered_logistic_lpmf
(ints k | vector eta, vectors c):

real, 178
ordered_logistic_lupmf

(ints k | vector eta, vectors c):
real, 178

ordered_logistic_rng
(real eta, vector c): int, 178

ordered_probit
sampling statement, 181

ordered_probit_lpmf
(ints k | real eta, vectors c):

real, 181
(ints k | vector eta, vectors c):

real, 181
ordered_probit_lupmf

(ints k | real eta, vectors c):
real, 181

(ints k | vector eta, vectors c):
real, 181

ordered_probit_rng
(real eta, vector c): int, 182

owens_t
(T1 x, T2 y): R, 28
(real h, real a): real, 28

pareto
sampling statement, 228

pareto_cdf
(reals y, reals y_min, reals alpha):

real, 228

pareto_lccdf
(reals y | reals y_min, reals

alpha): real, 229
pareto_lcdf

(reals y | reals y_min, reals
alpha): real, 228

pareto_lpdf
(reals y | reals y_min, reals

alpha): real, 228
pareto_lupdf

(reals y | reals y_min, reals
alpha): real, 228

pareto_rng
(reals y_min, reals alpha): R, 229

pareto_type_2
sampling statement, 229

pareto_type_2_cdf
(reals y, reals mu, reals lambda,

reals alpha): real, 230
pareto_type_2_lccdf

(reals y | reals mu, reals lambda,
reals alpha): real, 230

pareto_type_2_lcdf
(reals y | reals mu, reals lambda,

reals alpha): real, 230
pareto_type_2_lpdf

(reals y | reals mu, reals lambda,
reals alpha): real, 229

pareto_type_2_lupdf
(reals y | reals mu, reals lambda,

reals alpha): real, 230
pareto_type_2_rng

(reals mu, reals lambda, reals
alpha): R, 230

phi
(T x): R, 27

phi_approx
(T x): R, 27

pi
(): real, 13

poisson
sampling statement, 189

poisson_cdf
(ints n, reals lambda): real, 190

poisson_lccdf
(ints n | reals lambda): real, 190

poisson_lcdf
(ints n | reals lambda): real, 190

INDEX 295

poisson_log
sampling statement, 191

poisson_log_glm
sampling statement, 192

poisson_log_glm_lpmf
(array[] int y | matrix x, real

alpha, vector beta): real, 193
(array[] int y | matrix x, vector

alpha, vector beta): real, 193
(array[] int y | row_vector x, real

alpha, vector beta): real, 192
(array[] int y | row_vector x,

vector alpha, vector beta):
real, 192

(int y | matrix x, real alpha,
vector beta): real, 192

(int y | matrix x, vector alpha,
vector beta): real, 192

poisson_log_glm_lupmf
(array[] int y | matrix x, real

alpha, vector beta): real, 193
(array[] int y | matrix x, vector

alpha, vector beta): real, 193
(array[] int y | row_vector x, real

alpha, vector beta): real, 192
(array[] int y | row_vector x,

vector alpha, vector beta):
real, 192

(int y | matrix x, real alpha,
vector beta): real, 192

(int y | matrix x, vector alpha,
vector beta): real, 192

poisson_log_lpmf
(ints n | reals alpha): real, 191

poisson_log_lupmf
(ints n | reals alpha): real, 191

poisson_log_rng
(reals alpha): R, 191

poisson_rng
(reals lambda): R, 190

polar
(real r, real theta): complex, 45

positive_infinity
(): real, 14

pow
(T1 x, T2 y): R, 24
(T1 x, T2 y): Z, 46
(complex x, complex y): complex, 45

(real x, real y): real, 24
print

(T1 x1,..., TN xN): void, 2
prod

(array[] int x): real, 50
(array[] real x): real, 49
(complex_matrix x): complex, 109
(complex_row_vector x): complex, 109
(complex_vector x): complex, 109
(matrix x): real, 71
(row_vector x): real, 71
(vector x): real, 70

proj
(complex z): complex, 44

qr_q
(matrix A): matrix, 94

qr_r
(matrix A): matrix, 94

qr_thin_q
(matrix A): matrix, 94

qr_thin_r
(matrix A): matrix, 94

quad_form
(matrix A, matrix B): matrix, 68
(matrix A, vector B): real, 68

quad_form_diag
(matrix m, row_vector rv): matrix,

68
(matrix m, vector v): matrix, 68

quad_form_sym
(matrix A, matrix B): matrix, 68
(matrix A, vector B): real, 68

quantile
(data array[] real x, data array[]

