
Stan Functions Reference
Version 2.37

Stan Development Team

Table of Contents

Overview 1

I Built-in Functions 2

1. Void Functions 4

1.1 Print statement 4

1.2 Reject statement 4

1.3 Fatal error statement 5

2. Integer-Valued Basic Functions 6

2.1 Integer-valued arithmetic operators 6

2.2 Absolute functions 8

2.3 Bound functions 9

2.4 Size functions 9

2.5 Casting functions 10

3. Real-Valued Basic Functions 11

3.1 Vectorization of real-valued functions 11

3.2 Mathematical constants 16

3.3 Special values 17

3.4 Log probability function 17

3.5 Logical functions 18

3.6 Real-valued arithmetic operators 22

3.7 Step-like functions 24

3.8 Power and logarithm functions 26

3.9 Trigonometric functions 28

3.10 Hyperbolic trigonometric functions 29

3.11 Link functions 29

3.12 Probability-related functions 30

3.13 Combinatorial functions 31

ii

TABLE OF CONTENTS iii

3.14 Composed functions 38

3.15 Special functions 41

3.16 Hypergeometric Functions 41

4. Complex-Valued Basic Functions 43

4.1 Complex assignment and promotion 43

4.2 Complex constructors and accessors 43

4.3 Complex arithmetic operators 44

4.4 Complex comparison operators 46

4.5 Complex (compound) assignment operators 47

4.6 Complex special functions 47

4.7 Complex exponential and power functions 49

4.8 Complex trigonometric functions 50

4.9 Complex hyperbolic trigonometric functions 51

5. Array Operations 53

5.1 Reductions 53

5.2 Array size and dimension function 57

5.3 Array broadcasting 58

5.4 Array concatenation 60

5.5 Sorting functions 60

5.6 Reversing functions 62

6. Matrix Operations 63

6.1 Integer-valued matrix size functions 63

6.2 Matrix arithmetic operators 64

6.3 Transposition operator 68

6.4 Elementwise functions 68

6.5 Dot products and specialized products 71

6.6 Reductions 75

6.7 Broadcast functions 78

6.8 Diagonal matrix functions 79

6.9 Container construction functions 80

6.10 Slicing and blocking functions 82

6.11 Matrix and vector concatenation 84

iv TABLE OF CONTENTS

6.12 Special matrix functions 86

6.13 Gaussian Process Covariance Functions 87

6.14 Linear algebra functions and solvers 94

6.15 Sort functions 102

6.16 Reverse functions 104

7. Complex Matrix Operations 105

7.1 Complex promotion 105

7.2 Integer-valued complex matrix size functions 106

7.3 Complex matrix arithmetic operators 107

7.4 Complex Transposition Operator 111

7.5 Complex elementwise functions 112

7.6 Dot products and specialized products for complex
matrices 114

7.7 Complex reductions 116

7.8 Vectorized accessor functions 117

7.9 Complex broadcast functions 118

7.10 Diagonal complex matrix functions 119

7.11 Slicing and blocking functions for complex matrices 119

7.12 Complex matrix concatenation 121

7.13 Complex special matrix functions 123

7.14 Complex linear algebra functions 124

7.15 Reverse functions for complex matrices 128

8. Sparse Matrix Operations 129

8.1 Compressed row storage 129

8.2 Conversion functions 130

8.3 Sparse matrix arithmetic 131

9. Mixed Operations 132

10. Compound Arithmetic and Assignment 140

10.1 Compound addition and assignment 140

10.2 Compound subtraction and assignment 140

10.3 Compound multiplication and assignment 140

TABLE OF CONTENTS v

10.4 Compound division and assignment 141

10.5 Compound elementwise multiplication and assignment 141

10.6 Compound elementwise division and assignment 141

11. Higher-Order Functions 142

11.1 Algebraic equation solvers 142

11.2 Ordinary differential equation (ODE) solvers 145

11.3 Differential-Algebraic equation (DAE) solver 150

11.4 1D integrator 152

11.5 Reduce-sum function 155

11.6 Map-rect function 157

12. Variable Transformation Functions 158

12.1 Transforms for scalars 158

12.2 Transforms for constrained vectors 161

12.3 Transforms for constrained matrices 164

13. Deprecated Functions 169

13.1 Integer division with operator/ 169

13.2 integrate_ode_rk45, integrate_ode_adams, integrate_ode_bdf
ODE Integrators 169

13.3 algebra_solver, algebra_solver_newton algebraic solvers 172

14. Removed Functions 175

14.1 multiply_log and binomial_coefficient_log
functions 175

14.2 get_lp() function 175

14.3 fabs function 175

14.4 Exponentiated quadratic covariance functions 175

14.5 Real arguments to logical operators operator&&, operator||,
and operator! 176

15. Conventions for Probability Functions 177

15.1 Suffix marks type of function 177

15.2 Argument order and the vertical bar 177

15.3 Sampling notation 177

vi TABLE OF CONTENTS

15.4 Finite inputs 178

15.5 Boundary conditions 178

15.6 Pseudorandom number generators 178

15.7 Cumulative distribution functions 178

15.8 Vectorization 179

II Discrete Distributions 183

16. Binary Distributions 185

16.1 Bernoulli distribution 185

16.2 Bernoulli distribution, logit parameterization 186

16.3 Bernoulli-logit generalized linear model (Logistic
Regression) 187

17. Bounded Discrete Distributions 190

17.1 Binomial distribution 190

17.2 Binomial distribution, logit parameterization 191

17.3 Binomial-logit generalized linear model (Logistic
Regression) 192

17.4 Beta-binomial distribution 195

17.5 Hypergeometric distribution 196

17.6 Categorical distribution 197

17.7 Categorical logit generalized linear model (softmax
regression) 199

17.8 Discrete range distribution 201

17.9 Ordered logistic distribution 202

17.10 Ordered logistic generalized linear model (ordinal
regression) 203

17.11 Ordered probit distribution 205

18. Unbounded Discrete Distributions 207

18.1 Negative binomial distribution 207

18.2 Negative binomial distribution (alternative
parameterization) 208

TABLE OF CONTENTS vii

18.3 Negative binomial distribution (log alternative
parameterization) 210

18.4 Negative-binomial-2-log generalized linear model (negative
binomial regression) 211

18.5 Poisson distribution 213

18.6 Poisson distribution, log parameterization 214

18.7 Poisson-log generalized linear model (Poisson regression) 215

18.8 Beta negative binomial distribution 217

19. Multivariate Discrete Distributions 219

19.1 Multinomial distribution 219

19.2 Multinomial distribution, logit parameterization 220

19.3 Dirichlet-multinomial distribution 221

III Continuous Distributions 223

20. Unbounded Continuous Distributions 225

20.1 Normal distribution 225

20.2 Normal-id generalized linear model (linear regression) 228

20.3 Exponentially modified normal distribution 231

20.4 Skew normal distribution 233

20.5 Student-t distribution 234

20.6 Cauchy distribution 235

20.7 Double exponential (Laplace) distribution 237

20.8 Logistic distribution 238

20.9 Gumbel distribution 240

20.10 Skew double exponential distribution 241

21. Positive Continuous Distributions 243

21.1 Lognormal distribution 243

21.2 Chi-square distribution 244

21.3 Inverse chi-square distribution 245

21.4 Scaled inverse chi-square distribution 246

21.5 Exponential distribution 247

21.6 Gamma distribution 248

viii TABLE OF CONTENTS

21.7 Inverse gamma Distribution 250

21.8 Weibull distribution 251

21.9 Frechet distribution 252

21.10 Rayleigh distribution 253

21.11 Log-logistic distribution 254

22. Positive Lower-Bounded Distributions 256

22.1 Pareto distribution 256

22.2 Pareto type 2 distribution 257

22.3 Wiener First Passage Time Distribution 258

23. Continuous Distributions on [0, 1] 263

23.1 Beta distribution 263

23.2 Beta proportion distribution 264

24. Circular Distributions 266

24.1 Von Mises distribution 266

25. Bounded Continuous Distributions 269

25.1 Uniform distribution 269

26. Distributions over Unbounded Vectors 271

26.1 Multivariate normal distribution 271

26.2 Multivariate normal distribution, precision
parameterization 273

26.3 Multivariate normal distribution, Cholesky
parameterization 275

26.4 Multivariate Gaussian process distribution 277

26.5 Multivariate Gaussian process distribution, Cholesky
parameterization 278

26.6 Multivariate Student-t distribution 279

26.7 Multivariate Student-t distribution, Cholesky
parameterization 281

26.8 Gaussian dynamic linear models 283

27. Simplex Distributions 285

27.1 Dirichlet distribution 285

TABLE OF CONTENTS ix

28. Correlation Matrix Distributions 288

28.1 LKJ correlation distribution 288

28.2 Cholesky LKJ correlation distribution 289

29. Covariance Matrix Distributions 291

29.1 Wishart distribution 291

29.2 Wishart distribution, Cholesky Parameterization 292

29.3 Inverse Wishart distribution 293

29.4 Inverse Wishart distribution, Cholesky Parameterization 294

IV Additional Distributions 296

30. Hidden Markov Models 298

30.1 Stan functions 298

V Appendix 300

31. Mathematical Functions 302

31.1 Beta 302

31.2 Incomplete beta 302

31.3 Gamma 302

31.4 Digamma 303

References 304

Overview

This is the reference for the functions defined in the Stan math library and available
in the Stan programming language.

For more information the Stan language and inference engines and how to use Stan
for Bayesian inference, see

• the Stan User’s Guide. The Stan user’s guide provides example models and
programming techniques for coding statistical models in Stan. It also serves
as an example-driven introduction to Bayesian modeling and inference:

• the Stan Reference Manual. Stan’s modeling language is shared across all
of its interfaces. The Stan Language Reference Manual provides a concise
definition of the language syntax for all elements in the language together
with an overview of the inference algorithms and posterior inference tools.

Copyright and trademark
• Copyright 2011–2025, Stan Development Team and their assignees.

• The Stan name and logo are registered trademarks of NumFOCUS.

Licensing
• Text content: CC-BY ND 4.0 license

• Computer code: BSD 3-clause license

• Logo: Stan logo usage guidelines

1

https://github.com/stan-dev/math
https://mc-stan.org/
https://mc-stan.org/docs/stan-users-guide/index.html
https://mc-stan.org/docs/reference-manual/index.html
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://opensource.org/licenses/BSD-3-Clause
https://mc-stan.org/about/#copyright-and-trademark

Part I

Built-in Functions

2

1. Void Functions

Stan supports a few special statements for printing or for signaling an issue with
the program.

Although print, reject, and fatal_error appear to have the syntax of functions,
they are actually special kinds of statements with slightly different form and be-
havior than other functions. First, they are the constructs that allow a variable
number of arguments. Second, they are the the only constructs to accept string
literals (e.g., "hello world") as arguments. Third, they have no effect on the log
density function and operate solely through side effects.

The special keyword void is used for their return type because they behave like
variadic functions with void return type, even though they are special kinds of
statements built in to the language.

1.1. Print statement
Printing has no effect on the model’s log probability function. Its sole purpose is
the side effect (i.e., an effect not represented in a return value) of arguments being
printed to whatever the standard output stream is connected to (e.g., the terminal
in command-line Stan or the R console in RStan).

void print(T1 x1,..., TN xN)
Print the values denoted by the arguments x1 through xN on the output message
stream. There are no spaces between items in the print, but a line feed (LF; Unicode
U+000A; C++ literal '\n') is inserted at the end of the printed line. The types T1
through TN can be any of Stan’s built-in numerical types or double quoted strings
of characters (bytes).

Available since 2.1

1.2. Reject statement
The reject statement has the same syntax as the print statement, accepting an
arbitrary number of arguments of any type (including string literals). The effect
of executing a reject statement is to throw an exception internally that terminates
the current iteration with a rejection (the behavior of which will depend on the
algorithmic context in which it occurs).

4

1.3. FATAL ERROR STATEMENT 5

void reject(T1 x1,..., TN xN)
Reject the current iteration and print the values denoted by the arguments x1
through xN on the output message stream. There are no spaces between items in the
print, but a line feed (LF; Unicode U+000A; C++ literal '\n') is inserted at the end
of the printed line. The types T1 through TN can be any of Stan’s built-in numerical
types or double quoted strings of characters (bytes).

Available since 2.18

1.3. Fatal error statement
The fatal error statement has the same syntax as the print and reject statements,
accepting an arbitrary number of arguments of any type (including string literals).
The effect of executing a fatal_error statement is to throw an exception internally
that terminates the algorithm completely. It can be viewed as an unrecoverable
version of reject, and as such should be used only when exiting the algorithm is the
only option.

void fatal_error(T1 x1,..., TN xN)
Print the values denoted by the arguments x1 through xN on the output message
stream and then exit the currently running algorithm. There are no spaces between
items in the print, but a line feed (LF; Unicode U+000A; C++ literal '\n') is inserted
at the end of the printed line. The types T1 through TN can be any of Stan’s built-in
numerical types or double quoted strings of characters (bytes).

Available since 2.35

2. Integer-Valued Basic Functions

This chapter describes Stan’s built-in function that take various types of arguments
and return integer values.

2.1. Integer-valued arithmetic operators
Stan’s arithmetic is based on standard double-precision C++ integer and floating-
point arithmetic. If the arguments to an arithmetic operator are both integers, as
in 2 + 2, integer arithmetic is used. If one argument is an integer and the other a
floating-point value, as in 2.0 + 2 and 2 + 2.0, then the integer is promoted to a
floating point value and floating-point arithmetic is used.

Integer arithmetic behaves slightly differently than floating point arithmetic. The
first difference is how overflow is treated. If the sum or product of two integers over-
flows the maximum integer representable, the result is an undesirable wraparound
behavior at the bit level. If the integers were first promoted to real numbers, they
would not overflow a floating-point representation. There are no extra checks in
Stan to flag overflows, so it is up to the user to make sure it does not occur.

Secondly, because the set of integers is not closed under division and there is no
special infinite value for integers, integer division implicitly rounds the result. If
both arguments are positive, the result is rounded down. For example, 1 / 2
evaluates to 0 and 5 / 3 evaluates to 1.

If one of the integer arguments to division is negative, the latest C++ specification
(C++11), requires rounding toward zero. This would have 1 / 2 and -1 / 2
evaluate to 0, -7 / 2 evaluate to -3, and 7 / 2 evaluate to 3. Before the C++11
specification, the behavior was platform dependent, allowing rounding up or down.
All compilers recent enough to be able to deal with Stan’s templating should follow
the C++11 specification, but it may be worth testing if you are not sure and plan to
use integer division with negative values.

Unlike floating point division, where 1.0 / 0.0 produces the special positive
infinite value, integer division by zero, as in 1 / 0, has undefined behavior in
the C++ standard. For example, the clang++ compiler on Mac OS X returns 3764,
whereas the g++ compiler throws an exception and aborts the program with a
warning. As with overflow, it is up to the user to make sure integer divide-by-zero
does not occur.

6

2.1. INTEGER-VALUED ARITHMETIC OPERATORS 7

Binary infix operators
Operators are described using the C++ syntax. For instance, the binary operator
of addition, written X + Y, would have the Stan signature int operator+(int,
int) indicating it takes two real arguments and returns a real value. As noted
previously, the value of integer division is platform-dependent when rounding
is platform dependent before C++11; the descriptions below provide the C++11
definition.

int operator+(int x, int y)
The sum of the addends x and y

operator+(x, y) = (x + y)

Available since 2.0

int operator-(int x, int y)
The difference between the minuend x and subtrahend y

operator-(x, y) = (x − y)

Available since 2.0

int operator*(int x, int y)
The product of the factors x and y

operator*(x, y) = (x × y)

Available since 2.0

int operator/(int x, int y)
The integer quotient of the dividend x and divisor y

operator/(x, y) =

{
⌊x/y⌋ if x/y ≥ 0
−⌊floor(−x/y)⌋ if x/y < 0.

deprecated; - use operator%/% instead.

Available since 2.0, deprecated in 2.24

int operator%/%(int x, int y)
The integer quotient of the dividend x and divisor y

operator%/%(x, y) =

{
⌊x/y⌋ if x/y ≥ 0
−⌊floor(−x/y)⌋ if x/y < 0.

8 CHAPTER 2. INTEGER-VALUED BASIC FUNCTIONS

Available since 2.24

int operator%(int x, int y)
x modulo y, which is the positive remainder after dividing x by y. If both x and
y are non-negative, so is the result; otherwise, the sign of the result is platform
dependent.

operator%(x, y) = x mod y = x − y ∗ ⌊x/y⌋

Available since 2.13

Unary prefix operators
int operator-(int x)
The negation of the subtrahend x

operator-(x) = −x

Available since 2.0

T operator-(T x)
Vectorized version of operator-. If T x is a (possibly nested) array of integers, -x
is the same shape array where each individual integer is negated.

Available since 2.31

int operator+(int x)
This is a no-op.

operator+(x) = x

Available since 2.0

2.2. Absolute functions
T abs(T x)
The absolute value of x.

This function works elementwise over containers such as vectors. Given a type T
which is int, or an array of ints, abs returns the same type where each element
has had its absolute value taken.

Available since 2.0, vectorized in 2.30

int int_step(int x)

2.3. BOUND FUNCTIONS 9

int int_step(real x)
Return the step function of x as an integer,

int_step(x) =

{
1 if x > 0
0 if x ≤ 0 or x is NaN

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and
step(NaN) return 1.

See the warning in section step functions about the dangers of step functions applied
to anything other than data.

Available since 2.0

2.3. Bound functions
int min(int x, int y)
Return the minimum of x and y.

min(x, y) =

{
x if x < y
y otherwise

Available since 2.0

int max(int x, int y)
Return the maximum of x and y.

max(x, y) =

{
x if x > y
y otherwise

Available since 2.0

2.4. Size functions
int size(int x)

int size(real x)

Return the size of x which for scalar-valued x is 1

Available since 2.26

10 CHAPTER 2. INTEGER-VALUED BASIC FUNCTIONS

2.5. Casting functions
It is possible to cast real numbers to integers as long as the real value is data. See
data only qualifiers in the Stan Reference Manual.

int to_int(data real x)

Return the value x truncated to an integer. This will throw an error if the value of x
is too big to represent as a 32-bit signed integer.

This is similar to trunc (see Rounding functions) but the return type is of type int.
For example, to_int(3.9) is 3, and to_int(-3.9) is -3.

Available since 2.31

I to_int(data T x)

The vectorized version of to_int. This function accepts a (possibly nested) array of
reals and returns an array of the same shape where each element has been truncated
to an integer.

Available since 2.31

https://mc-stan.org/docs/reference-manual/user-functions.html#data-only-qualifiers

3. Real-Valued Basic Functions

This chapter describes built-in functions that take zero or more real or integer
arguments and return real values.

3.1. Vectorization of real-valued functions
Although listed in this chapter, many of Stan’s built-in functions are vectorized so
that they may be applied to any argument type. The vectorized form of these func-
tions is not any faster than writing an explicit loop that iterates over the elements
applying the function—it’s just easier to read and write and less error prone.

Unary function vectorization
Many of Stan’s unary functions can be applied to any argument type. For example,
the exponential function, exp, can be applied to real arguments or arrays of real
arguments. Other than for integer arguments, the result type is the same as the
argument type, including dimensionality and size. Integer arguments are first
promoted to real values, but the result will still have the same dimensionality and
size as the argument.

Real and real array arguments
When applied to a simple real value, the result is a real value. When applied to
arrays, vectorized functions like exp() are defined elementwise. For example,

// declare some variables for arguments
real x0;
array[5] real x1;
array[4, 7] real x2;
// ...
// declare some variables for results
real y0;
array[5] real y1;
array[4, 7] real y2;
// ...
// calculate and assign results
y0 = exp(x0);
y1 = exp(x1);
y2 = exp(x2);

11

12 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

When exp is applied to an array, it applies elementwise. For example, the statement
above,

y2 = exp(x2);

produces the same result for y2 as the explicit loop

for (i in 1:4) {
for (j in 1:7) {
y2[i, j] = exp(x2[i, j]);

}
}

Vector and matrix arguments
Vectorized functions also apply elementwise to vectors and matrices. For example,

vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv;
row_vector[7] yrv;
matrix[10, 20] ym;

yv = exp(xv);
yrv = exp(xrv);
ym = exp(xm);

Arrays of vectors and matrices work the same way. For example,

array[12] matrix[17, 93] u;

array[12] matrix[17, 93] z;

z = exp(u);

After this has been executed, z[i, j, k] will be equal to exp(u[i, j, k]).

Integer and integer array arguments
Integer arguments are promoted to real values in vectorized unary functions. Thus
if n is of type int, exp(n) is of type real. Arrays work the same way, so that if
n2 is a one dimensional array of integers, then exp(n2) will be a one-dimensional
array of reals with the same number of elements as n2. For example,

3.1. VECTORIZATION OF REAL-VALUED FUNCTIONS 13

array[23] int n1;
array[23] real z1;
z1 = exp(n1);

It would be illegal to try to assign exp(n1) to an array of integers; the return type
is a real array.

Binary function vectorization
Like the unary functions, many of Stan’s binary functions have been vectorized,
and can be applied elementwise to combinations of both scalars or container types.

Scalar and scalar array arguments
When applied to two scalar values, the result is a scalar value. When applied to
two arrays, or combination of a scalar value and an array, vectorized functions like
pow() are defined elementwise. For example,

// declare some variables for arguments
real x00;
real x01;
array[5] real x10;
array[5]real x11;
array[4, 7] real x20;
array[4, 7] real x21;
// ...
// declare some variables for results
real y0;
array[5] real y1;
array[4, 7] real y2;
// ...
// calculate and assign results
y0 = pow(x00, x01);
y1 = pow(x10, x11);
y2 = pow(x20, x21);

When pow is applied to two arrays, it applies elementwise. For example, the
statement above,

y2 = pow(x20, x21);

produces the same result for y2 as the explicit loop

14 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

for (i in 1:4) {
for (j in 1:7) {
y2[i, j] = pow(x20[i, j], x21[i, j]);

}
}

Alternatively, if a combination of an array and a scalar are provided, the scalar value
is broadcast to be applied to each value of the array. For example, the following
statement:

y2 = pow(x20, x00);

produces the same result for y2 as the explicit loop:

for (i in 1:4) {
for (j in 1:7) {
y2[i, j] = pow(x20[i, j], x00);

}
}

Vector and matrix arguments
Vectorized binary functions also apply elementwise to vectors and matrices, and to
combinations of these with scalar values. For example,

real x00;
vector[5] xv00;
vector[5] xv01;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv;
row_vector[7] yrv;
matrix[10, 20] ym;

yv = pow(xv00, xv01);
yrv = pow(xrv, x00);
ym = pow(x00, xm);

Arrays of vectors and matrices work the same way. For example,

array[12] matrix[17, 93] u;

3.1. VECTORIZATION OF REAL-VALUED FUNCTIONS 15

array[12] matrix[17, 93] z;

z = pow(u, x00);

After this has been executed, z[i, j, k] will be equal to pow(u[i, j, k], x00).

Input & return types
Vectorised binary functions require that both inputs, unless one is a real, be contain-
ers of the same type and size. For example, the following statements are legal:

vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv = pow(xv, xv)
row_vector[7] yrv = pow(xrv, xrv)
matrix[10, 20] = pow(xm, xm)

But the following statements are not:

vector[5] xv;
vector[7] xv2;
row_vector[5] xrv;

// Cannot mix different types
vector[5] yv = pow(xv, xrv)

// Cannot mix different sizes of the same type
vector[5] yv = pow(xv, xv2)

While the vectorized binary functions generally require the same input types, the
only exception to this is for binary functions that require one input to be an integer
and the other to be a real (e.g., bessel_first_kind). For these functions, one
argument can be a container of any type while the other can be an integer array, as
long as the dimensions of both are the same. For example, the following statements
are legal:

vector[5] xv;
matrix[5, 5] xm;
array[5] int xi;
array[5, 5] int xii;

16 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

vector[5] yv = bessel_first_kind(xi, xv);
matrix[5, 5] ym = bessel_first_kind(xii, xm);

Whereas these are not:

vector[5] xv;
matrix[5, 5] xm;
array[7] int xi;

// Dimensions of containers do not match
vector[5] yv = bessel_first_kind(xi, xv);

// Function requires first argument be an integer type
matrix[5, 5] ym = bessel_first_kind(xm, xm);

3.2. Mathematical constants
Constants are represented as functions with no arguments and must be called as
such. For instance, the mathematical constant π must be written in a Stan program
as pi().

real pi()
π, the ratio of a circle’s circumference to its diameter

Available since 2.0

real e()
e, the base of the natural logarithm

Available since 2.0

real sqrt2()
The square root of 2

Available since 2.0

real log2()
The natural logarithm of 2

Available since 2.0

real log10()
The natural logarithm of 10

Available since 2.0

3.3. SPECIAL VALUES 17

3.3. Special values
real not_a_number()
Not-a-number, a special non-finite real value returned to signal an error

Available since 2.0

real positive_infinity()
Positive infinity, a special non-finite real value larger than all finite numbers

Available since 2.0

real negative_infinity()
Negative infinity, a special non-finite real value smaller than all finite numbers

Available since 2.0

real machine_precision()
The smallest number x such that (x + 1) ̸= 1 in floating-point arithmetic on the
current hardware platform

Available since 2.0

3.4. Log probability function
The basic purpose of a Stan program is to compute a log probability function
and its derivatives. The log probability function in a Stan model outputs the log
density on the unconstrained scale. A log probability accumulator starts at zero
and is then incremented in various ways by a Stan program. The variables are first
transformed from unconstrained to constrained, and the log Jacobian determinant
added to the log probability accumulator. Then the model block is executed on
the constrained parameters, with each sampling statement (~) and log probability
increment statement (increment_log_prob) adding to the accumulator. At the end
of the model block execution, the value of the log probability accumulator is the log
probability value returned by the Stan program.

Stan provides a special built-in function target() that takes no arguments and
returns the current value of the log probability accumulator. This function is
primarily useful for debugging purposes, where for instance, it may be used with
a print statement to display the log probability accumulator at various stages of
execution to see where it becomes ill defined.

real target()
Return the current value of the log probability accumulator.

Available since 2.10

18 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

target acts like a function ending in _lp, meaning that it may only may only be
used in the model block.

3.5. Logical functions
Like C++, BUGS, and R, Stan uses 0 to encode false, and 1 to encode true. Stan
supports the usual boolean comparison operations and boolean operators. These
all have the same syntax and precedence as in C++; for the full list of operators and
precedences, see the reference manual.

Comparison operators
All comparison operators return boolean values, either 0 or 1. Each operator has
two signatures, one for integer comparisons and one for floating-point comparisons.
Comparing an integer and real value is carried out by first promoting the integer
value.

int operator<(int x, int y)

int operator<(real x, real y)
Return 1 if x is less than y and 0 otherwise.

operator<(x, y) =

{
1 if x < y
0 otherwise

Available since 2.0

int operator<=(int x, int y)

int operator<=(real x, real y)
Return 1 if x is less than or equal y and 0 otherwise.

operator<=(x, y) =

{
1 if x ≤ y
0 otherwise

Available since 2.0

int operator>(int x, int y)

int operator>(real x, real y)

3.5. LOGICAL FUNCTIONS 19

Return 1 if x is greater than y and 0 otherwise.

operator>(x, y) =

{
1 if x > y
0 otherwise

Available since 2.0

int operator>=(int x, int y)

int operator>=(real x, real y)
Return 1 if x is greater than or equal to y and 0 otherwise.

operator>=(x, y) =

{
1 if x ≥ y
0 otherwise

Available since 2.0

int operator==(int x, int y)

int operator==(real x, real y)
Return 1 if x is equal to y and 0 otherwise.

operator==(x, y) =

{
1 if x = y
0 otherwise

Available since 2.0

int operator!=(int x, int y)

int operator!=(real x, real y)
Return 1 if x is not equal to y and 0 otherwise.

operator!=(x, y) =

{
1 if x ̸= y
0 otherwise

Available since 2.0

20 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Boolean operators
Boolean operators return either 0 for false or 1 for true. Inputs may be any real or
integer values, with non-zero values being treated as true and zero values treated as
false. These operators have the usual precedences, with negation (not) binding the
most tightly, conjunction the next and disjunction the weakest; all of the operators
bind more tightly than the comparisons. Thus an expression such as !a && b
is interpreted as (!a) && b, and a < b || c >= d && e != f as (a < b) ||
(((c >= d) && (e != f))).

int operator!(int x)
Return 1 if x is zero and 0 otherwise.

operator!(x) =

{
0 if x ̸= 0
1 if x = 0

Available since 2.0

int operator!(real x)
Return 1 if x is zero and 0 otherwise.

operator!(x) =

{
0 if x ̸= 0.0
1 if x = 0.0

deprecated; - use operator== instead.

Available since 2.0, deprecated in 2.31

int operator&&(int x, int y)

Return 1 if x is unequal to 0 and y is unequal to 0.

operator&&(x, y) =

{
1 if x ̸= 0 and y ̸= 0
0 otherwise

Available since 2.0

int operator&&(real x, real y)
Return 1 if x is unequal to 0.0 and y is unequal to 0.0.

operator&&(x, y) =

{
1 if x ̸= 0.0 and y ̸= 0.0
0 otherwise

3.5. LOGICAL FUNCTIONS 21

deprecated

Available since 2.0, deprecated in 2.31

int operator||(int x, int y)
Return 1 if x is unequal to 0 or y is unequal to 0.

operator||(x, y) =

{
1 if x ̸= 0 or y ̸= 0
0 otherwise

Available since 2.0

int operator||(real x, real y)
Return 1 if x is unequal to 0.0 or y is unequal to 0.0.

operator||(x, y) =

{
1 if x ̸= 0.0 or y ̸= 0.0
0 otherwise

deprecated

Available since 2.0, deprecated in 2.31

Boolean operator short circuiting
Like in C++, the boolean operators && and || and are implemented to short circuit
directly to a return value after evaluating the first argument if it is sufficient to
resolve the result. In evaluating a || b, if a evaluates to a value other than zero,
the expression returns the value 1 without evaluating the expression b. Similarly,
evaluating a && b first evaluates a, and if the result is zero, returns 0 without
evaluating b.

Logical functions
The logical functions introduce conditional behavior functionally and are primarily
provided for compatibility with BUGS and JAGS.

real step(real x)
Return 1 if x is positive and 0 otherwise.

step(x) =

{
0 if x < 0
1 otherwise

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and
step(NaN) return 1.

22 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

The step function is often used in BUGS to perform conditional operations. For
instance, step(a-b) evaluates to 1 if a is greater than b and evaluates to 0 otherwise.
step is a step-like functions; see the warning in section step functions applied to
expressions dependent on parameters.

Available since 2.0

int is_inf(real x)
Return 1 if x is infinite (positive or negative) and 0 otherwise.

Available since 2.5

int is_nan(real x)
Return 1 if x is NaN and 0 otherwise.

Available since 2.5

Care must be taken because both of these indicator functions are step-like and
thus can cause discontinuities in gradients when applied to parameters; see section
step-like functions for details.

3.6. Real-valued arithmetic operators
The arithmetic operators are presented using C++ notation. For instance opera-
tor+(x,y) refers to the binary addition operator and operator-(x) to the unary
negation operator. In Stan programs, these are written using the usual infix and
prefix notations as x + y and -x, respectively.

Binary infix operators
real operator+(real x, real y)
Return the sum of x and y.

(x + y) = operator+(x, y) = x + y

Available since 2.0

real operator-(real x, real y)
Return the difference between x and y.

(x − y) = operator-(x, y) = x − y

Available since 2.0

3.6. REAL-VALUED ARITHMETIC OPERATORS 23

real operator*(real x, real y)
Return the product of x and y.

(x ∗ y) = operator*(x, y) = xy

Available since 2.0

real operator/(real x, real y)
Return the quotient of x and y.

(x/y) = operator/(x, y) =
x
y

Available since 2.0

real operatorˆ(real x, real y)
Return x raised to the power of y.

(x∧y) = operator∧(x, y) = xy

Available since 2.5

Unary prefix operators
real operator-(real x)
Return the negation of the subtrahend x.

operator-(x) = (−x)

Available since 2.0

T operator-(T x)
Vectorized version of operator-. If T x is a (possibly nested) array of reals, -x is
the same shape array where each individual number is negated.

Available since 2.31

real operator+(real x)
Return the value of x.

operator+(x) = x

Available since 2.0

24 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

3.7. Step-like functions
Warning: These functions can seriously hinder sampling and optimization efficiency for
gradient-based methods (e.g., NUTS, HMC, BFGS) if applied to parameters (including
transformed parameters and local variables in the transformed parameters or model block).
The problem is that they break gradients due to discontinuities coupled with zero gradients
elsewhere. They do not hinder sampling when used in the data, transformed data, or
generated quantities blocks.

Absolute value functions
T abs(T x)
The absolute value of x.

This function works elementwise over containers such as vectors. Given a type T
which is real vector, row_vector, matrix, or an array of those types, abs returns
the same type where each element has had its absolute value taken.

Available since 2.0, vectorized in 2.30

real fdim(real x, real y)
Return the positive difference between x and y, which is x - y if x is greater than y
and 0 otherwise; see warning above.

fdim(x, y) =

{
x − y if x ≥ y
0 otherwise

Available since 2.0

R fdim(T1 x, T2 y)
Vectorized implementation of the fdim function

Available since 2.25

Bounds functions
real fmin(real x, real y)
Return the minimum of x and y; see warning above.

fmin(x, y) =

{
x if x ≤ y
y otherwise

Available since 2.0

R fmin(T1 x, T2 y)
Vectorized implementation of the fmin function

3.7. STEP-LIKE FUNCTIONS 25

Available since 2.25

real fmax(real x, real y)
Return the maximum of x and y; see warning above.

fmax(x, y) =

{
x if x ≥ y
y otherwise

Available since 2.0

R fmax(T1 x, T2 y)
Vectorized implementation of the fmax function

Available since 2.25

Arithmetic functions
real fmod(real x, real y)
Return the real value remainder after dividing x by y; see warning above.

fmod(x, y) = x −
⌊

x
y

⌋
y

The operator ⌊u⌋ is the floor operation; see below.

Available since 2.0

R fmod(T1 x, T2 y)
Vectorized implementation of the fmod function

Available since 2.25

Rounding functions
Warning: Rounding functions convert real values to integers. Because the output
is an integer, any gradient information resulting from functions applied to the
integer is not passed to the real value it was derived from. With MCMC sampling
using HMC or NUTS, the MCMC acceptance procedure will correct for any error
due to poor gradient calculations, but the result is likely to be reduced acceptance
probabilities and less efficient sampling.

The rounding functions cannot be used as indices to arrays because they return
real values. For operations over data or in the generated quantities block, the
to_int() function can be used.

R floor(T x)
The floor of x, which is the largest integer less than or equal to x, converted to a real
value; see warning at start of section step-like functions

26 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Available since 2.0, vectorized in 2.13

R ceil(T x)
The ceiling of x, which is the smallest integer greater than or equal to x, converted
to a real value; see warning at start of section step-like functions

Available since 2.0, vectorized in 2.13

R round(T x)
The nearest integer to x, converted to a real value; see warning at start of section
step-like functions

Available since 2.0, vectorized in 2.13

R trunc(T x)
The integer nearest to but no larger in magnitude than x, converted to a double
value; see warning at start of section step-like functions

Available since 2.0, vectorized in 2.13

3.8. Power and logarithm functions
R sqrt(T x)
The square root of x

Available since 2.0, vectorized in 2.13

R cbrt(T x)
The cube root of x

Available since 2.0, vectorized in 2.13

R square(T x)
The square of x

Available since 2.0, vectorized in 2.13

R exp(T x)
The natural exponential of x

Available since 2.0, vectorized in 2.13

R exp2(T x)
The base-2 exponential of x

Available since 2.0, vectorized in 2.13

3.8. POWER AND LOGARITHM FUNCTIONS 27

R log(T x)
The natural logarithm of x

Available since 2.0, vectorized in 2.13

R log2(T x)
The base-2 logarithm of x

Available since 2.0, vectorized in 2.13

R log10(T x)
The base-10 logarithm of x

Available since 2.0, vectorized in 2.13

real pow(real x, real y)
Return x raised to the power of y.

pow(x, y) = xy

Available since 2.0

R pow(T1 x, T2 y)
Vectorized implementation of the pow function

Available since 2.25

R inv(T x)
The inverse of x

Available since 2.0, vectorized in 2.13

R inv_sqrt(T x)
The inverse of the square root of x

Available since 2.0, vectorized in 2.13

R inv_square(T x)
The inverse of the square of x

Available since 2.0, vectorized in 2.13

28 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

3.9. Trigonometric functions
real hypot(real x, real y)
Return the length of the hypotenuse of a right triangle with sides of length x and y.

hypot(x, y) =

{√
x2 + y2 if x, y ≥ 0

NaN otherwise

Available since 2.0

R hypot(T1 x, T2 y)
Vectorized implementation of the hypot function

Available since 2.25

R cos(T x)
The cosine of the angle x (in radians)

Available since 2.0, vectorized in 2.13

R sin(T x)
The sine of the angle x (in radians)

Available since 2.0, vectorized in 2.13

R tan(T x)
The tangent of the angle x (in radians)

Available since 2.0, vectorized in 2.13

R acos(T x)
The principal arc (inverse) cosine (in radians) of x

Available since 2.0, vectorized in 2.13

R asin(T x)
The principal arc (inverse) sine (in radians) of x

Available since 2.0

R atan(T x)
The principal arc (inverse) tangent (in radians) of x, with values from −π/2 to π/2

Available since 2.0, vectorized in 2.13

3.10. HYPERBOLIC TRIGONOMETRIC FUNCTIONS 29

R atan2(T y, T x)
Return the principal arc (inverse) tangent (in radians) of y divided by x,

atan2(y, x) = arctan
(y

x

)
Available since 2.0, vectorized in 2.34

3.10. Hyperbolic trigonometric functions
R cosh(T x)
The hyperbolic cosine of x (in radians)

Available since 2.0, vectorized in 2.13

R sinh(T x)
The hyperbolic sine of x (in radians)

Available since 2.0, vectorized in 2.13

R tanh(T x)
The hyperbolic tangent of x (in radians)

Available since 2.0, vectorized in 2.13

R acosh(T x)
The inverse hyperbolic cosine (in radians)

Available since 2.0, vectorized in 2.13

R asinh(T x)
The inverse hyperbolic cosine (in radians)

Available since 2.0, vectorized in 2.13

R atanh(T x)
The inverse hyperbolic tangent (in radians) of x

Available since 2.0, vectorized in 2.13

3.11. Link functions
The following functions are commonly used as link functions in generalized linear
models. The function Φ is also commonly used as a link function (see section
probability-related functions).

R logit(T x)
The log odds, or logit, function applied to x

30 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Available since 2.0, vectorized in 2.13

R inv_logit(T x)
The logistic sigmoid function applied to x

Available since 2.0, vectorized in 2.13

R inv_cloglog(T x)
The inverse of the complementary log-log function applied to x

Available since 2.0, vectorized in 2.13

3.12. Probability-related functions
Normal cumulative distribution functions

The error function erf is related to the standard normal cumulative distribution
function Φ by scaling. See section normal distribution for the general normal
cumulative distribution function (and its complement).

R erf(T x)
The error function, also known as the Gauss error function, of x

Available since 2.0, vectorized in 2.13

R erfc(T x)
The complementary error function of x

Available since 2.0, vectorized in 2.13

R inv_erfc(T x)
The inverse of the complementary error function of x

Available since 2.29, vectorized in 2.29

R Phi(T x)
The standard normal cumulative distribution function of x

Available since 2.0, vectorized in 2.13

R inv_Phi(T x)
Return the value of the inverse standard normal cdf Φ−1 at the specified quantile x.
The details of the algorithm can be found in (Wichura 1988). Quantile arguments
below 1e-16 are untested; quantiles above 0.999999999 result in increasingly large
errors.

Available since 2.0, vectorized in 2.13

3.13. COMBINATORIAL FUNCTIONS 31

R Phi_approx(T x)
The fast approximation of the unit (may replace Phi for probit regression with
maximum absolute error of 0.00014, see (Bowling et al. 2009) for details)

Available since 2.0, vectorized in 2.13

Other probability-related functions
real binary_log_loss(int y, real y_hat)
Return the log loss function for for predicting ŷ ∈ [0, 1] for boolean outcome
y ∈ {0, 1}.

binary_log_loss(y, ŷ) =

{
− log ŷ if y = 1
− log(1 − ŷ) otherwise

Available since 2.0

R binary_log_loss(T1 x, T2 y)
Vectorized implementation of the binary_log_loss function

Available since 2.25

real owens_t(real h, real a)
Return the Owen’s T function for the probability of the event X > h and 0 < Y < aX
where X and Y are independent standard normal random variables.

owens_t(h, a) =
1

2π

∫ a

0

exp(− 1
2 h2(1 + x2))

1 + x2 dx

Available since 2.25

R owens_t(T1 x, T2 y)
Vectorized implementation of the owens_t function

Available since 2.25

3.13. Combinatorial functions
real beta(real alpha, real beta)
Return the beta function applied to alpha and beta. The beta function, B(α, β),
computes the normalizing constant for the beta distribution, and is defined for
α > 0 and β > 0. See section appendix for definition of B(α, β).