real p): real, 53
(data array[] real x, data real p):

real, 53
(data row_vector x, data array[]

real p): real, 72
(data row_vector x, data real p):

real, 72
(data vector x, data array[] real

p): real, 72
(data vector x, data real p): real,

72
rank

(array[] int v, int s): int, 57
(array[] real v, int s): int, 57

296 INDEX

(row_vector v, int s): int, 96
(vector v, int s): int, 96

rayleigh
sampling statement, 225

rayleigh_cdf
(real y, real sigma): real, 226

rayleigh_lccdf
(real y | real sigma): real, 226

rayleigh_lcdf
(real y | real sigma): real, 226

rayleigh_lpdf
(reals y | reals sigma): real, 225

rayleigh_lupdf
(reals y | reals sigma): real, 226

rayleigh_rng
(reals sigma): R, 226

reduce_sum
(F f, array[] T x, int grainsize, T1

s1, T2 s2, ...): real, 145
reject

(T1 x1,..., TN xN): void, 3
rep_array

(T x, int k, int m, int n):
array[„] T, 54

(T x, int m, int n): array[,] T, 54
(T x, int n): array[] T, 54

rep_matrix
(complex z, int m, int n):

complex_matrix, 111
(complex_row_vector rv, int m):

complex_matrix, 111
(complex_vector v, int n):

complex_matrix, 111
(real x, int m, int n): matrix, 73
(row_vector rv, int m): matrix, 73
(vector v, int n): matrix, 73

rep_row_vector
(complex z, int n):

complex_row_vector, 110
(real x, int n): row_vector, 73

rep_vector
(complex z, int m): complex_vector,

110
(real x, int m): vector, 72

reverse
(array[] T v): array[] T, 58
(complex_row_vector v):

complex_row_vector, 118

(complex_vector v): complex_vector,
118

(row_vector v): row_vector, 96
(vector v): vector, 96

rising_factorial
(T1 x, T2 y): R, 34
(real x, int n): real, 34

round
(T x): R, 23

row
(complex_matrix x, int m):

complex_row_vector, 112
(matrix x, int m): row_vector, 76

rows
(complex_matrix x): int, 99
(complex_row_vector x): int, 99
(complex_vector x): int, 99
(matrix x): int, 59
(row_vector x): int, 59
(vector x): int, 59

rows_dot_product
(complex_matrix x, complex_matrix

y): complex_vector, 107
(complex_row_vector x,

complex_row_vector y):
complex_vector, 107

(complex_vector x, complex_vector
y): complex_vector, 107

(matrix x, matrix y): vector, 67
(row_vector x, row_vector y):

vector, 66
(vector x, vector y): vector, 66

rows_dot_self
(complex_matrix x): complex_vector,

108
(complex_row_vector x):

complex_vector, 108
(complex_vector x): complex_vector,

108
(matrix x): vector, 67
(row_vector x): vector, 67
(vector x): vector, 67

scale_matrix_exp_multiply
(real t, matrix A, matrix B): matrix,

91
scaled_inv_chi_square

sampling statement, 218
scaled_inv_chi_square_cdf

INDEX 297

(reals y, reals nu, reals sigma):
real, 219

scaled_inv_chi_square_lccdf
(reals y | reals nu, reals sigma):

real, 219
scaled_inv_chi_square_lcdf

(reals y | reals nu, reals sigma):
real, 219

scaled_inv_chi_square_lpdf
(reals y | reals nu, reals sigma):

real, 219
scaled_inv_chi_square_lupdf

(reals y | reals nu, reals sigma):
real, 219

scaled_inv_chi_square_rng
(reals nu, reals sigma): R, 219

sd
(array[] real x): real, 51
(matrix x): real, 72
(row_vector x): real, 71
(vector x): real, 71

segment
(array[] T sv, int i, int n):

array[] T, 78
(complex_row_vector rv, int i, int

n): complex_row_vector, 113
(complex_vector v, int i, int n):

complex_vector, 113
(row_vector rv, int i, int n):

row_vector, 78
(vector v, int i, int n): vector, 78

sin
(T x): R, 25
(complex z): complex, 46

singular_values
(complex_matrix A): vector, 118
(matrix A): vector, 95

sinh
(T x): R, 26
(complex z): complex, 47

size
(array[] T x): int, 54
(complex_matrix x): int, 100
(complex_row_vector x): int, 100
(complex_vector x): int, 100
(int x): int, 7
(matrix x): int, 60
(real x): int, 7