Available since 2.25

R beta(T1 x, T2 y)
Vectorized implementation of the beta function

32 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Available since 2.25

real inc_beta(real alpha, real beta, real x)
Return the regularized incomplete beta function up to x applied to alpha and beta.
See section appendix for a definition.

Available since 2.10

real inv_inc_beta(real alpha, real beta, real p)
Return the inverse of the regularized incomplete beta function. The return value
x is the value that solves p = inc_beta(alpha, beta, x). See section appendix
for a definition of the inc_beta.

Available since 2.30

real lbeta(real alpha, real beta)
Return the natural logarithm of the beta function applied to alpha and beta. The
beta function, B(α, β), computes the normalizing constant for the beta distribution,
and is defined for α > 0 and β > 0.

lbeta(α, β) = log Γ(a) + log Γ(b)− log Γ(a + b)

See section appendix for definition of B(α, β).

Available since 2.0

R lbeta(T1 x, T2 y)
Vectorized implementation of the lbeta function

Available since 2.25

R tgamma(T x)
The gamma function applied to x. The gamma function is the generalization of
the factorial function to continuous variables, defined so that Γ(n + 1) = n!. See
for a full definition of Γ(x). The function is defined for positive numbers and
non-integral negative numbers,

Available since 2.0, vectorized in 2.13

R lgamma(T x)
The natural logarithm of the gamma function applied to x,

Available since 2.0, vectorized in 2.15

R digamma(T x)
The digamma function applied to x. The digamma function is the derivative of

3.13. COMBINATORIAL FUNCTIONS 33

the natural logarithm of the Gamma function. The function is defined for positive
numbers and non-integral negative numbers

Available since 2.0, vectorized in 2.13

R trigamma(T x)
The trigamma function applied to x. The trigamma function is the second derivative
of the natural logarithm of the Gamma function

Available since 2.0, vectorized in 2.13

real lmgamma(int n, real x)
Return the natural logarithm of the multivariate gamma function Γn with n dimen-
sions applied to x.

lmgamma(n, x) =

{ n(n−1)
4 log π + ∑n

j=1 log Γ
(

x + 1−j
2

)
if x ̸∈ {. . . ,−3,−2,−1, 0}

error otherwise

Available since 2.0

R lmgamma(T1 x, T2 y)
Vectorized implementation of the lmgamma function

Available since 2.25

real gamma_p(real a, real z)
Return the normalized lower incomplete gamma function of a and z defined for
positive a and nonnegative z.

gamma_p(a, z) =

{
1

Γ(a)

∫ z
0 ta−1e−tdt if a > 0, z ≥ 0

error otherwise

Available since 2.0

R gamma_p(T1 x, T2 y)
Vectorized implementation of the gamma_p function

Available since 2.25

real gamma_q(real a, real z)
Return the normalized upper incomplete gamma function of a and z defined for

34 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

positive a and nonnegative z.

gamma_q(a, z) =


1

Γ(a)

∫ ∞
z ta−1e−tdt if a > 0, z ≥ 0

error otherwise

Available since 2.0

R gamma_q(T1 x, T2 y)
Vectorized implementation of the gamma_q function

Available since 2.25

int choose(int x, int y)
Return the binomial coefficient of x and y. For non-negative integer inputs, the
binomial coefficient function is written as (x

y) and pronounced “x choose y.” In its
the antilog of the lchoose function but returns an integer rather than a real number
with no non-zero decimal places. For 0 ≤ y ≤ x, the binomial coefficient function
can be defined via the factorial function

choose(x, y) =
x!

(y!) (x − y)!
.

Available since 2.14

R choose(T1 x, T2 y)
Vectorized implementation of the choose function

Available since 2.25

real bessel_first_kind(int v, real x)
Return the Bessel function of the first kind with order v applied to x.

bessel_first_kind(v, x) = Jv(x),

where

Jv(x) =
(

1
2

x
)v ∞

∑
k=0

(
− 1

4 x2
)k

k! Γ(v + k + 1)

Available since 2.5

R bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the bessel_first_kind function

3.13. COMBINATORIAL FUNCTIONS 35

Available since 2.25

real bessel_second_kind(int v, real x)
Return the Bessel function of the second kind with order v applied to x defined for
positive x and v. For x, v > 0,

bessel_second_kind(v, x) =

{
Yv(x) if x > 0
error otherwise

where

Yv(x) =
Jv(x) cos(vπ)− J−v(x)

sin(vπ)

Available since 2.5

R bessel_second_kind(T1 x, T2 y)
Vectorized implementation of the bessel_second_kind function

Available since 2.25

real modified_bessel_first_kind(int v, real z)
Return the modified Bessel function of the first kind with order v applied to z
defined for all z and integer v.

modified_bessel_first_kind(v, z) = Iv(z)

where

Iv(z) =
(

1
2

z
)v ∞

∑
k=0

(
1
4 z2
)k

k!Γ(v + k + 1)

Available since 2.1

R modified_bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the modified_bessel_first_kind function

Available since 2.25

real log_modified_bessel_first_kind(real v, real z)
Return the log of the modified Bessel function of the first kind. v does not have to
be an integer.

Available since 2.26

R log_modified_bessel_first_kind(T1 x, T2 y)
Vectorized implementation of the log_modified_bessel_first_kind function

36 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Available since 2.26

real modified_bessel_second_kind(int v, real z)
Return the modified Bessel function of the second kind with order v applied to z
defined for positive z and integer v.

modified_bessel_second_kind(v, z) =

{
Kv(z) if z > 0
error if z ≤ 0

where

Kv(z) =
π

2
· I−v(z)− Iv(z)

sin(vπ)

Available since 2.1

R modified_bessel_second_kind(T1 x, T2 y)
Vectorized implementation of the modified_bessel_second_kind function

Available since 2.25

real falling_factorial(real x, real n)
Return the falling factorial of x with power n defined for positive x and real n.

falling_factorial(x, n) =

{
(x)n if x > 0
error if x ≤ 0

where

(x)n =
Γ(x + 1)

Γ(x − n + 1)

Available since 2.0

R falling_factorial(T1 x, T2 y)
Vectorized implementation of the falling_factorial function

Available since 2.25

real lchoose(real x, real y)
Return the natural logarithm of the generalized binomial coefficient of x and y.
For non-negative integer inputs, the binomial coefficient function is written as (x

y)

and pronounced “x choose y.” This function generalizes to real numbers using the
gamma function. For 0 ≤ y ≤ x,

binomial_coefficient_log(x, y) = log Γ(x + 1)− log Γ(y + 1)− log Γ(x − y + 1).

3.13. COMBINATORIAL FUNCTIONS 37

Available since 2.10

R lchoose(T1 x, T2 y)
Vectorized implementation of the lchoose function

Available since 2.29

real log_falling_factorial(real x, real n)
Return the log of the falling factorial of x with power n defined for positive x and
real n.

log_falling_factorial(x, n) =

{
log(x)n if x > 0
error if x ≤ 0

Available since 2.0

real rising_factorial(real x, int n)
Return the rising factorial of x with power n defined for positive x and integer n.

rising_factorial(x, n) =

{
x(n) if x > 0
error if x ≤ 0

where

x(n) =
Γ(x + n)

Γ(x)

Available since 2.20

R rising_factorial(T1 x, T2 y)
Vectorized implementation of the rising_factorial function

Available since 2.25

real log_rising_factorial(real x, real n)
Return the log of the rising factorial of x with power n defined for positive x and
real n.

log_rising_factorial(x, n) =

{
log x(n) if x > 0
error if x ≤ 0

Available since 2.0

R log_rising_factorial(T1 x, T2 y)
Vectorized implementation of the log_rising_factorial function

Available since 2.25

38 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

3.14. Composed functions
The functions in this section are equivalent in theory to combinations of other func-
tions. In practice, they are implemented to be more efficient and more numerically
stable than defining them directly using more basic Stan functions.

R expm1(T x)
The natural exponential of x minus 1

Available since 2.0, vectorized in 2.13

real fma(real x, real y, real z)
Return z plus the result of x multiplied by y.

fma(x, y, z) = (x × y) + z

Available since 2.0

real ldexp(real x, int y)
Return the product of x and two raised to the y power.

ldexp(x, y) = x2y

Available since 2.25

R ldexp(T1 x, T2 y)
Vectorized implementation of the ldexp function

Available since 2.25

real lmultiply(real x, real y)
Return the product of x and the natural logarithm of y.

lmultiply(x, y) =


0 if x = y = 0
x log y if x, y ̸= 0
NaN otherwise

Available since 2.10

R lmultiply(T1 x, T2 y)
Vectorized implementation of the lmultiply function

Available since 2.25

3.14. COMPOSED FUNCTIONS 39

R log1p(T x)
The natural logarithm of 1 plus x

Available since 2.0, vectorized in 2.13

R log1m(T x)
The natural logarithm of 1 minus x

Available since 2.0, vectorized in 2.13

R log1p_exp(T x)
The natural logarithm of one plus the natural exponentiation of x

Available since 2.0, vectorized in 2.13

R log1m_exp(T x)
The logarithm of one minus the natural exponentiation of x

Available since 2.0, vectorized in 2.13

real log_diff_exp(real x, real y)
Return the natural logarithm of the difference of the natural exponentiation of x
and the natural exponentiation of y.

log_diff_exp(x, y) =

log(exp(x)− exp(y)) if + ∞ > x ≥ y

NaN otherwise

When x is equal to y, log_diff_exp(x, y) returns −∞, consistent with log(0)
returning −∞. This includes the case in which x and y are both equal to −∞, which
corresponds to log(0 - 0) because exp(negative_infinity()) returns 0.

Available since 2.0

R log_diff_exp(T1 x, T2 y)
Vectorized implementation of the log_diff_exp function

Available since 2.25

real log_mix(real theta, real lp1, real lp2)
Return the log mixture of the log densities lp1 and lp2 with mixing proportion theta,
defined by

log_mix(θ, λ1, λ2) = log(θ exp(λ1) + (1 − θ) exp(λ2))

= log_sum_exp(log(θ) + λ1, log(1 − θ) + λ2) .

40 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Available since 2.6

R log_mix(T1 thetas, T2 lps)

Calculates the log mixture density given thetas, mixing proportions which should
be between 0 and 1 and sum to 1, and lps, log densities. The lps variable must be
either a 1-d container of the same length as thetas, or an array of such.

log_mix(θ, λ) = log

(
N

∑
n=1

θn ∗ exp(λn)

)
= log_sum_exp(log(θ) + λ) .

This is a generalization of the above signature of three arguments to more than two
densities. For example, log_mix(lambda, lp1, lp2) == log_mix({lambda, 1
- lambda}, {lp1, lp2}).

Available since 2.26

R log_sum_exp(T1 x, T2 y)
Return the natural logarithm of the sum of the natural exponentiation of x and the
natural exponentiation of y.

log_sum_exp(x, y) = log(exp(x) + exp(y))

Available since 2.0, vectorized in 2.33

R log_inv_logit(T x)
The natural logarithm of the inverse logit function of x

Available since 2.0, vectorized in 2.13

R log_inv_logit_diff(T1 x, T2 y)
The natural logarithm of the difference of the inverse logit function of x and the
inverse logit function of y

Available since 2.25

R log1m_inv_logit(T x)
The natural logarithm of 1 minus the inverse logit function of x

Available since 2.0, vectorized in 2.13

3.15. SPECIAL FUNCTIONS 41

3.15. Special functions
R lambert_w0(T x)
Implementation of the W0 branch of the Lambert W function, i.e., solution to the
function W0(x) expW0(x) = x

Available since 2.25

R lambert_wm1(T x)
Implementation of the W−1 branch of the Lambert W function, i.e., solution to the
function W−1(x) expW−1(x) = x

Available since 2.25

3.16. Hypergeometric Functions
Hypergeometric functions refer to a power series of the form

pFq(a1, ..., ap; b1, ..., bq; z) =
∞

∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!

where (a)n is the Pochhammer symbol defined as (a)n = Γ(a+n)
Γ(a) .

The gradients of the hypergeometric function are given by:

∂

∂a1
=

∞

∑
k=0

ψ (k + a1)
(

∏
p
j=1

(
aj
)

k

)
zk

k! ∏
q
j=1

(
bj
)

k

− ψ (a1) pFq(a1, ..., ap; b1, ..., bq; z)

∂

∂b1
= ψ (b1) pFq(a1, ..., ap; b1, ..., bq; z)−

∞

∑
k=0

ψ (k + b1)
(

∏
p
j=1

(
aj
)

k

)
zk

k! ∏
q
j=1

(
bj
)

k

∂

∂z
=

∏
p
j=1 aj

∏
q
j=1 bj

pFq(a1 + 1, ..., ap + 1; b1 + 1, ..., bq + 1; z)

Stan provides both the generalized hypergeometric function as well as several
special cases for particular values of p and q.

real hypergeometric_1F0(real a, real z)
Special case of the hypergeometric function with p = 1 and q = 0.

Available since 2.37

42 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

real hypergeometric_2F1(real a1, real a2, real b1, real z)
Special case of the hypergeometric function with p = 2 and q = 1. If the function
does not meet convergence criteria for given inputs, the function will attempt to
apply Euler’s transformation to improve convergence:

2F1(a1, a2, b1, z) = 2F1(b1 − a1, a2, b1,
z

z − 1
) · (1 − z)−a2

Available since 2.37

real hypergeometric_3F2(T1 a, T2 b, real z)
Special case of the hypergeometric function with p = 3 and q = 2, where a and b
are vectors of length 3 and 2, respectively.

Available since 2.37

real hypergeometric_pFq(T1 a, T2 b, real z)
Generalized hypergeometric function, where a and b are vectors of length p and q,
respectively.

Available since 2.37

https://mathworld.wolfram.com/EulersHypergeometricTransformations.html

4. Complex-Valued Basic Functions

This chapter describes built-in functions that operate on complex numbers, either
as an argument type or a return type. This includes the arithmetic operators
generalized to complex numbers.

4.1. Complex assignment and promotion
Just as integers may be assigned to real variables, real variables may be assigned to
complex numbers, with the result being a zero imaginary component.

int n = 5; // n = 5
real x = a; // x = 5.0
complex z1 = n; // z = 5.0 + 0.0i
complex z2 = x; // z = 5.0 + 0.0i

Complex function arguments
Function arguments of type int or real may be promoted to type complex. The
complex version of functions in this chapter are only used if one of the arguments is
complex. For example, if z is complex, then pow(z, 2) will call the complex version
of the power function and the integer 2 will be promoted to a complex number with
a real component of 2 and an imaginary component of 0. The same goes for binary
operators like addition and subtraction, where z + 2 will be legal and produce a
complex result. Functions such as arg and conj that are only available for complex
numbers can accept integer or real arguments, promoting them to complex before
applying the function.

4.2. Complex constructors and accessors
Complex constructors

Variables and constants of type complex are constructed from zero, one, or two real
numbers.

complex z1 = to_complex(); // z1 = 0.0 + 0.0i
real re = -2.9;
complex z2 = to_complex(re); // z2 = -2.9 + 0.0i
real im = 1.3;
complex z3 = to_complex(re, im); // z3 = -2.9 + 1.3i

43

44 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

complex to_complex()
Return complex number with real part 0.0 and imaginary part 0.0.

Available since 2.28

complex to_complex(real re)
Return complex number with real part re and imaginary part 0.0.

Available since 2.28

complex to_complex(real re, real im)
Return complex number with real part re and imaginary part im.

Available since 2.28

Z to_complex(T1 re, T2 im)
Vectorized implementation of the to_complex function.

T1 and T2 can either be real containers of the same size, or a real container and a
real, in which case the real value is used for the corresponding component in all
elements of the output.

Available since 2.30

Complex accessors
Given a complex number, its real and imaginary parts can be extracted with the
following functions.

real get_real(complex z)
Return the real part of the complex number z.

Available since 2.28

real get_imag(complex z)
Return the imaginary part of the complex number z.

Available since 2.28

4.3. Complex arithmetic operators
The arithmetic operators have the same precedence for complex and real arguments.
The complex form of an operator will be selected if at least one of its argument is of
type complex. If there are two arguments and only one is of type complex, then the
other will be promoted to type complex before performing the operation.

4.3. COMPLEX ARITHMETIC OPERATORS 45

Unary operators
complex operator+(complex z)
Return the complex argument z,

+z = z.

Available since 2.28

complex operator-(complex z)
Return the negation of the complex argument z, which for z = x + yi is

−z = −x − yi.

Available since 2.28

T operator-(T x)
Vectorized version of operator-. If T x is a (possibly nested) array of complex
numbers, -x is the same shape array where each individual value is negated.

Available since 2.31

Binary operators
complex operator+(complex x, complex y)
Return the sum of x and y,

(x + y) = operator+(x, y) = x + y.

Available since 2.28

complex operator-(complex x, complex y)
Return the difference between x and y,

(x − y) = operator-(x, y) = x − y.

Available since 2.28

complex operator*(complex x, complex y)
Return the product of x and y,

(x ∗ y) = operator*(x, y) = x × y.

Available since 2.28

46 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

complex operator/(complex x, complex y)
Return the quotient of x and y,

(x/y) = operator/(x, y) =
x
y

Available since 2.28

complex operatorˆ(complex x, complex y)
Return x raised to the power of y,

(x∧y) = operator∧(x, y) = exp(y log(x)).

Available since 2.28

4.4. Complex comparison operators
Complex numbers are equal if and only if both their real and imaginary components
are equal. That is, the conditional
z1 == z2

is equivalent to

get_real(z1) == get_real(z2) && get_imag(z1) == get_imag(z2)

As with other complex functions, if one of the arguments is of type real or int, it
will be promoted to type complex before comparison. For example, if z is of type
complex, then z == 0 will be true if z has real component equal to 0.0 and complex
component equal to 0.0.

Warning: As with real values, it is usually a mistake to compare complex numbers
for equality because their parts are implemented using floating-point arithmetic,
which suffers from precision errors, rendering algebraically equivalent expressions
not equal after evaluation.

int operator==(complex x, complex y)
Return 1 if x is equal to y and 0 otherwise,

(x == y) = operator==(x, y) =

{
1 if x = y, and
0 otherwise.

Available since 2.28

4.5. COMPLEX (COMPOUND) ASSIGNMENT OPERATORS 47

int operator!=(complex x, complex y)
Return 1 if x is not equal to y and 0 otherwise,

(x != y) = operator!=(x, y) =

{
1 if x ̸= y, and
0 otherwise.

Available since 2.28

4.5. Complex (compound) assignment operators
The assignment operator only serves as a component in the assignment statement
and is thus not technically a function in the Stan language. With that caveat, it is
documented here for completeness.

Assignment of complex numbers works elementwise. If an expression of type int
or real is assigned to a complex number, it will be promoted before assignment as
if calling to_complex(), so that the imaginary component is 0.0.

void operator=(complex x, complex y)
y = x; assigns a (copy of) the value of y to x.

Available since 2.28

void operator+=(complex x, complex y)
x += y; is equivalent to x = x + y;.

Available since 2.28

void operator-=(complex x, complex y)
x -= y; is equivalent to x = x - y;.

Available since 2.28

void operator*=(complex x, complex y)
x *= y; is equivalent to x = x * y;.

Available since 2.28

void operator/=(complex x, complex y)
x /= y; is equivalent to x = x / y;.

Available since 2.28

4.6. Complex special functions
The following functions are specific to complex numbers other than absolute value,
which has a specific meaning for complex numbers.

48 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

real abs(complex z)
Return the absolute value of z, also known as the modulus or magnitude, which for
z = x + yi is

abs(z) =
√

x2 + y2.

This function works elementwise over containers, returning the same shape and
kind of the input container but holding reals. For example, a complex_vector[n]
input will return a vector[n] output, with each element transformed by the above
equation.

Available since 2.28, vectorized in 2.30

real arg(complex z)
Return the phase angle (in radians) of z, which for z = x + yi is

arg(z) = atan2(y, x) = atan(y/x).

Available since 2.28

real norm(complex z)
Return the Euclidean norm of z, which is its absolute value squared, and which for
z = x + yi is

norm(z) = abs2(z) = x2 + y2.

Available since 2.28

complex conj(complex z)
Return the complex conjugate of z, which negates the imaginary component, so
that if z = x + yi,

conj(z) = x − yi.

Available since 2.28

Z conj(Z z)
Vectorized version of conj. This will apply the conj function to each element of a
complex array, vector, or matrix.

Available since 2.31

complex proj(complex z)
Return the projection of z onto the Riemann sphere, which for z = x + yi is

proj(z) =

{
z if z is finite, and
0 + sign(y)i otherwise,

4.7. COMPLEX EXPONENTIAL AND POWER FUNCTIONS 49

where sign(y) is -1 if y is negative and 1 otherwise.

Available since 2.28

complex polar(real r, real theta)
Return the complex number with magnitude (absolute value) r and phase angle
theta.

Available since 2.28

4.7. Complex exponential and power functions
The exponential, log, and power functions may be supplied with complex argu-
ments with specialized meanings that generalize their real counterparts. These
versions are only called when the argument is complex.

complex exp(complex z)
Return the complex natural exponential of z, which for z = x + yi is

exp z = exp(x)cis(y) = exp(x)(cos(y) + i sin(y)).

Available since 2.28

complex log(complex z)
Return the complex natural logarithm of z, which for z = polar(r, θ) is

log z = log r + θi.

Available since 2.28

complex log10(complex z)
Return the complex common logarithm of z,

log10 z =
log z

log 10
.

Available since 2.28

complex pow(complex x, complex y)
Return x raised to the power of y,

pow(x, y) = exp(y log(x)).

Available since 2.28

50 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

Z pow(T1 x, T2 y)
Vectorized implementation of the pow function

Available since 2.30

complex sqrt(complex x)
Return the complex square root of x with branch cut along the negative real axis.
For finite inputs, the result will be in the right half-plane.

Available since 2.28

4.8. Complex trigonometric functions
The standard trigonometric functions are supported for complex numbers.

complex cos(complex z)
Return the complex cosine of z, which is

cos(z) = cosh(z i) =
exp(z i) + exp(−z i)

2
.

Available since 2.28

complex sin(complex z)
Return the complex sine of z,

sin(z) = −sinh(z i) i =
exp(z i)− exp(−z i)

2 i
.

Available since 2.28

complex tan(complex z)
Return the complex tangent of z,

tan(z) = −tanh(z i) i =
(exp(−z i)− exp(z i)) i

exp(−z i) + exp(z i)
.

Available since 2.28

complex acos(complex z)
Return the complex arc (inverse) cosine of z,

acos(z) =
1
2

π + log(z i +
√

1 − z2) i.

Available since 2.28

4.9. COMPLEX HYPERBOLIC TRIGONOMETRIC FUNCTIONS 51

complex asin(complex z)
Return the complex arc (inverse) sine of z,

asin(z) = − log(z i +
√

1 − z2) i.

Available since 2.28

complex atan(complex z)
Return the complex arc (inverse) tangent of z,

atan(z) = −1
2
(log(1 − z i)− log(1 + z i)) i.

Available since 2.28

4.9. Complex hyperbolic trigonometric functions
The standard hyperbolic trigonometric functions are supported for complex num-
bers.

complex cosh(complex z)
Return the complex hyperbolic cosine of z,

cosh(z) =
exp(z) + exp(−z)

2
.

Available since 2.28

complex sinh(complex z)
Return the complex hyperbolic sine of z,

sinh(z) =
exp(z)− exp(−z)

2
.

Available since 2.28

complex tanh(complex z)
Return the complex hyperbolic tangent of z,

tanh(z) =
sinh(z)
cosh(z)

=
exp(z)− exp(−z)
exp(z) + exp(−z)

.

Available since 2.28

52 CHAPTER 4. COMPLEX-VALUED BASIC FUNCTIONS

complex acosh(complex z)
Return the complex hyperbolic arc (inverse) cosine of z,

acosh(z) = log(z +
√
(z + 1)(z − 1)).

Available since 2.28

complex asinh(complex z)
Return the complex hyperbolic arc (inverse) sine of z,

asinh(z) = log(z +
√

1 + z2).

Available since 2.28

complex atanh(complex z)
Return the complex hyperbolic arc (inverse) tangent of z,

atanh(z) =
log(1 + z)− log(1 − z)

2
.

Available since 2.28

5. Array Operations

5.1. Reductions
The following operations take arrays as input and produce single output values.
The boundary values for size 0 arrays are the unit with respect to the combination
operation (min, max, sum, or product).

Minimum and maximum
real min(array[] real x)
The minimum value in x, or +∞ if x is size 0.

Available since 2.0

int min(array[] int x)
The minimum value in x, or error if x is size 0.

Available since 2.0

real max(array[] real x)
The maximum value in x, or −∞ if x is size 0.

Available since 2.0

int max(array[] int x)
The maximum value in x, or error if x is size 0.

Available since 2.0

Sum, product, and log sum of exp
int sum(array[] int x)
The sum of the elements in x, or 0 if the array is empty.

Available since 2.1

real sum(array[] real x)
The sum of the elements in x; see definition above.

Available since 2.0

complex sum(array[] complex x)
The sum of the elements in x; see definition above.

53

54 CHAPTER 5. ARRAY OPERATIONS

Available since 2.30

real prod(array[] real x)
The product of the elements in x, or 1 if x is size 0.

Available since 2.0

real prod(array[] int x)
The product of the elements in x,

product(x) =

∏N
n=1 xn ifN > 0

1 ifN = 0

Available since 2.0

real log_sum_exp(array[] real x)
The natural logarithm of the sum of the exponentials of the elements in x, or −∞ if
the array is empty.

Available since 2.0

Sample mean, variance, and standard deviation
The sample mean, variance, and standard deviation are calculated in the usual
way. For i.i.d. draws from a distribution of finite mean, the sample mean is an
unbiased estimate of the mean of the distribution. Similarly, for i.i.d. draws from
a distribution of finite variance, the sample variance is an unbiased estimate of
the variance.1 The sample deviation is defined as the square root of the sample
deviation, but is not unbiased.

real mean(array[] real x)
The sample mean of the elements in x. For an array x of size N > 0,

mean(x) = x̄ =
1
N

N

∑
n=1

xn.

It is an error to the call the mean function with an array of size 0.

Available since 2.0
1Dividing by N rather than (N − 1) produces a maximum likelihood estimate of variance, which is

biased to underestimate variance.

5.1. REDUCTIONS 55

real variance(array[] real x)
The sample variance of the elements in x. For N > 0,

variance(x) =


1

N−1 ∑N
n=1(xn − x̄)2 if N > 1

0 if N = 1

It is an error to call the variance function with an array of size 0.

Available since 2.0

real sd(array[] real x)
The sample standard deviation of elements in x.

sd(x) =


√

variance(x) if N > 1

0 if N = 0

It is an error to call the sd function with an array of size 0.

Available since 2.0

Norms
real norm1(vector x)
The L1 norm of x, defined by

norm1(x) = ∑N
n=1(|xn|)

where N is the size of x.

Available since 2.30

real norm1(row_vector x)
The L1 norm of x

Available since 2.30

real norm1(array[] real x)
The L1 norm of x

Available since 2.30

real norm2(vector x)
The L2 norm of x, defined by

norm2(x) =
√

∑N
n=1(xn)2

56 CHAPTER 5. ARRAY OPERATIONS

where N is the size of x

Available since 2.30

real norm2(row_vector x)
The L2 norm of x

Available since 2.30

real norm2(array[] real x)
The L2 norm of x

Available since 2.30

Euclidean distance and squared distance
real distance(vector x, vector y)
The Euclidean distance between x and y, defined by

distance(x, y) =
√

∑N
n=1(xn − yn)2

where N is the size of x and y. It is an error to call distance with arguments of
unequal size.

Available since 2.2

real distance(vector x, row_vector y)
The Euclidean distance between x and y

Available since 2.2

real distance(row_vector x, vector y)
The Euclidean distance between x and y

Available since 2.2

real distance(row_vector x, row_vector y)
The Euclidean distance between x and y

Available since 2.2

real squared_distance(vector x, vector y)
The squared Euclidean distance between x and y, defined by

squared_distance(x, y) = distance(x, y)2 = ∑N
n=1(xn − yn)2,

where N is the size of x and y. It is an error to call squared_distancewith arguments
of unequal size.

5.2. ARRAY SIZE AND DIMENSION FUNCTION 57

Available since 2.7

real squared_distance(vector x, row_vector y)
The squared Euclidean distance between x and y

Available since 2.26

real squared_distance(row_vector x, vector y)
The squared Euclidean distance between x and y

Available since 2.26

real squared_distance(row_vector x, row_vector y)
The Euclidean distance between x and y

Available since 2.26

Quantile
Produces sample quantiles corresponding to the given probabilities. The smallest
observation corresponds to a probability of 0 and the largest to a probability of 1.

Implements algorithm 7 from Hyndman, R. J. and Fan, Y., Sample quantiles in
Statistical Packages (R’s default quantile function).

real quantile(data array[] real x, data real p)
The p-th quantile of x

Available since 2.27

array[] real quantile(data array[] real x, data array[] real p)
An array containing the quantiles of x given by the array of probabilities p

Available since 2.27

5.2. Array size and dimension function
The size of an array or matrix can be obtained using the dims() function. The
dims() function is defined to take an argument consisting of any variable with up
to 8 array dimensions (and up to 2 additional matrix dimensions) and returns an
array of integers with the dimensions. For example, if two variables are declared as
follows,

array[7, 8, 9] real x;
array[7] matrix[8, 9] y;

then calling dims(x) or dims(y) returns an integer array of size 3 containing the
elements 7, 8, and 9 in that order.

58 CHAPTER 5. ARRAY OPERATIONS

The size() function extracts the number of elements in an array. This is just the
top-level elements, so if the array is declared as

array[M, N] real a;

the size of a is M.

The function num_elements, on the other hand, measures all of the elements, so
that the array a above has M × N elements.

The specialized functions rows() and cols() should be used to extract the dimen-
sions of vectors and matrices.

array[] int dims(T x)
Return an integer array containing the dimensions of x; the type of the argument T
can be any Stan type with up to 8 array dimensions.

Available since 2.0

int num_elements(array[] T x)
Return the total number of elements in the array x including all elements in con-
tained arrays, vectors, and matrices. T can be any array type. For example, if x
is of type array[4, 3] real then num_elements(x) is 12, and if y is declared as
array[5] matrix[3, 4] y, then size(y) evaluates to 60.

Available since 2.5

int size(array[] T x)
Return the number of elements in the array x; the type of the array T can be any
type, but the size is just the size of the top level array, not the total number of
elements contained. For example, if x is of type array[4, 3] real then size(x)
is 4.

Available since 2.0

5.3. Array broadcasting
The following operations create arrays by repeating elements to fill an array of a
specified size. These operations work for all input types T, including reals, integers,
vectors, row vectors, matrices, or arrays.

array[] T rep_array(T x, int n)
Return the n array with every entry assigned to x.

Available since 2.0

5.3. ARRAY BROADCASTING 59

array [,] T rep_array(T x, int m, int n)
Return the m by n array with every entry assigned to x.

Available since 2.0

array[„] T rep_array(T x, int k, int m, int n)
Return the k by m by n array with every entry assigned to x.

Available since 2.0

For example, rep_array(1.0,5) produces a real array (type array[] real) of
size 5 with all values set to 1.0. On the other hand, rep_array(1,5) produces an
integer array (type array[] int) of size 5 with all values set to 1. This distinction
is important because it is not possible to assign an integer array to a real array.
For example, the following example contrasts legal with illegal array creation and
assignment

array[5] real y;
array[5] int x;

x = rep_array(1, 5); // ok
y = rep_array(1.0, 5); // ok

x = rep_array(1.0, 5); // illegal
y = rep_array(1, 5); // illegal

x = y; // illegal
y = x; // illegal

If the value being repeated v is a vector (i.e., T is vector), then rep_array(v, 27)
is a size 27 array consisting of 27 copies of the vector v.

vector[5] v;
array[3] vector[5] a;

a = rep_array(v, 3); // fill a with copies of v
a[2, 4] = 9.0; // v[4], a[1, 4], a[3, 4] unchanged

If the type T of x is itself an array type, then the result will be an array with one,
two, or three added dimensions, depending on which of the rep_array functions
is called. For instance, consider the following legal code snippet.

60 CHAPTER 5. ARRAY OPERATIONS

array[5, 6] real a;
array[3, 4, 5, 6] real b;

b = rep_array(a, 3, 4); // make (3 x 4) copies of a
b[1, 1, 1, 1] = 27.9; // a[1, 1] unchanged

After the assignment to b, the value for b[j, k, m, n] is equal to a[m, n] where
it is defined, for j in 1:3, k in 1:4, m in 1:5, and n in 1:6.

5.4. Array concatenation
T append_array(T x, T y)
Return the concatenation of two arrays in the order of the arguments. T must be an
N-dimensional array of any Stan type (with a maximum N of 7). All dimensions
but the first must match.

Available since 2.18

For example, the following code appends two three dimensional arrays of matrices
together. Note that all dimensions except the first match. Any mismatches will
cause an error to be thrown.

array[2, 1, 7] matrix[4, 6] x1;
array[3, 1, 7] matrix[4, 6] x2;
array[5, 1, 7] matrix[4, 6] x3;

x3 = append_array(x1, x2);

5.5. Sorting functions
Sorting can be used to sort values or the indices of those values in either ascending
or descending order. For example, if v is declared as a real array of size 3, with
values

v = (1,−10.3, 20.987),

then the various sort routines produce

sort_asc(v) = (−10.3, 1, 20.987)

sort_desc(v) = (20.987, 1,−10.3)

sort_indices_asc(v) = (2, 1, 3)

sort_indices_desc(v) = (3, 1, 2)

5.5. SORTING FUNCTIONS 61

array[] real sort_asc(array[] real v)
Sort the elements of v in ascending order

Available since 2.0

array[] int sort_asc(array[] int v)
Sort the elements of v in ascending order

Available since 2.0

array[] real sort_desc(array[] real v)
Sort the elements of v in descending order

Available since 2.0

array[] int sort_desc(array[] int v)
Sort the elements of v in descending order

Available since 2.0

array[] int sort_indices_asc(array[] real v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

Available since 2.3

array[] int sort_indices_asc(array[] int v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

Available since 2.3

array[] int sort_indices_desc(array[] real v)
Return an array of indices between 1 and the size of v, sorted to index v in descend-
ing order.

Available since 2.3

array[] int sort_indices_desc(array[] int v)
Return an array of indices between 1 and the size of v, sorted to index v in descend-
ing order.

Available since 2.3

int rank(array[] real v, int s)
Number of components of v less than v[s]

Available since 2.0

62 CHAPTER 5. ARRAY OPERATIONS

int rank(array[] int v, int s)
Number of components of v less than v[s]

Available since 2.0

5.6. Reversing functions
Stan provides functions to create a new array by reversing the order of elements in
an existing array. For example, if v is declared as a real array of size 3, with values

v = (1, −10.3, 20.987),

then
reverse(v) = (20.987, −10.3, 1).

array[] T reverse(array[] T v)
Return a new array containing the elements of the argument in reverse order.

Available since 2.23

6. Matrix Operations

6.1. Integer-valued matrix size functions
int num_elements(vector x)
The total number of elements in the vector x (same as function rows)

Available since 2.5

int num_elements(row_vector x)
The total number of elements in the vector x (same as function cols)

Available since 2.5

int num_elements(matrix x)
The total number of elements in the matrix x. For example, if x is a 5 × 3 matrix,
then num_elements(x) is 15

Available since 2.5

int rows(vector x)
The number of rows in the vector x

Available since 2.0

int rows(row_vector x)
The number of rows in the row vector x, namely 1

Available since 2.0

int rows(matrix x)
The number of rows in the matrix x

Available since 2.0

int cols(vector x)
The number of columns in the vector x, namely 1

Available since 2.0

int cols(row_vector x)
The number of columns in the row vector x

Available since 2.0

63

64 CHAPTER 6. MATRIX OPERATIONS

int cols(matrix x)
The number of columns in the matrix x

Available since 2.0

int size(vector x)
The size of x, i.e., the number of elements

Available since 2.26

int size(row_vector x)
The size of x, i.e., the number of elements

Available since 2.26

int size(matrix x)
The size of the matrix x. For example, if x is a 5 × 3 matrix, then size(x) is 15

Available since 2.26

6.2. Matrix arithmetic operators
Stan supports the basic matrix operations using infix, prefix and postfix operations.
This section lists the operations supported by Stan along with their argument and
result types.

Negation prefix operators
vector operator-(vector x)
The negation of the vector x.

Available since 2.0

row_vector operator-(row_vector x)
The negation of the row vector x.

Available since 2.0

matrix operator-(matrix x)
The negation of the matrix x.

Available since 2.0

T operator-(T x)
Vectorized version of operator-. If T x is a (possibly nested) array of matrix types,
-x is the same shape array where each individual value is negated.

Available since 2.31

6.2. MATRIX ARITHMETIC OPERATORS 65

Infix matrix operators
vector operator+(vector x, vector y)
The sum of the vectors x and y.

Available since 2.0

row_vector operator+(row_vector x, row_vector y)
The sum of the row vectors x and y.

Available since 2.0

matrix operator+(matrix x, matrix y)
The sum of the matrices x and y

Available since 2.0

vector operator-(vector x, vector y)
The difference between the vectors x and y.

Available since 2.0

row_vector operator-(row_vector x, row_vector y)
The difference between the row vectors x and y

Available since 2.0

matrix operator-(matrix x, matrix y)
The difference between the matrices x and y

Available since 2.0

vector operator*(real x, vector y)
The product of the scalar x and vector y

Available since 2.0

row_vector operator*(real x, row_vector y)
The product of the scalar x and the row vector y

Available since 2.0

matrix operator*(real x, matrix y)
The product of the scalar x and the matrix y

Available since 2.0

vector operator*(vector x, real y)
The product of the scalar y and vector x

66 CHAPTER 6. MATRIX OPERATIONS

Available since 2.0

matrix operator*(vector x, row_vector y)
The product of the vector x and row vector y

Available since 2.0

row_vector operator*(row_vector x, real y)
The product of the scalar y and row vector x

Available since 2.0

real operator*(row_vector x, vector y)
The product of the row vector x and vector y

Available since 2.0

row_vector operator*(row_vector x, matrix y)
The product of the row vector x and matrix y

Available since 2.0

matrix operator*(matrix x, real y)
The product of the scalar y and matrix x

Available since 2.0

vector operator*(matrix x, vector y)
The product of the matrix x and vector y

Available since 2.0

matrix operator*(matrix x, matrix y)
The product of the matrices x and y

Available since 2.0

Broadcast infix operators
vector operator+(vector x, real y)
The result of adding y to every entry in the vector x

Available since 2.0

vector operator+(real x, vector y)
The result of adding x to every entry in the vector y

Available since 2.0

6.2. MATRIX ARITHMETIC OPERATORS 67

row_vector operator+(row_vector x, real y)
The result of adding y to every entry in the row vector x

Available since 2.0

row_vector operator+(real x, row_vector y)
The result of adding x to every entry in the row vector y

Available since 2.0

matrix operator+(matrix x, real y)
The result of adding y to every entry in the matrix x

Available since 2.0

matrix operator+(real x, matrix y)
The result of adding x to every entry in the matrix y

Available since 2.0

vector operator-(vector x, real y)
The result of subtracting y from every entry in the vector x

Available since 2.0

vector operator-(real x, vector y)
The result of adding x to every entry in the negation of the vector y

Available since 2.0

row_vector operator-(row_vector x, real y)
The result of subtracting y from every entry in the row vector x

Available since 2.0

row_vector operator-(real x, row_vector y)
The result of adding x to every entry in the negation of the row vector y

Available since 2.0

matrix operator-(matrix x, real y)
The result of subtracting y from every entry in the matrix x

Available since 2.0

matrix operator-(real x, matrix y)
The result of adding x to every entry in negation of the matrix y

Available since 2.0

68 CHAPTER 6. MATRIX OPERATIONS

vector operator/(vector x, real y)
The result of dividing each entry in the vector x by y

Available since 2.0

row_vector operator/(row_vector x, real y)
The result of dividing each entry in the row vector x by y

Available since 2.0

matrix operator/(matrix x, real y)
The result of dividing each entry in the matrix x by y

Available since 2.0

6.3. Transposition operator
Matrix transposition is represented using a postfix operator.

matrix operator'(matrix x)
The transpose of the matrix x, written as x'

Available since 2.0

row_vector operator'(vector x)
The transpose of the vector x, written as x'

Available since 2.0

vector operator'(row_vector x)
The transpose of the row vector x, written as x'

Available since 2.0

6.4. Elementwise functions
Elementwise functions apply a function to each element of a vector or matrix,
returning a result of the same shape as the argument. There are many functions
that are vectorized in addition to the ad hoc cases listed in this section; see section
function vectorization for the general cases.

vector operator.*(vector x, vector y)
The elementwise product of y and x

Available since 2.0

row_vector operator.*(row_vector x, row_vector y)
The elementwise product of y and x

6.4. ELEMENTWISE FUNCTIONS 69

Available since 2.0

matrix operator.*(matrix x, matrix y)
The elementwise product of y and x

Available since 2.0

vector operator./(vector x, vector y)
The elementwise quotient of y and x

Available since 2.0

vector operator./(vector x, real y)
The elementwise quotient of y and x

Available since 2.4

vector operator./(real x, vector y)
The elementwise quotient of y and x

Available since 2.4

row_vector operator./(row_vector x, row_vector y)
The elementwise quotient of y and x

Available since 2.0

row_vector operator./(row_vector x, real y)
The elementwise quotient of y and x

Available since 2.4

row_vector operator./(real x, row_vector y)
The elementwise quotient of y and x

Available since 2.4

matrix operator./(matrix x, matrix y)
The elementwise quotient of y and x

Available since 2.0

matrix operator./(matrix x, real y)
The elementwise quotient of y and x

Available since 2.4

matrix operator./(real x, matrix y)
The elementwise quotient of y and x

70 CHAPTER 6. MATRIX OPERATIONS

Available since 2.4

vector operator.ˆ(vector x, vector y)
The elementwise power of y and x

Available since 2.24

vector operator.ˆ(vector x, real y)
The elementwise power of y and x

Available since 2.24

vector operator.ˆ(real x, vector y)
The elementwise power of y and x

Available since 2.24

row_vector operator.ˆ(row_vector x, row_vector y)
The elementwise power of y and x

Available since 2.24

row_vector operator.ˆ(row_vector x, real y)
The elementwise power of y and x

Available since 2.24

row_vector operator.ˆ(real x, row_vector y)
The elementwise power of y and x

Available since 2.24

matrix operator.ˆ(matrix x, matrix y)
The elementwise power of y and x

Available since 2.24

matrix operator.ˆ(matrix x, real y)
The elementwise power of y and x

Available since 2.24

matrix operator.ˆ(real x, matrix y)
The elementwise power of y and x

Available since 2.24

6.5. DOT PRODUCTS AND SPECIALIZED PRODUCTS 71

6.5. Dot products and specialized products
real dot_product(vector x, vector y)
The dot product of x and y

Available since 2.0

real dot_product(vector x, row_vector y)
The dot product of x and y

Available since 2.0

real dot_product(row_vector x, vector y)
The dot product of x and y

Available since 2.0

real dot_product(row_vector x, row_vector y)
The dot product of x and y

Available since 2.0

row_vector columns_dot_product(vector x, vector y)
The dot product of the columns of x and y

Available since 2.0

row_vector columns_dot_product(row_vector x, row_vector y)
The dot product of the columns of x and y

Available since 2.0

row_vector columns_dot_product(matrix x, matrix y)
The dot product of the columns of x and y

Available since 2.0

vector rows_dot_product(vector x, vector y)
The dot product of the rows of x and y

Available since 2.0

vector rows_dot_product(row_vector x, row_vector y)
The dot product of the rows of x and y

Available since 2.0

vector rows_dot_product(matrix x, matrix y)
The dot product of the rows of x and y

72 CHAPTER 6. MATRIX OPERATIONS

Available since 2.0

real dot_self(vector x)
The dot product of the vector x with itself

Available since 2.0

real dot_self(row_vector x)
The dot product of the row vector x with itself

Available since 2.0

row_vector columns_dot_self(vector x)
The dot product of the columns of x with themselves

Available since 2.0

row_vector columns_dot_self(row_vector x)
The dot product of the columns of x with themselves

Available since 2.0

row_vector columns_dot_self(matrix x)
The dot product of the columns of x with themselves

Available since 2.0

vector rows_dot_self(vector x)
The dot product of the rows of x with themselves

Available since 2.0

vector rows_dot_self(row_vector x)
The dot product of the rows of x with themselves

Available since 2.0

vector rows_dot_self(matrix x)
The dot product of the rows of x with themselves

Available since 2.0

Specialized products
matrix tcrossprod(matrix x)
The product of x postmultiplied by its own transpose, similar to the tcrossprod(x)
function in R. The result is a symmetric matrix x x⊤.

Available since 2.0

6.5. DOT PRODUCTS AND SPECIALIZED PRODUCTS 73

matrix crossprod(matrix x)
The product of x premultiplied by its own transpose, similar to the crossprod(x)
function in R. The result is a symmetric matrix x⊤ x.

Available since 2.0

The following functions all provide shorthand forms for common expressions,
which are also much more efficient.

matrix quad_form(matrix A, matrix B)
The quadratic form, i.e., B' * A * B.

Available since 2.0

real quad_form(matrix A, vector B)
The quadratic form, i.e., B' * A * B.

Available since 2.0

matrix quad_form_diag(matrix m, vector v)
The quadratic form using the column vector v as a diagonal matrix, i.e.,
diag_matrix(v) * m * diag_matrix(v).

Available since 2.3

matrix quad_form_diag(matrix m, row_vector rv)
The quadratic form using the row vector rv as a diagonal matrix, i.e.,
diag_matrix(rv) * m * diag_matrix(rv).

Available since 2.3

matrix quad_form_sym(matrix A, matrix B)
Similarly to quad_form, gives B' * A * B, but additionally checks if A is symmet-
ric and ensures that the result is also symmetric.

Available since 2.3

real quad_form_sym(matrix A, vector B)
Similarly to quad_form, gives B' * A * B, but additionally checks if A is symmet-
ric and ensures that the result is also symmetric.

Available since 2.3

real trace_quad_form(matrix A, matrix B)
The trace of the quadratic form, i.e., trace(B' * A * B).

Available since 2.0

74 CHAPTER 6. MATRIX OPERATIONS

real trace_quad_form(matrix A, vector B)
The trace of the quadratic form, i.e., trace(B' * A * B).

Available since 2.0

real trace_gen_quad_form(matrix D, matrix A, matrix B)
The trace of a generalized quadratic form, i.e., trace(D * B' * A * B).

Available since 2.0

matrix multiply_lower_tri_self_transpose(matrix x)
The product of the lower triangular portion of x (including the diagonal) times its
own transpose; that is, if L is a matrix of the same dimensions as x with L(m,n) equal
to x(m,n) for n ≤ m and L(m,n) equal to 0 if n > m, the result is the symmetric
matrix L L⊤. This is a specialization of tcrossprod(x) for lower-triangular matrices.
The input matrix does not need to be square.

Available since 2.0

matrix diag_pre_multiply(vector v, matrix m)
Return the product of the diagonal matrix formed from the vector v and the matrix
m, i.e., diag_matrix(v) * m.

Available since 2.0

matrix diag_pre_multiply(row_vector rv, matrix m)
Return the product of the diagonal matrix formed from the vector rv and the matrix
m, i.e., diag_matrix(rv) * m.

Available since 2.0

matrix diag_post_multiply(matrix m, vector v)
Return the product of the matrix m and the diagonal matrix formed from the vector
v, i.e., m * diag_matrix(v).

Available since 2.0

matrix diag_post_multiply(matrix m, row_vector rv)
Return the product of the matrix m and the diagonal matrix formed from the the
row vector rv, i.e., m * diag_matrix(rv).

Available since 2.0

6.6. REDUCTIONS 75

6.6. Reductions
Log sum of exponents
real log_sum_exp(vector x)
The natural logarithm of the sum of the exponentials of the elements in x

Available since 2.0

real log_sum_exp(row_vector x)
The natural logarithm of the sum of the exponentials of the elements in x

Available since 2.0

real log_sum_exp(matrix x)
The natural logarithm of the sum of the exponentials of the elements in x

Available since 2.0

Minimum and maximum
real min(vector x)
The minimum value in x, or +∞ if x is empty

Available since 2.0

real min(row_vector x)
The minimum value in x, or +∞ if x is empty

Available since 2.0

real min(matrix x)
The minimum value in x, or +∞ if x is empty

Available since 2.0

real max(vector x)
The maximum value in x, or −∞ if x is empty

Available since 2.0

real max(row_vector x)
The maximum value in x, or −∞ if x is empty

Available since 2.0

real max(matrix x)
The maximum value in x, or −∞ if x is empty

Available since 2.0

76 CHAPTER 6. MATRIX OPERATIONS

Sums and products
real sum(vector x)
The sum of the values in x, or 0 if x is empty

Available since 2.0

real sum(row_vector x)
The sum of the values in x, or 0 if x is empty

Available since 2.0

real sum(matrix x)
The sum of the values in x, or 0 if x is empty

Available since 2.0

real prod(vector x)
The product of the values in x, or 1 if x is empty

Available since 2.0

real prod(row_vector x)
The product of the values in x, or 1 if x is empty

Available since 2.0

real prod(matrix x)
The product of the values in x, or 1 if x is empty

Available since 2.0

Sample moments
Full definitions are provided for sample moments in section array reductions.

real mean(vector x)
The sample mean of the values in x; see section array reductions for details.

Available since 2.0

real mean(row_vector x)
The sample mean of the values in x; see section array reductions for details.

Available since 2.0

real mean(matrix x)
The sample mean of the values in x; see section array reductions for details.

Available since 2.0

6.6. REDUCTIONS 77

real variance(vector x)
The sample variance of the values in x; see section array reductions for details.

Available since 2.0

real variance(row_vector x)
The sample variance of the values in x; see section array reductions for details.

Available since 2.0

real variance(matrix x)
The sample variance of the values in x; see section array reductions for details.

Available since 2.0

real sd(vector x)
The sample standard deviation of the values in x; see section array reductions for
details.

Available since 2.0

real sd(row_vector x)
The sample standard deviation of the values in x; see section array reductions for
details.

Available since 2.0

real sd(matrix x)
The sample standard deviation of the values in x; see section array reductions for
details.

Available since 2.0

Quantile
Produces sample quantiles corresponding to the given probabilities. The smallest
observation corresponds to a probability of 0 and the largest to a probability of 1.

Implements algorithm 7 from Hyndman, R. J. and Fan, Y., Sample quantiles in
Statistical Packages (R’s default quantile function).

real quantile(data vector x, data real p)
The p-th quantile of x

Available since 2.27

array[] real quantile(data vector x, data array[] real p)
An array containing the quantiles of x given by the array of probabilities p

78 CHAPTER 6. MATRIX OPERATIONS

Available since 2.27

real quantile(data row_vector x, data real p)
The p-th quantile of x

Available since 2.27

array[] real quantile(data row_vector x, data array[] real p)
An array containing the quantiles of x given by the array of probabilities p

Available since 2.27

6.7. Broadcast functions
The following broadcast functions allow vectors, row vectors and matrices to be
created by copying a single element into all of their cells. Matrices may also be
created by stacking copies of row vectors vertically or stacking copies of column
vectors horizontally.

vector rep_vector(real x, int m)
Return the size m (column) vector consisting of copies of x.

Available since 2.0

row_vector rep_row_vector(real x, int n)
Return the size n row vector consisting of copies of x.

Available since 2.0

matrix rep_matrix(real x, int m, int n)
Return the m by n matrix consisting of copies of x.

Available since 2.0

matrix rep_matrix(vector v, int n)
Return the m by n matrix consisting of n copies of the (column) vector v of size m.

Available since 2.0

matrix rep_matrix(row_vector rv, int m)
Return the m by n matrix consisting of m copies of the row vector rv of size n.

Available since 2.0

Unlike the situation with array broadcasting (see section array broadcasting), where
there is a distinction between integer and real arguments, the following two state-
ments produce the same result for vector broadcasting; row vector and matrix
broadcasting behave similarly.

6.8. DIAGONAL MATRIX FUNCTIONS 79

vector[3] x;
x = rep_vector(1, 3);
x = rep_vector(1.0, 3);

There are no integer vector or matrix types, so integer values are automatically
promoted.

Symmetrization
matrix symmetrize_from_lower_tri(matrix A)

Construct a symmetric matrix from the lower triangle of A.

Available since 2.26

6.8. Diagonal matrix functions
matrix add_diag(matrix m, row_vector d)
Add row_vector d to the diagonal of matrix m.

Available since 2.21

matrix add_diag(matrix m, vector d)
Add vector d to the diagonal of matrix m.

Available since 2.21

matrix add_diag(matrix m, real d)
Add scalar d to every diagonal element of matrix m.

Available since 2.21

vector diagonal(matrix x)
The diagonal of the matrix x

Available since 2.0

matrix diag_matrix(vector x)
The diagonal matrix with diagonal x

Available since 2.0

Although the diag_matrix function is available, it is unlikely to ever show up in
an efficient Stan program. For example, rather than converting a diagonal to a full
matrix for use as a covariance matrix,

80 CHAPTER 6. MATRIX OPERATIONS

y ~ multi_normal(mu, diag_matrix(square(sigma)));

it is much more efficient to just use a univariate normal, which produces the same
density,

y ~ normal(mu, sigma);

Rather than writing m * diag_matrix(v) where m is a matrix and v is a vector,
it is much more efficient to write diag_post_multiply(m, v) (and similarly for
pre-multiplication). By the same token, it is better to use quad_form_diag(m, v)
rather than quad_form(m, diag_matrix(v)).

matrix identity_matrix(int k)
Create an identity matrix of size k × k

Available since 2.26

6.9. Container construction functions
array[] real linspaced_array(int n, data real lower, data real up-
per)
Create a real array of length n of equidistantly-spaced elements between lower and
upper

Available since 2.24

array[] int linspaced_int_array(int n, int lower, int upper)
Create a regularly spaced, increasing integer array of length n between lower and
upper, inclusively. If (upper - lower) / (n - 1) is less than one, repeat each
output (n - 1) / (upper - lower) times. If neither (upper - lower) / (n -
1) or (n - 1) / (upper - lower) are integers, upper is reduced until one of
these is true.

Available since 2.26

vector linspaced_vector(int n, data real lower, data real upper)
Create an n-dimensional vector of equidistantly-spaced elements between lower
and upper

Available since 2.24

row_vector linspaced_row_vector(int n, data real lower, data real
upper)
Create an n-dimensional row-vector of equidistantly-spaced elements between
lower and upper

6.9. CONTAINER CONSTRUCTION FUNCTIONS 81

Available since 2.24

array[] int one_hot_int_array(int n, int k)
Create a one-hot encoded int array of length n with array[k] = 1

Available since 2.26

array[] real one_hot_array(int n, int k)
Create a one-hot encoded real array of length n with array[k] = 1

Available since 2.24

vector one_hot_vector(int n, int k)
Create an n-dimensional one-hot encoded vector with vector[k] = 1

Available since 2.24

row_vector one_hot_row_vector(int n, int k)
Create an n-dimensional one-hot encoded row-vector with row_vector[k] = 1

Available since 2.24

array[] int ones_int_array(int n)
Create an int array of length n of all ones

Available since 2.26

array[] real ones_array(int n)
Create a real array of length n of all ones

Available since 2.26

vector ones_vector(int n)
Create an n-dimensional vector of all ones

Available since 2.26

row_vector ones_row_vector(int n)
Create an n-dimensional row-vector of all ones

Available since 2.26

array[] int zeros_int_array(int n)
Create an int array of length n of all zeros

Available since 2.26

array[] real zeros_array(int n)
Create a real array of length n of all zeros

82 CHAPTER 6. MATRIX OPERATIONS

Available since 2.24

vector zeros_vector(int n)
Create an n-dimensional vector of all zeros

Available since 2.24

row_vector zeros_row_vector(int n)
Create an n-dimensional row-vector of all zeros

Available since 2.24

vector uniform_simplex(int n)
Create an n-dimensional simplex with elements vector[i] = 1 / n for all i ∈
1, . . . , n

Available since 2.24

6.10. Slicing and blocking functions
Stan provides several functions for generating slices or blocks or diagonal entries
for matrices.

Columns and rows
vector col(matrix x, int n)
The n-th column of matrix x

Available since 2.0

row_vector row(matrix x, int m)
The m-th row of matrix x

Available since 2.0

The row function is special in that it may be used as an lvalue in an assignment
statement (i.e., something to which a value may be assigned). The row function is
also special in that the indexing notation x[m] is just an alternative way of writing
row(x,m). The col function may not, be used as an lvalue, nor is there an indexing
based shorthand for it.

Block operations
Matrix slicing operations
Block operations may be used to extract a sub-block of a matrix.

matrix block(matrix x, int i, int j, int n_rows, int n_cols)
Return the submatrix of x that starts at row i and column j and extends n_rows

6.10. SLICING AND BLOCKING FUNCTIONS 83

rows and n_cols columns.

Available since 2.0

The sub-row and sub-column operations may be used to extract a slice of row or
column from a matrix

vector sub_col(matrix x, int i, int j, int n_rows)
Return the sub-column of x that starts at row i and column j and extends n_rows
rows and 1 column.

Available since 2.0

row_vector sub_row(matrix x, int i, int j, int n_cols)
Return the sub-row of x that starts at row i and column j and extends 1 row and
n_cols columns.

Available since 2.0

Vector and array slicing operations
The head operation extracts the first n elements of a vector and the tail operation
the last. The segment operation extracts an arbitrary subvector.

vector head(vector v, int n)
Return the vector consisting of the first n elements of v.

Available since 2.0

row_vector head(row_vector rv, int n)
Return the row vector consisting of the first n elements of rv.

Available since 2.0

array[] T head(array[] T sv, int n)
Return the array consisting of the first n elements of sv; applies to up to three-
dimensional arrays containing any type of elements T.

Available since 2.0

vector tail(vector v, int n)
Return the vector consisting of the last n elements of v.

Available since 2.0

row_vector tail(row_vector rv, int n)
Return the row vector consisting of the last n elements of rv.

Available since 2.0

84 CHAPTER 6. MATRIX OPERATIONS

array[] T tail(array[] T sv, int n)
Return the array consisting of the last n elements of sv; applies to up to three-
dimensional arrays containing any type of elements T.

Available since 2.0

vector segment(vector v, int i, int n)
Return the vector consisting of the n elements of v starting at i; i.e., elements i
through through i + n - 1.

Available since 2.0

row_vector segment(row_vector rv, int i, int n)
Return the row vector consisting of the n elements of rv starting at i; i.e., elements i
through through i + n - 1.

Available since 2.10

array[] T segment(array[] T sv, int i, int n)
Return the array consisting of the n elements of sv starting at i; i.e., elements i
through through i + n - 1. Applies to up to three-dimensional arrays containing any
type of elements T.

Available since 2.0

6.11. Matrix and vector concatenation
Stan’s matrix and vector concatenation operations append_col and append_row
are like the operations cbind and rbind in R.

Horizontal concatenation
matrix append_col(matrix x, matrix y)
Combine matrices x and y by column. The matrices must have the same number of
rows.

Available since 2.5

matrix append_col(matrix x, vector y)
Combine matrix x and vector y by column. The matrix and the vector must have
the same number of rows.

Available since 2.5

matrix append_col(vector x, matrix y)
Combine vector x and matrix y by column. The vector and the matrix must have
the same number of rows.

6.11. MATRIX AND VECTOR CONCATENATION 85

Available since 2.5

matrix append_col(vector x, vector y)
Combine vectors x and y by column. The vectors must have the same number of
rows.

Available since 2.5

row_vector append_col(row_vector x, row_vector y)
Combine row vectors x and y of any size into another row vector by appending y
to the end of x.

Available since 2.5

row_vector append_col(real x, row_vector y)
Append x to the front of y, returning another row vector.

Available since 2.12

row_vector append_col(row_vector x, real y)
Append y to the end of x, returning another row vector.

Available since 2.12

Vertical concatenation
matrix append_row(matrix x, matrix y)
Combine matrices x and y by row. The matrices must have the same number of
columns.

Available since 2.5

matrix append_row(matrix x, row_vector y)
Combine matrix x and row vector y by row. The matrix and the row vector must
have the same number of columns.

Available since 2.5

matrix append_row(row_vector x, matrix y)
Combine row vector x and matrix y by row. The row vector and the matrix must
have the same number of columns.

Available since 2.5

matrix append_row(row_vector x, row_vector y)
Combine row vectors x and y by row. The row vectors must have the same number
of columns.

86 CHAPTER 6. MATRIX OPERATIONS

Available since 2.5

vector append_row(vector x, vector y)
Concatenate vectors x and y of any size into another vector.

Available since 2.5

vector append_row(real x, vector y)
Append x to the top of y, returning another vector.

Available since 2.12

vector append_row(vector x, real y)
Append y to the bottom of x, returning another vector.

Available since 2.12

6.12. Special matrix functions
Softmax

The softmax function maps1 y ∈ RK to the K-simplex by

softmax(y) =
exp(y)

∑K
k=1 exp(yk)

,

where exp(y) is the componentwise exponentiation of y. Softmax is usually calcu-
lated on the log scale,

log softmax(y) = y − log
K

∑
k=1

exp(yk)

= y − log_sum_exp(y).

where the vector y minus the scalar log_sum_exp(y) subtracts the scalar from each
component of y.

Stan provides the following functions for softmax and its log.

vector softmax(vector x)
The softmax of x

Available since 2.0
1The softmax function is so called because in the limit as yn → ∞ with ym for m ̸= n held constant,

the result tends toward the “one-hot” vector θ with θn = 1 and θm = 0 for m ̸= n, thus providing a “soft”
version of the maximum function.

6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS 87

vector log_softmax(vector x)
The natural logarithm of the softmax of x

Available since 2.0

Cumulative sums
The cumulative sum of a sequence x1, . . . , xN is the sequence y1, . . . , yN , where

yn =
n

∑
m=1

xm.

array[] int cumulative_sum(array[] int x)
The cumulative sum of x

Available since 2.30

array[] real cumulative_sum(array[] real x)
The cumulative sum of x

Available since 2.0

vector cumulative_sum(vector v)
The cumulative sum of v

Available since 2.0

row_vector cumulative_sum(row_vector rv)
The cumulative sum of rv

Available since 2.0

6.13. Gaussian Process Covariance Functions
The Gaussian process covariance functions compute the covariance between ob-
servations in an input data set or the cross-covariance between two input data
sets.

For one dimensional GPs, the input data sets are arrays of scalars. The covariance
matrix is given by Kij = k(xi, xj) (where xi is the ith element of the array x) and the
cross-covariance is given by Kij = k(xi, yj).

For multi-dimensional GPs, the input data sets are arrays of vectors. The covariance
matrix is given by Kij = k(xi, xj) (where xi is the ith vector in the array x) and the
cross-covariance is given by Kij = k(xi, yj).

88 CHAPTER 6. MATRIX OPERATIONS

Exponentiated quadratic kernel
With magnitude σ and length scale l, the exponentiated quadratic kernel is:

k(xi, xj) = σ2 exp

(
−
|xi − xj|2

2l2

)

matrix gp_exp_quad_cov(array[] real x, real sigma, real
length_scale)

Gaussian process covariance with exponentiated quadratic kernel in one dimension.

Available since 2.20

matrix gp_exp_quad_cov(array[] real x1, array[] real x2, real
sigma, real length_scale)

Gaussian process cross-covariance of x1 and x2 with exponentiated quadratic kernel
in one dimension.

Available since 2.20

matrix gp_exp_quad_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with exponentiated quadratic kernel in multiple di-
mensions.

Available since 2.20

matrix gp_exp_quad_cov(vectors x, real sigma, array[] real
length_scale)

Gaussian process covariance with exponentiated quadratic kernel in multiple di-
mensions with a length scale for each dimension.

Available since 2.20

matrix gp_exp_quad_cov(vectors x1, vectors x2, real sigma, real
length_scale)

6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS 89

Gaussian process cross-covariance of x1 and x2 with exponentiated quadratic kernel
in multiple dimensions.

Available since 2.20

matrix gp_exp_quad_cov(vectors x1, vectors x2, real sigma, array[]
real length_scale)

Gaussian process cross-covariance of x1 and x2 with exponentiated quadratic kernel
in multiple dimensions with a length scale for each dimension.

Available since 2.20

Dot product kernel
With bias σ0 the dot product kernel is:

k(xi, xj) = σ2
0 + xT

i xj

matrix gp_dot_prod_cov(array[] real x, real sigma)

Gaussian process covariance with dot product kernel in one dimension.

Available since 2.20

matrix gp_dot_prod_cov(array[] real x1, array[] real x2, real
sigma)

Gaussian process cross-covariance of x1 and x2 with dot product kernel in one
dimension.

Available since 2.20

matrix gp_dot_prod_cov(vectors x, real sigma)

Gaussian process covariance with dot product kernel in multiple dimensions.

Available since 2.20

matrix gp_dot_prod_cov(vectors x1, vectors x2, real sigma)

90 CHAPTER 6. MATRIX OPERATIONS

Gaussian process cross-covariance of x1 and x2 with dot product kernel in multiple
dimensions.

Available since 2.20

Exponential kernel
With magnitude σ and length scale l, the exponential kernel is:

k(xi, xj) = σ2 exp
(
−
|xi − xj|

l

)
matrix gp_exponential_cov(array[] real x, real sigma, real
length_scale)

Gaussian process covariance with exponential kernel in one dimension.

Available since 2.20

matrix gp_exponential_cov(array[] real x1, array[] real x2, real
sigma, real length_scale)

Gaussian process cross-covariance of x1 and x2 with exponential kernel in one
dimension.

Available since 2.20

matrix gp_exponential_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with exponential kernel in multiple dimensions.

Available since 2.20

matrix gp_exponential_cov(vectors x, real sigma, array[] real
length_scale)

Gaussian process covariance with exponential kernel in multiple dimensions with a
length scale for each dimension.

Available since 2.20

6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS 91

matrix gp_exponential_cov(vectors x1, vectors x2, real sigma, real
length_scale)

Gaussian process cross-covariance of x1 and x2 with exponential kernel in multiple
dimensions.

Available since 2.20

matrix gp_exponential_cov(vectors x1, vectors x2, real sigma, ar-
ray[] real length_scale)

Gaussian process cross-covariance of x1 and x2 with exponential kernel in multiple
dimensions with a length scale for each dimension.

Available since 2.20

Matern 3/2 kernel
With magnitude σ and length scale l, the Matern 3/2 kernel is:

k(xi, xj) = σ2

(
1 +

√
3|xi − xj|

l

)
exp

(
−
√

3|xi − xj|
l

)

matrix gp_matern32_cov(array[] real x, real sigma, real
length_scale)

Gaussian process covariance with Matern 3/2 kernel in one dimension.

Available since 2.20

matrix gp_matern32_cov(array[] real x1, array[] real x2, real
sigma, real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in one
dimension.

Available since 2.20

matrix gp_matern32_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with Matern 3/2 kernel in multiple dimensions.

92 CHAPTER 6. MATRIX OPERATIONS

Available since 2.20

matrix gp_matern32_cov(vectors x, real sigma, array[] real
length_scale)

Gaussian process covariance with Matern 3/2 kernel in multiple dimensions with a
length scale for each dimension.

Available since 2.20

matrix gp_matern32_cov(vectors x1, vectors x2, real sigma, real
length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in multiple
dimensions.

Available since 2.20

matrix gp_matern32_cov(vectors x1, vectors x2, real sigma, array[]
real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in multiple
dimensions with a length scale for each dimension.

Available since 2.20

Matern 5/2 kernel
With magnitude σ and length scale l, the Matern 5/2 kernel is:

k(xi, xj) = σ2

(
1 +

√
5|xi − xj|

l
+

5|xi − xj|2

3l2

)
exp

(
−
√

5|xi − xj|
l

)

matrix gp_matern52_cov(array[] real x, real sigma, real
length_scale)

Gaussian process covariance with Matern 5/2 kernel in one dimension.

Available since 2.20

matrix gp_matern52_cov(array[] real x1, array[] real x2, real
sigma, real length_scale)

6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS 93

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in one
dimension.

Available since 2.20

matrix gp_matern52_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with Matern 5/2 kernel in multiple dimensions.

Available since 2.20

matrix gp_matern52_cov(vectors x, real sigma, array[] real
length_scale)

Gaussian process covariance with Matern 5/2 kernel in multiple dimensions with a
length scale for each dimension.

Available since 2.20

matrix gp_matern52_cov(vectors x1, vectors x2, real sigma, real
length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in multiple
dimensions.

Available since 2.20

matrix gp_matern52_cov(vectors x1, vectors x2, real sigma, array[]
real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in multiple
dimensions with a length scale for each dimension.

Available since 2.20

Periodic kernel
With magnitude σ, length scale l, and period p, the periodic kernel is:

94 CHAPTER 6. MATRIX OPERATIONS

k(xi, xj) = σ2 exp

−
2 sin2

(
π

|xi−xj |
p

)
l2


matrix gp_periodic_cov(array[] real x, real sigma, real
length_scale, real period)

Gaussian process covariance with periodic kernel in one dimension.

Available since 2.20

matrix gp_periodic_cov(array[] real x1, array[] real x2, real
sigma, real length_scale, real period)

Gaussian process cross-covariance of x1 and x2 with periodic kernel in one dimen-
sion.

Available since 2.20

matrix gp_periodic_cov(vectors x, real sigma, real length_scale,
real period)

Gaussian process covariance with periodic kernel in multiple dimensions.

Available since 2.20

matrix gp_periodic_cov(vectors x1, vectors x2, real sigma, real
length_scale, real period)

Gaussian process cross-covariance of x1 and x2 with periodic kernel in multiple
dimensions with a length scale for each dimension.

Available since 2.20

6.14. Linear algebra functions and solvers
Matrix division operators and functions

In general, it is much more efficient and also more arithmetically stable to use
matrix division than to multiply by an inverse. There are specialized forms for
lower triangular matrices and for symmetric, positive-definite matrices.

6.14. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 95

Matrix division operators
row_vector operator/(row_vector b, matrix A)
The right division of b by A; equivalently b * inverse(A)

Available since 2.0

matrix operator/(matrix B, matrix A)
The right division of B by A; equivalently B * inverse(A)

Available since 2.5

vector operator\(matrix A, vector b)
The left division of A by b; equivalently inverse(A) * b

Available since 2.18

matrix operator\(matrix A, matrix B)
The left division of A by B; equivalently inverse(A) * B

Available since 2.18

Lower-triangular matrix division functions
There are four division functions which use lower triangular views of a matrix. The
lower triangular view of a matrix tri(A) is used in the definitions and defined by

tri(A)[m, n] =

{
A[m, n] if m ≥ n, and

0 otherwise.

When a lower triangular view of a matrix is used, the elements above the diagonal
are ignored.

vector mdivide_left_tri_low(matrix A, vector b)
The left division of b by a lower-triangular view of A; algebraically equivalent
to the less efficient and stable form inverse(tri(A)) * b, where tri(A) is the
lower-triangular portion of A with the above-diagonal entries set to zero.

Available since 2.12

matrix mdivide_left_tri_low(matrix A, matrix B)
The left division of B by a triangular view of A; algebraically equivalent to the
less efficient and stable form inverse(tri(A)) * B, where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.

Available since 2.5

96 CHAPTER 6. MATRIX OPERATIONS

row_vector mdivide_right_tri_low(row_vector b, matrix A)
The right division of b by a triangular view of A; algebraically equivalent to the
less efficient and stable form b * inverse(tri(A)), where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.

Available since 2.12

matrix mdivide_right_tri_low(matrix B, matrix A)
The right division of B by a triangular view of A; algebraically equivalent to the
less efficient and stable form B * inverse(tri(A)), where tri(A) is the lower-
triangular portion of A with the above-diagonal entries set to zero.

Available since 2.5

Symmetric positive-definite matrix division functions
There are four division functions which are specialized for efficiency and stability
for symmetric positive-definite matrix dividends. If the matrix dividend argument
is not symmetric and positive definite, these will reject and print warnings.

matrix mdivide_left_spd(matrix A, vector b)
The left division of b by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form inverse(A) * b.

Available since 2.12

vector mdivide_left_spd(matrix A, matrix B)
The left division of B by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form inverse(A) * B.

Available since 2.12

row_vector mdivide_right_spd(row_vector b, matrix A)
The right division of b by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form b *inverse(A).

Available since 2.12

matrix mdivide_right_spd(matrix B, matrix A)
The right division of B by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form B * inverse(A).

Available since 2.12

6.14. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 97

Matrix exponential
The exponential of the matrix A is formally defined by the convergent power series:

eA =
∞

∑
n=0

An

n!

matrix matrix_exp(matrix A)
The matrix exponential of A

Available since 2.13

matrix matrix_exp_multiply(matrix A, matrix B)
The multiplication of matrix exponential of A and matrix B; algebraically equivalent
to the less efficient form matrix_exp(A) * B.

Available since 2.18

matrix scale_matrix_exp_multiply(real t, matrix A, matrix B)
The multiplication of matrix exponential of tA and matrix B; algebraically equivalent
to the less efficient form matrix_exp(t * A) * B.

Available since 2.18

Matrix power
Returns the nth power of the specific matrix:

Mn = M1 ∗ ... ∗ Mn

matrix matrix_power(matrix A, int B)
Matrix A raised to the power B.

Available since 2.24

Linear algebra functions
Trace
real trace(matrix A)
The trace of A, or 0 if A is empty; A is not required to be diagonal

Available since 2.0

Determinants
real determinant(matrix A)
The determinant of A

98 CHAPTER 6. MATRIX OPERATIONS

Available since 2.0

real log_determinant(matrix A)
The log of the absolute value of the determinant of A

Available since 2.0

real log_determinant_spd(matrix A)
The log of the absolute value of the determinant of the symmetric, positive-definite
matrix A.

Available since 2.30

Inverses
It is almost never a good idea to use matrix inverses directly because they are
both inefficient and arithmetically unstable compared to the alternatives. Rather
than inverting a matrix m and post-multiplying by a vector or matrix a, as in
inverse(m) * a, it is better to code this using matrix division, as in m \ a. The
pre-multiplication case is similar, with b * inverse(m) being more efficiently
coded as as b / m. There are also useful special cases for triangular and symmetric,
positive-definite matrices that use more efficient solvers.

Warning: The function inv(m) is the elementwise inverse function, which returns 1
/ m[i, j] for each element.

matrix inverse(matrix A)
Compute the inverse of A

Available since 2.0

matrix inverse_spd(matrix A)
Compute the inverse of A where A is symmetric, positive definite. This version
is faster and more arithmetically stable when the input is symmetric and positive
definite.

Available since 2.0

matrix chol2inv(matrix L)
Compute the inverse of the matrix whose cholesky factorization is L. That is, for
A = LLT , return A−1.

Available since 2.26

Generalized Inverse
The generalized inverse M+ of a matrix M is a matrix that satisfies MM+M = M.
For an invertible, square matrix M, M+ is equivalent to M−1. The dimensions of

6.14. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 99

M+ are equivalent to the dimensions of MT . The generalized inverse exists for any
matrix, so the M may be singular or less than full rank.

Even though the generalized inverse exists for any arbitrary matrix, the derivatives
of this function only exist on matrices of locally constant rank (Golub and Pereyra
1973), meaning, the derivatives do not exist if small perturbations make the matrix
change rank. For example, considered the rank of the matrix A as a function of ϵ:

A =

(
1 + ϵ 2 1

2 4 2

)
When ϵ = 0, A is rank 1 because the second row is twice the first (and so there
is only one linearly independent row). If ϵ ̸= 0, the rows are no longer linearly
dependent, and the matrix is rank 2. This matrix does not have locally constant
rank at ϵ = 0, and so the derivatives do not exist at zero. Because HMC depends on
the derivatives existing, this lack of differentiability creates undefined behavior.

matrix generalized_inverse(matrix A)
The generalized inverse of A

Available since 2.26

Eigendecomposition
complex_vector eigenvalues(matrix A)
The complex-valued vector of eigenvalues of the matrix A. The eigenvalues are
repeated according to their algebraic multiplicity, so there are as many eigenvalues
as rows in the matrix. The eigenvalues are not sorted in any particular order.

Available since 2.30

complex_matrix eigenvectors(matrix A)
The matrix with the complex-valued (column) eigenvectors of the matrix A in the
same order as returned by the function eigenvalues

Available since 2.30

tuple(complex_matrix, complex_vector) eigendecompose(matrix A)
Return the matrix of (column) eigenvectors and vector of eigenvalues of the matrix
A. This function is equivalent to (eigenvectors(A), eigenvalues(A)) but with
a lower computational cost due to the shared work between the two results.

Available since 2.33

100 CHAPTER 6. MATRIX OPERATIONS

vector eigenvalues_sym(matrix A)
The vector of eigenvalues of a symmetric matrix A in ascending order

Available since 2.0

matrix eigenvectors_sym(matrix A)
The matrix with the (column) eigenvectors of symmetric matrix A in the same order
as returned by the function eigenvalues_sym

Available since 2.0

tuple(matrix, vector) eigendecompose_sym(matrix A)
Return the matrix of (column) eigenvectors and vector of eigenvalues of the symmet-
ric matrix A. This function is equivalent to (eigenvectors_sym(A), eigenval-
ues_sym(A)) but with a lower computational cost due to the shared work between
the two results.

Available since 2.33

Because multiplying an eigenvector by −1 results in an eigenvector, eigenvectors
returned by a decomposition are only identified up to a sign change. In order to
compare the eigenvectors produced by Stan’s eigendecomposition to others, signs
may need to be normalized in some way, such as by fixing the sign of a component,
or doing comparisons allowing a multiplication by −1.

The condition number of a symmetric matrix is defined to be the ratio of the
largest eigenvalue to the smallest eigenvalue. Large condition numbers lead to
difficulty in numerical algorithms such as computing inverses, and thus known as
“ill conditioned.” The ratio can even be infinite in the case of singular matrices (i.e.,
those with eigenvalues of 0).

QR decomposition
matrix qr_thin_Q(matrix A)
The orthogonal matrix in the thin QR decomposition of A, which implies that the
resulting matrix has the same dimensions as A

Available since 2.18

matrix qr_thin_R(matrix A)
The upper triangular matrix in the thin QR decomposition of A, which implies that
the resulting matrix is square with the same number of columns as A

Available since 2.18

tuple(matrix, matrix) qr_thin(matrix A)

6.14. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 101

Returns both portions of the QR decomposition of A. The first element (“Q”) is the
orthonormal matrix in the thin QR decomposition and the second element (“R”) is
upper triangular. This function is equivalent to (qr_thin_Q(A), qr_thin_R(A))
but with a lower computational cost due to the shared work between the two
results.

Available since 2.33

matrix qr_Q(matrix A)
The orthogonal matrix in the fat QR decomposition of A, which implies that the
resulting matrix is square with the same number of rows as A

Available since 2.3

matrix qr_R(matrix A)
The upper trapezoidal matrix in the fat QR decomposition of A, which implies that
the resulting matrix will be rectangular with the same dimensions as A

Available since 2.3

tuple(matrix, matrix) qr(matrix A)
Returns both portions of the QR decomposition of A. The first element (“Q”) is the
orthonormal matrix in the thin QR decomposition and the second element (“R”) is
upper triangular. This function is equivalent to (qr_Q(A), qr_R(A)) but with a
lower computational cost due to the shared work between the two results.

Available since 2.33

The thin QR decomposition is always preferable because it will consume much less
memory when the input matrix is large than will the fat QR decomposition. Both
versions of the decomposition represent the input matrix as

A = Q R.

Multiplying a column of an orthogonal matrix by −1 still results in an orthogonal
matrix, and you can multiply the corresponding row of the upper trapezoidal
matrix by −1 without changing the product. Thus, Stan adopts the normalization
that the diagonal elements of the upper trapezoidal matrix are strictly positive and
the columns of the orthogonal matrix are reflected if necessary. Also, these QR
decomposition algorithms do not utilize pivoting and thus may be numerically
unstable on input matrices that have less than full rank.

Cholesky decomposition
Every symmetric, positive-definite matrix (such as a correlation or covariance
matrix) has a Cholesky decomposition. If Σ is a symmetric, positive-definite matrix,

102 CHAPTER 6. MATRIX OPERATIONS

its Cholesky decomposition is the lower-triangular vector L such that

Σ = L L⊤.

matrix cholesky_decompose(matrix A)
The lower-triangular Cholesky factor of the symmetric positive-definite matrix A

Available since 2.0

Singular value decomposition
The matrix A can be decomposed into a diagonal matrix of singular values, D, and
matrices of its left and right singular vectors, U and V,

A = UDVT .

The matrices of singular vectors here are thin. That is for an N by P input A,
M = min(N, P), U is size N by M and V is size P by M.

vector singular_values(matrix A)
The singular values of A in descending order

Available since 2.0

matrix svd_U(matrix A)
The left-singular vectors of A

Available since 2.26

matrix svd_V(matrix A)
The right-singular vectors of A

Available since 2.26

tuple(matrix, vector, matrix) svd(matrix A)
Returns a tuple containing the left-singular vectors of A, the singular values of A in
descending order, and the right-singular values of A. This function is equivalent to
(svd_U(A), singular_values(A), svd_V(A)) but with a lower computational
cost due to the shared work between the different components.