(row_vector x): int, 60
(vector x): int, 59

skew_double_exponential
sampling statement, 213

skew_double_exponential_cdf
(reals y, reals mu, reals sigma,

reals tau): real, 213
skew_double_exponential_lccdf

(reals y | reals mu, reals sigma,
reals tau): real, 214

skew_double_exponential_lcdf
(reals y | reals mu, reals sigma,

reals tau): real, 214
skew_double_exponential_lpdf

(reals y | reals mu, reals sigma,
reals tau): real, 213

skew_double_exponential_lupdf
(reals y | reals mu, reals sigma,

reals tau): real, 213
skew_double_exponential_rng

(reals mu, reals sigma, reals tau):
R, 214

skew_normal
sampling statement, 206

skew_normal_cdf
(reals y, reals xi, reals omega,

reals alpha): real, 206
skew_normal_lccdf

(reals y | reals xi, reals omega,
reals alpha): real, 206

skew_normal_lcdf
(reals y | reals xi, reals omega,

reals alpha): real, 206
skew_normal_lpdf

(reals y | reals xi, reals omega,
reals alpha): real, 206

skew_normal_lupdf
(reals y | reals xi, reals omega,

reals alpha): real, 206
skew_normal_rng

(reals xi, reals omega, real alpha):
R, 206

softmax
(vector x): vector, 81

sort_asc
(array[] int v): array[] int, 56
(array[] real v): array[] real, 56
(row_vector v): row_vector, 95

298 INDEX

(vector v): vector, 95
sort_desc

(array[] int v): array[] int, 57
(array[] real v): array[] real, 56
(row_vector v): row_vector, 96
(vector v): vector, 95

sort_indices_asc
(array[] int v): array[] int, 57
(array[] real v): array[] int, 57
(row_vector v): array[] int, 96
(vector v): array[] int, 96

sort_indices_desc
(array[] int v): array[] int, 57
(array[] real v): array[] int, 57
(row_vector v): array[] int, 96
(vector v): array[] int, 96

sqrt
(T x): R, 23
(complex x): complex, 46

sqrt2
(): real, 14

square
(T x): R, 23

squared_distance
(row_vector x, row_vector y): real,

52
(row_vector x, vector y): real, 52
(vector x, row_vector y): real, 52
(vector x, vector y): real, 52

std_normal
sampling statement, 200

std_normal_cdf
(reals y): real, 200

std_normal_lccdf
(reals y): real, 200

std_normal_lcdf
(reals y): real, 200

std_normal_lpdf
(reals y): real, 200

std_normal_lupdf
(reals y): real, 200

std_normal_rng
(): real, 200

step
(real x): real, 18

student_t
sampling statement, 207

student_t_cdf

(reals y, reals nu, reals mu, reals
sigma): real, 207

student_t_lccdf
(reals y | reals nu, reals mu, reals

sigma): real, 207
student_t_lcdf

(reals y | reals nu, reals mu, reals
sigma): real, 207

student_t_lpdf
(reals y | reals nu, reals mu, reals

sigma): real, 207
student_t_lupdf

(reals y | reals nu, reals mu, reals
sigma): real, 207

student_t_rng
(reals nu, reals mu, reals sigma):