Available since 2.33

6.15. Sort functions
See the sorting functions section for examples of how the functions work.

vector sort_asc(vector v)
Sort the elements of v in ascending order

6.15. SORT FUNCTIONS 103

Available since 2.0

row_vector sort_asc(row_vector v)
Sort the elements of v in ascending order

Available since 2.0

vector sort_desc(vector v)
Sort the elements of v in descending order

Available since 2.0

row_vector sort_desc(row_vector v)
Sort the elements of v in descending order

Available since 2.0

array[] int sort_indices_asc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

Available since 2.3

array[] int sort_indices_asc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

Available since 2.3

array[] int sort_indices_desc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descend-
ing order.

Available since 2.3

array[] int sort_indices_desc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descend-
ing order.

Available since 2.3

int rank(vector v, int s)
Number of components of v less than v[s]

Available since 2.0

int rank(row_vector v, int s)
Number of components of v less than v[s]

104 CHAPTER 6. MATRIX OPERATIONS

Available since 2.0

6.16. Reverse functions
vector reverse(vector v)
Return a new vector containing the elements of the argument in reverse order.

Available since 2.23

row_vector reverse(row_vector v)
Return a new row vector containing the elements of the argument in reverse order.

Available since 2.23

7. Complex Matrix Operations

7.1. Complex promotion
This chapter provides the details of functions that operate over complex matrices,
vectors, and row vectors. These mirror the operations over real complex_matrix
types and are defined in the usual way for complex numbers.

Promotion of complex arguments
If an expression e can be assigned to a variable of type T, then it can be used as an
argument to a function that is specified to take arguments of type T. For instance,
sqrt(real) is specified to take a real argument, but an integer expression such as
2 + 2 of type int can be passed to sqrt, so that sqrt(2 + 2) is well defined. This
works by promoting the integer expression 2 + 2 to be of real type.

The rules for promotion in Stan are simple:

• int may be promoted to real,
• real may be promoted to complex,
• vector can be promoted to complex_vector,
• row_vector can be promoted to complex_row_vector,
• matrix can be promoted to complex_matrix,
• if T can be promoted to U and U can be promoted to V, then T can be promoted

to V (transitive), and
• if T can be promoted to U, then T[] can be promoted to U[] (covariant).

Signature selection
When a function is called, the definition requiring the fewest number of promo-
tions is used. For example, when calling vector + vector, the real-valued sig-
nature is used. When calling any of complex_vector + vector, vector + com-
plex_vector, or complex_vector + complex_vector, the complex signature is
used. If more than one signature matches with a the minimal number of promotions,
the call is ambiguous, and an error will be raised by the compiler. Promotion ambi-
guity leading to ill-defined calls should never happen with Stan built-in functions.

Signatures for complex functions
Complex function signatures will only list the fully complex type. For example,
with complex vector addition, we will list a single signature, complex opera-
tor+(complex_vector, complex_vector). Through promotion, operator+ may

105

106 CHAPTER 7. COMPLEX MATRIX OPERATIONS

be called with one complex vector and one real vector as well, but the documen-
tation elides the implied signatures operator+(complex_vector, vector) and
operator+(vector, complex_vector).

Generic functions work for complex containers
Generic functions work for arrays containing complex, complex matrix, complex
vector, or complex row vector types. This includes the functions append_array,
dims, head, num_elements, rep_array, reverse, segment, size, and tail.

7.2. Integer-valued complex matrix size functions
int num_elements(complex_vector x)
The total number of elements in the vector x (same as function rows)

Available since 2.30

int num_elements(complex_row_vector x)
The total number of elements in the vector x (same as function cols)

Available since 2.30

int num_elements(complex_matrix x)
The total number of elements in the matrix x. For example, if x is a 5 × 3 matrix,
then num_elements(x) is 15

Available since 2.30

int rows(complex_vector x)
The number of rows in the vector x

Available since 2.30

int rows(complex_row_vector x)
The number of rows in the row vector x, namely 1

Available since 2.30

int rows(complex_matrix x)
The number of rows in the matrix x

Available since 2.30

int cols(complex_vector x)
The number of columns in the vector x, namely 1

Available since 2.30

7.3. COMPLEX MATRIX ARITHMETIC OPERATORS 107

int cols(complex_row_vector x)
The number of columns in the row vector x

Available since 2.30

int cols(complex_matrix x)
The number of columns in the matrix x

Available since 2.30

int size(complex_vector x)
The size of x, i.e., the number of elements

Available since 2.30

int size(complex_row_vector x)
The size of x, i.e., the number of elements

Available since 2.30

int size(matrix x)
The size of the matrix x. For example, if x is a 5 × 3 matrix, then size(x) is 15.

Available since 2.30

7.3. Complex matrix arithmetic operators
Stan supports all basic complex arithmetic operators using infix, prefix and postfix
operations. This section lists the operations supported by Stan along with their
argument and result types.

Negation prefix operators
complex_vector operator-(complex_vector x)
The negation of the vector x.

Available since 2.30

complex_row_vector operator-(complex_row_vector x)
The negation of the row vector x.

Available since 2.30

complex_matrix operator-(complex_matrix x)
The negation of the matrix x.

Available since 2.30

108 CHAPTER 7. COMPLEX MATRIX OPERATIONS

T operator-(T x)
Vectorized version of operator-. If T x is a (possibly nested) array of matrix types,
-x is the same shape array where each individual value is negated.

Available since 2.31

Infix complex_matrix operators
complex_vector operator+(complex_vector x, complex_vector y)
The sum of the vectors x and y.

Available since 2.30

complex_row_vector operator+(complex_row_vector x, com-
plex_row_vector y)
The sum of the row vectors x and y.

Available since 2.30

complex_matrix operator+(complex_matrix x, complex_matrix y)
The sum of the matrices x and y

Available since 2.30

complex_vector operator-(complex_vector x, complex_vector y)
The difference between the vectors x and y.

Available since 2.30

complex_row_vector operator-(complex_row_vector x, com-
plex_row_vector y)
The difference between the row vectors x and y

Available since 2.30

complex_matrix operator-(complex_matrix x, complex_matrix y)
The difference between the matrices x and y

Available since 2.30

complex_vector operator*(complex x, complex_vector y)
The product of the scalar x and vector y

Available since 2.30

complex_row_vector operator*(complex x, complex_row_vector y)
The product of the scalar x and the row vector y

Available since 2.30

7.3. COMPLEX MATRIX ARITHMETIC OPERATORS 109

complex_matrix operator*(complex x, complex_matrix y)
The product of the scalar x and the matrix y

Available since 2.30

complex_vector operator*(complex_vector x, complex y)
The product of the scalar y and vector x

Available since 2.30

complex_matrix operator*(complex_vector x, complex_row_vector y)
The product of the vector x and row vector y

Available since 2.30

complex_row_vector operator*(complex_row_vector x, complex y)
The product of the scalar y and row vector x

Available since 2.30

complex operator*(complex_row_vector x, complex_vector y)
The product of the row vector x and vector y

Available since 2.30

complex_row_vector operator*(complex_row_vector x, complex_matrix
y)
The product of the row vector x and matrix y

Available since 2.30

complex_matrix operator*(complex_matrix x, complex y)
The product of the scalar y and matrix x

Available since 2.30

complex_vector operator*(complex_matrix x, complex_vector y)
The product of the matrix x and vector y

Available since 2.30

complex_matrix operator*(complex_matrix x, complex_matrix y)
The product of the matrices x and y

Available since 2.30

110 CHAPTER 7. COMPLEX MATRIX OPERATIONS

Broadcast infix operators
complex_vector operator+(complex_vector x, complex y)
The result of adding y to every entry in the vector x

Available since 2.30

complex_vector operator+(complex x, complex_vector y)
The result of adding x to every entry in the vector y

Available since 2.30

complex_row_vector operator+(complex_row_vector x, complex y)
The result of adding y to every entry in the row vector x

Available since 2.30

complex_row_vector operator+(complex x, complex_row_vector y)
The result of adding x to every entry in the row vector y

Available since 2.30

complex_matrix operator+(complex_matrix x, complex y)
The result of adding y to every entry in the matrix x

Available since 2.30

complex_matrix operator+(complex x, complex_matrix y)
The result of adding x to every entry in the matrix y

Available since 2.30

complex_vector operator-(complex_vector x, complex y)
The result of subtracting y from every entry in the vector x

Available since 2.30

complex_vector operator-(complex x, complex_vector y)
The result of adding x to every entry in the negation of the vector y

Available since 2.30

complex_row_vector operator-(complex_row_vector x, complex y)
The result of subtracting y from every entry in the row vector x

Available since 2.30

complex_row_vector operator-(complex x, complex_row_vector y)
The result of adding x to every entry in the negation of the row vector y

7.4. COMPLEX TRANSPOSITION OPERATOR 111

Available since 2.30

complex_matrix operator-(complex_matrix x, complex y)
The result of subtracting y from every entry in the matrix x

Available since 2.30

complex_matrix operator-(complex x, complex_matrix y)
The result of adding x to every entry in negation of the matrix y

Available since 2.30

complex_vector operator/(complex_vector x, complex y)
The result of dividing each entry in the vector x by y

Available since 2.30

complex_row_vector operator/(complex_row_vector x, complex y)
The result of dividing each entry in the row vector x by y

Available since 2.30

complex_matrix operator/(complex_matrix x, complex y)
The result of dividing each entry in the matrix x by y

Available since 2.30

7.4. Complex Transposition Operator
Complex complex_matrix transposition is represented using a postfix operator.

complex_matrix operator'(complex_matrix x)
The transpose of the matrix x, written as x'

Available since 2.30

complex_row_vector operator'(complex_vector x)
The transpose of the vector x, written as x'

Available since 2.30

complex_vector operator'(complex_row_vector x)
The transpose of the row vector x, written as x'

Available since 2.30

112 CHAPTER 7. COMPLEX MATRIX OPERATIONS

7.5. Complex elementwise functions
As in the real case, elementwise complex functions apply a function to each element
of a vector or matrix, returning a result of the same shape as the argument.

complex_vector operator.*(complex_vector x, complex_vector y)
The elementwise product of x and y

Available since 2.30

complex_row_vector operator.*(complex_row_vector x, com-
plex_row_vector y)
The elementwise product of x and y

Available since 2.30

complex_matrix operator.*(complex_matrix x, complex_matrix y)
The elementwise product of x and y

Available since 2.30

complex_vector operator./(complex_vector x, complex_vector y)
The elementwise quotient of x and y

Available since 2.30

complex_vector operator./(complex x, complex_vector y)
The elementwise quotient of x and y

Available since 2.30

complex_vector operator./(complex_vector x, complex y)
The elementwise quotient of x and y

Available since 2.30

complex_row_vector operator./(complex_row_vector x, com-
plex_row_vector y)
The elementwise quotient of x and y

Available since 2.30

complex_row_vector operator./(complex x, complex_row_vector y)
The elementwise quotient of x and y

Available since 2.30

complex_row_vector operator./(complex_row_vector x, complex y)
The elementwise quotient of x and y

7.5. COMPLEX ELEMENTWISE FUNCTIONS 113

Available since 2.30

complex_matrix operator./(complex_matrix x, complex_matrix y)
The elementwise quotient of x and y

Available since 2.30

complex_matrix operator./(complex x, complex_matrix y)
The elementwise quotient of x and y

Available since 2.30

complex_matrix operator./(complex_matrix x, complex y)
The elementwise quotient of x and y

Available since 2.30

vector operator.ˆ(complex_vector x, complex_vector y)
The elementwise power of y and x

Available since 2.30

vector operator.ˆ(complex_vector x, complex y)
The elementwise power of y and x

Available since 2.30

vector operator.ˆ(complex x, complex_vector y)
The elementwise power of y and x

Available since 2.30

row_vector operator.ˆ(complex_row_vector x, complex_row_vector y)
The elementwise power of y and x

Available since 2.30

row_vector operator.ˆ(complex_row_vector x, complex y)
The elementwise power of y and x

Available since 2.30

row_vector operator.ˆ(complex x, complex_row_vector y)
The elementwise power of y and x

Available since 2.30

matrix operator.ˆ(complex_matrix x, complex_matrix y)
The elementwise power of y and x

114 CHAPTER 7. COMPLEX MATRIX OPERATIONS

Available since 2.30

matrix operator.ˆ(complex_matrix x, complex y)
The elementwise power of y and x

Available since 2.30

matrix operator.ˆ(complex x, complex_matrix y)
The elementwise power of y and x

Available since 2.30

7.6. Dot products and specialized products for complex matrices
complex dot_product(complex_vector x, complex_vector y)
The dot product of x and y

Available since 2.30

complex dot_product(complex_vector x, complex_row_vector y)
The dot product of x and y

Available since 2.30

complex dot_product(complex_row_vector x, complex_vector y)
The dot product of x and y

Available since 2.30

complex dot_product(complex_row_vector x, complex_row_vector y)
The dot product of x and y

Available since 2.30

complex_row_vector columns_dot_product(complex_vector x, com-
plex_vector y)
The dot product of the columns of x and y

Available since 2.30

complex_row_vector columns_dot_product(complex_row_vector x, com-
plex_row_vector y)
The dot product of the columns of x and y

Available since 2.30

complex_row_vector columns_dot_product(complex_matrix x, com-
plex_matrix y)

7.6. DOT PRODUCTS AND SPECIALIZED PRODUCTS FOR COMPLEX MATRICES115

The dot product of the columns of x and y

Available since 2.30

complex_vector rows_dot_product(complex_vector x, complex_vector y)
The dot product of the rows of x and y

Available since 2.30

complex_vector rows_dot_product(complex_row_vector x, com-
plex_row_vector y)
The dot product of the rows of x and y

Available since 2.30

complex_vector rows_dot_product(complex_matrix x, complex_matrix y)
The dot product of the rows of x and y

Available since 2.30

complex dot_self(complex_vector x)
The dot product of the vector x with itself

Available since 2.30

complex dot_self(complex_row_vector x)
The dot product of the row vector x with itself

Available since 2.30

complex_row_vector columns_dot_self(complex_vector x)
The dot product of the columns of x with themselves

Available since 2.30

complex_row_vector columns_dot_self(complex_row_vector x)
The dot product of the columns of x with themselves

Available since 2.30

complex_row_vector columns_dot_self(complex_matrix x)
The dot product of the columns of x with themselves

Available since 2.30

complex_vector rows_dot_self(complex_vector x)
The dot product of the rows of x with themselves

Available since 2.30

116 CHAPTER 7. COMPLEX MATRIX OPERATIONS

complex_vector rows_dot_self(complex_row_vector x)
The dot product of the rows of x with themselves

Available since 2.30

complex_vector rows_dot_self(complex_matrix x)
The dot product of the rows of x with themselves

Available since 2.30

Specialized products
complex_matrix diag_pre_multiply(complex_vector v, complex_matrix
m)
Return the product of the diagonal matrix formed from the vector v and the matrix
m, i.e., diag_matrix(v) * m.

Available since 2.30

complex_matrix diag_pre_multiply(complex_row_vector v, com-
plex_matrix m)
Return the product of the diagonal matrix formed from the vector rv and the matrix
m, i.e., diag_matrix(rv) * m.

Available since 2.30

complex_matrix diag_post_multiply(complex_matrix m, complex_vector
v)
Return the product of the matrix m and the diagonal matrix formed from the vector
v, i.e., m * diag_matrix(v).

Available since 2.30

complex_matrix diag_post_multiply(complex_matrix m, com-
plex_row_vector v)
Return the product of the matrix m and the diagonal matrix formed from the the
row vector rv, i.e., m * diag_matrix(rv).

Available since 2.30

7.7. Complex reductions
Sums and products
complex sum(complex_vector x)
The sum of the values in x, or 0 if x is empty

Available since 2.30

7.8. VECTORIZED ACCESSOR FUNCTIONS 117

complex sum(complex_row_vector x)
The sum of the values in x, or 0 if x is empty

Available since 2.30

complex sum(complex_matrix x)
The sum of the values in x, or 0 if x is empty

Available since 2.30

complex prod(complex_vector x)
The product of the values in x, or 1 if x is empty

Available since 2.30

complex prod(complex_row_vector x)
The product of the values in x, or 1 if x is empty

Available since 2.30

complex prod(complex_matrix x)
The product of the values in x, or 1 if x is empty

Available since 2.30

7.8. Vectorized accessor functions
Much like with complex scalars, two functions are defined to get the real and
imaginary components of complex-valued objects.

Type “demotion”
These functions return the same shape (e.g., matrix, vector, row vector, or
array) object as their input, but demoted to a real type. For example,
get_real(complex_matrix M) yields a matrix containing the real component
of each value in M.

The following table contains examples of what this notation can mean:

Type T Type T_demoted

complex real
complex_vector vector
complex_row_vector row_vector
complex_matrix matrix
array[] complex array[] real
array[„] complex array[„] real

118 CHAPTER 7. COMPLEX MATRIX OPERATIONS

Real and imaginary component accessor functions
T_demoted get_real(T x)
Given an object of complex type T, return the same shape object but of type real by
getting the real component of each element of x.

Available since 2.30

T_demoted get_imag(T x)
Given an object of complex type T, return the same shape object but of type real by
getting the imaginary component of each element of x.

Available since 2.30

For example, given the Stan declaration

complex_vector[2] z = [3+4i, 5+6i]';

A call get_real(z) will yield the vector [3, 5]', and a call get_imag(z) will
yield the vector [4, 6]'.

7.9. Complex broadcast functions
The following broadcast functions allow vectors, row vectors and matrices to be
created by copying a single element into all of their cells. Matrices may also be
created by stacking copies of row vectors vertically or stacking copies of column
vectors horizontally.

complex_vector rep_vector(complex z, int m)
Return the size m (column) vector consisting of copies of z.

Available since 2.30

complex_row_vector rep_row_vector(complex z, int n)
Return the size n row vector consisting of copies of z.

Available since 2.30

complex_matrix rep_matrix(complex z, int m, int n)
Return the m by n matrix consisting of copies of z.

Available since 2.30

complex_matrix rep_matrix(complex_vector v, int n)
Return the m by n matrix consisting of n copies of the (column) vector v of size m.

Available since 2.30

7.10. DIAGONAL COMPLEX MATRIX FUNCTIONS 119

complex_matrix rep_matrix(complex_row_vector rv, int m)
Return the m by n matrix consisting of m copies of the row vector rv of size n.

Available since 2.30

Symmetrization
complex_matrix symmetrize_from_lower_tri(complex_matrix A)
Construct a symmetric matrix from the lower triangle of A.

Available since 2.30

7.10. Diagonal complex matrix functions
complex_matrix add_diag(complex_matrix m, complex_row_vector d)
Add row_vector d to the diagonal of matrix m.

Available since 2.30

complex_matrix add_diag(complex_matrix m, complex_vector d)
Add vector d to the diagonal of matrix m.

Available since 2.30

complex_matrix add_diag(complex_matrix m, complex d)
Add scalar d to every diagonal element of matrix m.

Available since 2.30

complex_vector diagonal(complex_matrix x)
The diagonal of the matrix x

Available since 2.30

complex_matrix diag_matrix(complex_vector x)
The diagonal matrix with diagonal x

Available since 2.30

7.11. Slicing and blocking functions for complex matrices
Stan provides several functions for generating slices or blocks or diagonal entries
for matrices.

Columns and rows
complex_vector col(complex_matrix x, int n)
The n-th column of matrix x

Available since 2.30

120 CHAPTER 7. COMPLEX MATRIX OPERATIONS

complex_row_vector row(complex_matrix x, int m)
The m-th row of matrix x

Available since 2.30

Block operations
Matrix slicing operations
complex_matrix block(complex_matrix x, int i, int j, int n_rows,
int n_cols)
Return the submatrix of x that starts at row i and column j and extends n_rows
rows and n_cols columns.

Available since 2.30

complex_vector sub_col(complex_matrix x, int i, int j, int n_rows)
Return the sub-column of x that starts at row i and column j and extends n_rows
rows and 1 column.

Available since 2.30

complex_row_vector sub_row(complex_matrix x, int i, int j, int
n_cols)
Return the sub-row of x that starts at row i and column j and extends 1 row and
n_cols columns.

Available since 2.30

Vector slicing operations.
complex_vector head(complex_vector v, int n)
Return the vector consisting of the first n elements of v.

Available since 2.30

complex_row_vector head(complex_row_vector rv, int n)
Return the row vector consisting of the first n elements of rv.

Available since 2.30

complex_vector tail(complex_vector v, int n)
Return the vector consisting of the last n elements of v.

Available since 2.30

complex_row_vector tail(complex_row_vector rv, int n)
Return the row vector consisting of the last n elements of rv.

Available since 2.30

7.12. COMPLEX MATRIX CONCATENATION 121

complex_vector segment(complex_vector v, int i, int n)
Return the vector consisting of the n elements of v starting at i; i.e., elements i
through through i + n - 1.

Available since 2.30

complex_row_vector segment(complex_row_vector rv, int i, int n)
Return the row vector consisting of the n elements of rv starting at i; i.e., elements i
through through i + n - 1.

Available since 2.30

7.12. Complex matrix concatenation
Horizontal concatenation
complex_matrix append_col(complex_matrix x, complex_matrix y)
Combine matrices x and y by column. The matrices must have the same number of
rows.

Available since 2.30

complex_matrix append_col(complex_matrix x, complex_vector y)
Combine matrix x and vector y by column. The matrix and the vector must have
the same number of rows.

Available since 2.30

complex_matrix append_col(complex_vector x, complex_matrix y)
Combine vector x and matrix y by column. The vector and the matrix must have
the same number of rows.

Available since 2.30

complex_matrix append_col(complex_vector x, complex_vector y)
Combine vectors x and y by column. The vectors must have the same number of
rows.

Available since 2.30

complex_row_vector append_col(complex_row_vector x, com-
plex_row_vector y)
Combine row vectors x and y (of any size) into another row vector by appending y
to the end of x.

Available since 2.30

122 CHAPTER 7. COMPLEX MATRIX OPERATIONS

complex_row_vector append_col(complex x, complex_row_vector y)
Append x to the front of y, returning another row vector.

Available since 2.30

complex_row_vector append_col(complex_row_vector x, complex y)
Append y to the end of x, returning another row vector.

Available since 2.30

Vertical concatenation
complex_matrix append_row(complex_matrix x, complex_matrix y)
Combine matrices x and y by row. The matrices must have the same number of
columns.

Available since 2.30

complex_matrix append_row(complex_matrix x, complex_row_vector y)
Combine matrix x and row vector y by row. The matrix and the row vector must
have the same number of columns.

Available since 2.30

complex_matrix append_row(complex_row_vector x, complex_matrix y)
Combine row vector x and matrix y by row. The row vector and the matrix must
have the same number of columns.

Available since 2.30

complex_matrix append_row(complex_row_vector x, complex_row_vector
y)
Combine row vectors x and y by row. The row vectors must have the same number
of columns.

Available since 2.30

complex_vector append_row(complex_vector x, complex_vector y)
Concatenate vectors x and y of any size into another vector.

Available since 2.30

complex_vector append_row(complex x, complex_vector y)
Append x to the top of y, returning another vector.

Available since 2.30

7.13. COMPLEX SPECIAL MATRIX FUNCTIONS 123

complex_vector append_row(complex_vector x, complex y)
Append y to the bottom of x, returning another vector.

Available since 2.30

7.13. Complex special matrix functions
Fast Fourier transforms

Stan’s fast Fourier transform functions take the standard definition of the discrete
Fourier transform (see the definitions below for specifics) and scale the inverse
transform by one over dimensionality so that the following identities hold for
complex vectors u and v,

fft(inv_fft(u)) == u inv_fft(fft(v)) == v

and in the 2-dimensional case for complex matrices A and B,

fft2(inv_fft2(A)) == A inv_fft2(fft2(B)) == B

Although the FFT functions only accept complex inputs, real vectors and matrices
will be promoted to their complex counterparts before applying the FFT functions.

complex_vector fft(complex_vector v)
Return the discrete Fourier transform of the specified complex vector v. If v ∈ CN

is a complex vector with N elements and u = fft(v), then

un = ∑
m<n

vm · exp

(
−n · m · 2 · π ·

√
−1

N

)
.

Available since 2.30

complex_matrix fft2(complex_matrix m)
Return the 2D discrete Fourier transform of the specified complex matrix m. The
2D FFT is defined as the result of applying the FFT to each row and then to each
column.

Available since 2.30

complex_vector inv_fft(complex_vector u)
Return the inverse of the discrete Fourier transform of the specified complex vector
u. The inverse FFT (this function) is scaled so that fft(inv_fft(u)) == u. If
u ∈ CN is a complex vector with N elements and v = fft−1(u), then

vn =
1
N ∑

m<n
um · exp

(
n · m · 2 · π ·

√
−1

N

)
.

124 CHAPTER 7. COMPLEX MATRIX OPERATIONS

This only differs from the FFT by the sign inside the exponential and the scaling.
The 1

N scaling ensures that fft(inv_fft(u)) == u and inv_fft(fft(v)) == v
for complex vectors u and v.

Available since 2.30

complex_matrix inv_fft2(complex_matrix m)
Return the inverse of the 2D discrete Fourier transform of the specified complex
matrix m. The 2D inverse FFT is defined as the result of applying the inverse FFT to
each row and then to each column. The invertible scaling of the inverse FFT ensures
fft2(inv_fft2(A)) == A and inv_fft2(fft2(B)) == B.

Available since 2.30

Cumulative sums
The cumulative sum of a sequence x1, . . . , xN is the sequence y1, . . . , yN , where

yn =
n

∑
m=1

xm.

array[] complex cumulative_sum(array[] complex x)
The cumulative sum of x

Available since 2.30

complex_vector cumulative_sum(complex_vector v)
The cumulative sum of v

Available since 2.30

complex_row_vector cumulative_sum(complex_row_vector rv)
The cumulative sum of rv

Available since 2.30

7.14. Complex linear algebra functions
Complex matrix division operators and functions

In general, it is much more efficient and also more arithmetically stable to use matrix
division than to multiply by an inverse.

Complex matrix division operators
complex_row_vector operator/(complex_row_vector b, complex_matrix
A)
The right division of b by A; equivalently b * inverse(A)

7.14. COMPLEX LINEAR ALGEBRA FUNCTIONS 125

Available since 2.30

complex_matrix operator/(complex_matrix B, complex_matrix A)
The right division of B by A; equivalently B * inverse(A)

Available since 2.30

Linear algebra functions
Trace
complex trace(complex_matrix A)
The trace of A, or 0 if A is empty; A is not required to be diagonal

Available since 2.30

Eigendecomposition
complex_vector eigenvalues(complex_matrix A)
The complex-valued vector of eigenvalues of the matrix A. The eigenvalues are
repeated according to their algebraic multiplicity, so there are as many eigenvalues
as rows in the matrix. The eigenvalues are not sorted in any particular order.

Available since 2.32

complex_matrix eigenvectors(complex_matrix A)
The matrix with the complex-valued (column) eigenvectors of the matrix A in the
same order as returned by the function eigenvalues

Available since 2.32

tuple(complex_matrix, complex_vector) eigendecompose(complex_matrix
A)
Return the matrix of (column) eigenvectors and vector of eigenvalues of the matrix
A. This function is equivalent to (eigenvectors(A), eigenvalues(A)) but with
a lower computational cost due to the shared work between the two results.

Available since 2.33

complex_vector eigenvalues_sym(complex_matrix A)
The vector of eigenvalues of a symmetric matrix A in ascending order

Available since 2.30

complex_matrix eigenvectors_sym(complex_matrix A)
The matrix with the (column) eigenvectors of symmetric matrix A in the same order
as returned by the function eigenvalues_sym

Available since 2.30

126 CHAPTER 7. COMPLEX MATRIX OPERATIONS

tuple(complex_matrix, complex_vector) eigendecom-
pose_sym(complex_matrix A)
Return the matrix of (column) eigenvectors and vector of eigenvalues of the
symmetric matrix A. This function is equivalent to (eigenvectors_sym(A),
eigenvalues_sym(A)) but with a lower computational cost due to the shared
work between the two results.

Available since 2.33

Because multiplying an eigenvector by −1 results in an eigenvector, eigenvectors
returned by a decomposition are only identified up to a sign change. In order to
compare the eigenvectors produced by Stan’s eigendecomposition to others, signs
may need to be normalized in some way, such as by fixing the sign of a component,
or doing comparisons allowing a multiplication by −1.

The condition number of a symmetric matrix is defined to be the ratio of the
largest eigenvalue to the smallest eigenvalue. Large condition numbers lead to
difficulty in numerical algorithms such as computing inverses, and thus known as
“ill conditioned.” The ratio can even be infinite in the case of singular matrices (i.e.,
those with eigenvalues of 0).

Singular value decomposition
The matrix A can be decomposed into a diagonal matrix of singular values, D, and
matrices of its left and right singular vectors, U and V,

A = UDVT .

The matrices of singular vectors here are thin. That is for an N by P input A,
M = min(N, P), U is size N by M and V is size P by M.

vector singular_values(complex_matrix A)
The singular values of A in descending order

Available since 2.30

complex_matrix svd_U(complex_matrix A)
The left-singular vectors of A

Available since 2.30

complex_matrix svd_V(complex_matrix A)
The right-singular vectors of A

Available since 2.30

7.14. COMPLEX LINEAR ALGEBRA FUNCTIONS 127

tuple(complex_matrix, vector, complex_matrix) svd(complex_matrix A)
Returns a tuple containing the left-singular vectors of A, the singular values of A in
descending order, and the right-singular values of A. This function is equivalent to
(svd_U(A), singular_values(A), svd_V(A)) but with a lower computational
cost due to the shared work between the different components.

Available since 2.33

Complex Schur Decomposition
The complex Schur decomposition of a square matrix A produces a complex unitary
matrix U and a complex upper-triangular Schur form matrix T such that

A = U · T · U−1

Since U is unitary, its inverse is also its conjugate transpose, U−1 = U∗, U∗(i, j) =
conj(U(j, i))

complex_matrix complex_schur_decompose_t(matrix A)
Compute the upper-triangular Schur form matrix of the complex Schur decomposi-
tion of A.

Available since 2.31

complex_matrix complex_schur_decompose_t(complex_matrix A)
Compute the upper-triangular Schur form matrix of the complex Schur decomposi-
tion of A.

Available since 2.31

complex_matrix complex_schur_decompose_u(matrix A)
Compute the unitary matrix of the complex Schur decomposition of A.

Available since 2.31

complex_matrix complex_schur_decompose_u(complex_matrix A)
Compute the unitary matrix of the complex Schur decomposition of A.

Available since 2.31

tuple(complex_matrix, complex_matrix) complex_schur_decompose(matrix
A)
Returns the unitary matrix and the upper-triangular Schur form matrix of
the complex Schur decomposition of A. This function is equivalent to (com-
plex_schur_decompose_u(A), complex_schur_decompose_t(A)) but with a
lower computational cost due to the shared work between the two results. This

128 CHAPTER 7. COMPLEX MATRIX OPERATIONS

overload is equivalent to complex_schur_decompose(to_complex(A,0)) but is
more efficient.

Available since 2.33

tuple(complex_matrix, complex_matrix) complex_schur_decompose(complex_matrix
A)
Returns the unitary matrix and the upper-triangular Schur form matrix of
the complex Schur decomposition of A. This function is equivalent to (com-
plex_schur_decompose_u(A), complex_schur_decompose_t(A)) but with a
lower computational cost due to the shared work between the two results.

Available since 2.33

7.15. Reverse functions for complex matrices
complex_vector reverse(complex_vector v)
Return a new vector containing the elements of the argument in reverse order.

Available since 2.30

complex_row_vector reverse(complex_row_vector v)
Return a new row vector containing the elements of the argument in reverse order.

Available since 2.30

8. Sparse Matrix Operations

For sparse matrices, for which many elements are zero, it is more efficient to use
specialized representations to save memory and speed up matrix arithmetic (in-
cluding derivative calculations). Given Stan’s implementation, there is substantial
space (memory) savings by using sparse matrices. Because of the ease of optimizing
dense matrix operations, speed improvements only arise at 90% or even greater
sparsity; below that level, dense matrices are faster but use more memory.

Because of this speedup and space savings, it may even be useful to read in a
dense matrix and convert it to a sparse matrix before multiplying it by a vector.
This chapter covers a very specific form of sparsity consisting of a sparse matrix
multiplied by a dense vector.

8.1. Compressed row storage
Sparse matrices are represented in Stan using compressed row storage (CSR). For
example, the matrix

A =


19 27 0 0
0 0 0 0
0 0 0 52
81 0 95 33


is translated into a vector of the non-zero real values, read by row from the matrix
A,

w(A) =
[
19 27 52 81 95 33

]⊤,
an array of integer column indices for the values,

v(A) =
[
1 2 4 1 3 4

]
,

and an array of integer indices indicating where in w(A) a given row’s values start,

u(A) =
[
1 3 3 4 7

]
,

with a padded value at the end to guarantee that

u(A)[n + 1]− u(A)[n]

is the number of non-zero elements in row n of the matrix (here 2, 0, 1, and 3). Note
that because the second row has no non-zero elements both the second and third

129

130 CHAPTER 8. SPARSE MATRIX OPERATIONS

elements of u(A) correspond to the third element of w(A), which is 52. The values
(w(A), v(A), u(A)) are sufficient to reconstruct A.

The values are structured so that there is a real value and integer column index for
each non-zero entry in the array, plus one integer for each row of the matrix, plus
one for padding. There is also underlying storage for internal container pointers
and sizes. The total memory usage is roughly 12K + M bytes plus a small constant
overhead, which is often considerably fewer bytes than the M × N required to store
a dense matrix. Even more importantly, zero values do not introduce derivatives
under multiplication or addition, so many storage and evaluation steps are saved
when sparse matrices are multiplied.

8.2. Conversion functions
Conversion functions between dense and sparse matrices are provided.

Dense to sparse conversion
Converting a dense matrix m to a sparse representation produces a vector w and
two integer arrays, u and v.

vector csr_extract_w(matrix a)
Return non-zero values in matrix a; see section compressed row storage.

Available since 2.8

array[] int csr_extract_v(matrix a)
Return column indices for values in csr_extract_w(a); see compressed row stor-
age.

Available since 2.8

array[] int csr_extract_u(matrix a)
Return array of row starting indices for entries in csr_extract_w(a) followed by
the size of csr_extract_w(a) plus one; see section compressed row storage.

Available since 2.8

tuple(vector, array[] int, array[] int) csr_extract(matrix a)
Return all three components of the CSR representation of the matrix a; see sec-
tion compressed row storage. This function is equivalent to (csr_extract_w(a),
csr_extract_v(a), csr_extract_u(a)).

Available since 2.33

8.3. SPARSE MATRIX ARITHMETIC 131

Sparse to dense conversion
To convert a sparse matrix representation to a dense matrix, there is a single function.

matrix csr_to_dense_matrix(int m, int n, vector w, array[] int v,
array[] int u)
Return dense m × n matrix with non-zero matrix entries w, column indices v,
and row starting indices u; the vector w and array v must be the same size
(corresponding to the total number of nonzero entries in the matrix), array v must
have index values bounded by m, array u must have length equal to m + 1 and
contain index values bounded by the number of nonzeros (except for the last entry,
which must be equal to the number of nonzeros plus one). See section compressed
row storage for more details.

Available since 2.10

8.3. Sparse matrix arithmetic
Sparse matrix multiplication

The only supported operation is the multiplication of a sparse matrix A and a dense
vector b to produce a dense vector A b. Multiplying a dense row vector b and a
sparse matrix A can be coded using transposition as

b A = (A⊤ b⊤)⊤,

but care must be taken to represent A⊤ rather than A as a sparse matrix.

vector csr_matrix_times_vector(int m, int n, vector w, array[] int
v, array[] int u, vector b)
Multiply the m × n matrix represented by values w, column indices v, and row start
indices u by the vector b; see compressed row storage.

Available since 2.18

9. Mixed Operations

These functions perform conversions between Stan containers matrix, vector, row
vector and arrays.

matrix to_matrix(matrix m)
Return the matrix m itself.

Available since 2.3

complex_matrix to_matrix(complex_matrix m)
Return the matrix m itself.

Available since 2.30

matrix to_matrix(vector v)
Convert the column vector v to a size(v) by 1 matrix.

Available since 2.3

complex_matrix to_matrix(complex_vector v)
Convert the column vector v to a size(v) by 1 matrix.

Available since 2.30

matrix to_matrix(row_vector v)
Convert the row vector v to a 1 by size(v) matrix.

Available since 2.3

complex_matrix to_matrix(complex_row_vector v)
Convert the row vector v to a 1 by size(v) matrix.

Available since 2.30

matrix to_matrix(matrix M, int m, int n)
Convert a matrix A to a matrix with m rows and n columns filled in column-major
order.

Available since 2.15

complex_matrix to_matrix(complex_matrix M, int m, int n)
Convert a matrix A to a matrix with m rows and n columns filled in column-major
order.

132

133

Available since 2.30

matrix to_matrix(vector v, int m, int n)
Convert a vector v to a matrix with m rows and n columns filled in column-major
order.

Available since 2.15

complex_matrix to_matrix(complex_vector v, int m, int n)
Convert a vector v to a matrix with m rows and n columns filled in column-major
order.

Available since 2.30

matrix to_matrix(row_vector v, int m, int n)
Convert a row_vector v to a matrix with m rows and n columns filled in column-
major order.

Available since 2.15

complex_matrix to_matrix(complex_row_vector v, int m, int n)
Convert a row vector v to a matrix with m rows and n columns filled in column-major
order.

Available since 2.30

matrix to_matrix(matrix A, int m, int n, int col_major)
Convert a matrix A to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.15

complex_matrix to_matrix(complex_matrix A, int m, int n, int
col_major)
Convert a matrix A to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.30

matrix to_matrix(vector v, int m, int n, int col_major)
Convert a vector v to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.15

complex_matrix to_matrix(complex_vector v, int m, int n, int
col_major)

134 CHAPTER 9. MIXED OPERATIONS

Convert a vector v to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.30

matrix to_matrix(row_vector v, int m, int n, int col_major)
Convert a row vector v to a matrix with m rows and n columns filled in row-major
order if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.15

complex_matrix to_matrix(complex_row_vector v, int m, int n, int
col_major)
Convert a row vector v to a matrix with m rows and n columns filled in row-major
order if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.30

matrix to_matrix(array[] real a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.

Available since 2.15

matrix to_matrix(array[] int a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.

Available since 2.15

complex_matrix to_matrix(array[] complex a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.

Available since 2.30

matrix to_matrix(array[] real a, int m, int n, int col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).

Available since 2.15

matrix to_matrix(array[] int a, int m, int n, int col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in

135

row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).

Available since 2.15

complex_matrix to_matrix(array[] complex a, int m, int n, int
col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).

Available since 2.30

matrix to_matrix(array[] row_vector vs)
Convert a one-dimensional array of row vectors to a matrix, where the size of the
array is the number of rows of the resulting matrix and the length of row vectors is
the number of columns.

Available since 2.28

complex_matrix to_matrix(array[] complex_row_vector vs)
Convert a one-dimensional array of row vectors to a matrix, where the size of the
array is the number of rows of the resulting matrix and the length of row vectors is
the number of columns.

Available since 2.30

matrix to_matrix(array[,] real a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order.

Available since 2.3

matrix to_matrix(array[,] int a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order. If any of the dimensions of a are zero, the result will be a 0 × 0
matrix.

Available since 2.3

complex_matrix to_matrix(array[,] complex a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order.

Available since 2.30

136 CHAPTER 9. MIXED OPERATIONS

vector to_vector(matrix m)
Convert the matrix m to a column vector in column-major order.

Available since 2.0

complex_vector to_vector(complex_matrix m)
Convert the matrix m to a column vector in column-major order.

Available since 2.30

vector to_vector(vector v)
Return the column vector v itself.

Available since 2.3

complex_vector to_vector(complex_vector v)
Return the column vector v itself.

Available since 2.30

vector to_vector(row_vector v)
Convert the row vector v to a column vector.

Available since 2.3

complex_vector to_vector(complex_row_vector v)
Convert the row vector v to a column vector.

Available since 2.30

vector to_vector(array[] real a)
Convert the one-dimensional array a to a column vector.

Available since 2.3

vector to_vector(array[] int a)
Convert the one-dimensional integer array a to a column vector.

Available since 2.3

complex_vector to_vector(array[] complex a)
Convert the one-dimensional complex array a to a column vector.

Available since 2.30

row_vector to_row_vector(matrix m)
Convert the matrix m to a row vector in column-major order.

Available since 2.3

137

complex_row_vector to_row_vector(complex_matrix m)
Convert the matrix m to a row vector in column-major order.

Available since 2.30

row_vector to_row_vector(vector v)
Convert the column vector v to a row vector.

Available since 2.3

complex_row_vector to_row_vector(complex_vector v)
Convert the column vector v to a row vector.

Available since 2.30

row_vector to_row_vector(row_vector v)
Return the row vector v itself.

Available since 2.3

complex_row_vector to_row_vector(complex_row_vector v)
Return the row vector v itself.

Available since 2.30

row_vector to_row_vector(array[] real a)
Convert the one-dimensional array a to a row vector.

Available since 2.3

row_vector to_row_vector(array[] int a)
Convert the one-dimensional array a to a row vector.

Available since 2.3

complex_row_vector to_row_vector(array[] complex a)
Convert the one-dimensional complex array a to a row vector.

Available since 2.30

array[,] real to_array_2d(matrix m)
Convert the matrix m to a two dimensional array with the same dimensions and
indexing order.

Available since 2.3

array[,] complex to_array_2d(complex_matrix m)
Convert the matrix m to a two dimensional array with the same dimensions and

138 CHAPTER 9. MIXED OPERATIONS

indexing order.

Available since 2.30

array[] real to_array_1d(vector v)
Convert the column vector v to a one-dimensional array.

Available since 2.3

array[] complex to_array_1d(complex_vector v)
Convert the column vector v to a one-dimensional array.

Available since 2.30

array[] real to_array_1d(row_vector v)
Convert the row vector v to a one-dimensional array.

Available since 2.3

array[] complex to_array_1d(complex_row_vector v)
Convert the row vector v to a one-dimensional array.

Available since 2.30

array[] real to_array_1d(matrix m)
Convert the matrix m to a one-dimensional array in column-major order.

Available since 2.3

array[] real to_array_1d(complex_matrix m)
Convert the matrix m to a one-dimensional array in column-major order.

Available since 2.30

array[] real to_array_1d(array[...] real a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.

Available since 2.3

array[] int to_array_1d(array[...] int a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.

Available since 2.3

array[] complex to_array_1d(array[...] complex a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in

139

row-major order.

Available since 2.30

10. Compound Arithmetic and Assignment

Compound arithmetic and assignment statements combine an arithmetic operation
and assignment, replacing a statement such as

x = x op y;

with the more compact compound form

x op= y;

For example, x = x + 1; may be replaced with x += 1;. This works for all types
that support arithmetic, including the scalar types int, real, complex, the real
matrix types vector, row_vector, and matrix, and the complex matrix types,
complex_vector, complex_row_vector, and complex_matrix.

10.1. Compound addition and assignment
Compound addition and assignment works wherever the corresponding addition
and assignment would be well formed.

void operator+=(T x, U y)
x += y is equivalent to x = x + y. Defined for all types T and U where T = T + U
is well formed.

Available since 2.17, complex signatures added in 2.30

10.2. Compound subtraction and assignment
Compound addition and assignment works wherever the corresponding subtrac-
tion and assignment would be well formed.

void operator-=(T x, U y)
x -= y is equivalent to x = x - y. Defined for all types T and U where T = T - U
is well formed.

Available since 2.17, complex signatures added in 2.30

10.3. Compound multiplication and assignment
Compound multiplication and assignment works wherever the corresponding
multiplication and assignment would be well formed.

140

10.4. COMPOUND DIVISION AND ASSIGNMENT 141

void operator*=(T x, U y)
x *= y is equivalent to x = x * y. Defined for all types T and U where T = T * U
is well formed.

Available since 2.17, complex signatures added in 2.30

10.4. Compound division and assignment
Compound division and assignment works wherever the corresponding division
and assignment would be well formed.

void operator/=(T x, U y)
x /= y is equivalent to x = x / y. Defined for all types T and U where T = T / U
is well formed.

Available since 2.17, complex signatures added in 2.30

10.5. Compound elementwise multiplication and assignment
Compound elementwise multiplication and assignment works wherever the corre-
sponding multiplication and assignment would be well formed.

void operator.*=(T x, U y)
x .*= y is equivalent to x = x .* y. Defined for all types T and U where T = T
.* U is well formed.

Available since 2.17, complex signatures added in 2.30

10.6. Compound elementwise division and assignment
Compound elementwise division and assignment works wherever the correspond-
ing division and assignment would be well formed.

void operator./=(T x, U y)
x ./= y is equivalent to x = x ./ y. Defined for all types T and U where T = T
./ U is well formed.

Available since 2.17, complex signatures added in 2.30

11. Higher-Order Functions

Stan provides a few higher-order functions that act on other functions. In all cases,
the function arguments to the higher-order functions are defined as functions within
the Stan language and passed by name to the higher-order functions.

11.1. Algebraic equation solvers
Stan provides two built-in algebraic equation solvers, respectively based on the
Newton method and the Powell “dog leg” hybrid method. Empirically the Newton
method is found to be faster and its use is recommended for most problems.

An algebraic solver is a higher-order function, i.e. it takes another function as one of
its arguments. Other functions in Stan which share this feature are the differential
equation solvers (see section Ordinary Differential Equation (ODE) Solvers and
Differential Algebraic Equation (DAE) solver). Ordinary Stan functions do not
allow functions as arguments.

Specifying an algebraic equation as a function
An algebraic system is specified as an ordinary function in Stan within the function
block. The function must return a vector and takes in, as its first argument, the
unknowns y we wish to solve for, also passed as a vector. This argument is
followed by additional arguments as specified by the user; we call such arguments
variadic arguments and denote them The signature of the algebraic system is
then:

vector algebra_system (vector y, ...)

There is no type restriction for the variadic arguments and each argument can be
passed as data or parameter. However users should use parameter arguments only
when necessary and mark data arguments with the keyword data. In the below
example, the last variadic argument, x, is restricted to being data:

vector algebra_system (vector y, vector theta, data vector x)

Distinguishing data and parameter is important for computational reasons. Aug-
menting the total number of parameters increases the cost of propagating deriva-
tives through the solution to the algebraic equation, and ultimately the computa-
tional cost of evaluating the gradients.

142

11.1. ALGEBRAIC EQUATION SOLVERS 143

Call to the algebraic solver
vector solve_newton(function algebra_system, vector y_guess, ...)
Solves the algebraic system, given an initial guess, using Newton’s method.

Available since 2.31

vector solve_newton_tol(function algebra_system, vector y_guess,
data real scaling_step, data real f_tol, int max_steps, ...)
Solves the algebraic system, given an initial guess, using Newton’s method with
additional control parameters for the solver.

Available since 2.31

vector solve_powell(function algebra_system, vector y_guess, ...)
Solves the algebraic system, given an initial guess, using Powell’s hybrid method.

Available since 2.31

vector solve_powell_tol(function algebra_system, vector y_guess,
data real rel_tol, data real f_tol, int max_steps, ...)
Solves the algebraic system, given an initial guess, using Powell’s hybrid method
with additional control parameters for the solver.

Available since 2.31

Arguments to the algebraic solver
The arguments to the algebraic solvers are as follows:

• algebra_system: function literal referring to a function specifying the sys-
tem of algebraic equations with signature (vector, ...):vector. The ar-
guments represent (1) unknowns, (2) additional parameter and/or data ar-
guments, and the return value contains the value of the algebraic function,
which goes to 0 when we plug in the solution to the algebraic system,

• y_guess: initial guess for the solution, type vector,

• ...: variadic arguments.

The algebraic solvers admit control parameters. While Stan provides default values,
the user should be prepared to adjust the control parameters. The following controls
are available:

• scaling_step: for the Newton solver only, the scaled-step stopping tolerance,
type real, data only. If a Newton step is smaller than the scaling step toler-
ance, the code breaks, assuming the solver is no longer making significant
progress. If set to 0, this constraint is ignored. Default value is 10−3.

144 CHAPTER 11. HIGHER-ORDER FUNCTIONS

• rel_tol: for the Powell solver only, the relative tolerance, type real, data only.
The relative tolerance is the estimated relative error of the solver and serves
to test if a satisfactory solution has been found. Default value is 10−10.

• function_tol: function tolerance for the algebraic solver, type real, data
only. After convergence of the solver, the proposed solution is plugged into
the algebraic system and its norm is compared to the function tolerance. If
the norm is below the function tolerance, the solution is deemed acceptable.
Default value is 10−6.

• max_num_steps: maximum number of steps to take in the algebraic solver,
type int, data only. If the solver reaches this number of steps, it breaks and
returns an error message. Default value is 200.

The difference in which control parameters are available has to do with the under-
lying implementations for the solvers and the control parameters these implemen-
tations support. The Newton solver is based on KINSOL from the SUNDIAL suites,
while the Powell solver uses a module from the Eigen library.

Return value
The return value for the algebraic solver is an object of type vector, with values
which, when plugged in as y make the algebraic function go to 0 (approximately,
within the specified function tolerance).

Sizes and parallel arrays
Certain sizes have to be consistent. The initial guess, return value of the solver, and
return value of the algebraic function must all be the same size.

Algorithmic details
Stan offers two methods to solve algebraic equations. solve_newton and
solve_newton_tol use the Newton method, a first-order derivative based nu-
merical solver. The Stan code builds on the implementation in KINSOL from the
SUNDIALS suite (Hindmarsh et al. 2005). For many problems, we find that the
Newton method is faster than the Powell method. If however Newton’s method
performs poorly, either failing to or requiring an excessively long time to converge,
the user should be prepared to switch to the Powell method.

solve_powell and solve_powell_tol are based on the Powell hybrid method
(Powell 1970), which also uses first-order derivatives. The Stan code builds on
the implementation of the hybrid solver in the unsupported module for nonlinear
optimization problems of the Eigen library (Guennebaud, Jacob, et al. 2010). This
solver is in turn based on the algorithm developed for the package MINPACK-1
(Jorge J. More 1980).

11.2. ORDINARY DIFFERENTIAL EQUATION (ODE) SOLVERS 145

For both solvers, derivatives are propagated through the solution to the algebraic
solution using the implicit function theorem and an adjoint method of automatic
differentiation; for a discussion on this topic, see (Gaebler 2021) and (Margossian
and Betancourt 2022).

11.2. Ordinary differential equation (ODE) solvers
Stan provides several higher order functions for solving initial value problems
specified as Ordinary Differential Equations (ODEs).

Solving an initial value ODE means given a set of differential equations y′(t, θ) =
f (t, y, θ) and initial conditions y(t0, θ), solving for y at a sequence of times t0 <
t1 < t2, · · · < tn. f (t, y, θ) is referred to here as the ODE system function.

f (t, y, θ) will be defined as a function with a certain signature and provided along
with the initial conditions and output times to one of the ODE solver functions.

To make it easier to write ODEs, the solve functions take extra arguments that are
passed along unmodified to the user-supplied system function. Because there can
be any number of these arguments and they can be of different types, they are
denoted below as The types of the arguments represented by ... in the ODE
solve function call must match the types of the arguments represented by ... in
the user-supplied system function.

Non-stiff solver
array[] vector ode_rk45(function ode, vector initial_state, real
initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.

Available since 2.24

array[] vector ode_rk45_tol(function ode, vector initial_state,
real initial_time, array[] real times, data real rel_tol, data
real abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method with additional control parameters for the
solver.

Available since 2.24

array[] vector ode_ckrk(function ode, vector initial_state, real
initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the Cash-Karp algorithm, a

146 CHAPTER 11. HIGHER-ORDER FUNCTIONS

4th/5th order explicit Runge-Kutta method.

Available since 2.27

array[] vector ode_ckrk_tol(function ode, vector initial_state,
real initial_time, array[] real times, data real rel_tol, data
real abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Cash-Karp algorithm, a
4th/5th order explicit Runge-Kutta method with additional control parameters for
the solver.

Available since 2.27

array[] vector ode_adams(function ode, vector initial_state, real
initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the Adams-Moulton method.

Available since 2.24

array[] vector ode_adams_tol(function ode, vector initial_state,
real initial_time, array[] real times, data real rel_tol, data
real abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Adams-Moulton method
with additional control parameters for the solver.

Available since 2.24

Stiff solver
array[] vector ode_bdf(function ode, vector initial_state, real
initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method.

Available since 2.24

array[] vector ode_bdf_tol(function ode, vector initial_state, real
initial_time, array[] real times, data real rel_tol, data real
abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.

Available since 2.24

11.2. ORDINARY DIFFERENTIAL EQUATION (ODE) SOLVERS 147

Adjoint solver
array[] vector ode_adjoint_tol_ctl(function ode, vector ini-
tial_state, real initial_time, array[] real times, data real
rel_tol_forward, data vector abs_tol_forward, data real
rel_tol_backward, data vector abs_tol_backward, int max_num_steps,
int num_steps_between_checkpoints, int interpolation_polynomial,
int solver_forward, int solver_backward, ...)

Solves the ODE system for the times provided using the adjoint ODE solver method
from CVODES. The adjoint ODE solver requires a checkpointed forward in time
ODE integration, a backwards in time integration that makes uses of an interpolated
version of the forward solution, and the solution of a quadrature problem (the
number of which depends on the number of parameters passed to the solve).
The tolerances and numeric methods used for the forward solve, backward solve,
quadratures, and interpolation can all be configured.

Available since 2.27

ODE system function
The first argument to one of the ODE solvers is always the ODE system function. The
ODE system function must have a vector return type, and the first two arguments
must be a real and vector in that order. These two arguments are followed by the
variadic arguments that are passed through from the ODE solve function call:

vector ode(real time, vector state, ...)

The ODE system function should return the derivative of the state with respect to
time at the time and state provided. The length of the returned vector must match
the length of the state input into the function.

The arguments to this function are:

• time, the time to evaluate the ODE system

• state, the state of the ODE system at the time specified

• ..., sequence of arguments passed unmodified from the ODE solve function
call. The types here must match the types in the ... arguments of the ODE
solve function call.

Arguments to the ODE solvers
The arguments to the ODE solvers in both the stiff and non-stiff solvers are the
same. The arguments to the adjoint ODE solver are different; see Arguments to the

148 CHAPTER 11. HIGHER-ORDER FUNCTIONS

adjoint ODE solver.

• ode: ODE system function,

• initial_state: initial state, type vector,

• initial_time: initial time, type real,

• times: solution times, type array[] real,

• ...: sequence of arguments that will be passed through unmodified to the
ODE system function. The types here must match the types in the ... argu-
ments of the ODE system function.

For the versions of the ode solver functions ending in _tol, these three parameters
must be provided after times and before the ... arguments:

• data rel_tol: relative tolerance for the ODE solver, type real, data only,

• data abs_tol: absolute tolerance for the ODE solver, type real, data only,
and

• max_num_steps: maximum number of steps to take between output times in
the ODE solver, type int, data only.

Because the tolerances are data arguments, they must be defined in either the data
or transformed data blocks. They cannot be parameters, transformed parameters or
functions of parameters or transformed parameters.

Arguments to the adjoint ODE solver
The arguments to the adjoint ODE solver are different from those for the other
functions (for those see Arguments to the ODE solvers).

• ode: ODE system function,

• initial_state: initial state, type vector,

• initial_time: initial time, type real,

• times: solution times, type array[] real,

• data rel_tol_forward: Relative tolerance for forward solve, type real, data
only,

• data abs_tol_forward: Absolute tolerance vector for each state for forward
solve, type vector, data only,

11.2. ORDINARY DIFFERENTIAL EQUATION (ODE) SOLVERS 149

• data rel_tol_backward: Relative tolerance for backward solve, type real,
data only,

• data abs_tol_backward: Absolute tolerance vector for each state for back-
ward solve, type vector, data only,

• data rel_tol_quadrature: Relative tolerance for backward quadrature, type
real, data only,

• data abs_tol_quadrature: Absolute tolerance for backward quadrature,
type real, data only,

• data max_num_steps: Maximum number of time-steps to take in integrating
the ODE solution between output time points for forward and backward
solve, type int, data only,

• num_steps_between_checkpoints: number of steps between checkpointing
forward solution, type int, data only,

• interpolation_polynomial: can be 1 for hermite or 2 for polynomial inter-
polation method of CVODES, type int, data only,

• solver_forward: solver used for forward ODE problem: 1=Adams (non-
stiff), 2=BDF (stiff), type int, data only,

• solver_backward: solver used for backward ODE problem: 1=Adams (non-
stiff), 2=BDF (stiff), type int, data only.

• ...: sequence of arguments that will be passed through unmodified to the
ODE system function. The types here must match the types in the ... argu-
ments of the ODE system function.

Because the tolerances are data arguments, they must be defined in either the data
or transformed data blocks. They cannot be parameters, transformed parameters or
functions of parameters or transformed parameters.

Return values
The return value for the ODE solvers is an array of vectors (type array[] vector),
one vector representing the state of the system at every time in specified in the
times argument.

Array and vector sizes
The sizes must match, and in particular, the following groups are of the same size:

• state variables passed into the system function, derivatives returned by the
system function, initial state passed into the solver, and length of each vector

150 CHAPTER 11. HIGHER-ORDER FUNCTIONS

in the output,

• number of solution times and number of vectors in the output.

11.3. Differential-Algebraic equation (DAE) solver
Stan provides two higher order functions for solving initial value problems specified
as Differential-Algebraic Equations (DAEs) with index-1 (Serban et al. 2021).

Solving an initial value DAE means given a set of residual functions
r(y′(t, θ), y(t, θ), t) and initial conditions (y(t0, θ), y′(t0, θ)), solving for y at a se-
quence of times t0 < t1 ≤ t2, · · · ≤ tn. The residual function r(y′, y, t, θ) will be
defined as a function with a certain signature and provided along with the initial
conditions and output times to one of the DAE solver functions.

Similar to ODE solvers, the DAE solver function takes extra arguments that are
passed along unmodified to the user-supplied system function. Because there can
be any number of these arguments and they can be of different types, they are
denoted below as ..., and the types of these arguments, also represented by ...
in the DAE solver call, must match the types of the arguments represented by ...
in the user-supplied system function.

The DAE solver
array[] vector dae(function residual, vector initial_state, vec-
tor initial_state_derivative, data real initial_time, data array[]
real times, ...)
Solves the DAE system using the backward differentiation formula (BDF) method
(Serban et al. 2021).

Available since 2.29

array[] vector dae_tol(function residual, vector initial_state,
vector initial_state_derivative, data real initial_time, data
array[] real times, data real rel_tol, data real abs_tol, int
max_num_steps, ...)
Solves the DAE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.

Available since 2.29

DAE system function
The first argument to the DAE solver is the DAE residual function. The DAE
residual function must have a vector return type, and the first three arguments
must be a real, vector, and vector, in that order. These three arguments are

11.3. DIFFERENTIAL-ALGEBRAIC EQUATION (DAE) SOLVER 151

followed by the variadic arguments that are passed through from the DAE solver
function call:

vector residual(real time, vector state, vector state_derivative, ...)

The DAE residual function should return the residuals at the time and state pro-
vided. The length of the returned vector must match the length of the state input
into the function.

The arguments to this function are:

• time, the time to evaluate the DAE system

• state, the state of the DAE system at the time specified

• state_derivative, the time derivatives of the state of the DAE system at the
time specified

• ..., sequence of arguments passed unmodified from the DAE solve function
call. The types here must match the types in the ... arguments of the DAE
solve function call.

Arguments to the DAE solver
The arguments to the DAE solver are

• residual: DAE residual function,

• initial_state: initial state, type vector,

• initial_state_derivative: time derivative of the initial state, type vector,

• initial_time: initial time, type data real,

• times: solution times, type data array[] real,

• ...: sequence of arguments that will be passed through unmodified to the
DAE residual function. The types here must match the types in the ...
arguments of the DAE residual function.

For dae_tol, the following three parameters must be provided after times and
before the ... arguments:

• data rel_tol: relative tolerance for the DAE solver, type real, data only,

• data abs_tol: absolute tolerance for the DAE solver, type real, data only,
and

152 CHAPTER 11. HIGHER-ORDER FUNCTIONS

• max_num_steps: maximum number of steps to take between output times in
the DAE solver, type int, data only.

Because the tolerances are data arguments, they must be supplied as primitive
numerics or defined in either the data or transformed data blocks. They cannot
be parameters, transformed parameters or functions of parameters or transformed
parameters.

Consistency of the initial conditions
The user is responsible to ensure the residual function becomes zero at the initial
time, t0, when the arguments initial_state and initial_state_derivative
are introduced as state and state_derivative, respectively.

Return values
The return value for the DAE solvers is an array of vectors (type array[] vector),
one vector representing the state of the system at every time specified in the times
argument.

Array and vector sizes
The sizes must match, and in particular, the following groups are of the same size:

• state variables and state derivatives passed into the residual function, the
residual returned by the residual function, initial state and initial state deriva-
tives passed into the solver, and length of each vector in the output,

• number of solution times and number of vectors in the output.

11.4. 1D integrator
Stan provides a built-in mechanism to perform 1D integration of a function via
quadrature methods.

It operates similarly to the algebraic solver and the ordinary differential equations
solver in that it allows as an argument a function.

Like both of those utilities, some of the arguments are limited to data only expres-
sions. These expressions must not contain variables other than those declared in
the data or transformed data blocks.

Specifying an integrand as a function
Performing a 1D integration requires the integrand to be specified somehow. This
is done by defining a function in the Stan functions block with the special signature:

11.4. 1D INTEGRATOR 153

real integrand(real x, real xc, array[] real theta,
array[] real x_r, array[] int x_i)

The function should return the value of the integrand evaluated at the point x.

The argument of this function are:

• x, the independent variable being integrated over

• xc, a high precision version of the distance from x to the nearest endpoint in a
definite integral (for more into see section Precision Loss).

• theta, parameter values used to evaluate the integral

• x_r, data values used to evaluate the integral

• x_i, integer data used to evaluate the integral

Like algebraic solver and the differential equations solver, the 1D integrator sepa-
rates parameter values, theta, from data values, x_r.

Call to the 1D integrator
real integrate_1d (function integrand, real a, real b, array[] real
theta, array[] real x_r, array[] int x_i)
Integrates the integrand from a to b.

Available since 2.23

real integrate_1d (function integrand, real a, real b, array[] real
theta, array[] real x_r, array[] int x_i, real relative_tolerance)
Integrates the integrand from a to b with the given relative tolerance.

Available since 2.23

Arguments to the 1D integrator
The arguments to the 1D integrator are as follows:

• integrand: function literal referring to a function specifying the inte-
grand with signature (real, real, array[] real, array[] real, ar-
ray[] int):real The arguments represent

– (1) where integrand is evaluated,
– (2) distance from evaluation point to integration limit for definite inte-

grals,
– (3) parameters,
– (4) real data

154 CHAPTER 11. HIGHER-ORDER FUNCTIONS

– (5) integer data, and the return value is the integrand evaluated at the
given point,

• a: left limit of integration, may be negative infinity, type real,
• b: right limit of integration, may be positive infinity, type real,
• theta: parameters only, type array[] real,
• x_r: real data only, type array[] real,
• x_i: integer data only, type array[] int.

A relative_tolerance argument can optionally be provided for more control
over the algorithm:

• relative_tolerance: relative tolerance for the 1d integrator, type real, data
only.

Return value
The return value for the 1D integrator is a real, the value of the integral.

Zero-crossing integrals
For numeric stability, integrals on the (possibly infinite) interval (a, b) that cross
zero are split into two integrals, one from (a, 0) and one from (0, b). Each integral is
separately integrated to the given relative_tolerance.

Precision loss near limits of integration in definite integrals
When integrating certain definite integrals, there can be significant precision loss in
evaluating the integrand near the endpoints. This has to do with the breakdown in
precision of double precision floating point values when adding or subtracting a
small number from a number much larger than it in magnitude (for instance, 1.0
- x). xc (as passed to the integrand) is a high-precision version of the distance
between x and the definite integral endpoints and can be used to address this issue.
More information (and an example where this is useful) is given in the User’s Guide.
For zero crossing integrals, xc will be a high precision version of the distance to
the endpoints of the two smaller integrals. For any integral with an endpoint at
negative infinity or positive infinity, xc is set to NaN.

Algorithmic details
Internally the 1D integrator uses the double-exponential methods in the Boost 1D
quadrature library. Boost in turn makes use of quadrature methods developed in
(Takahasi and Mori 1974), (Mori 1978), (Bailey, Jeyabalan, and Li 2005), and (Tanaka
et al. 2009).

The gradients of the integral are computed in accordance with the Leibniz integral
rule. Gradients of the integrand are computed internally with Stan’s automatic

11.5. REDUCE-SUM FUNCTION 155

differentiation.

11.5. Reduce-sum function
Stan provides a higher-order reduce function for summation. A function which
returns a scalar g: U -> real is mapped to every element of a list of type array[]
U, { x1, x2, ... } and all the results are accumulated,

g(x1) + g(x2) + ...

For efficiency reasons the reduce function doesn’t work with the element-wise
evaluated function g itself, but instead works through evaluating partial sums, f:
array[] U -> real, where:

f({ x1 }) = g(x1)
f({ x1, x2 }) = g(x1) + g(x2)
f({ x1, x2, ... }) = g(x1) + g(x2) + ...

Mathematically the summation reduction is associative and forming arbitrary par-
tial sums in an arbitrary order will not change the result. However, floating point
numerics on computers only have a limited precision such that associativity does
not hold exactly. This implies that the order of summation determines the exact
numerical result. For this reason, the higher-order reduce function is available in
two variants:

• reduce_sum: Automatically choose partial sums partitioning based on a dy-
namic scheduling algorithm.

• reduce_sum_static: Compute the same sum as reduce_sum, but partition
the input in the same way for given data set (in reduce_sum this partitioning
might change depending on computer load). This should result in stable
numerical evaluations.

Specifying the reduce-sum function
The higher-order reduce function takes a partial sum function f, an array argument
x (with one array element for each term in the sum), a recommended grainsize,
and a set of shared arguments. This representation allows parallelization of the
resultant sum.

real reduce_sum(F f, array[] T x, int grainsize, T1 s1, T2 s2, ...)

real reduce_sum_static(F f, array[] T x, int grainsize, T1 s1, T2
s2, ...)

156 CHAPTER 11. HIGHER-ORDER FUNCTIONS

Returns the equivalent of f(x, 1, size(x), s1, s2, ...), but computes the
result in parallel by breaking the array x into independent partial sums. s1, s2,
... are shared between all terms in the sum.

Available since 2.23

• f: function literal referring to a function specifying the partial sum operation.
Refer to the partial sum function.

• x: array of T, one for each term of the reduction, T can be any type,
• grainsize: For reduce_sum, grainsize is the recommended size of the

partial sum (grainsize = 1 means pick totally automatically). For re-
duce_sum_static, grainsize determines the maximum size of the partial
sums, type int,

• s1: first (optional) shared argument, type T1, where T1 can be any type
• s2: second (optional) shared argument, type T2, where T2 can be any type,
• ...: remainder of shared arguments, each of which can be any type.

The partial sum function
The partial sum function must have the following signature where the type T, and
the types of all the shared arguments (T1, T2, . . .) match those of the original
reduce_sum (reduce_sum_static) call.

(array[] T x_subset, int start, int end, T1 s1, T2 s2, ...):real

The partial sum function returns the sum of the start to end terms (inclusive) of
the overall calculations. The arguments to the partial sum function are:

• x_subset, the subset of x a given partial sum is responsible for com-
puting, type array[] T, where T matches the type of x in reduce_sum
(reduce_sum_static)

• start, the index of the first term of the partial sum, type int

• end, the index of the last term of the partial sum (inclusive), type int

• s1, first shared argument, type T1, matching type of s1 in reduce_sum
(reduce_sum_static)

• s2, second shared argument, type T2, matching type of s2 in reduce_sum
(reduce_sum_static)

• ..., remainder of shared arguments, with types matching those in re-
duce_sum (reduce_sum_static)

11.6. MAP-RECT FUNCTION 157

11.6. Map-rect function
Stan provides a higher-order map function. This allows map-reduce functionality
to be coded in Stan as described in the user’s guide.

Specifying the mapped function
The function being mapped must have a signature identical to that of the function f
in the following declaration.

vector f(vector phi, vector theta,
data array[] real x_r, data array[] int x_i);

The map function returns the sequence of results for the particular shard being
evaluated. The arguments to the mapped function are:

• phi, the sequence of parameters shared across shards

• theta, the sequence of parameters specific to this shard

• x_r, sequence of real-valued data

• x_i, sequence of integer data

All input for the mapped function must be packed into these sequences and all
output from the mapped function must be packed into a single vector. The vector
of output from each mapped function is concatenated into the final result.

Rectangular map
The rectangular map function operates on rectangular (not ragged) data structures,
with parallel data structures for job-specific parameters, job-specific real data, and
job-specific integer data.

vector map_rect(F f, vector phi, array[] vector theta, data ar-
ray[,] real x_r, data array[,] int x_i)
Return the concatenation of the results of applying the function f, of type
(vector, vector, array[] real, array[] int):vector elementwise, i.e.,
f(phi, theta[n], x_r[n], x_i[n]) for each n in 1:N, where N is the size of the
parallel arrays of job-specific/local parameters theta, real data x_r, and integer
data x_r. The shared/global parameters phi are passed to each invocation of f.

Available since 2.18

12. Variable Transformation Functions

Variable transformation functions provide implementations of the built-in constrain-
ing and unconstraining transforms defined in Stan Reference Manual.

For each of the built-in variable transforms there are three functions named after
the transform with differing suffixes. A _unconstrain function that maps from the
constrained space back to free variables (the “transform”), A _constrain function
that maps from free variables to constrained variables (the “inverse transform”),
and a _jacobian function, which computes the same value as the _constrain
function while also incrementing the Jacobian accumulator with the log Jacobian
determinant.

For this page, variables named y are unconstrained, while variables named x are in
the constrained space. The unconstraining functions will reject if their input does
not satisfy the declared constraint.

12.1. Transforms for scalars
These transformations take unconstrained values on the real number line and either
constrain the, to a subset of the real line with a lower bound, upper bound, or both,
or provide an affine map that does not constrain values but can help with shifting
and scaling them so they are more standardized.

The functions are all overloaded to apply to containers elementwise. If the y
argument is a container, the others must be either scalars or containers of exactly
the same size.

Lower bounds
These functions perform the transform and inverse transform described in the
Lower Bounded Scalar section.

reals lower_bound_constrain(reals y, reals lb)
Takes a value y and lower bound lb and returns the corresponding value which
is greater than lb (except for the possibility of rounding due to numeric precision
issues, in which case it will be equal to the bound).

Available since 2.37

reals lower_bound_jacobian(reals y, reals lb)

158

https://mc-stan.org/docs/reference-manual/transforms.html
https://mc-stan.org/docs/reference-manual/statements.html#increment-log-density-with-a-change-of-variables-adjustment
https://mc-stan.org/docs/reference-manual/transforms.html#lower-bound-transform.section

12.1. TRANSFORMS FOR SCALARS 159

Takes a value y and lower bound lb and returns the corresponding value which
is greater than lb (except for the possibility of rounding due to numeric precision
issues, in which case it will be equal to the bound).

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

reals lower_bound_unconstrain(reals x, reals lb)
Takes a value x which is greater than lb and returns the corresponding uncon-
strained value.

Available since 2.37

Upper bounds
These functions perform the transform and inverse transform described in the
Upper Bounded Scalar section.

reals upper_bound_constrain(reals y, reals ub)
Takes a value y and upper bound ub and returns the corresponding value which is
less than ub (except for the possibility of rounding due to numeric precision issues,
in which case it will be equal to the bound).

Available since 2.37

reals upper_bound_jacobian(reals x, reals ub)
Takes a value y and upper bound ub and returns the corresponding value which is
less than ub (except for the possibility of rounding due to numeric precision issues,
in which case it will be equal to the bound).

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

reals upper_bound_unconstrain(reals x, reals ub)
Takes a value x which is less than ub and returns the corresponding unconstrained
value.

Available since 2.37

Upper and lower bounds
These functions perform the transform and inverse transform described in the
Lower and Upper Bounded Scalar section.

https://mc-stan.org/docs/reference-manual/transforms.html#upper-bounded-scalar
https://mc-stan.org/docs/reference-manual/transforms.html#logit-transform-jacobian.section

160 CHAPTER 12. VARIABLE TRANSFORMATION FUNCTIONS

reals lower_upper_bound_constrain(reals y, reals lb, reals ub)
Takes a value y, lower bound lb, and upper bound ub and returns the corresponding
value which is bounded between lb and ub (except for the possibility of rounding
due to numeric precision issues, in which case it will be equal to the bound).

Available since 2.37

reals lower_upper_bound_jacobian(reals y, reals lb, reals ub)
Takes a value y, lower bound lb, and upper bound ub and returns the corresponding
value which is bounded between lb and ub (except for the possibility of rounding
due to numeric precision issues, in which case it will be equal to the bound).

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

reals lower_upper_bound_unconstrain(reals x, reals lb, reals ub)
Takes a value x which is bounded between lb and ub and returns returns the
corresponding unconstrained value.

Available since 2.37

Affine transforms
These functions perform the transform and inverse transform described in the
Affinely Transformed Scalar section.

reals offset_multiplier_constrain(reals y, reals offset, reals
mult)
Takes a value y, shift offset, and scale mult and returns a rescaled and shifted
value.

Available since 2.37

reals offset_multiplier_jacobian(reals y, reals offset, reals mult)
Takes a value y, shift offset, and scale mult and returns a rescaled and shifted
value.

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

reals offset_multiplier_unconstrain(reals x, reals offset, reals
mult)

https://mc-stan.org/docs/reference-manual/transforms.html#affinely-transformed-scalar

12.2. TRANSFORMS FOR CONSTRAINED VECTORS 161

Takes a value x, shift offset, and scale mult and a value which has been un-scaled
and un-shifted.

Available since 2.37

12.2. Transforms for constrained vectors
These functions constrain entire vectors hollistically. Some transforms also change
the length of the vector, as noted in the documentation.

Where vectors is used, this indicates that either a vector or a (possibly multidi-
mensional) array of vectors may be provided. The array will be processed element
by element.

Ordered vectors
These functions perform the transform and inverse transform described in the
Ordered Vector section.

vectors ordered_constrain(vectors y)
Takes a free vector y and returns a vector with elements in ascending order.

Available since 2.37

vectors ordered_jacobian(vectors y)
Takes a free vector y and returns a vector with elements in ascending order.

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

vectors ordered_unconstrain(vectors x)
Takes an ordered vector x and returns the corresponding free vector.

Available since 2.37

Positive order vectors
These functions perform the transform and inverse transform described in the
Positive Ordered Vector section.

vectors positive_ordered_constrain(vectors y)
Takes a free vector y and returns a vector with positive elements in ascending order.

Available since 2.37

vectors positive_ordered_jacobian(vectors y)
Takes a free vector y and returns a vector with positive elements in ascending order.

https://mc-stan.org/docs/reference-manual/transforms.html#ordered-vector
https://mc-stan.org/docs/reference-manual/transforms.html#positive-ordered-vector

162 CHAPTER 12. VARIABLE TRANSFORMATION FUNCTIONS

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

vectors positive_ordered_unconstrain(vectors x)
Takes an ordered vector x with positive entries and returns the corresponding free
vector.

Available since 2.37

Simplexes
These functions perform the transform and inverse transform described in the Unit
Simplex section.

vectors simplex_constrain(vectors y)
Takes a free vector y and returns a simplex (a vector such that each element is
between 0 and 1, and the sum of the elements is 1, up to rounding errors).

This returned vector will have one extra element compared to the input y.

Available since 2.37

vectors simplex_jacobian(vectors y)
Takes a free vector y and returns a simplex (a vector such that each element is
between 0 and 1, and the sum of the elements is 1, up to rounding errors).

This returned vector will have one extra element compared to the input y.

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

vectors simplex_unconstrain(vectors x)
Takes a simplex x and returns the corresponding free vector.

This returned vector will have one fewer elements compared to the input x.

Available since 2.37

Sum-to-zero vectors
These functions perform the transform and inverse transform described in the Zero
Sum Vector section.

vectors sum_to_zero_constrain(vectors y)
Takes a free vector y and returns a vector such that the elements sum to 0.

https://mc-stan.org/docs/reference-manual/transforms.html#simplex-transform.section
https://mc-stan.org/docs/reference-manual/transforms.html#simplex-transform.section
https://mc-stan.org/docs/reference-manual/transforms.html#sum-to-zero-vector
https://mc-stan.org/docs/reference-manual/transforms.html#sum-to-zero-vector

12.2. TRANSFORMS FOR CONSTRAINED VECTORS 163

This returned vector will have one extra element compared to the input y.

Available since 2.37

vectors sum_to_zero_jacobian(vectors y)
Takes a free vector y and returns a vector such that the elements sum to 0.

The returned vector will have one extra element compared to the input y.

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

vectors sum_to_zero_unconstrain(vectors x)
Takes a vector x with elements that sum to 0 and returns the corresponding free
vector.

This returned vector will have one fewer elements compared to the input x.

Available since 2.37

Unit vectors
These functions perform the transform and inverse transform described in the Unit
Vector section.

vectors unit_vectors_constrain(vectors y)
Takes a free vector y and returns a vector with unit length, i.e.,
norm2(unit_vectors_constrain(y)) == 1 for any y that has a positive
and finite norm itself (if y does not, the function rejects). Note that, in particular,
this implies the function rejects if given a vector of all zeros.

Available since 2.37

vectors unit_vectors_jacobian(vectors y)
Takes a free vector y and returns a vector with unit length. This function rejects if
given a vector of all zeros.

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

vectors unit_vectors_unconstrain(vectors x)
Takes a vector x of unit length and returns the corresponding free vector.

Available since 2.37

https://mc-stan.org/docs/reference-manual/transforms.html#unit-vector.section
https://mc-stan.org/docs/reference-manual/transforms.html#unit-vector.section

164 CHAPTER 12. VARIABLE TRANSFORMATION FUNCTIONS

12.3. Transforms for constrained matrices
Similarly to the above, vectors means a vector or array thereof, and matrices
means a matrix or array thereof.

Cholesky factors of correlation matrices
These functions perform the transform and inverse transform described in the
Cholesky Factors of Correlation Matrices section.

matrices cholesky_factor_corr_constrain(vectors y, int K)
Takes a vector y and integer K, where length(y) == choose(K, 2), and returns a
K by K Cholesky factor of a correlation matrix. This matrix is a Cholesky factor of a
covariance matrix (i.e., a lower triangular matrix with a strictly positive diagonal),
but with the additional constraint that each row is of unit length.

Available since 2.37

Takes a vector y and integer K, where length(y) == choose(K, 2), and returns a
K by K Cholesky factor of a correlation matrix.

This function also increments the Jacobian accumulator with
the corresponding change of variables adjustment. matrices
cholesky_factor_corr_jacobian(vectors y, int K)

Available since 2.37

vectors cholesky_factor_corr_unconstrain(matrices x)
Takes x, a (K × K) matrix which is the Cholesky factor of a correlation matrix (a
lower triangular matrix with a strictly positive diagonal and each row having unit
length), and returns the corresponding free vector of length $ imes $.

Available since 2.37

Cholesky factors of covariance matrices
These functions perform the transform and inverse transform described in the
Cholesky Factors of Covariance Matrices section.

matrices cholesky_factor_cov_constrain(vectors y, int M, int N)
Takes a free vector y and integers M and N and returns the M by N Cholesky factor
of a covariance matrix. This matrix is a lower triangular matrix L, with a strictly
positive diagonal, such that LT L is positive definite.

Note that y must have length N + choose(N, 2) + (M - N) * N, and M must be
greater than or equal to N.

https://mc-stan.org/docs/reference-manual/transforms.html#cholesky-factors-of-correlation-matrices
https://mc-stan.org/docs/reference-manual/transforms.html#cholesky-factors-of-covariance-matrices

12.3. TRANSFORMS FOR CONSTRAINED MATRICES 165

Available since 2.37

matrices cholesky_factor_cov_jacobian(vectors y, int M, int N)
Takes a free vector y and integers M and N and returns the M by N Cholesky factor
of a covariance matrix. This matrix is a lower triangular matrix L, with a strictly
positive diagonal, such that LT L is positive definite.

Note that y must have length N + choose(N, 2) + (M - N) * N, and M must be
greater than or equal to N.

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

vectors cholesky_factor_cov_unconstrain(matrices x)
Takes a M × N matrix x which is a Cholesky factor of a covariance matrix (a matrix
L such that LT L is positive definite) and returns the corresponding free vector of
length N + (N

2) + (M − N)N.

Available since 2.37

Correlation matrices
These functions perform the transform and inverse transform described in the
Correlation Matrices section.

matrices corr_matrix_constrain(vectors y, int K)
Takes a vector y and integer K, where length(y) == choose(K, 2), and returns a
K by K correlation matrix (a positive definite matrix with a unit diagonal).

Available since 2.37

matrices corr_matrix_jacobian(vectors y, int K)
Takes a vector y and integer K, where length(y) == choose(K, 2), and returns a
K by K correlation matrix (a positive definite matrix with a unit diagonal).