R, 208
sub_col

(complex_matrix x, int i, int j, int
n_rows): complex_vector, 112

(matrix x, int i, int j, int
n_rows): vector, 77

sub_row
(complex_matrix x, int i, int j, int

n_cols): complex_row_vector,
112

(matrix x, int i, int j, int
n_cols): row_vector, 77

sum
(array[] complex x): complex, 49
(array[] int x): int, 49
(array[] real x): real, 49
(complex_matrix x): complex, 109
(complex_row_vector x): complex, 109
(complex_vector x): complex, 109
(matrix x): real, 70
(row_vector x): real, 70
(vector x): real, 70

svd_U
(complex_matrix A): complex_matrix,

118
(matrix A): matrix, 95

svd_V
(complex_matrix A): complex_matrix,

118
(matrix A): matrix, 95

symmetrize_from_lower_tri
(complex_matrix A): complex_matrix,

INDEX 299

111
(matrix A): matrix, 73

tail
(array[] T sv, int n): array[] T, 78
(complex_row_vector rv, int n):

complex_row_vector, 113
(complex_vector v, int n):

complex_vector, 113
(row_vector rv, int n): row_vector,

78
(vector v, int n): vector, 78

tan
(T x): R, 25
(complex z): complex, 46

tanh
(T x): R, 26
(complex z): complex, 47

target
(): real, 15

tcrossprod
(matrix x): matrix, 67

tgamma
(T x): R, 29

to_array_1d
(array[...] complex a): array[]

complex, 128
(array[...] int a): array[] int,

128
(array[...] real a): array[] real,

128
(complex_matrix m): array[] complex,

127
(complex_row_vector v): array[]

complex, 127
(complex_vector v): array[] complex,

127
(matrix m): array[] real, 127
(row_vector v): array[] real, 127
(vector v): array[] real, 127

to_array_2d
(complex_matrix m): array[,]

complex, 127
(matrix m): array[,] real, 127

to_complex
(): complex, 40
(T1 re, T2 im): Z, 40
(real re): complex, 40
(real re, real im): complex, 40

to_matrix
(array[,] complex a):

complex_matrix, 125
(array[,] int a): matrix, 125
(array[,] real a): matrix, 125
(array[] complex a, int m, int n):

complex_matrix, 124
(array[] complex a, int m, int n,

int col_major): complex_matrix,
124

(array[] complex_row_vector vs):
complex_matrix, 125

(array[] int a, int m, int n):
matrix, 124

(array[] int a, int m, int n, int
col_major): matrix, 124

(array[] real a, int m, int n):
matrix, 124

(array[] real a, int m, int n, int
col_major): matrix, 124

(array[] row_vector vs): matrix, 124
(complex_matrix A, int m, int n, int

col_major): complex_matrix, 123
(complex_matrix M, int m, int n):

complex_matrix, 122
(complex_matrix m): complex_matrix,

122
(complex_row_vector v):

complex_matrix, 122
(complex_row_vector v, int m, int

n): complex_matrix, 123
(complex_row_vector v, int m, int n,

int col_major): complex_matrix,
124

(complex_vector v): complex_matrix,
122

(complex_vector v, int m, int n):
complex_matrix, 123

(complex_vector v, int m, int n, int
col_major): complex_matrix, 123

(matrix A, int m, int n, int
col_major): matrix, 123

(matrix M, int m, int n): matrix,
122

(matrix m): matrix, 122
(row_vector v): matrix, 122
(row_vector v, int m, int n):

matrix, 123

300 INDEX

(row_vector v, int m, int n, int
col_major): matrix, 123

(vector v): matrix, 122
(vector v, int m, int n): matrix,

122
(vector v, int m, int n, int

col_major): matrix, 123
to_row_vector

(array[] complex a):
complex_row_vector, 127

(array[] int a): row_vector, 127
(array[] real a): row_vector, 126
(complex_matrix m):

complex_row_vector, 126
(complex_row_vector v):

complex_row_vector, 126
(complex_vector v):

complex_row_vector, 126
(matrix m): row_vector, 126
(row_vector v): row_vector, 126
(vector v): row_vector, 126

to_vector
(array[] complex a): complex_vector,

126
(array[] int a): vector, 126
(array[] real a): vector, 126
(complex_matrix m): complex_vector,