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

vectors corr_matrix_unconstrain(matrices x)
Takes a K × K matrix x which is a correlation matrix (a positive definite matrix with
a unit diagonal) and returns the corresponding free vector of size (K

2).

Available since 2.37

https://mc-stan.org/docs/reference-manual/transforms.html#correlation-matrix-transform.section

166 CHAPTER 12. VARIABLE TRANSFORMATION FUNCTIONS

Covariance matrices
These functions perform the transform and inverse transform described in the
Covariance Matrices section.

matrices cov_matrix_constrain(vectors y, int K)
Takes a vector y and integer K, where length(y) == K + choose(K, 2), and
returns a K by K covariance matrix (a positive definite matrix).

Available since 2.37

matrices cov_matrix_jacobian(vectors y, int K)
Takes a vector y and integer K, where length(y) == K + choose(K, 2), and
returns a K by K covariance matrix (a positive definite matrix).

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

vectors cov_matrix_unconstrain(matrices x)
Takes a K × K positive definite matrix x and returns the corresponding free vector
of size K + (K

2).

Available since 2.37

Column-stochastic matrices
These functions perform the transform and inverse transform described in the
Stochastic Matrix section for column (left) stochastic matrices.

matrices stochastic_column_constrain(matrices y)
Takes a free matrix y of size N × M and returns a left stochastic matrix (a matrix
where each column is a simplex) of size N + 1 × M.

Available since 2.37

matrices stochastic_column_jacobian(matrices y)
Takes a free matrix y of size N × M and returns a left stochastic matrix (a matrix
where each column is a simplex) of size N + 1 × M.

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

matrices stochastic_column_unconstrain(matrices x)
Takes a left stochastic matrix x of size N + 1 × M and returns the corresponding

https://mc-stan.org/docs/reference-manual/transforms.html#covariance-matrices
https://mc-stan.org/docs/reference-manual/transforms.html#stochastic-matrix-transform.section

12.3. TRANSFORMS FOR CONSTRAINED MATRICES 167

free matrix of size N × M.

Available since 2.37

Row-stochastic matrices
These functions perform the transform and inverse transform described in the
Stochastic Matrix section for row (right) stochastic matrices.

matrices stochastic_row_constrain(matrices y)
Takes a free matrix y of size N × M and returns a right stochastic matrix (a matrix
where each row is a simplex) of size N × M + 1.

Available since 2.37

matrices stochastic_row_jacobian(matrices y)
Takes a free matrix y of size N × M and returns a right stochastic matrix (a matrix
where each row is a simplex) of size N × M + 1.

This function also increments the Jacobian accumulator with the corresponding
change of variables adjustment.

Available since 2.37

matrices stochastic_row_unconstrain(matrices x)
Takes a right stochastic matrix x of size N × M + 1 and returns the corresponding
free matrix of size N × M.

Available since 2.37

Sum-to-zero matrices
The sum-to-zero matrix transforms map between unconstrained values and matrices
whose rows and columns sum to zero; full definitions of the function and Jacobian
can be found in the sum-to-zero matrix section of the Reference Manual.

matrices sum_to_zero_constrain(matrices y)
The constraining function maps an unconstrained N x M matrix to an (N + 1) x
(M + 1) matrix for which the rows and columns all sum to zero. This function
covers the incrementation of the log Jacobian because the incrementation is zero.

This returned matrix will have one extra row and column compared to the input y.

Available since 2.37

matrices sum_to_zero_jacobian(matrices y)
The constraining function maps an unconstrained N x M matrix to an (N + 1) x

https://mc-stan.org/docs/reference-manual/transforms.html#stochastic-matrix-transform.section
https://mc-stan.org/docs/reference-manual/transforms.html#sum-to-zero-matrix-transform

168 CHAPTER 12. VARIABLE TRANSFORMATION FUNCTIONS

(M + 1) matrix for which the rows and columns all sum to zero. Because the log
Jacobian incrementation is zero, this is identical to sum_to_zero_constrain.

This returned matrix will have one extra row and column compared to the input y.

Available since 2.37

matrices sum_to_zero_unconstrain(matrices x)
This function maps a matrix with rows that sum to zero and columns that sum to
zero to an unconstrained matrix with one fewer row and and one fewer column.

Available since 2.37

13. Deprecated Functions

This appendix lists currently deprecated functionality along with how to replace it.

Starting in Stan 2.29, deprecated functions with drop in replacements (such as
the renaming of get_lp or multiply_log) will be removed 3 versions later e.g.,
functions deprecated in Stan 2.20 will be removed in Stan 2.23 and placed in Re-
moved Functions. The Stan compiler can automatically update these on the behalf
of the user for the entire deprecation window and at least one version following the
removal.

13.1. Integer division with operator/
Deprecated: Using / with two integer arguments is interpreted as integer floor
division, such that

1/2 = 0

This is deprecated due to its confusion with real-valued division, where

1.0/2.0 = 0.5

Replacement: Use the integer division operator operator%/% instead.

13.2. integrate_ode_rk45, integrate_ode_adams, integrate_ode_bdf
ODE Integrators

These ODE integrator functions have been replaced by those described in Ordinary
Differential Equation (ODE) Solvers.

Specifying an ordinary differential equation as a function
A system of ODEs is specified as an ordinary function in Stan within the functions
block. The ODE system function must have this function signature:

array[] real ode(real time, array[] real state, array[] real theta,
array[] real x_r, array[] int x_i);

169

removed_functions.qmd
removed_functions.qmd
https://mc-stan.org/docs/stan-users-guide/using-stanc.html#stanc-pretty-printing

170 CHAPTER 13. DEPRECATED FUNCTIONS

The ODE system function should return the derivative of the state with respect to
time at the time provided. The length of the returned real array must match the
length of the state input into the function.

The arguments to this function are:

• time, the time to evaluate the ODE system

• state, the state of the ODE system at the time specified

• theta, parameter values used to evaluate the ODE system

• x_r, data values used to evaluate the ODE system

• x_i, integer data values used to evaluate the ODE system.

The ODE system function separates parameter values, theta, from data values,
x_r, for efficiency in computing the gradients of the ODE.

Non-stiff solver
array[,] real integrate_ode_rk45(function ode, array[] real ini-
tial_state, real initial_time, array[] real times, array[] real
theta, array[] real x_r, array[] int x_i)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.

Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_rk45(function ode, array[] real ini-
tial_state, real initial_time, array[] real times, array[] real
theta, array[] real x_r, array[] int x_i, real rel_tol, real
abs_tol, int max_num_steps)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method with additional control parameters for the
solver.

Available since 2.10, deprecated in 2.24

array[,] real integrate_ode(function ode, array[] real ini-
tial_state, real initial_time, array[] real times, array[] real
theta, array[] real x_r, array[] int x_i)
Solves the ODE system for the times provided using the Dormand-Prince algorithm,
a 4th/5th order Runge-Kutta method.

Available since 2.10, deprecated in 2.24

13.2. INTEGRATE_ODE_RK45, INTEGRATE_ODE_ADAMS, INTEGRATE_ODE_BDF ODE INTEGRATORS171

array[,] real integrate_ode_adams(function ode, array[] real ini-
tial_state, real initial_time, array[] real times, array[] real
theta, data array[] real x_r, data array[] int x_i)
Solves the ODE system for the times provided using the Adams-Moulton method.

Available since 2.23, deprecated in 2.24

array[,] real integrate_ode_adams(function ode, array[] real ini-
tial_state, real initial_time, array[] real times, array[] real
theta, data array[] real x_r, data array[] int x_i, data real
rel_tol, data real abs_tol, data int max_num_steps)
Solves the ODE system for the times provided using the Adams-Moulton method
with additional control parameters for the solver.

Available since 2.23, deprecated in 2.24

Stiff solver
array[,] real integrate_ode_bdf(function ode, array[] real ini-
tial_state, real initial_time, array[] real times, array[] real
theta, data array[] real x_r, data array[] int x_i)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method.

Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_bdf(function ode, array[] real ini-
tial_state, real initial_time, array[] real times, array[] real
theta, data array[] real x_r, data array[] int x_i, data real
rel_tol, data real abs_tol, data int max_num_steps)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.

Available since 2.10, deprecated in 2.24

Arguments to the ODE solvers
The arguments to the ODE solvers in both the stiff and non-stiff cases are as follows.

• ode: function literal referring to a function specifying the system of differential
equations with signature:

(real, array[] real, array[] real, data array[] real, data array[] int):array[] real

The arguments represent (1) time, (2) system state, (3) parameters, (4) real data, and
(5) integer data, and the return value contains the derivatives with respect to time
of the state,

172 CHAPTER 13. DEPRECATED FUNCTIONS

• initial_state: initial state, type array[] real,

• initial_time: initial time, type int or real,

• times: solution times, type array[] real,

• theta: parameters, type array[] real,

• data x_r: real data, type array[] real, data only, and

• data x_i: integer data, type array[] int, data only.

For more fine-grained control of the ODE solvers, these parameters can also be
provided:

• data rel_tol: relative tolerance for the ODE solver, type real, data only,

• data abs_tol: absolute tolerance for the ODE solver, type real, data only,
and

• data max_num_steps: maximum number of steps to take in the ODE solver,
type int, data only.

Return values
The return value for the ODE solvers is an array of type array[,] real, with
values consisting of solutions at the specified times.

Sizes and parallel arrays
The sizes must match, and in particular, the following groups are of the same size:

• state variables passed into the system function, derivatives returned by the
system function, initial state passed into the solver, and rows of the return
value of the solver,

• solution times and number of rows of the return value of the solver,

• parameters, real data and integer data passed to the solver will be passed to
the system function

13.3. algebra_solver, algebra_solver_newton algebraic solvers
These algebraic solver functions have been replaced by those described in Algebraic
Equation Solvers..

Specifying an algebraic equation as a function
An algebraic system is specified as an ordinary function in Stan within the function
block. The algebraic system function must have this signature:

13.3. ALGEBRA_SOLVER, ALGEBRA_SOLVER_NEWTON ALGEBRAIC SOLVERS173

vector algebra_system(vector y, vector theta,
data array[] real x_r, array[] int x_i)

The algebraic system function should return the value of the algebraic function
which goes to 0, when we plug in the solution to the algebraic system.

The argument of this function are:

• y, the unknowns we wish to solve for

• theta, parameter values used to evaluate the algebraic system

• x_r, data values used to evaluate the algebraic system

• x_i, integer data used to evaluate the algebraic system

The algebraic system function separates parameter values, theta, from data values,
x_r, for efficiency in propagating the derivatives through the algebraic system.

Call to the algebraic solver
vector algebra_solver(function algebra_system, vector y_guess, vec-
tor theta, data array[] real x_r, array[] int x_i)
Solves the algebraic system, given an initial guess, using the Powell hybrid algo-
rithm.

Available since 2.17, deprecated in 2.31

vector algebra_solver(function algebra_system, vector y_guess,
vector theta, data array[] real x_r, array[] int x_i, data real
rel_tol, data real f_tol, int max_steps)
Solves the algebraic system, given an initial guess, using the Powell hybrid
algorithm with additional control parameters for the solver.

Available since 2.17, deprecated in 2.31

Note: In future releases, the function algebra_solver will be deprecated and
replaced with algebra_solver_powell.

vector algebra_solver_newton(function algebra_system, vector
y_guess, vector theta, data array[] real x_r, array[] int x_i)
Solves the algebraic system, given an initial guess, using Newton’s method.

Available since 2.24, deprecated in 2.31

vector algebra_solver_newton(function algebra_system, vector
y_guess, vector theta, data array[] real x_r, array[] int x_i,

174 CHAPTER 13. DEPRECATED FUNCTIONS

data real rel_tol, data real f_tol, int max_steps)
Solves the algebraic system, given an initial guess, using Newton’s method with
additional control parameters for the solver.

Available since 2.24, deprecated in 2.31

Arguments to the algebraic solver
The arguments to the algebraic solvers are as follows:

• algebra_system: function literal referring to a function specifying the system
of algebraic equations with signature (vector, vector, array[] real,
array[] int):vector. The arguments represent (1) unknowns, (2) parame-
ters, (3) real data, and (4) integer data, and the return value contains the value
of the algebraic function, which goes to 0 when we plug in the solution to the
algebraic system,

• y_guess: initial guess for the solution, type vector,

• theta: parameters only, type vector,

• x_r: real data only, type array[] real, and

• x_i: integer data only, type array[] int.

For more fine-grained control of the algebraic solver, these parameters can also be
provided:

• rel_tol: relative tolerance for the algebraic solver, type real, data only,

• function_tol: function tolerance for the algebraic solver, type real, data
only,

• max_num_steps: maximum number of steps to take in the algebraic solver,
type int, data only.

Return value
The return value for the algebraic solver is an object of type vector, with values
which, when plugged in as y make the algebraic function go to 0.

Sizes and parallel arrays
Certain sizes have to be consistent. The initial guess, return value of the solver, and
return value of the algebraic function must all be the same size.

The parameters, real data, and integer data will be passed from the solver directly
to the system function.

14. Removed Functions

Functions which once existed in the Stan language and have since been replaced or
removed are listed here.

14.1. multiply_log and binomial_coefficient_log functions
Removed: Currently two non-conforming functions ending in suffix _log.

Replacement: Replace multiply_log(...) with lmultiply(...). Replace bino-
mial_coefficient_log(...) with lchoose(...).

Removed In: Stan 2.33

14.2. get_lp() function
Removed: The built-in no-argument function get_lp() is deprecated.

Replacement: Use the no-argument function target() instead.

Removed In: Stan 2.33

14.3. fabs function
Removed: The unary function fabs is deprecated.

Replacement: Use the unary function abs instead. Note that the return type for abs
is different for integer overloads, but this replacement is safe due to Stan’s type
promotion rules.

Removed In: Stan 2.33

14.4. Exponentiated quadratic covariance functions
These covariance functions have been replaced by those described in Gaussian
Process Covariance Functions

With magnitude α and length scale l, the exponentiated quadratic kernel is:

k(xi, xj) = α2 exp

(
− 1

2ρ2

D

∑
d=1

(xi,d − xj,d)
2

)

175

176 CHAPTER 14. REMOVED FUNCTIONS

matrix cov_exp_quad(row_vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

Available since 2.16, deprecated since 2.20, removed in in 2.33

matrix cov_exp_quad(vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

Available since 2.16, deprecated since 2.20, removed in in 2.33

matrix cov_exp_quad(array[] real x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

Available since 2.16, deprecated since 2.20, removed in in 2.33

matrix cov_exp_quad(row_vectors x1, row_vectors x2, real alpha,
real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

Available since 2.18, deprecated since 2.20, removed in in 2.33

matrix cov_exp_quad(vectors x1, vectors x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

Available since 2.18, deprecated since 2.20, removed in in 2.33

matrix cov_exp_quad(array[] real x1, array[] real x2, real alpha,
real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

Available since 2.18, deprecated since 2.20, removed in in 2.33

14.5. Real arguments to logical operators operator&&, opera-
tor||, and operator!

Removed: A nonzero real number (even NaN) was interpreted as true and a zero
was interpreted as false.

Replacement: Explicit x != 0 comparison is preferred instead.

Removed In: Stan 2.34

15. Conventions for Probability Functions

Functions associated with distributions are set up to follow the same naming
conventions for both built-in distributions and for user-defined distributions.

15.1. Suffix marks type of function
The suffix is determined by the type of function according to the following table.

function outcome suffix

log probability mass function discrete _lpmf
log probability density function continuous _lpdf
log cumulative distribution function any _lcdf
log complementary cumulative distribution function any _lccdf
random number generator any _rng

For example, normal_lpdf is the log of the normal probability density function
(pdf) and bernoulli_lpmf is the log of the bernoulli probability mass function
(pmf). The log of the corresponding cumulative distribution functions (cdf) use the
same suffix, normal_lcdf and bernoulli_lcdf.

15.2. Argument order and the vertical bar
Each probability function has a specific outcome value and a number of parameters.
Following conditional probability notation, probability density and mass functions
use a vertical bar to separate the outcome from the parameters of the distribution.
For example, normal_lpdf(y | mu, sigma) returns the value of mathematical for-
mula log Normal(y | µ, σ). Cumulative distribution functions separate the outcome
from the parameters in the same way (e.g., normal_lcdf(y_low | mu, sigma)

15.3. Sampling notation
The notation

y ~ normal(mu, sigma);

provides the same (proportional) contribution to the model log density as the
explicit target density increment,

177

178 CHAPTER 15. CONVENTIONS FOR PROBABILITY FUNCTIONS

target += normal_lpdf(y | mu, sigma);

In both cases, the effect is to add terms to the target log density. The only difference
is that the example with the sampling (~) notation drops all additive constants
in the log density; the constants are not necessary for any of Stan’s sampling,
approximation, or optimization algorithms.

15.4. Finite inputs
All of the distribution functions are configured to throw exceptions (effectively
rejecting iterations or optimization steps) when they are supplied with non-finite
arguments. The two cases of non-finite arguments are the infinite values and
not-a-number value—these are standard in floating-point arithmetic.

15.5. Boundary conditions
Many distributions are defined with support or constraints on parameters forming
an open interval. For example, the normal density function accepts a scale parameter
σ > 0. If σ = 0, the probability function will throw an exception.

This is true even for (complementary) cumulative distribution functions, which will
throw exceptions when given input that is out of the support.

15.6. Pseudorandom number generators
For most of the probability functions, there is a matching pseudorandom num-
ber generator (PRNG) with the suffix _rng. For example, the function nor-
mal_rng(real, real) accepts two real arguments, an unconstrained location µ
and positive scale σ > 0, and returns an unconstrained pseudorandom value drawn
from Normal(µ, σ). There are also vectorized forms of random number generators
which return more than one random variate at a time.

Restricted to transformed data and generated quantities
Unlike regular functions, the PRNG functions may only be used in the transformed
data or generated quantities blocks.

Limited vectorization
Unlike the probability functions, only some of the PRNG functions are vectorized.

15.7. Cumulative distribution functions
For most of the univariate probability functions, there is a corresponding cumulative
distribution function, log cumulative distribution function, and log complementary

15.8. VECTORIZATION 179

cumulative distribution function.

For a univariate random variable Y with probability function pY(y | θ), the cumula-
tive distribution function (CDF) FY is defined by

FY(y) = Pr[Y ≤ y] =
∫ y

−∞
p(y | θ) dy.

The complementary cumulative distribution function (CCDF) is defined as

Pr[Y > y] = 1 − FY(y).

The reason to use CCDFs instead of CDFs in floating-point arithmetic is that it is
possible to represent numbers very close to 0 (the closest you can get is roughly
10−300), but not numbers very close to 1 (the closest you can get is roughly 1 −
10−15).

In Stan, there is a cumulative distribution function for each probability function.
For instance, normal_cdf(y | mu, sigma) is defined by∫ y

−∞
Normal(y | µ, σ) dy.

There are also log forms of the CDF and CCDF for most univariate distributions.
For example, normal_lcdf(y | mu, sigma) is defined by

log
(∫ y

−∞
Normal(y | µ, σ) dy

)
and normal_lccdf(y | mu, sigma) is defined by

log
(

1 −
∫ y

−∞
Normal(y | µ, σ) dy

)
.

15.8. Vectorization
Stan’s univariate log probability functions, including the log density functions,
log mass functions, log CDFs, and log CCDFs, all support vectorized function
application, with results defined to be the sum of the elementwise application of the
function. Some of the PRNG functions support vectorization, see section vectorized
PRNG functions for more details.

In all cases, matrix operations are at least as fast and usually faster than loops and
vectorized log probability functions are faster than their equivalent form defined

180 CHAPTER 15. CONVENTIONS FOR PROBABILITY FUNCTIONS

with loops. This isn’t because loops are slow in Stan, but because more efficient
automatic differentiation can be used. The efficiency comes from the fact that a
vectorized log probability function only introduces one new node into the expres-
sion graph, thus reducing the number of virtual function calls required to compute
gradients in C++, as well as from allowing caching of repeated computations.

Stan also overloads the multivariate normal distribution, including the Cholesky-
factor form, allowing arrays of row vectors or vectors for the variate and location
parameter. This is a huge savings in speed because the work required to solve the
linear system for the covariance matrix is only done once.

Stan also overloads some scalar functions, such as log and exp, to apply to vectors
(arrays) and return vectors (arrays). These vectorizations are defined elementwise
and unlike the probability functions, provide only minimal efficiency speedups
over repeated application and assignment in a loop.

Vectorized function signatures
Vectorized scalar arguments
The normal probability function is specified with the signature

normal_lpdf(reals | reals, reals);

The pseudotype reals is used to indicate that an argument position may be vec-
torized. Argument positions declared as reals may be filled with a real, a one-
dimensional array, a vector, or a row-vector. If there is more than one array or vector
argument, their types can be anything but their size must match. For instance, it
is legal to use normal_lpdf(row_vector | vector, real) as long as the vector
and row vector have the same size.

Vectorized vector and row vector arguments
The multivariate normal distribution accepting vector or array of vector arguments
is written as

multi_normal_lpdf(vectors | vectors, matrix);

These arguments may be row vectors, column vectors, or arrays of row vectors or
column vectors.

Vectorized integer arguments
The pseudotype ints is used for vectorized integer arguments. Where it appears
either an integer or array of integers may be used.

15.8. VECTORIZATION 181

Evaluating vectorized log probability functions
The result of a vectorized log probability function is equivalent to the sum of the
evaluations on each element. Any non-vector argument, namely real or int, is
repeated. For instance, if y is a vector of size N, mu is a vector of size N, and sigma is
a scalar, then

ll = normal_lpdf(y | mu, sigma);

is just a more efficient way to write

ll = 0;
for (n in 1:N) {
ll = ll + normal_lpdf(y[n] | mu[n], sigma);

}

With the same arguments, the vectorized sampling statement

y ~ normal(mu, sigma);

has the same effect on the total log probability as

for (n in 1:N) {
y[n] ~ normal(mu[n], sigma);

}

Evaluating vectorized PRNG functions
Some PRNG functions accept sequences as well as scalars as arguments. Such
functions are indicated by argument pseudotypes reals or ints. In cases of se-
quence arguments, the output will also be a sequence. For example, the following
is allowed in the transformed data and generated quantities blocks.

vector[3] mu = // ...
array[3] real x = normal_rng(mu, 3);

Argument types
In the case of PRNG functions, arguments marked ints may be integers or integer
arrays, whereas arguments marked reals may be integers or reals, integer or real
arrays, vectors, or row vectors.

pseudotype allowable PRNG arguments

ints int, array[] int
reals int, array[] int, real, array[] real, vector, row_vector

182 CHAPTER 15. CONVENTIONS FOR PROBABILITY FUNCTIONS

Dimension matching
In general, if there are multiple non-scalar arguments, they must all have the
same dimensions, but need not have the same type. For example, the normal_rng
function may be called with one vector argument and one real array argument as
long as they have the same number of elements.

vector[3] mu = // ...
array[3] real sigma = // ...
array[3] real x = normal_rng(mu, sigma);

Return type
The result of a vectorized PRNG function depends on the size of the arguments and
the distribution’s support. If all arguments are scalars, then the return type is a scalar.
For a continuous distribution, if there are any non-scalar arguments, the return type
is a real array (array[] real) matching the size of any of the non-scalar arguments,
as all non-scalar arguments must have matching size. Discrete distributions return
ints and continuous distributions return reals, each of appropriate size. The
symbol R denotes such a return type.

Part II

Discrete Distributions

183

16. Binary Distributions

Binary probability distributions have support on {0, 1}, where 1 represents the
value true and 0 the value false.

16.1. Bernoulli distribution
Probability mass function

If θ ∈ [0, 1], then for y ∈ {0, 1},

Bernoulli(y | θ) =

{
θ if y = 1, and
1 − θ if y = 0.

Distribution statement
y ~ bernoulli(theta)

Increment target log probability density with bernoulli_lupmf(y | theta).

Available since 2.0

Stan Functions
real bernoulli_lpmf(ints y | reals theta)
The log Bernoulli probability mass of y given chance of success theta

Available since 2.12

real bernoulli_lupmf(ints y | reals theta)
The log Bernoulli probability mass of y given chance of success theta dropping
constant additive terms

Available since 2.25

real bernoulli_cdf(ints y | reals theta)
The Bernoulli cumulative distribution function of y given chance of success theta

Available since 2.0

real bernoulli_lcdf(ints y | reals theta)
The log of the Bernoulli cumulative distribution function of y given chance of
success theta

Available since 2.12

185

186 CHAPTER 16. BINARY DISTRIBUTIONS

real bernoulli_lccdf(ints y | reals theta)
The log of the Bernoulli complementary cumulative distribution function of y given
chance of success theta

Available since 2.12

ints bernoulli_rng(reals theta)
Generate a Bernoulli variate with chance of success theta or an array of Bernoulli
variates given an array of thetas of the same dimensions; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

16.2. Bernoulli distribution, logit parameterization
Stan also supplies a direct parameterization in terms of a logit-transformed chance-
of-success parameter. This parameterization is more numerically stable if the
chance-of-success parameter is on the logit scale, as with the linear predictor in a
logistic regression.

Probability mass function
If α ∈ R, then for y ∈ {0, 1},

BernoulliLogit(y | α) = Bernoulli(y|logit−1(α)) =

{
logit−1(α) if y = 1, and
1 − logit−1(α) if y = 0.

Distribution statement
y ~ bernoulli_logit(alpha)

Increment target log probability density with bernoulli_logit_lupmf(y | al-
pha).

Available since 2.0

Stan Functions
real bernoulli_logit_lpmf(ints y | reals alpha)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha)

Available since 2.12

real bernoulli_logit_lupmf(ints y | reals alpha)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha)
dropping constant additive terms

16.3. BERNOULLI-LOGIT GENERALIZED LINEAR MODEL (LOGISTIC REGRESSION)187

Available since 2.25

R bernoulli_logit_rng(reals alpha)
Generate a Bernoulli variate with chance of success logit−1(α); may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

16.3. Bernoulli-logit generalized linear model (Logistic Regres-
sion)

Stan also supplies a single function for a generalized linear model with Bernoulli
distribution and logit link function, i.e. a function for a logistic regression. This
provides a more efficient implementation of logistic regression than a manually
written regression in terms of a Bernoulli distribution and matrix multiplication.

Probability mass function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, then for y ∈ {0, 1}n,

BernoulliLogitGLM(y | x, α, β) = ∏
1≤i≤n

Bernoulli(yi | logit−1(αi + xi · β))

= ∏
1≤i≤n

{
logit−1(αi + ∑1≤j≤m xij · β j) if yi = 1, and
1 − logit−1(αi + ∑1≤j≤m xij · β j) if yi = 0.

Distribution statement
y ~ bernoulli_logit_glm(x, alpha, beta)

Increment target log probability density with bernoulli_logit_glm_lupmf(y |
x, alpha, beta).

Available since 2.25

Stan Functions
real bernoulli_logit_glm_lpmf(int y | matrix x, real alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta).

Available since 2.23

real bernoulli_logit_glm_lupmf(int y | matrix x, real alpha, vector
beta)

188 CHAPTER 16. BINARY DISTRIBUTIONS

The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta) dropping constant additive terms.

Available since 2.25

real bernoulli_logit_glm_lpmf(int y | matrix x, vector alpha, vec-
tor beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta).

Available since 2.23

real bernoulli_logit_glm_lupmf(int y | matrix x, vector alpha, vec-
tor beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta) dropping constant additive terms.

Available since 2.25

real bernoulli_logit_glm_lpmf(array[] int y | row_vector x, real
alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta).

Available since 2.23

real bernoulli_logit_glm_lupmf(array[] int y | row_vector x, real
alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta) dropping constant additive terms.

Available since 2.25

real bernoulli_logit_glm_lpmf(array[] int y | row_vector x, vector
alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta).

Available since 2.23

real bernoulli_logit_glm_lupmf(array[] int y | row_vector x, vector
alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta) dropping constant additive terms.

Available since 2.25

16.3. BERNOULLI-LOGIT GENERALIZED LINEAR MODEL (LOGISTIC REGRESSION)189

real bernoulli_logit_glm_lpmf(array[] int y | matrix x, real alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta).

Available since 2.18

real bernoulli_logit_glm_lupmf(array[] int y | matrix x, real al-
pha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta) dropping constant additive terms.

Available since 2.25

real bernoulli_logit_glm_lpmf(array[] int y | matrix x, vector al-
pha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta).

Available since 2.18

real bernoulli_logit_glm_lupmf(array[] int y | matrix x, vector al-
pha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha
+ x * beta) dropping constant additive terms.

Available since 2.25

array[] int bernoulli_logit_glm_rng(matrix x, vector alpha, vector
beta)
Generate an array of Bernoulli variates with chances of success inv_logit(alpha
+ x * beta); may only be used in transformed data and generated quantities
blocks.

Available since 2.29

array[] int bernoulli_logit_glm_rng(row_vector x, vector alpha,
vector beta)
Generate an array of Bernoulli variates with chances of success inv_logit(alpha
+ x * beta); may only be used in transformed data and generated quantities
blocks.

Available since 2.29

17. Bounded Discrete Distributions

Bounded discrete probability functions have support on {0, . . . , N} for some upper
bound N.

17.1. Binomial distribution
Probability mass function

Suppose N ∈ N and θ ∈ [0, 1], and n ∈ {0, . . . , N}.

Binomial(n | N, θ) =

(
N
n

)
θn(1 − θ)N−n.

Log probability mass function

log Binomial(n | N, θ) = log Γ(N + 1)− log Γ(n + 1)− log Γ(N − n + 1)

+ n log θ + (N − n) log(1 − θ),

Gradient of log probability mass function

∂

∂θ
log Binomial(n | N, θ) =

n
θ
− N − n

1 − θ

Distribution statement
n ~ binomial(N, theta)

Increment target log probability density with binomial_lupmf(n | N, theta).

Available since 2.0

Stan functions
real binomial_lpmf(ints n | ints N, reals theta)
The log binomial probability mass of n successes in N trials given chance of success
theta

Available since 2.12

190

17.2. BINOMIAL DISTRIBUTION, LOGIT PARAMETERIZATION 191

real binomial_lupmf(ints n | ints N, reals theta)
The log binomial probability mass of n successes in N trials given chance of success
theta dropping constant additive terms

Available since 2.25

real binomial_cdf(ints n | ints N, reals theta)
The binomial cumulative distribution function of n successes in N trials given
chance of success theta

Available since 2.0

real binomial_lcdf(ints n | ints N, reals theta)
The log of the binomial cumulative distribution function of n successes in N trials
given chance of success theta

Available since 2.12

real binomial_lccdf(ints n | ints N, reals theta)
The log of the binomial complementary cumulative distribution function of n
successes in N trials given chance of success theta

Available since 2.12

R binomial_rng(ints N, reals theta)
Generate a binomial variate with N trials and chance of success theta; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

Available since 2.18

17.2. Binomial distribution, logit parameterization
Stan also provides a version of the binomial probability mass function distribution
with the chance of success parameterized on the unconstrained logistic scale.

Probability mass function
Suppose N ∈ N, α ∈ R, and n ∈ {0, . . . , N}. Then

BinomialLogit(n | N, α) = Binomial(n | N, logit−1(α))

=

(
N
n

)(
logit−1(α)

)n (
1 − logit−1(α)

)N−n
.

192 CHAPTER 17. BOUNDED DISCRETE DISTRIBUTIONS

Log probability mass function

log BinomialLogit(n | N, α) = log Γ(N + 1)− log Γ(n + 1)− log Γ(N − n + 1)

+ n log logit−1(α) + (N − n) log
(

1 − logit−1(α)
)

,

Gradient of log probability mass function

∂

∂α
log BinomialLogit(n | N, α) =

n
logit−1(−α)

− N − n
logit−1(α)

Distribution statement
n ~ binomial_logit(N, alpha)

Increment target log probability density with binomial_logit_lupmf(n | N,
alpha).

Available since 2.0

Stan functions
real binomial_logit_lpmf(ints n | ints N, reals alpha)
The log binomial probability mass of n successes in N trials given logit-scaled
chance of success alpha

Available since 2.12

real binomial_logit_lupmf(ints n | ints N, reals alpha)
The log binomial probability mass of n successes in N trials given logit-scaled
chance of success alpha dropping constant additive terms

Available since 2.25

17.3. Binomial-logit generalized linear model (Logistic Regres-
sion)

Stan also supplies a single function for a generalized linear model with binomial
distribution and logit link function, i.e., a function for logistic regression with
aggregated outcomes. This provides a more efficient implementation of logistic
regression than a manually written regression in terms of a binomial distribution
and matrix multiplication.

17.3. BINOMIAL-LOGIT GENERALIZED LINEAR MODEL (LOGISTIC REGRESSION)193

Probability mass function
Suppose N ∈ N, x ∈ Rn·m, α ∈ Rn, β ∈ Rm, and n ∈ {0, . . . , N}. Then

BinomialLogitGLM(n | N, x, α, β) = Binomial(n | N, logit−1(αi + xi · β))

=

(
N
n

)(
logit−1(αi + ∑

1≤j≤m
xij · β j)

)n (
1 − logit−1(αi + ∑

1≤j≤m
xij · β j)

)N−n

.

Distribution statement
n ~ binomial_logit_glm(N, x, alpha, beta)

Increment target log probability density with binomial_logit_glm_lupmf(n |
N, x, alpha, beta).

Available since 2.34

Stan Functions
real binomial_logit_glm_lpmf(int n | int N, matrix x, real alpha,
vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta).

Available since 2.34

real binomial_logit_glm_lupmf(int n | int N, matrix x, real alpha,
vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta) dropping constant additive terms.

Available since 2.34

real binomial_logit_glm_lpmf(int n | int N, matrix x, vector alpha,
vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta).

Available since 2.34

real binomial_logit_glm_lupmf(int n | int N, matrix x, vector al-
pha, vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta) dropping constant additive terms.

Available since 2.34

194 CHAPTER 17. BOUNDED DISCRETE DISTRIBUTIONS

real binomial_logit_glm_lpmf(array[] int n | array[] int N,
row_vector x, real alpha, vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta).

Available since 2.34

real binomial_logit_glm_lupmf(array[] int n | array[] int N,
row_vector x, real alpha, vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta) dropping constant additive terms.

Available since 2.34

real binomial_logit_glm_lpmf(array[] int n | array[] int N,
row_vector x, vector alpha, vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta).

Available since 2.34

real binomial_logit_glm_lupmf(array[] int n | array[] int N,
row_vector x, vector alpha, vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta) dropping constant additive terms.

Available since 2.34

real binomial_logit_glm_lpmf(array[] int n | array[] int N, matrix
x, real alpha, vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta).

Available since 2.34

real binomial_logit_glm_lupmf(array[] int n | array[] int N, matrix
x, real alpha, vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta) dropping constant additive terms.

Available since 2.34

real binomial_logit_glm_lpmf(array[] int n | array[] int N, matrix
x, vector alpha, vector beta)

17.4. BETA-BINOMIAL DISTRIBUTION 195

The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta).

Available since 2.34

real binomial_logit_glm_lupmf(array[] int n | array[] int N, matrix
x, vector alpha, vector beta)
The log binomial probability mass of n given N trials and chance of success
inv_logit(alpha + x * beta) dropping constant additive terms.

Available since 2.34

17.4. Beta-binomial distribution
Probability mass function

If N ∈ N, α ∈ R+, and β ∈ R+, then for n ∈ 0, . . . , N,

BetaBinomial(n | N, α, β) =

(
N
n

)
B(n + α, N − n + β)

B(α, β)
,

where the beta function B(u, v) is defined for u ∈ R+ and v ∈ R+ by

B(u, v) =
Γ(u) Γ(v)
Γ(u + v)

.

Distribution statement
n ~ beta_binomial(N, alpha, beta)

Increment target log probability density with beta_binomial_lupmf(n | N, al-
pha, beta).

Available since 2.0

Stan functions
real beta_binomial_lpmf(ints n | ints N, reals alpha, reals beta)
The log beta-binomial probability mass of n successes in N trials given prior success
count (plus one) of alpha and prior failure count (plus one) of beta

Available since 2.12

real beta_binomial_lupmf(ints n | ints N, reals alpha, reals beta)
The log beta-binomial probability mass of n successes in N trials given prior success
count (plus one) of alpha and prior failure count (plus one) of beta dropping
constant additive terms

196 CHAPTER 17. BOUNDED DISCRETE DISTRIBUTIONS

Available since 2.25

real beta_binomial_cdf(ints n | ints N, reals alpha, reals beta)
The beta-binomial cumulative distribution function of n successes in N trials given
prior success count (plus one) of alpha and prior failure count (plus one) of beta

Available since 2.0

real beta_binomial_lcdf(ints n | ints N, reals alpha, reals beta)
The log of the beta-binomial cumulative distribution function of n successes in N
trials given prior success count (plus one) of alpha and prior failure count (plus
one) of beta

Available since 2.12

real beta_binomial_lccdf(ints n | ints N, reals alpha, reals beta)
The log of the beta-binomial complementary cumulative distribution function of n
successes in N trials given prior success count (plus one) of alpha and prior failure
count (plus one) of beta

Available since 2.12

R beta_binomial_rng(ints N, reals alpha, reals beta)
Generate a beta-binomial variate with N trials, prior success count (plus one) of
alpha, and prior failure count (plus one) of beta; may only be used in transformed
data and generated quantities blocks. For a description of argument and return
types, see section vectorized PRNG functions.

Available since 2.18

17.5. Hypergeometric distribution
Probability mass function

If a ∈ N, b ∈ N, and N ∈ {0, . . . , a + b}, then for n ∈ {max(0, N −
b), . . . , min(a, N)},

Hypergeometric(n | N, a, b) =
(a

n)(
b

N−n)

(a+b
N)

.

Distribution statement
n ~ hypergeometric(N, a, b)

Increment target log probability density with hypergeometric_lupmf(n | N, a,
b).

17.6. CATEGORICAL DISTRIBUTION 197

Available since 2.0

Stan functions
real hypergeometric_lpmf(int n | int N, int a, int b)
The log hypergeometric probability mass of n successes in N trials given total
success count of a and total failure count of b

Available since 2.12

real hypergeometric_lupmf(int n | int N, int a, int b)
The log hypergeometric probability mass of n successes in N trials given total
success count of a and total failure count of b dropping constant additive terms

Available since 2.25

int hypergeometric_rng(int N, int a, int b)
Generate a hypergeometric variate with N trials, total success count of a, and total
failure count of b; may only be used in transformed data and generated quantities
blocks

Available since 2.18

17.6. Categorical distribution
Probability mass functions

If N ∈ N, N > 0, and if θ ∈ RN forms an N-simplex (i.e., has nonnegative entries
summing to one), then for y ∈ {1, . . . , N},

Categorical(y | θ) = θy.

In addition, Stan provides a log-odds scaled categorical distribution,

CategoricalLogit(y | β) = Categorical(y | softmax(β)).

See the definition of softmax for the definition of the softmax function.

Distribution statement
y ~ categorical(theta)

Increment target log probability density with categorical_lupmf(y | theta)
dropping constant additive terms.

Available since 2.0

198 CHAPTER 17. BOUNDED DISCRETE DISTRIBUTIONS

Distribution statement
y ~ categorical_logit(beta)

Increment target log probability density with categorical_logit_lupmf(y |
beta).

Available since 2.4

Stan functions
All of the categorical distributions are vectorized so that the outcome y can be a
single integer (type int) or an array of integers (type array[] int).

real categorical_lpmf(ints y | vector theta)
The log categorical probability mass function with outcome(s) y in 1 : N given N-
vector of outcome probabilities theta. The parameter theta must have non-negative
entries that sum to one, but it need not be a variable declared as a simplex.

Available since 2.12

real categorical_lupmf(ints y | vector theta)
The log categorical probability mass function with outcome(s) y in 1 : N given
N-vector of outcome probabilities theta dropping constant additive terms. The
parameter theta must have non-negative entries that sum to one, but it need not be
a variable declared as a simplex.

Available since 2.25

real categorical_logit_lpmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta.

Available since 2.12

real categorical_logit_lupmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta dropping constant additive terms.

Available since 2.25

int categorical_rng(vector theta)
Generate a categorical variate with N-simplex distribution parameter theta; may
only be used in transformed data and generated quantities blocks

Available since 2.0

17.7. CATEGORICAL LOGIT GENERALIZED LINEAR MODEL (SOFTMAX REGRESSION)199

int categorical_logit_rng(vector beta)
Generate a categorical variate with outcome in range 1 : N from log-odds vector
beta; may only be used in transformed data and generated quantities blocks

Available since 2.16

17.7. Categorical logit generalized linear model (softmax regres-
sion)

Stan also supplies a single function for a generalized linear model with categorical
distribution and logit link function, i.e. a function for a softmax regression. This
provides a more efficient implementation of softmax regression than a manually
written regression in terms of a categorical distribution and matrix multiplication.

Note that the implementation does not put any restrictions on the coefficient matrix
β. It is up to the user to use a reference category, a suitable prior or some other
means of identifiability. See Multi-logit in the Stan User’s Guide.

Probability mass functions

If N, M, K ∈ N, N, M, K > 0, and if x ∈ RM×K, α ∈ RN , β ∈ RK·N , then for
y ∈ {1, . . . , N}M,

CategoricalLogitGLM(y | x, α, β) = ∏
1≤i≤M

CategoricalLogit(yi | α + xi · β)

= ∏
1≤i≤M

Categorical(yi | so f tmax(α + xi · β)).

See the definition of softmax for the definition of the softmax function.

Distribution statement
y ~ categorical_logit_glm(x, alpha, beta)

Increment target log probability density with categorical_logit_glm_lupmf(y
| x, alpha, beta).

Available since 2.23

Stan functions
real categorical_logit_glm_lpmf(int y | row_vector x, vector alpha,
matrix beta)
The log categorical probability mass function with outcome y in 1 : N given N-
vector of log-odds of outcomes alpha + x * beta.

Available since 2.23

https://mc-stan.org/users/documentation/

200 CHAPTER 17. BOUNDED DISCRETE DISTRIBUTIONS

real categorical_logit_glm_lupmf(int y | row_vector x, vector al-
pha, matrix beta)
The log categorical probability mass function with outcome y in 1 : N given
N-vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.

Available since 2.25

real categorical_logit_glm_lpmf(int y | matrix x, vector alpha, ma-
trix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N-vector of log-odds of outcomes alpha + x * beta.

Available since 2.23

real categorical_logit_glm_lupmf(int y | matrix x, vector alpha,
matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N-vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.

Available since 2.25

real categorical_logit_glm_lpmf(array[] int y | row_vector x, vec-
tor alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N-vector of log-odds of outcomes alpha + x * beta.

Available since 2.23

real categorical_logit_glm_lupmf(array[] int y | row_vector x, vec-
tor alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given N-
vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.

Available since 2.25

real categorical_logit_glm_lpmf(array[] int y | matrix x, vector
alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N-vector of log-odds of outcomes alpha + x * beta.

Available since 2.23

17.8. DISCRETE RANGE DISTRIBUTION 201

real categorical_logit_glm_lupmf(array[] int y | matrix x, vector
alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given
N-vector of log-odds of outcomes alpha + x * beta dropping constant additive
terms.

Available since 2.25

17.8. Discrete range distribution
Probability mass functions

If l, u ∈ Z are lower and upper bounds (l ≤ u), then for any integer y ∈ {l, . . . , u},

DiscreteRange(y | l, u) =
1

u − l + 1
.

Distribution statement
y ~ discrete_range(l, u)

Increment the target log probability density with discrete_range_lupmf(y | l,
u) dropping constant additive terms.

Available since 2.26

Stan functions
All of the discrete range distributions are vectorized so that the outcome y and the
bounds l, u can be a single integer (type int) or an array of integers (type array[]
int).

real discrete_range_lpmf(ints y | ints l, ints u)
The log probability mass function with outcome(s) y in l : u.

Available since 2.26

real discrete_range_lupmf(ints y | ints l, ints u)
The log probability mass function with outcome(s) y in l : u dropping constant
additive terms.

Available since 2.26

real discrete_range_cdf(ints y | ints l, ints u)
The discrete range cumulative distribution function for the given y, lower and upper
bounds.

Available since 2.26

202 CHAPTER 17. BOUNDED DISCRETE DISTRIBUTIONS

real discrete_range_lcdf(ints y | ints l, ints u)
The log of the discrete range cumulative distribution function for the given y, lower
and upper bounds.

Available since 2.26

real discrete_range_lccdf(ints y | ints l, ints u)
The log of the discrete range complementary cumulative distribution function for
the given y, lower and upper bounds.

Available since 2.26

ints discrete_range_rng(ints l, ints u)
Generate a discrete variate between the given lower and upper bounds; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

Available since 2.26

17.9. Ordered logistic distribution
Probability mass function

If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . , K − 2}, and
η ∈ R, then for k ∈ {1, . . . , K},

OrderedLogistic(k | η, c) =


1 − logit−1(η − c1) if k = 1,

logit−1(η − ck−1)− logit−1(η − ck) if 1 < k < K, and

logit−1(η − cK−1)− 0 if k = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the k = 1 and k = K edge cases can be subsumed into the
general definition by setting c0 = −∞ and cK = +∞ with logit−1(−∞) = 0 and
logit−1(∞) = 1.

Distribution statement
k ~ ordered_logistic(eta, c)

Increment target log probability density with ordered_logistic_lupmf(k |
eta, c).

Available since 2.0

17.10. ORDERED LOGISTIC GENERALIZED LINEAR MODEL (ORDINAL REGRESSION)203

Stan functions
real ordered_logistic_lpmf(ints k | vector eta, vectors c)
The log ordered logistic probability mass of k given linear predictors eta, and
cutpoints c.

Available since 2.18

real ordered_logistic_lupmf(ints k | vector eta, vectors c)
The log ordered logistic probability mass of k given linear predictors eta, and
cutpoints c dropping constant additive terms.

Available since 2.25

int ordered_logistic_rng(real eta, vector c)
Generate an ordered logistic variate with linear predictor eta and cutpoints c; may
only be used in transformed data and generated quantities blocks

Available since 2.0

17.10. Ordered logistic generalized linear model (ordinal regres-
sion)

Probability mass function

If N, M, K ∈ N with N, M > 0, K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈
{1, . . . , K − 2}, and x ∈ RN×M, β ∈ RM, then for y ∈ {1, . . . , K}N ,

OrderedLogisticGLM(y | x, β, c)

= ∏
1≤i≤N

OrderedLogistic(yi | xi · β, c)

= ∏
1≤i≤N


1 − logit−1(xi · β − c1) if y = 1,

logit−1(xi · β − cy−1)− logit−1(xi · β − cy) if 1 < y < K, and

logit−1(xi · β − cK−1)− 0 if y = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the y = 1 and y = K edge cases can be subsumed into the
general definition by setting c0 = −∞ and cK = +∞ with logit−1(−∞) = 0 and
logit−1(∞) = 1.

Distribution statement
y ~ ordered_logistic_glm(x, beta, c)

204 CHAPTER 17. BOUNDED DISCRETE DISTRIBUTIONS

Increment target log probability density with ordered_logistic_lupmf(y | x,
beta, c).

Available since 2.23

Stan functions
real ordered_logistic_glm_lpmf(int y | row_vector x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta,
and cutpoints c. The cutpoints c must be ordered.

Available since 2.23

real ordered_logistic_glm_lupmf(int y | row_vector x, vector beta,
vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta,
and cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

Available since 2.25

real ordered_logistic_glm_lpmf(int y | matrix x, vector beta, vec-
tor c)
The log ordered logistic probability mass of y, given linear predictors x * beta,
and cutpoints c. The cutpoints c must be ordered.

Available since 2.23

real ordered_logistic_glm_lupmf(int y | matrix x, vector beta, vec-
tor c)
The log ordered logistic probability mass of y, given linear predictors x * beta,
and cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

Available since 2.25

real ordered_logistic_glm_lpmf(array[] int y | row_vector x, vector
beta, vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta,
and cutpoints c. The cutpoints c must be ordered.

Available since 2.23

real ordered_logistic_glm_lupmf(array[] int y | row_vector x, vec-
tor beta, vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta,
and cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

17.11. ORDERED PROBIT DISTRIBUTION 205

Available since 2.25

real ordered_logistic_glm_lpmf(array[] int y | matrix x, vector
beta, vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta,
and cutpoints c. The cutpoints c must be ordered.

Available since 2.23

real ordered_logistic_glm_lupmf(array[] int y | matrix x, vector
beta, vector c)
The log ordered logistic probability mass of y, given linear predictors x * beta,
and cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

Available since 2.25

17.11. Ordered probit distribution
Probability mass function

If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . , K − 2}, and
η ∈ R, then for k ∈ {1, . . . , K},

OrderedProbit(k | η, c) =


1 − Φ(η − c1) if k = 1,

Φ(η − ck−1)− Φ(η − ck) if 1 < k < K, and

Φ(η − cK−1)− 0 if k = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the k = 1 and k = K edge cases can be subsumed into
the general definition by setting c0 = −∞ and cK = +∞ with Φ(−∞) = 0 and
Φ(∞) = 1.

Distribution statement
k ~ ordered_probit(eta, c)

Increment target log probability density with ordered_probit_lupmf(k | eta,
c).

Available since 2.19

Stan functions
real ordered_probit_lpmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cut-
points c.

206 CHAPTER 17. BOUNDED DISCRETE DISTRIBUTIONS

Available since 2.18

real ordered_probit_lupmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cut-
points c dropping constant additive terms.

Available since 2.25

real ordered_probit_lpmf(ints k | real eta, vectors c)
The log ordered probit probability mass of k given linear predictor eta, and cutpoints
c.

Available since 2.19

real ordered_probit_lupmf(ints k | real eta, vectors c)
The log ordered probit probability mass of k given linear predictor eta, and cutpoints
c dropping constant additive terms.

Available since 2.19

int ordered_probit_rng(real eta, vector c)
Generate an ordered probit variate with linear predictor eta and cutpoints c; may
only be used in transformed data and generated quantities blocks

Available since 2.18

18. Unbounded Discrete Distributions

The unbounded discrete distributions have support over the natural numbers (i.e.,
the non-negative integers).

18.1. Negative binomial distribution
For the negative binomial distribution Stan uses the parameterization described
in Gelman et al. (2013). For alternative parameterizations, see section negative
binomial glm.

Probability mass function
If α ∈ R+ and β ∈ R+, then for n ∈ N,

NegBinomial(n | α, β) =

(
n + α − 1

α − 1

) (
β

β + 1

)α (1
β + 1

)n
.

The mean and variance of a random variable n ∼ NegBinomial(α, β) are given by

E[n] =
α

β
and Var[n] =

α

β2 (β + 1).

Distribution statement
n ~ neg_binomial(alpha, beta)

Increment target log probability density with neg_binomial_lupmf(n | alpha,
beta).

Available since 2.0

Stan functions
real neg_binomial_lpmf(ints n | reals alpha, reals beta)
The log negative binomial probability mass of n given shape alpha and inverse
scale beta

Available since 2.12

real neg_binomial_lupmf(ints n | reals alpha, reals beta)
The log negative binomial probability mass of n given shape alpha and inverse
scale beta dropping constant additive terms

207

208 CHAPTER 18. UNBOUNDED DISCRETE DISTRIBUTIONS

Available since 2.25

real neg_binomial_cdf(ints n | reals alpha, reals beta)
The negative binomial cumulative distribution function of n given shape alpha and
inverse scale beta

Available since 2.0

real neg_binomial_lcdf(ints n | reals alpha, reals beta)
The log of the negative binomial cumulative distribution function of n given shape
alpha and inverse scale beta

Available since 2.12

real neg_binomial_lccdf(ints n | reals alpha, reals beta)
The log of the negative binomial complementary cumulative distribution function
of n given shape alpha and inverse scale beta

Available since 2.12

R neg_binomial_rng(reals alpha, reals beta)
Generate a negative binomial variate with shape alpha and inverse scale beta; may
only be used in transformed data and generated quantities blocks. alpha / beta
must be less than 229. For a description of argument and return types, see section
vectorized function signatures.

Available since 2.18

18.2. Negative binomial distribution (alternative parameteriza-
tion)

Stan also provides an alternative parameterization of the negative binomial distri-
bution directly using a mean (i.e., location) parameter and a parameter that controls
overdispersion relative to the square of the mean. Section combinatorial functions,
below, provides a second alternative parameterization directly in terms of the log
mean.

Probability mass function
The first parameterization is for µ ∈ R+ and ϕ ∈ R+, which for n ∈ N is defined as

NegBinomial2(n | µ, ϕ) =

(
n + ϕ − 1

n

) (
µ

µ + ϕ

)n (ϕ

µ + ϕ

)ϕ

.

18.2. NEGATIVE BINOMIAL DISTRIBUTION (ALTERNATIVE PARAMETERIZATION)209

The mean and variance of a random variable n ∼ NegBinomial2(n | µ, ϕ) are

E[n] = µ and Var[n] = µ +
µ2

ϕ
.

Recall that Poisson(µ) has variance µ, so µ2/ϕ > 0 is the additional variance of
the negative binomial above that of the Poisson with mean µ. So the inverse of
parameter ϕ controls the overdispersion, scaled by the square of the mean, µ2.

Distribution statement
n ~ neg_binomial_2(mu, phi)

Increment target log probability density with neg_binomial_2_lupmf(n | mu,
phi).

Available since 2.3

Stan functions
real neg_binomial_2_lpmf(ints n | reals mu, reals phi)
The log negative binomial probability mass of n given location mu and precision
phi.

Available since 2.20

real neg_binomial_2_lupmf(ints n | reals mu, reals phi)
The log negative binomial probability mass of n given location mu and precision
phi dropping constant additive terms.

Available since 2.25

real neg_binomial_2_cdf(ints n | reals mu, reals phi)
The negative binomial cumulative distribution function of n given location mu and
precision phi.

Available since 2.6

real neg_binomial_2_lcdf(ints n | reals mu, reals phi)
The log of the negative binomial cumulative distribution function of n given location
mu and precision phi.

Available since 2.12

real neg_binomial_2_lccdf(ints n | reals mu, reals phi)
The log of the negative binomial complementary cumulative distribution function
of n given location mu and precision phi.

210 CHAPTER 18. UNBOUNDED DISCRETE DISTRIBUTIONS

Available since 2.12

R neg_binomial_2_rng(reals mu, reals phi)
Generate a negative binomial variate with location mu and precision phi; may only
be used in transformed data and generated quantities blocks. mu must be less than
229. For a description of argument and return types, see section vectorized function
signatures.

Available since 2.18

18.3. Negative binomial distribution (log alternative parameteri-
zation)

Related to the parameterization in section negative binomial, alternative parame-
terization, the following parameterization uses a log mean parameter η = log(µ),
defined for η ∈ R, ϕ ∈ R+, so that for n ∈ N,

NegBinomial2Log(n | η, ϕ) = NegBinomial2(n| exp(η), ϕ).

This alternative may be used for sampling, as a function, and for random number
generation, but as of yet, there are no CDFs implemented for it. This is especially
useful for log-linear negative binomial regressions.

Distribution statement
n ~ neg_binomial_2_log(eta, phi)

Increment target log probability density with neg_binomial_2_log_lupmf(n |
eta, phi).

Available since 2.3

Stan functions
real neg_binomial_2_log_lpmf(ints n | reals eta, reals phi)
The log negative binomial probability mass of n given log-location eta and inverse
overdispersion parameter phi.

Available since 2.20

real neg_binomial_2_log_lupmf(ints n | reals eta, reals phi)
The log negative binomial probability mass of n given log-location eta and inverse
overdispersion parameter phi dropping constant additive terms.

Available since 2.25

R neg_binomial_2_log_rng(reals eta, reals phi)
Generate a negative binomial variate with log-location eta and inverse overdisper-

18.4. NEGATIVE-BINOMIAL-2-LOG GENERALIZED LINEAR MODEL (NEGATIVE BINOMIAL REGRESSION)211

sion control phi; may only be used in transformed data and generated quantities
blocks. eta must be less than 29 log 2. For a description of argument and return
types, see section vectorized function signatures.

Available since 2.18

18.4. Negative-binomial-2-log generalized linear model (negative
binomial regression)

Stan also supplies a single function for a generalized linear model with negative
binomial distribution and log link function, i.e. a function for a negative binomial
regression. This provides a more efficient implementation of negative binomial
regression than a manually written regression in terms of a negative binomial
distribution and matrix multiplication.

Probability mass function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, ϕ ∈ R+, then for y ∈ Nn,

NegBinomial2LogGLM(y | x, α, β, ϕ) = ∏
1≤i≤n

NegBinomial2(yi | exp(αi + xi · β), ϕ).

Distribution statement
y ~ neg_binomial_2_log_glm(x, alpha, beta, phi)

Increment target log probability density with neg_binomial_2_log_glm_lupmf(y
| x, alpha, beta, phi).

Available since 2.19

Stan functions
real neg_binomial_2_log_glm_lpmf(int y | matrix x, real alpha, vec-
tor beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

Available since 2.23

real neg_binomial_2_log_glm_lupmf(int y | matrix x, real alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

Available since 2.25

212 CHAPTER 18. UNBOUNDED DISCRETE DISTRIBUTIONS

real neg_binomial_2_log_glm_lpmf(int y | matrix x, vector alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

Available since 2.23

real neg_binomial_2_log_glm_lupmf(int y | matrix x, vector alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | row_vector x, real
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

Available since 2.23

real neg_binomial_2_log_glm_lupmf(array[] int y | row_vector x,
real alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | row_vector x, vec-
tor alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

Available since 2.23

real neg_binomial_2_log_glm_lupmf(array[] int y | row_vector x,
vector alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | matrix x, real al-
pha, vector beta, real phi)

18.5. POISSON DISTRIBUTION 213

The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

Available since 2.18

real neg_binomial_2_log_glm_lupmf(array[] int y | matrix x, real
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | matrix x, vector
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi.

Available since 2.18

real neg_binomial_2_log_glm_lupmf(array[] int y | matrix x, vector
alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x *
beta and inverse overdispersion parameter phi dropping constant additive terms.

Available since 2.25

18.5. Poisson distribution
Probability mass function

If λ ∈ R+, then for n ∈ N,

Poisson(n|λ) = 1
n!

λn exp(−λ).

Distribution statement
n ~ poisson(lambda)

Increment target log probability density with poisson_lupmf(n | lambda).

Available since 2.0

Stan functions
real poisson_lpmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda

Available since 2.12

214 CHAPTER 18. UNBOUNDED DISCRETE DISTRIBUTIONS

real poisson_lupmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda dropping constant additive
terms

Available since 2.25

real poisson_cdf(ints n | reals lambda)
The Poisson cumulative distribution function of n given rate lambda

Available since 2.0

real poisson_lcdf(ints n | reals lambda)
The log of the Poisson cumulative distribution function of n given rate lambda

Available since 2.12

real poisson_lccdf(ints n | reals lambda)
The log of the Poisson complementary cumulative distribution function of n given
rate lambda

Available since 2.12

R poisson_rng(reals lambda)
Generate a Poisson variate with rate lambda; may only be used in transformed data
and generated quantities blocks. lambda must be less than 230. For a description of
argument and return types, see section vectorized function signatures.

Available since 2.18

18.6. Poisson distribution, log parameterization
Stan also provides a parameterization of the Poisson using the log rate α = log λ as
a parameter. This is useful for log-linear Poisson regressions so that the predictor
does not need to be exponentiated and passed into the standard Poisson probability
function.

Probability mass function
If α ∈ R, then for n ∈ N,

PoissonLog(n|α) = 1
n!

exp (nα − exp(α)) .

Distribution statement
n ~ poisson_log(alpha)

Increment target log probability density with poisson_log_lupmf(n | alpha).

18.7. POISSON-LOG GENERALIZED LINEAR MODEL (POISSON REGRESSION)215

Available since 2.0

Stan functions
real poisson_log_lpmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha

Available since 2.12

real poisson_log_lupmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha dropping constant
additive terms

Available since 2.25

R poisson_log_rng(reals alpha)
Generate a Poisson variate with log rate alpha; may only be used in transformed
data and generated quantities blocks. alpha must be less than 30 log 2. For a
description of argument and return types, see section vectorized function signatures.

Available since 2.18

18.7. Poisson-log generalized linear model (Poisson regression)
Stan also supplies a single function for a generalized linear model with Poisson
distribution and log link function, i.e. a function for a Poisson regression. This
provides a more efficient implementation of Poisson regression than a manually
written regression in terms of a Poisson distribution and matrix multiplication.

Probability mass function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, then for y ∈ Nn,

PoissonLogGLM(y|x, α, β) = ∏
1≤i≤n

Poisson(yi| exp(αi + xi · β)).

Distribution statement
y ~ poisson_log_glm(x, alpha, beta)

Increment target log probability density with poisson_log_glm_lupmf(y | x,
alpha, beta).

Available since 2.19

Stan functions
real poisson_log_glm_lpmf(int y | matrix x, real alpha, vector
beta)

216 CHAPTER 18. UNBOUNDED DISCRETE DISTRIBUTIONS

The log Poisson probability mass of y given the log-rate alpha + x * beta.

Available since 2.23

real poisson_log_glm_lupmf(int y | matrix x, real alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta
dropping constant additive terms.

Available since 2.25

real poisson_log_glm_lpmf(int y | matrix x, vector alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

Available since 2.23

real poisson_log_glm_lupmf(int y | matrix x, vector alpha, vector
beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta
dropping constant additive terms.

Available since 2.25

real poisson_log_glm_lpmf(array[] int y | row_vector x, real alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

Available since 2.23

real poisson_log_glm_lupmf(array[] int y | row_vector x, real al-
pha, vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta
dropping constant additive terms.

Available since 2.25

real poisson_log_glm_lpmf(array[] int y | row_vector x, vector al-
pha, vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

Available since 2.23

real poisson_log_glm_lupmf(array[] int y | row_vector x, vector al-
pha, vector beta)

18.8. BETA NEGATIVE BINOMIAL DISTRIBUTION 217

The log Poisson probability mass of y given the log-rate alpha + x * beta drop-
ping constant additive terms.

Available since 2.25

real poisson_log_glm_lpmf(array[] int y | matrix x, real alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

Available since 2.18

real poisson_log_glm_lupmf(array[] int y | matrix x, real alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta
dropping constant additive terms.

Available since 2.25

real poisson_log_glm_lpmf(array[] int y | matrix x, vector alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.

Available since 2.18

real poisson_log_glm_lupmf(array[] int y | matrix x, vector alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta
dropping constant additive terms.

Available since 2.25

18.8. Beta negative binomial distribution
Probability mass function

If r ∈ R+, α ∈ R+, and β ∈ R+, then for n ∈ N,

BetaNegBinomial(n|r, α, β) =
Γ(n + r)
n! Γ(r)

B(β + n, α + r)
B(β, α)

.

Distribution statement
n ~ beta_neg_binomial(r,alpha,beta)

Increment target log probability density with beta_neg_binomial_lupmf(n | r,
alpha, beta).

Available since 2.36

218 CHAPTER 18. UNBOUNDED DISCRETE DISTRIBUTIONS

Stan functions
real beta_neg_binomial_lpmf(ints n | reals r, reals alpha, reals
beta)
The log beta negative binomial probability mass of n given parameters r, alpha
and beta.

Available since 2.36

real beta_neg_binomial_lupmf(ints n | reals r, reals alpha, reals
beta)
The log beta negative binomial probability mass of n given parameters r, alpha
and beta dropping constant additive terms.

Available since 2.36

real beta_neg_binomial_cdf(ints n | reals r, reals alpha, reals
beta)
The beta negative binomial cumulative distribution function of n given parameters
r, alpha and beta.

Available since 2.36

real beta_neg_binomial_lcdf(ints n | reals r, reals alpha, reals
beta)
The log of the beta negative binomial cumulative distribution function of n given
parameters r, alpha and beta.

Available since 2.36

real beta_neg_binomial_lccdf(ints n | reals r, reals alpha, reals
beta)
The log of the beta negative binomial complementary cumulative distribution
function of n given parameters r, alpha and beta.

Available since 2.36

R beta_neg_binomial_rng(reals r, reals alpha, reals beta)
Generate a beta negative binomial variate with parameters r, alpha and beta;
may only be used in transformed data and generated quantities blocks. r · beta /
(alpha−1) must be less than 229. For a description of argument and return types,
see section vectorized function signatures.

Available since 2.36

19. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are
expressed in Stan as arrays.

19.1. Multinomial distribution
Probability mass function

If K ∈ N, N ∈ N, and θ ∈ K-simplex, then for y ∈ NK such that ∑K
k=1 yk = N,

Multinomial(y|θ) =
(

N
y1, . . . , yK

) K

∏
k=1

θ
yk
k ,

where the multinomial coefficient is defined by(
N

y1, . . . , yk

)
=

N!

∏K
k=1 yk!

.

Distribution statement
y ~ multinomial(theta)

Increment target log probability density with multinomial_lupmf(y | theta).

Available since 2.0

Stan functions
real multinomial_lpmf(array[] int y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter theta and (implicit) total count N = sum(y)

Available since 2.12

real multinomial_lupmf(array[] int y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter theta and (implicit) total count N = sum(y)
dropping constant additive terms

Available since 2.25

219

220 CHAPTER 19. MULTIVARIATE DISCRETE DISTRIBUTIONS

array[] int multinomial_rng(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter theta and total
count N; may only be used in transformed data and generated quantities blocks

Available since 2.8

19.2. Multinomial distribution, logit parameterization
Stan also provides a version of the multinomial probability mass function distribu-
tion with the K-simplex for the event count probabilities per category given on the
unconstrained logistic scale.

Probability mass function

If K ∈ N, N ∈ N, and softmax(θ) ∈ K-simplex, then for y ∈ NK such that
∑K

k=1 yk = N,

MultinomialLogit(y | γ) = Multinomial(y | softmax(γ))

=

(
N

y1, . . . , yK

) K

∏
k=1

[softmax(γk)]
yk ,

where the multinomial coefficient is defined by(
N

y1, . . . , yk

)
=

N!

∏K
k=1 yk!

.

Distribution statement
y ~ multinomial_logit(gamma)

Increment target log probability density with multinomial_logit_lupmf(y |
gamma).

Available since 2.24

Stan functions
real multinomial_logit_lpmf(array[] int y | vector gamma)
The log multinomial probability mass function with outcome array y of size K given
the log K-simplex distribution parameter γ and (implicit) total count N = sum(y)

Available since 2.24

real multinomial_logit_lupmf(array[] int y | vector gamma)
The log multinomial probability mass function with outcome array y of size K given

19.3. DIRICHLET-MULTINOMIAL DISTRIBUTION 221

the log K-simplex distribution parameter γ and (implicit) total count N = sum(y)
dropping constant additive terms

Available since 2.25

array[] int multinomial_logit_rng(vector gamma, int N)
Generate a variate from a multinomial distribution with probabilities soft-
max(gamma) and total count N; may only be used in transformed data and generated
quantities blocks.

Available since 2.24

19.3. Dirichlet-multinomial distribution
Stan also provides the Dirichlet-multinomial distribution, which generalizes the
Beta-binomial distribution to more than two categories. As such, it is an overdis-
persed version of the multinomial distribution.

Probability mass function

If K ∈ N, N ∈ N, and α ∈ RK
+, then for y ∈ NK such that ∑K

k=1 yk = N, the PMF of
the Dirichlet-multinomial distribution is defined as

DirMult(y|θ) = Γ(α0)Γ(N + 1)
Γ(N + α0)

K

∏
k=1

Γ(yk + αk)

Γ(αk)Γ(yk + 1)
,

where α0 is defined as α0 = ∑K
k=1 αk.

Distribution statement
y ~ dirichlet_multinomial(alpha)

Increment target log probability density with dirichlet_multinomial_lupmf(y
| alpha).

Available since 2.34

Stan functions
real dirichlet_multinomial_lpmf(array[] int y | vector alpha)
The log multinomial probability mass function with outcome array y with K ele-
ments given the positive K-vector distribution parameter alpha and (implicit) total
count N = sum(y).

Available since 2.34

real dirichlet_multinomial_lupmf(array[] int y | vector alpha)
The log multinomial probability mass function with outcome array y with K ele-

222 CHAPTER 19. MULTIVARIATE DISCRETE DISTRIBUTIONS

ments, given the positive K-vector distribution parameter alpha and (implicit) total
count N = sum(y) dropping constant additive terms.

Available since 2.34

array[] int dirichlet_multinomial_rng(vector alpha, int N)
Generate a multinomial variate with positive vector distribution parameter alpha
and total count N; may only be used in transformed data and generated quantities
blocks. This is equivalent to multinomial_rng(dirichlet_rng(alpha), N).

Available since 2.34

Part III

Continuous Distributions

223

20. Unbounded Continuous Distributions

The unbounded univariate continuous probability distributions have support on all
real numbers.

20.1. Normal distribution
Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Normal(y|µ, σ) =
1√

2π σ
exp

(
− 1

2

(
y − µ

σ

)2
)

.

Distribution statement
y ~ normal(mu, sigma)

Increment target log probability density with normal_lupdf(y | mu, sigma).

Available since 2.0

Stan functions
real normal_lpdf(reals y | reals mu, reals sigma)
The log of the normal density of y given location mu and scale sigma

Available since 2.12

real normal_lupdf(reals y | reals mu, reals sigma)
The log of the normal density of y given location mu and scale sigma dropping
constant additive terms.

Available since 2.25

real normal_cdf(reals y | reals mu, reals sigma)
The cumulative normal distribution of y given location mu and scale sigma; nor-
mal_cdf will underflow to 0 for y−µ

σ below -37.5 and overflow to 1 for y−µ
σ above

8.25; the function Phi_approx is more robust in the tails, but must be scaled and
translated for anything other than a standard normal.

Available since 2.0

225

226 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

real normal_lcdf(reals y | reals mu, reals sigma)
The log of the cumulative normal distribution of y given location mu and scale
sigma; normal_lcdf will underflow to −∞ for y−µ

σ below -37.5 and overflow to 0
for y−µ

σ above 8.25; log(Phi_approx(...)) is more robust in the tails, but must
be scaled and translated for anything other than a standard normal.

Available since 2.12

real normal_lccdf(reals y | reals mu, reals sigma)
The log of the complementary cumulative normal distribution of y given location
mu and scale sigma; normal_lccdf will overflow to 0 for y−µ

σ below -37.5 and
underflow to −∞ for y−µ

σ above 8.25; log1m(Phi_approx(...)) is more robust
in the tails, but must be scaled and translated for anything other than a standard
normal.

Available since 2.15

R normal_rng(reals mu, reals sigma)
Generate a normal variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

Standard normal distribution
The standard normal distribution is so-called because its parameters are the units
for their respective operations—the location (mean) is zero and the scale (standard
deviation) one. The standard normal is parameter-free, and the unit parameters
allow considerable simplification of the expression for the density.

StdNormal(y) = Normal(y | 0, 1) =
1√
2π

exp
(
−y2

2

)
.

Up to a proportion on the log scale, where Stan computes,

log Normal(y | 0, 1) =
−y2

2
+ const.

With no logarithm, no subtraction, and no division by a parameter, the standard
normal log density is much more efficient to compute than the normal log density
with constant location 0 and scale 1.

20.1. NORMAL DISTRIBUTION 227

Distribution statement
y ~ std_normal()

Increment target log probability density with std_normal_lupdf(y).

Available since 2.19

Stan functions
real std_normal_lpdf(reals y)
The standard normal (location zero, scale one) log probability density of y.

Available since 2.18

real std_normal_lupdf(reals y)
The standard normal (location zero, scale one) log probability density of y dropping
constant additive terms.

Available since 2.25

real std_normal_cdf(reals y)
The cumulative standard normal distribution of y; std_normal_cdf will underflow
to 0 for y below -37.5 and overflow to 1 for y above 8.25; the function Phi_approx
is more robust in the tails.

Available since 2.21

real std_normal_lcdf(reals y)
The log of the cumulative standard normal distribution of y; std_normal_lcdf
will underflow to −∞ for y below -37.5 and overflow to 0 for y above 8.25;
log(Phi_approx(...)) is more robust in the tails.

Available since 2.21

real std_normal_lccdf(reals y)
The log of the complementary cumulative standard normal distribution of y;
std_normal_lccdf will overflow to 0 for y below -37.5 and underflow to −∞ for y
above 8.25; log1m(Phi_approx(...)) is more robust in the tails.

Available since 2.21

R std_normal_qf(T x)
Returns the value of the inverse standard normal cdf Φ−1 at the specified quantile
x. The std_normal_qf is equivalent to the inv_Phi function.

Available since 2.31

228 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

R std_normal_log_qf(T x)
Return the value of the inverse standard normal cdf Φ−1 evaluated at the log of the
specified quantile x. This function is equivalent to std_normal_qf(exp(x)) but is
more numerically stable.

Available since 2.31

real std_normal_rng()
Generate a normal variate with location zero and scale one; may only be used in
transformed data and generated quantities blocks.

Available since 2.21

20.2. Normal-id generalized linear model (linear regression)
Stan also supplies a single function for a generalized linear model with normal
distribution and identity link function, i.e. a function for a linear regression. This
provides a more efficient implementation of linear regression than a manually
written regression in terms of a normal distribution and matrix multiplication.

Probability distribution function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, σ ∈ R+, then for y ∈ Rn,

NormalIdGLM(y|x, α, β, σ) = ∏
1≤i≤n

Normal(yi|αi + xi · β, σ).

Distribution statement
y ~ normal_id_glm(x, alpha, beta, sigma)

Increment target log probability density with normal_id_glm_lupdf(y | x, al-
pha, beta, sigma).

Available since 2.19

Stan functions
real normal_id_glm_lpdf(real y | matrix x, real alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

Available since 2.29

real normal_id_glm_lupdf(real y | matrix x, real alpha, vector
beta, real sigma)

20.2. NORMAL-ID GENERALIZED LINEAR MODEL (LINEAR REGRESSION)229

The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.29

real normal_id_glm_lpdf(real y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma.

Available since 2.29

real normal_id_glm_lupdf(real y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.29

real normal_id_glm_lpdf(real y | matrix x, real alpha, vector beta,
vector sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

Available since 2.23

real normal_id_glm_lupdf(real y | matrix x, real alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.25

real normal_id_glm_lpdf(real y | matrix x, vector alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma.

Available since 2.23

real normal_id_glm_lupdf(real y | matrix x, vector alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.25

230 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

real normal_id_glm_lpdf(vector y | row_vector x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

Available since 2.29

real normal_id_glm_lupdf(vector y | row_vector x, real alpha, vec-
tor beta, real sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.29

real normal_id_glm_lpdf(vector y | row_vector x, vector alpha, vec-
tor beta, real sigma)
The log normal probability density of y given location alpha + x * beta and scale
sigma.

Available since 2.29

real normal_id_glm_lupdf(vector y | row_vector x, vector alpha,
vector beta, real sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.29

real normal_id_glm_lpdf(vector y | matrix x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma.

Available since 2.23

real normal_id_glm_lupdf(vector y | matrix x, real alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.23

real normal_id_glm_lpdf(vector y | matrix x, vector alpha, vector
beta, real sigma)

20.3. EXPONENTIALLY MODIFIED NORMAL DISTRIBUTION 231

The log normal probability density of y given location alpha + x * beta and
scale sigma.

Available since 2.23

real normal_id_glm_lupdf(vector y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.23

real normal_id_glm_lpdf(vector y | matrix x, real alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma.

Available since 2.30

real normal_id_glm_lupdf(vector y | matrix x, real alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.30

real normal_id_glm_lpdf(vector y | matrix x, vector alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma.

Available since 2.30

real normal_id_glm_lupdf(vector y | matrix x, vector alpha, vector
beta, vector sigma)
The log normal probability density of y given location alpha + x * beta and
scale sigma dropping constant additive terms.

Available since 2.30

20.3. Exponentially modified normal distribution
Exponentially modified Gaussian describes the distribution of Z = X + Y when X
and Y are independent and X is normally distributed (with mean µ and standard
deviation σ) and Y is exponentially distributed (with rate λ).

232 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

Probability density function
If µ ∈ R, σ ∈ R+, and λ ∈ R+, then for y ∈ R,

ExpModNormal(y|µ, σ, λ) =
λ

2
exp

(
λ

2

(
2µ + λσ2 − 2y

))
erfc

(
µ + λσ2 − y√

2σ

)
.

Distribution statement
y ~ exp_mod_normal(mu, sigma, lambda)

Increment target log probability density with exp_mod_normal_lupdf(y | mu,
sigma, lambda).

Available since 2.0

Stan functions
real exp_mod_normal_lpdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal density of y given location mu, scale
sigma, and rate lambda

Available since 2.18

real exp_mod_normal_lupdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal density of y given location mu, scale
sigma, and rate lambda dropping constant additive terms

Available since 2.25

real exp_mod_normal_cdf(reals y | reals mu, reals sigma, reals
lambda)
The exponentially modified normal cumulative distribution function of y given
location mu, scale sigma, and rate lambda

Available since 2.0

real exp_mod_normal_lcdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal cumulative distribution function of y
given location mu, scale sigma, and rate lambda

Available since 2.18

real exp_mod_normal_lccdf(reals y | reals mu, reals sigma, reals
lambda)

20.4. SKEW NORMAL DISTRIBUTION 233

The log of the exponentially modified normal complementary cumulative
distribution function of y given location mu, scale sigma, and rate lambda

Available since 2.18

R exp_mod_normal_rng(reals mu, reals sigma, reals lambda)
Generate a exponentially modified normal variate with location mu, scale sigma,
and rate lambda; may only be used in transformed data and generated quantities
blocks. For a description of argument and return types, see section vectorized
PRNG functions.

Available since 2.18

20.4. Skew normal distribution
Probability density function

If ξ ∈ R, ω ∈ R+, and α ∈ R, then for y ∈ R,

SkewNormal(y | ξ, ω, α) =
1

ω
√

2π
exp

(
− 1

2

(
y − ξ

ω

)2
) (

1 + erf
(

α

(
y − ξ

ω
√

2

)))
.

Distribution statement
y ~ skew_normal(xi, omega, alpha)

Increment target log probability density with skew_normal_lupdf(y | xi,
omega, alpha).

Available since 2.0

Stan functions
real skew_normal_lpdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal density of y given location xi, scale omega, and shape
alpha

Available since 2.16

real skew_normal_lupdf(reals y | reals xi, reals omega, reals al-
pha)
The log of the skew normal density of y given location xi, scale omega, and shape
alpha dropping constant additive terms

Available since 2.25

234 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

real skew_normal_cdf(reals y | reals xi, reals omega, reals alpha)
The skew normal distribution function of y given location xi, scale omega, and
shape alpha

Available since 2.16

real skew_normal_lcdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal cumulative distribution function of y given location xi,
scale omega, and shape alpha

Available since 2.18

real skew_normal_lccdf(reals y | reals xi, reals omega, reals al-
pha)
The log of the skew normal complementary cumulative distribution function of y
given location xi, scale omega, and shape alpha

Available since 2.18

R skew_normal_rng(reals xi, reals omega, real alpha)
Generate a skew normal variate with location xi, scale omega, and shape alpha; may
only be used in transformed data and generated quantities blocks. For a description
of argument and return types, see section vectorized PRNG functions.

Available since 2.18

20.5. Student-t distribution
Probability density function

If ν ∈ R+, µ ∈ R, and σ ∈ R+, then for y ∈ R,

StudentT(y|ν, µ, σ) =
Γ ((ν + 1)/2)

Γ(ν/2)
1√

νπ σ

(
1 +

1
ν

(
y − µ

σ

)2
)−(ν+1)/2

.

Distribution statement
y ~ student_t(nu, mu, sigma)

Increment target log probability density with student_t_lupdf(y | nu, mu,
sigma).

Available since 2.0

20.6. CAUCHY DISTRIBUTION 235

Stan functions
real student_t_lpdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and
scale sigma

Available since 2.12

real student_t_lupdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and
scale sigma dropping constant additive terms

Available since 2.25

real student_t_cdf(reals y | reals nu, reals mu, reals sigma)
The Student-t cumulative distribution function of y given degrees of freedom nu,
location mu, and scale sigma

Available since 2.0

real student_t_lcdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t cumulative distribution function of y given degrees of
freedom nu, location mu, and scale sigma

Available since 2.12

real student_t_lccdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t complementary cumulative distribution function of y given
degrees of freedom nu, location mu, and scale sigma

Available since 2.12

R student_t_rng(reals nu, reals mu, reals sigma)
Generate a Student-t variate with degrees of freedom nu, location mu, and scale
sigma; may only be used in transformed data and generated quantities blocks. For
a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

20.6. Cauchy distribution
Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Cauchy(y|µ, σ) =
1

πσ

1

1 + ((y − µ)/σ)2 .

236 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

Distribution statement
y ~ cauchy(mu, sigma)

Increment target log probability density with cauchy_lupdf(y | mu, sigma).

Available since 2.0

Stan functions
real cauchy_lpdf(reals y | reals mu, reals sigma)
The log of the Cauchy density of y given location mu and scale sigma

Available since 2.12

real cauchy_lupdf(reals y | reals mu, reals sigma)
The log of the Cauchy density of y given location mu and scale sigma dropping
constant additive terms

Available since 2.25

real cauchy_cdf(reals y | reals mu, reals sigma)
The Cauchy cumulative distribution function of y given location mu and scale
sigma

Available since 2.0

real cauchy_lcdf(reals y | reals mu, reals sigma)
The log of the Cauchy cumulative distribution function of y given location mu and
scale sigma

Available since 2.12

real cauchy_lccdf(reals y | reals mu, reals sigma)
The log of the Cauchy complementary cumulative distribution function of y given
location mu and scale sigma

Available since 2.12

R cauchy_rng(reals mu, reals sigma)
Generate a Cauchy variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

20.7. DOUBLE EXPONENTIAL (LAPLACE) DISTRIBUTION 237

20.7. Double exponential (Laplace) distribution
Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

DoubleExponential(y|µ, σ) =
1

2σ
exp

(
− |y − µ|

σ

)
.