125
(complex_row_vector v):

complex_vector, 126
(complex_vector v): complex_vector,

125
(matrix m): vector, 125
(row_vector v): vector, 125
(vector v): vector, 125

trace
(complex_matrix A): complex, 117
(matrix A): real, 91

trace_gen_quad_form
(matrix D,matrix A, matrix B): real,

68
trace_quad_form

(matrix A, matrix B): real, 68
trigamma

(T x): R, 29
trunc

(T x): R, 23
uniform

sampling statement, 238
uniform_cdf

(reals y, reals alpha, reals beta):
real, 238

uniform_lccdf
(reals y | reals alpha, reals beta):

real, 239
uniform_lcdf

(reals y | reals alpha, reals beta):
real, 238

uniform_lpdf
(reals y | reals alpha, reals beta):

real, 238
uniform_lupdf

(reals y | reals alpha, reals beta):
real, 238

uniform_rng
(reals alpha, reals beta): R, 239

uniform_simplex
(int n): vector, 76

variance
(array[] real x): real, 50
(matrix x): real, 71
(row_vector x): real, 71
(vector x): real, 71

von_mises
sampling statement, 235

von_mises_cdf
(reals y | reals mu, reals kappa):

R, 236
von_mises_lcdf

(reals y | reals mu, reals kappa):
R, 236

von_mises_lpdf
(reals y | reals mu, reals kappa):

R, 236
von_mises_lupdf

(reals y | reals mu, reals kappa):
R, 236

von_mises_rng
(reals mu, reals kappa): R, 236

weibull
sampling statement, 223

weibull_cdf
(reals y, reals alpha, reals sigma):

real, 223
weibull_lccdf

(reals y | reals alpha, reals

INDEX 301

sigma): real, 224
weibull_lcdf

(reals y | reals alpha, reals
sigma): real, 223

weibull_lpdf
(reals y | reals alpha, reals

sigma): real, 223
weibull_lupdf

(reals y | reals alpha, reals
sigma): real, 223

weibull_rng
(reals alpha, reals sigma): R, 224

wiener
sampling statement, 231

wiener_lpdf
(reals y | reals alpha, reals tau,

reals beta, reals delta): real,
231

wiener_lupdf
(reals y | reals alpha, reals tau,

reals beta, reals delta): real,
231

wishart
sampling statement, 261

wishart_cholesky_lpdf
(matrix L_W | real nu, matrix L_S):

real, 263
wishart_lpdf

(matrix W | real nu, matrix Sigma):
real, 261

wishart_lupdf
(matrix L_W | real nu, matrix L_S):

real, 263
(matrix W | real nu, matrix Sigma):

real, 261
wishart_rng

(real nu, matrix L_S): matrix, 263
(real nu, matrix Sigma): matrix, 262

zeros_array
(int n): array[] real, 76

zeros_int_array
(int n): array[] int, 76

zeros_row_vector
(int n): row_vector, 76

zeros_vector
(int n): vector, 76

	Overview
	Built-In Functions
	Void Functions
	Print statement
	Reject statement

	Integer-Valued Basic Functions
	Integer-valued arithmetic operators
	Absolute functions
	Bound functions
	Size functions

	Real-Valued Basic Functions
	Vectorization of real-valued functions
	Mathematical constants
	Special values
	Log probability function
	Logical functions
	Real-valued arithmetic operators
	Step-like functions
	Power and logarithm functions
	Trigonometric functions
	Hyperbolic trigonometric functions
	Link functions
	Probability-related functions
	Combinatorial functions
	Composed functions
	Special functions

	Complex-Valued Basic Functions
	Complex assignment and promotion
	Complex constructors and accessors
	Complex arithmetic operators
	Complex comparison operators
	Complex (compound) assignment operators
	Complex special functions
	Complex exponential and power functions
	Complex trigonometric functions
	Complex hyperbolic trigonometric functions

	Array Operations
	Reductions
	Array size and dimension function
	Array broadcasting
	Array concatenation
	Sorting functions
	Reversing functions

	Matrix Operations
	Integer-valued matrix size functions
	Matrix arithmetic operators
	Transposition operator
	Elementwise functions
	Dot products and specialized products
	Reductions
	Broadcast functions
	Diagonal matrix functions
	Container construction functions
	Slicing and blocking functions
	Matrix concatenation
	Special matrix functions
	Gaussian Process Covariance Functions
	Linear algebra functions and solvers
	Sort functions
	Reverse functions

	Complex Matrix Operations
	Complex promotion
	Integer-valued complex matrix size functions
	Complex matrix arithmetic operators
	Complex Transposition Operator
	Complex elementwise functions
	Dot products and specialized products for complex matrices
	Complex reductions
	Vectorized accessor functions
	Complex broadcast functions
	Diagonal complex matrix functions
	Slicing and blocking functions for complex matrices
	Complex matrix concatenation
	Complex special matrix functions
	Complex linear algebra functions
	Reverse functions for complex matrices

	Sparse Matrix Operations
	Compressed row storage
	Conversion functions
	Sparse matrix arithmetic

	Mixed Operations
	Compound Arithmetic and Assignment
	Compound addition and assignment
	Compound subtraction and assignment
	Compound multiplication and assignment
	Compound division and assignment
	Compound elementwise multiplication and assignment
	Compound elementwise division and assignment

	Higher-Order Functions
	Algebraic equation solver
	Ordinary differential equation (ODE) solvers
	Differential-Algebraic equation (DAE) solver
	1D integrator
	Reduce-sum function
	Map-rect function

	Deprecated Functions
	multiply_log and binomial_coefficient_log functions
	get_lp() function
	fabs function
	Integer division with operator/
	integrate_ode_rk45, integrate_ode_adams, integrate_ode_bdf ODE Integrators
	Exponentiated quadratic covariance functions

	Removed Functions
	Conventions for Probability Functions
	Suffix marks type of function
	Argument order and the vertical bar
	Sampling notation
	Finite inputs
	Boundary conditions
	Pseudorandom number generators
	Cumulative distribution functions
	Vectorization

	Discrete Distributions
	Binary Distributions
	Bernoulli distribution
	Bernoulli distribution, logit parameterization
	Bernoulli-logit generalized linear model (Logistic Regression)

	Bounded Discrete Distributions
	Binomial distribution
	Binomial distribution, logit parameterization
	Beta-binomial distribution
	Hypergeometric distribution
	Categorical distribution
	Categorical logit generalized linear model (softmax regression)
	Discrete range distribution
	Ordered logistic distribution
	Ordered logistic generalized linear model (ordinal regression)
	Ordered probit distribution

	Unbounded Discrete Distributions
	Negative binomial distribution
	Negative binomial distribution (alternative parameterization)
	Negative binomial distribution (log alternative parameterization)
	Negative-binomial-2-log generalized linear model (negative binomial regression)
	Poisson distribution
	Poisson distribution, log parameterization
	Poisson-log generalized linear model (Poisson regression)

	Multivariate Discrete Distributions
	Multinomial distribution
	Multinomial distribution, logit parameterization

	Continuous Distributions
	Unbounded Continuous Distributions
	Normal distribution
	Normal-id generalized linear model (linear regression)
	Exponentially modified normal distribution
	Skew normal distribution
	Student-t distribution
	Cauchy distribution
	Double exponential (Laplace) distribution
	Logistic distribution
	Gumbel distribution
	Skew double exponential distribution

	Positive Continuous Distributions
	Lognormal distribution
	Chi-square distribution
	Inverse chi-square distribution
	Scaled inverse chi-square distribution
	Exponential distribution
	Gamma distribution
	Inverse gamma Distribution
	Weibull distribution
	Frechet distribution
	Rayleigh distribution
	Log-logistic distribution

	Positive Lower-Bounded Distributions
	Pareto distribution
	Pareto type 2 distribution
	Wiener First Passage Time Distribution

	Continuous Distributions on [0, 1]
	Beta distribution
	Beta proportion distribution

	Circular Distributions
	Von Mises distribution

	Bounded Continuous Distributions
	Uniform distribution

	Distributions over Unbounded Vectors
	Multivariate normal distribution
	Multivariate normal distribution, precision parameterization
	Multivariate normal distribution, Cholesky parameterization
	Multivariate Gaussian process distribution
	Multivariate Gaussian process distribution, Cholesky parameterization
	Multivariate Student-t distribution
	Multivariate Student-t distribution, Cholesky parameterization
	Gaussian dynamic linear models

	Simplex Distributions
	Dirichlet distribution

	Correlation Matrix Distributions
	LKJ correlation distribution
	Cholesky LKJ correlation distribution

	Covariance Matrix Distributions
	Wishart distribution
	Wishart distribution, Cholesky Parameterization
	Inverse Wishart distribution
	Inverse Wishart distribution, Cholesky Parameterization

	Additional Distributions
	Hidden Markov Models
	Stan functions

	Appendix
	Mathematical Functions
	Beta
	Incomplete beta
	Gamma
	Digamma

	References
	Index