Note that the double exponential distribution is parameterized in terms of the scale,
in contrast to the exponential distribution (see section exponential distribution),
which is parameterized in terms of inverse scale.

The double-exponential distribution can be defined as a compound exponential-
normal distribution (Ding and Blitzstein 2018). Using the inverse scale parameteri-
zation for the exponential distribution, and the standard deviation parameterization
for the normal distribution, one can write

α ∼ Exponential
(

1
2σ2

)
and

β | α ∼ Normal(µ,
√

α),

then
β ∼ DoubleExponential(µ, σ).

This may be used to code a non-centered parameterization by taking

βraw ∼ Normal(0, 1)

and defining
β = µ +

√
α βraw.

Distribution statement
y ~ double_exponential(mu, sigma)

Increment target log probability density with double_exponential_lupdf(y |
mu, sigma).

Available since 2.0

238 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

Stan functions
real double_exponential_lpdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma

Available since 2.12

real double_exponential_lupdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma
dropping constant additive terms

Available since 2.25

real double_exponential_cdf(reals y | reals mu, reals sigma)
The double exponential cumulative distribution function of y given location mu
and scale sigma

Available since 2.0

real double_exponential_lcdf(reals y | reals mu, reals sigma)
The log of the double exponential cumulative distribution function of y given
location mu and scale sigma

Available since 2.12

real double_exponential_lccdf(reals y | reals mu, reals sigma)
The log of the double exponential complementary cumulative distribution function
of y given location mu and scale sigma

Available since 2.12

R double_exponential_rng(reals mu, reals sigma)
Generate a double exponential variate with location mu and scale sigma; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

Available since 2.18

20.8. Logistic distribution
Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Logistic(y|µ, σ) =
1
σ

exp
(
− y − µ

σ

) (
1 + exp

(
− y − µ

σ

))−2
.

20.8. LOGISTIC DISTRIBUTION 239

Distribution statement
y ~ logistic(mu, sigma)

Increment target log probability density with logistic_lupdf(y | mu, sigma).

Available since 2.0

Stan functions
real logistic_lpdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma

Available since 2.12

real logistic_lupdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma dropping
constant additive terms

Available since 2.25

real logistic_cdf(reals y | reals mu, reals sigma)
The logistic cumulative distribution function of y given location mu and scale sigma

Available since 2.0

real logistic_lcdf(reals y | reals mu, reals sigma)
The log of the logistic cumulative distribution function of y given location mu and
scale sigma

Available since 2.12

real logistic_lccdf(reals y | reals mu, reals sigma)
The log of the logistic complementary cumulative distribution function of y given
location mu and scale sigma

Available since 2.12

R logistic_rng(reals mu, reals sigma)
Generate a logistic variate with location mu and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

240 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

20.9. Gumbel distribution
Probability density function

If µ ∈ R and β ∈ R+, then for y ∈ R,

Gumbel(y|µ, β) =
1
β

exp
(
−y − µ

β
− exp

(
−y − µ

β

))
.

Distribution statement
y ~ gumbel(mu, beta)

Increment target log probability density with gumbel_lupdf(y | mu, beta).

Available since 2.0

Stan functions
real gumbel_lpdf(reals y | reals mu, reals beta)
The log of the gumbel density of y given location mu and scale beta

Available since 2.12

real gumbel_lupdf(reals y | reals mu, reals beta)
The log of the gumbel density of y given location mu and scale beta dropping
constant additive terms

Available since 2.25

real gumbel_cdf(reals y | reals mu, reals beta)
The gumbel cumulative distribution function of y given location mu and scale beta

Available since 2.0

real gumbel_lcdf(reals y | reals mu, reals beta)
The log of the gumbel cumulative distribution function of y given location mu and
scale beta

Available since 2.12

real gumbel_lccdf(reals y | reals mu, reals beta)
The log of the gumbel complementary cumulative distribution function of y given
location mu and scale beta

Available since 2.12

R gumbel_rng(reals mu, reals beta)
Generate a gumbel variate with location mu and scale beta; may only be used in

20.10. SKEW DOUBLE EXPONENTIAL DISTRIBUTION 241

transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

20.10. Skew double exponential distribution
Probability density function

If µ ∈ R, σ ∈ R+ and τ ∈ [0, 1], then for y ∈ R,

SkewDoubleExponential(y|µ, σ, τ) =

2τ(1 − τ)

σ
exp

[
− 2

σ
[(1 − τ) I(y < µ)(µ − y) + τ I(y > µ)(y − µ)]

]

Distribution statement
y ~ skew_double_exponential(mu, sigma, tau)

Increment target log probability density with skew_double_exponential(y |
mu, sigma, tau)

Available since 2.28

Stan functions
real skew_double_exponential_lpdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential density of y given location mu, scale sigma
and skewness tau

Available since 2.28

real skew_double_exponential_lupdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential density of y given location mu, scale sigma
and skewness tau dropping constant additive terms

Available since 2.28

real skew_double_exponential_cdf(reals y | reals mu, reals sigma,
reals tau)
The skew double exponential cumulative distribution function of y given location
mu, scale sigma and skewness tau

Available since 2.28

242 CHAPTER 20. UNBOUNDED CONTINUOUS DISTRIBUTIONS

real skew_double_exponential_lcdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential cumulative distribution function of y given
location mu, scale sigma and skewness tau

Available since 2.28

real skew_double_exponential_lccdf(reals y | reals mu, reals sigma,
reals tau)
The log of the skew double exponential complementary cumulative distribution
function of y given location mu, scale sigma and skewness tau

Available since 2.28

R skew_double_exponential_rng(reals mu, reals sigma, reals tau)
Generate a skew double exponential variate with location mu, scale sigma and
skewness tau; may only be used in transformed data and generated quantities
blocks. For a description of argument and return types, see section vectorized
PRNG functions.

Available since 2.28

21. Positive Continuous Distributions

The positive continuous probability functions have support on the positive real
numbers.

21.1. Lognormal distribution
Probability density function

If µ ∈ R and σ ∈ R+, then for y ∈ R+,

LogNormal(y|µ, σ) =
1√

2π σ

1
y

exp

(
− 1

2

(
log y − µ

σ

)2
)

.

Distribution statement
y ~ lognormal(mu, sigma)

Increment target log probability density with lognormal_lupdf(y | mu, sigma).

Available since 2.0

Stan functions
real lognormal_lpdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma

Available since 2.12

real lognormal_lupdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma dropping
constant additive terms

Available since 2.25

real lognormal_cdf(reals y | reals mu, reals sigma)
The cumulative lognormal distribution function of y given location mu and scale
sigma

Available since 2.0

real lognormal_lcdf(reals y | reals mu, reals sigma)
The log of the lognormal cumulative distribution function of y given location mu
and scale sigma

243

244 CHAPTER 21. POSITIVE CONTINUOUS DISTRIBUTIONS

Available since 2.12

real lognormal_lccdf(reals y | reals mu, reals sigma)
The log of the lognormal complementary cumulative distribution function of y
given location mu and scale sigma

Available since 2.12

R lognormal_rng(reals mu, reals sigma)
Generate a lognormal variate with location mu and scale sigma; may only be used
in transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.22

21.2. Chi-square distribution
Probability density function

If ν ∈ R+, then for y ∈ R+,

ChiSquare(y|ν) = 2−ν/2

Γ(ν/2)
yν/2−1 exp

(
− 1

2
y
)

.

Distribution statement
y ~ chi_square(nu)

Increment target log probability density with chi_square_lupdf(y | nu).

Available since 2.0

Stan functions
real chi_square_lpdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu

Available since 2.12

real chi_square_lupdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu dropping
constant additive terms

Available since 2.25

real chi_square_cdf(reals y | reals nu)
The Chi-square cumulative distribution function of y given degrees of freedom nu

Available since 2.0

21.3. INVERSE CHI-SQUARE DISTRIBUTION 245

real chi_square_lcdf(reals y | reals nu)
The log of the Chi-square cumulative distribution function of y given degrees of
freedom nu

Available since 2.12

real chi_square_lccdf(reals y | reals nu)
The log of the complementary Chi-square cumulative distribution function of y
given degrees of freedom nu

Available since 2.12

R chi_square_rng(reals nu)
Generate a Chi-square variate with degrees of freedom nu; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

21.3. Inverse chi-square distribution
Probability density function

If ν ∈ R+, then for y ∈ R+,

InvChiSquare(y | ν) =
2−ν/2

Γ(ν/2)
y−ν/2−1 exp

(
− 1

2
1
y

)
.

Distribution statement
y ~ inv_chi_square(nu)

Increment target log probability density with inv_chi_square_lupdf(y | nu).

Available since 2.0

Stan functions
real inv_chi_square_lpdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu

Available since 2.12

real inv_chi_square_lupdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu dropping
constant additive terms

Available since 2.25

246 CHAPTER 21. POSITIVE CONTINUOUS DISTRIBUTIONS

real inv_chi_square_cdf(reals y | reals nu)
The inverse Chi-squared cumulative distribution function of y given degrees of
freedom nu

Available since 2.0

real inv_chi_square_lcdf(reals y | reals nu)
The log of the inverse Chi-squared cumulative distribution function of y given
degrees of freedom nu

Available since 2.12

real inv_chi_square_lccdf(reals y | reals nu)
The log of the inverse Chi-squared complementary cumulative distribution function
of y given degrees of freedom nu

Available since 2.12

R inv_chi_square_rng(reals nu)
Generate an inverse Chi-squared variate with degrees of freedom nu; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

Available since 2.18

21.4. Scaled inverse chi-square distribution
Probability density function

If ν ∈ R+ and σ ∈ R+, then for y ∈ R+,

ScaledInvChiSquare(y|ν, σ) =
(ν/2)ν/2

Γ(ν/2)
σν y−(ν/2+1) exp

(
− 1

2
ν σ2 1

y

)
.

Distribution statement
y ~ scaled_inv_chi_square(nu, sigma)

Increment target log probability density with scaled_inv_chi_square_lupdf(y
| nu, sigma).

Available since 2.0

Stan functions
real scaled_inv_chi_square_lpdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu
and scale sigma

21.5. EXPONENTIAL DISTRIBUTION 247

Available since 2.12

real scaled_inv_chi_square_lupdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu
and scale sigma dropping constant additive terms

Available since 2.25

real scaled_inv_chi_square_cdf(reals y | reals nu, reals sigma)
The scaled inverse Chi-square cumulative distribution function of y given degrees
of freedom nu and scale sigma

Available since 2.0

real scaled_inv_chi_square_lcdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square cumulative distribution function of y given
degrees of freedom nu and scale sigma

Available since 2.12

real scaled_inv_chi_square_lccdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square complementary cumulative distribution
function of y given degrees of freedom nu and scale sigma

Available since 2.12

R scaled_inv_chi_square_rng(reals nu, reals sigma)
Generate a scaled inverse Chi-squared variate with degrees of freedom nu and scale
sigma; may only be used in transformed data and generated quantities blocks. For
a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

21.5. Exponential distribution
Probability density function

If inverse scale (rate) β ∈ R+, then for y ∈ R+,

Exponential(y|β) = β exp(−β y).

Distribution statement
y ~ exponential(beta)

Increment target log probability density with exponential_lupdf(y | beta).

Available since 2.0

248 CHAPTER 21. POSITIVE CONTINUOUS DISTRIBUTIONS

Stan functions
real exponential_lpdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta

Available since 2.12

real exponential_lupdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta dropping constant
additive terms

Available since 2.25

real exponential_cdf(reals y | reals beta)
The exponential cumulative distribution function of y given inverse scale beta

Available since 2.0

real exponential_lcdf(reals y | reals beta)
The log of the exponential cumulative distribution function of y given inverse scale
beta

Available since 2.12

real exponential_lccdf(reals y | reals beta)
The log of the exponential complementary cumulative distribution function of y
given inverse scale beta

Available since 2.12

R exponential_rng(reals beta)
Generate an exponential variate with inverse scale beta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

21.6. Gamma distribution
Probability density function

If α ∈ R+ and β ∈ R+, then for y ∈ R+,

Gamma(y|α, β) =
βα

Γ(α)
yα−1 exp(−β y).

Distribution statement
y ~ gamma(alpha, beta)

21.6. GAMMA DISTRIBUTION 249

Increment target log probability density with gamma_lupdf(y | alpha, beta).

Available since 2.0

Stan functions
real gamma_lpdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta

Available since 2.12

real gamma_lupdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta dropping
constant additive terms

Available since 2.25

real gamma_cdf(reals y | reals alpha, reals beta)
The cumulative gamma distribution function of y given shape alpha and inverse
scale beta

Available since 2.0

real gamma_lcdf(reals y | reals alpha, reals beta)
The log of the cumulative gamma distribution function of y given shape alpha and
inverse scale beta

Available since 2.12

real gamma_lccdf(reals y | reals alpha, reals beta)
The log of the complementary cumulative gamma distribution function of y given
shape alpha and inverse scale beta

Available since 2.12

R gamma_rng(reals alpha, reals beta)
Generate a gamma variate with shape alpha and inverse scale beta; may only be
used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

Available since 2.18

250 CHAPTER 21. POSITIVE CONTINUOUS DISTRIBUTIONS

21.7. Inverse gamma Distribution
Probability density function

If α ∈ R+ and β ∈ R+, then for y ∈ R+,

InvGamma(y|α, β) =
βα

Γ(α)
y−(α+1) exp

(
−β

1
y

)
.

Distribution statement
y ~ inv_gamma(alpha, beta)

Increment target log probability density with inv_gamma_lupdf(y | alpha,
beta).

Available since 2.0

Stan functions
real inv_gamma_lpdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta

Available since 2.12

real inv_gamma_lupdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta dropping
constant additive terms

Available since 2.25

real inv_gamma_cdf(reals y | reals alpha, reals beta)
The inverse gamma cumulative distribution function of y given shape alpha and
scale beta

Available since 2.0

real inv_gamma_lcdf(reals y | reals alpha, reals beta)
The log of the inverse gamma cumulative distribution function of y given shape
alpha and scale beta

Available since 2.12

real inv_gamma_lccdf(reals y | reals alpha, reals beta)
The log of the inverse gamma complementary cumulative distribution function of y
given shape alpha and scale beta

Available since 2.12

21.8. WEIBULL DISTRIBUTION 251

R inv_gamma_rng(reals alpha, reals beta)
Generate an inverse gamma variate with shape alpha and scale beta; may only be
used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

Available since 2.18

21.8. Weibull distribution
Probability density function

If α ∈ R+ and σ ∈ R+, then for y ∈ [0, ∞),

Weibull(y|α, σ) =
α

σ

(y
σ

)α−1
exp

(
−
(y

σ

)α)
.

Note that if Y ∝ Weibull(α, σ), then Y−1 ∝ Frechet(α, σ−1).

Distribution statement
y ~ weibull(alpha, sigma)

Increment target log probability density with weibull_lupdf(y | alpha,
sigma).

Available since 2.0

Stan functions
real weibull_lpdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma

Available since 2.12

real weibull_lupdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma dropping
constant additive terms

Available since 2.25

real weibull_cdf(reals y | reals alpha, reals sigma)
The Weibull cumulative distribution function of y given shape alpha and scale
sigma

Available since 2.0

real weibull_lcdf(reals y | reals alpha, reals sigma)
The log of the Weibull cumulative distribution function of y given shape alpha and
scale sigma

252 CHAPTER 21. POSITIVE CONTINUOUS DISTRIBUTIONS

Available since 2.12

real weibull_lccdf(reals y | reals alpha, reals sigma)
The log of the Weibull complementary cumulative distribution function of y given
shape alpha and scale sigma

Available since 2.12

R weibull_rng(reals alpha, reals sigma)
Generate a weibull variate with shape alpha and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

21.9. Frechet distribution
Probability density function

If α ∈ R+ and σ ∈ R+, then for y ∈ R+,

Frechet(y|α, σ) =
α

σ

(y
σ

)−α−1
exp

(
−
(y

σ

)−α
)

.

Note that if Y ∝ Frechet(α, σ), then Y−1 ∝ Weibull(α, σ−1).

Distribution statement
y ~ frechet(alpha, sigma)

Increment target log probability density with frechet_lupdf(y | alpha,
sigma).

Available since 2.5

Stan functions
real frechet_lpdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma

Available since 2.12

real frechet_lupdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma dropping
constant additive terms

Available since 2.25

21.10. RAYLEIGH DISTRIBUTION 253

real frechet_cdf(reals y | reals alpha, reals sigma)
The Frechet cumulative distribution function of y given shape alpha and scale sigma

Available since 2.5

real frechet_lcdf(reals y | reals alpha, reals sigma)
The log of the Frechet cumulative distribution function of y given shape alpha and
scale sigma

Available since 2.12

real frechet_lccdf(reals y | reals alpha, reals sigma)
The log of the Frechet complementary cumulative distribution function of y given
shape alpha and scale sigma

Available since 2.12

R frechet_rng(reals alpha, reals sigma)
Generate a Frechet variate with shape alpha and scale sigma; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

21.10. Rayleigh distribution
Probability density function

If σ ∈ R+, then for y ∈ [0, ∞),

Rayleigh(y|σ) = y
σ2 exp(−y2/2σ2).

Distribution statement
y ~ rayleigh(sigma)

Increment target log probability density with rayleigh_lupdf(y | sigma).

Available since 2.0

Stan functions
real rayleigh_lpdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma

Available since 2.12

254 CHAPTER 21. POSITIVE CONTINUOUS DISTRIBUTIONS

real rayleigh_lupdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma dropping constant additive
terms

Available since 2.25

real rayleigh_cdf(real y | real sigma)
The Rayleigh cumulative distribution of y given scale sigma

Available since 2.0

real rayleigh_lcdf(real y | real sigma)
The log of the Rayleigh cumulative distribution of y given scale sigma

Available since 2.12

real rayleigh_lccdf(real y | real sigma)
The log of the Rayleigh complementary cumulative distribution of y given scale
sigma

Available since 2.12

R rayleigh_rng(reals sigma)
Generate a Rayleigh variate with scale sigma; may only be used in generated
quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

Available since 2.18

21.11. Log-logistic distribution
Probability density function

If α, β ∈ R+, then for y ∈ R+,

Log-Logistic(y|α, β) =

(
β
α

) (y
α

)β−1(
1 +

(y
α

)β
)2 .

Distribution statement
y ~ loglogistic(alpha, beta)

Increment target log probability density with unnormalized version of loglogis-
tic_lpdf(y | alpha, beta)

Available since 2.29

21.11. LOG-LOGISTIC DISTRIBUTION 255

Stan functions
real loglogistic_lpdf(reals y | reals alpha, reals beta)
The log of the log-logistic density of y given scale alpha and shape beta

Available since 2.29

real loglogistic_cdf(reals y | reals alpha, reals beta)
The log-logistic cumulative distribution function of y given scale alpha and shape
beta

Available since 2.29

R loglogistic_rng(reals alpha, reals beta)
Generate a log-logistic variate with scale alpha and shape beta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.29

22. Positive Lower-Bounded Distributions

The positive lower-bounded probabilities have support on real values above some
positive minimum value.

22.1. Pareto distribution
Probability density function

If ymin ∈ R+ and α ∈ R+, then for y ∈ R+ with y ≥ ymin,

Pareto(y|ymin, α) =
α yα

min

yα+1 .

Distribution statement
y ~ pareto(y_min, alpha)

Increment target log probability density with pareto_lupdf(y | y_min, alpha).

Available since 2.0

Stan functions
real pareto_lpdf(reals y | reals y_min, reals alpha)
The log of the Pareto density of y given positive minimum value y_min and shape
alpha

Available since 2.12

real pareto_lupdf(reals y | reals y_min, reals alpha)
The log of the Pareto density of y given positive minimum value y_min and shape
alpha dropping constant additive terms

Available since 2.25

real pareto_cdf(reals y | reals y_min, reals alpha)
The Pareto cumulative distribution function of y given positive minimum value
y_min and shape alpha

Available since 2.0

real pareto_lcdf(reals y | reals y_min, reals alpha)
The log of the Pareto cumulative distribution function of y given positive minimum
value y_min and shape alpha

256

22.2. PARETO TYPE 2 DISTRIBUTION 257

Available since 2.12

real pareto_lccdf(reals y | reals y_min, reals alpha)
The log of the Pareto complementary cumulative distribution function of y given
positive minimum value y_min and shape alpha

Available since 2.12

R pareto_rng(reals y_min, reals alpha)
Generate a Pareto variate with positive minimum value y_min and shape alpha;
may only be used in transformed data and generated quantities blocks. For a
description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

22.2. Pareto type 2 distribution
Probability density function

If µ ∈ R, λ ∈ R+, and α ∈ R+, then for y ≥ µ,

Pareto_Type_2(y|µ, λ, α) =
α

λ

(
1 +

y − µ

λ

)−(α+1)
.

Note that the Lomax distribution is a Pareto Type 2 distribution with µ = 0.

Distribution statement
y ~ pareto_type_2(mu, lambda, alpha)

Increment target log probability density with pareto_type_2_lupdf(y | mu,
lambda, alpha).

Available since 2.5

Stan functions
real pareto_type_2_lpdf(reals y | reals mu, reals lambda, reals al-
pha)
The log of the Pareto Type 2 density of y given location mu, scale lambda, and shape
alpha

Available since 2.18

real pareto_type_2_lupdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 density of y given location mu, scale lambda, and
shape alpha dropping constant additive terms

258 CHAPTER 22. POSITIVE LOWER-BOUNDED DISTRIBUTIONS

Available since 2.25

real pareto_type_2_cdf(reals y | reals mu, reals lambda, reals al-
pha)
The Pareto Type 2 cumulative distribution function of y given location mu, scale
lambda, and shape alpha

Available since 2.5

real pareto_type_2_lcdf(reals y | reals mu, reals lambda, reals al-
pha)
The log of the Pareto Type 2 cumulative distribution function of y given location
mu, scale lambda, and shape alpha

Available since 2.18

real pareto_type_2_lccdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 complementary cumulative distribution function of y
given location mu, scale lambda, and shape alpha

Available since 2.18

R pareto_type_2_rng(reals mu, reals lambda, reals alpha)
Generate a Pareto Type 2 variate with location mu, scale lambda, and shape alpha;
may only be used in transformed data and generated quantities blocks. For a
description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

22.3. Wiener First Passage Time Distribution
Probability density function

If α ∈ R+, τ ∈ R+, β ∈ (0, 1), δ ∈ R, sδ ∈ R≥0, sβ ∈ [0, 1), and sτ ∈ R≥0 then for
y > τ,

22.3. WIENER FIRST PASSAGE TIME DISTRIBUTION 259

Wiener(y | α, τ, β, δ, sδ, sβ, sτ) =

1
sτ

∫ τ+sτ

τ

1
sβ

∫ β+ 1
2 sβ

β− 1
2 sβ

∫ ∞

−∞
p3(y − τ0 | α, ν, ω)

× 1√
2πs2

δ

exp
(
− (ν − δ)2

2s2
δ

)
dν dω dτ0 =

1
sτ

∫ τ+sτ

τ

1
sβ

∫ β+ 1
2 sβ

β− 1
2 sβ

M × p3(y − τ0 | α, ν, ω) dω dτ0,

where p() denotes the density function, and M and p3() are defined, by using
t := y − τ0, as

M :=
1√

1 + s2
δt

exp
(

αδω +
δ2t
2

+
s2

δα2ω2 − 2αδω − δ2t
2(1 + s2

δt)

)
and

p3(t | α, δ, β) :=
1
α2 exp

(
−αδβ − δ2t

2

)
f (

t
α2 | 0, 1, β),

where f (t∗ = t
α2 | 0, 1, β) can be specified in two ways:

fl(t∗ | 0, 1, β) =
∞

∑
k=1

kπ exp
(
− k2π2t∗

2

)
sin(kπβ) and

fs(t∗ | 0, 1, β) =
∞

∑
k=−∞

1√
2π(t∗)3

(β + 2k) exp
(
− (β + 2k)2

2t∗
)

.

Which of these is used in the computations depends on which expression requires
the smaller number of components k to guarantee a pre-specified precision

In the case where sδ, sβ, and sτ are all 0, this simplifies to one representation that
converges fast for small reaction-time values (“small time expansion”):

Wiener(y|α, τ, β, δ) =
α

(y − τ)3/2 exp
(
−δαβ − δ2(y − τ)

2

) ∞

∑
k=−∞

(2k+ β)ϕ

(
(2k + β)α√

y − τ

)
,

where ϕ(x) denotes the standard normal density function;

260 CHAPTER 22. POSITIVE LOWER-BOUNDED DISTRIBUTIONS

and one representation that converges fast for large reaction-time values (“large
time expansion”):

Wiener(y|α, τ, β, δ) =
π

α2 exp
(
−δαβ − δ2(y − τ)

2

) ∞

∑
k=1

k exp
(
− k2π2(y − τ)

;
2α2
)

sin(kπβ)

see (Feller 1968), (Navarro and Fuss 2009).

Distribution statement
y ~ wiener(alpha, tau, beta, delta)

Increment target log probability density with wiener_lupdf(y | alpha, tau,
beta, delta).

Available since 2.7

y ~ wiener(alpha, tau, beta, delta, var_delta) Increment target log
probability density with wiener_lupdf(y | alpha, tau, beta, delta,
var_delta).

Available since 2.35

y ~ wiener(alpha, tau, beta, delta, var_delta, var_beta, var_tau) In-
crement target log probability density with wiener_lupdf(y | alpha, tau,
beta, delta, var_delta, var_beta, var_tau).

Available since 2.35

Stan functions
real wiener_lpdf(reals y | reals alpha, reals tau, reals beta, re-
als delta)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta, and drift rate delta.

Available since 2.18

real wiener_lpdf(real y | real alpha, real tau, real beta, real
delta, real var_delta)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta, drift rate delta, and inter-trial
drift rate variability var_delta.

Setting var_delta to 0 recovers the 4-parameter signature above.

Available since 2.35

22.3. WIENER FIRST PASSAGE TIME DISTRIBUTION 261

real wiener_lpdf(real y | real alpha, real tau, real beta, real
delta, real var_delta, real var_beta, real var_tau)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta, drift rate delta, inter-trial
drift rate variability var_delta, inter-trial variability of the starting point (bias)
var_beta, and inter-trial variability of the non-decision time var_tau.

Setting var_delta, var_beta, and var_tau to 0 recovers the 4-parameter signature
above.

Available since 2.35

real wiener_lupdf(reals y | reals alpha, reals tau, reals beta, re-
als delta)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta, and drift rate delta, dropping
constant additive terms

Available since 2.25

real wiener_lupdf(real y | real alpha, real tau, real beta, real
delta, real var_delta)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta, drift rate delta, and inter-trial
drift rate variability var_delta, dropping constant additive terms.

Setting var_delta to 0 recovers the 4-parameter signature above.

Available since 2.35

real wiener_lupdf(real y | real alpha, real tau, real beta, real
delta, real var_delta, real var_beta, real var_tau)
The log of the Wiener first passage time density of y given boundary separation
alpha, non-decision time tau, a-priori bias beta, drift rate delta, inter-trial
drift rate variability var_delta, inter-trial variability of the starting point (bias)
var_beta, and inter-trial variability of the non-decision time var_tau, dropping
constant additive terms.

Setting var_delta, var_beta, and var_tau to 0 recovers the 4-parameter signature
above.

Available since 2.35

262 CHAPTER 22. POSITIVE LOWER-BOUNDED DISTRIBUTIONS

Boundaries
Stan returns the first passage time of the accumulation process over the upper
boundary only. To get the result for the lower boundary, use

Wiener(y|α, τ, 1 − β,−δ)

For more details, see the appendix of Vandekerckhove and Wabersich (2014).

23. Continuous Distributions on [0, 1]

The continuous distributions with outcomes in the interval [0, 1] are used to charac-
terized bounded quantities, including probabilities.

23.1. Beta distribution
Probability density function

If α ∈ R+ and β ∈ R+, then for θ ∈ (0, 1),

Beta(θ|α, β) =
1

B(α, β)
θα−1 (1 − θ)β−1,

where the beta function B() is as defined in section combinatorial functions.

Warning: If θ = 0 or θ = 1, then the probability is 0 and the log probability is −∞.
Similarly, the distribution requires strictly positive parameters, α, β > 0.

Distribution statement
theta ~ beta(alpha, beta)

Increment target log probability density with beta_lupdf(theta | alpha,
beta).

Available since 2.0

Stan functions
real beta_lpdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0, 1] given positive prior successes (plus
one) alpha and prior failures (plus one) beta

Available since 2.12

real beta_lupdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0, 1] given positive prior successes (plus
one) alpha and prior failures (plus one) beta dropping constant additive terms

Available since 2.25

real beta_cdf(reals theta | reals alpha, reals beta)
The beta cumulative distribution function of theta in [0, 1] given positive prior
successes (plus one) alpha and prior failures (plus one) beta

263

264 CHAPTER 23. CONTINUOUS DISTRIBUTIONS ON [0, 1]

Available since 2.0

real beta_lcdf(reals theta | reals alpha, reals beta)
The log of the beta cumulative distribution function of theta in [0, 1] given positive
prior successes (plus one) alpha and prior failures (plus one) beta

Available since 2.12

real beta_lccdf(reals theta | reals alpha, reals beta)
The log of the beta complementary cumulative distribution function of theta in
[0, 1] given positive prior successes (plus one) alpha and prior failures (plus one)
beta

Available since 2.12

R beta_rng(reals alpha, reals beta)
Generate a beta variate with positive prior successes (plus one) alpha and prior
failures (plus one) beta; may only be used in transformed data and generated
quantities blocks. For a description of argument and return types, see section
vectorized PRNG functions.

Available since 2.18

23.2. Beta proportion distribution
Probability density function

If µ ∈ (0, 1) and κ ∈ R+, then for θ ∈ (0, 1),

Beta_Proportion(θ|µ, κ) =
1

B(µκ, (1 − µ)κ)
θµκ−1 (1 − θ)(1−µ)κ−1,

where the beta function B() is as defined in section combinatorial functions.

Warning: If θ = 0 or θ = 1, then the probability is 0 and the log probability is −∞.
Similarly, the distribution requires µ ∈ (0, 1) and strictly positive parameter, κ > 0.

Distribution statement
theta ~ beta_proportion(mu, kappa)

Increment target log probability density with beta_proportion_lupdf(theta |
mu, kappa).

Available since 2.19

23.2. BETA PROPORTION DISTRIBUTION 265

Stan functions
real beta_proportion_lpdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta in (0, 1) given mean mu and
precision kappa

Available since 2.19

real beta_proportion_lupdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta in (0, 1) given mean mu and
precision kappa dropping constant additive terms

Available since 2.25

real beta_proportion_lcdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion cumulative distribution function of theta in (0, 1)
given mean mu and precision kappa

Available since 2.18

real beta_proportion_lccdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion complementary cumulative distribution function of
theta in (0, 1) given mean mu and precision kappa

Available since 2.18

R beta_proportion_rng(reals mu, reals kappa)
Generate a beta_proportion variate with mean mu and precision kappa; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.

Available since 2.18

24. Circular Distributions

Circular distributions are defined for finite values y in any interval of length 2π.

24.1. Von Mises distribution
Probability density function

If µ ∈ R and κ ∈ R+, then for y ∈ R,

VonMises(y|µ, κ) =
exp(κ cos(y − µ))

2π I0(κ)
.

In order for this density to properly normalize, y must be restricted to some interval
(c, c + 2π) of length 2π, because∫ c+2π

c
VonMises(y|µ, κ)dy = 1.

Similarly, if µ is a parameter, it will typically be restricted to the same range as y.

If κ > 0, a von Mises distribution with its 2π interval of support centered around
its location µ will have a single mode at µ; for example, restricting y to (−π, π)
and taking µ = 0 leads to a single local optimum at the mode µ. If the location µ is
not in the center of the support, the density is circularly translated and there will
be a second local maximum at the boundary furthest from the mode. Ideally, the
parameterization and support will be set up so that the bulk of the probability mass
is in a continuous interval around the mean µ.

For κ = 0, the Von Mises distribution corresponds to the circular uniform distribu-
tion with density 1/(2π) (independently of the values of y or µ).

Distribution statement
y ~ von_mises(mu, kappa)

Increment target log probability density with von_mises_lupdf(y | mu, kappa).

Available since 2.0

Stan functions
real von_mises_lpdf(reals y | reals mu, reals kappa)
The log of the von mises density of y given location mu and scale kappa.

266

24.1. VON MISES DISTRIBUTION 267

Available since 2.18

real von_mises_lupdf(reals y | reals mu, reals kappa)
The log of the von mises density of y given location mu and scale kappa dropping
constant additive terms.

Available since 2.25

real von_mises_cdf(reals y | reals mu, reals kappa)
The von mises cumulative distribution function of y given location mu and scale
kappa.

Available since 2.29

real von_mises_lcdf(reals y | reals mu, reals kappa)
The log of the von mises cumulative distribution function of y given location mu
and scale kappa.

Available since 2.29

real von_mises_lccdf(reals y | reals mu, reals kappa)
The log of the von mises complementary cumulative distribution function of y
given location mu and scale kappa.

Available since 2.29

R von_mises_rng(reals mu, reals kappa)
Generate a Von Mises variate with location mu and scale kappa (i.e. returns values
in the interval [(µ mod 2π)− π, (µ mod 2π) + π]); may only be used in trans-
formed data and generated quantities blocks. For a description of argument and
return types, see section vectorized PRNG functions.

Available since 2.18

Numerical stability
Evaluating the Von Mises distribution for κ > 100 is numerically unstable in the
current implementation. Nathanael I. Lichti suggested the following workaround
on the Stan users group, based on the fact that as κ → ∞,

VonMises(y|µ, κ) → Normal(µ,
√

1/κ).

The workaround is to replace y ~ von_mises(mu,kappa) with

if (kappa < 100) {
y ~ von_mises(mu, kappa);

} else {

268 CHAPTER 24. CIRCULAR DISTRIBUTIONS

y ~ normal(mu, sqrt(1 / kappa));
}

25. Bounded Continuous Distributions

The bounded continuous probabilities have support on a finite interval of real
numbers.

25.1. Uniform distribution
Probability density function

If α ∈ R and β ∈ (α, ∞), then for y ∈ [α, β],

Uniform(y|α, β) =
1

β − α
.

Distribution statement
y ~ uniform(alpha, beta)

Increment target log probability density with uniform_lupdf(y | alpha, beta).

Available since 2.0

Stan functions
real uniform_lpdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta

Available since 2.12

real uniform_lupdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta
dropping constant additive terms

Available since 2.25

real uniform_cdf(reals y | reals alpha, reals beta)
The uniform cumulative distribution function of y given lower bound alpha and
upper bound beta

Available since 2.0

real uniform_lcdf(reals y | reals alpha, reals beta)
The log of the uniform cumulative distribution function of y given lower bound
alpha and upper bound beta

269

270 CHAPTER 25. BOUNDED CONTINUOUS DISTRIBUTIONS

Available since 2.12

real uniform_lccdf(reals y | reals alpha, reals beta)
The log of the uniform complementary cumulative distribution function of y given
lower bound alpha and upper bound beta

Available since 2.12

R uniform_rng(reals alpha, reals beta)
Generate a uniform variate with lower bound alpha and upper bound beta; may
only be used in transformed data and generated quantities blocks. For a description
of argument and return types, see section vectorized PRNG functions.

Available since 2.18

26. Distributions over Unbounded Vectors

The unbounded vector probability distributions have support on all of RK for some
fixed K.

26.1. Multivariate normal distribution
Probability density function

If K ∈ N, µ ∈ RK, and Σ ∈ RK×K is symmetric and positive definite, then for
y ∈ RK,

MultiNormal(y|µ, Σ) =
1

(2π)K/2
1√
|Σ|

exp
(
−1

2
(y − µ)⊤ Σ−1 (y − µ)

)
,

where |Σ| is the absolute determinant of Σ.

Distribution statement
y ~ multi_normal(mu, Sigma)

Increment target log probability density with multi_normal_lupdf(y | mu,
Sigma).

Available since 2.0

Stan functions
The multivariate normal probability function is overloaded to allow the variate
vector y and location vector µ to be vectors or row vectors (or to mix the two
types). The density function is also vectorized, so it allows arrays of row vectors or
vectors as arguments; see section vectorized function signatures for a description of
vectorization.

real multi_normal_lpdf(vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location vector(s)
mu and covariance matrix Sigma

Available since 2.12

real multi_normal_lupdf(vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location vector(s)
mu and covariance matrix Sigma dropping constant additive terms

271

272 CHAPTER 26. DISTRIBUTIONS OVER UNBOUNDED VECTORS

Available since 2.25

real multi_normal_lpdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma

Available since 2.12

real multi_normal_lupdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma dropping constant additive terms

Available since 2.25

real multi_normal_lpdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma

Available since 2.12

real multi_normal_lupdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma dropping constant additive terms

Available since 2.25

real multi_normal_lpdf(row_vectors y | row_vectors mu, matrix
Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma

Available since 2.12

real multi_normal_lupdf(row_vectors y | row_vectors mu, matrix
Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma dropping constant additive terms

Available since 2.25

Although there is a direct multi-normal RNG function, if more than one result is
required, it’s much more efficient to Cholesky factor the covariance matrix and call
multi_normal_cholesky_rng; see section multi-variate normal, cholesky parame-
terization.

26.2. MULTIVARIATE NORMAL DISTRIBUTION, PRECISION PARAMETERIZATION273

vector multi_normal_rng(vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix
Sigma; may only be used in transformed data and generated quantities blocks

Available since 2.0

vector multi_normal_rng(row_vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix
Sigma; may only be used in transformed data and generated quantities blocks

Available since 2.18

vectors multi_normal_rng(vectors mu, matrix Sigma)
Generate an array of multivariate normal variates with locations mu and covariance
matrix Sigma; may only be used in transformed data and generated quantities
blocks

Available since 2.18

vectors multi_normal_rng(row_vectors mu, matrix Sigma)
Generate an array of multivariate normal variates with locations mu and covariance
matrix Sigma; may only be used in transformed data and generated quantities
blocks

Available since 2.18

26.2. Multivariate normal distribution, precision parameterization
Probability density function

If K ∈ N, µ ∈ RK, and Ω ∈ RK×K is symmetric and positive definite, then for
y ∈ RK,

MultiNormalPrecision(y|µ, Ω) = MultiNormal(y|µ, Ω−1)

Distribution statement
y ~ multi_normal_prec(mu, Omega)

Increment target log probability density with multi_normal_prec_lupdf(y |
mu, Omega).

Available since 2.3

Stan functions
real multi_normal_prec_lpdf(vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location vector(s)

274 CHAPTER 26. DISTRIBUTIONS OVER UNBOUNDED VECTORS

mu and positive definite precision matrix Omega

Available since 2.18

real multi_normal_prec_lupdf(vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location vector(s)
mu and positive definite precision matrix Omega dropping constant additive terms

Available since 2.25

real multi_normal_prec_lpdf(vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of vector(s) y given location row
vector(s) mu and positive definite precision matrix Omega

Available since 2.18

real multi_normal_prec_lupdf(vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of vector(s) y given location row
vector(s) mu and positive definite precision matrix Omega dropping constant
additive terms

Available since 2.25

real multi_normal_prec_lpdf(row_vectors y | vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location
vector(s) mu and positive definite precision matrix Omega

Available since 2.18

real multi_normal_prec_lupdf(row_vectors y | vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location
vector(s) mu and positive definite precision matrix Omega dropping constant
additive terms

Available since 2.25

real multi_normal_prec_lpdf(row_vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and positive definite precision matrix Omega

Available since 2.18

26.3. MULTIVARIATE NORMAL DISTRIBUTION, CHOLESKY PARAMETERIZATION275

real multi_normal_prec_lupdf(row_vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location row vec-
tor(s) mu and positive definite precision matrix Omega dropping constant additive
terms

Available since 2.25

26.3. Multivariate normal distribution, Cholesky parameterization
Probability density function

If K ∈ N, µ ∈ RK, and L ∈ RK×K is lower triangular and such that LL⊤ is positive
definite, then for y ∈ RK,

MultiNormalCholesky(y|µ, L) = MultiNormal(y|µ, LL⊤).

If L is lower triangular and LLtop is a K × K positive definite matrix, then Lk,k must
be strictly positive for k ∈ 1:K. If an L is provided that is not the Cholesky factor of
a positive-definite matrix, the probability functions will raise errors.

Distribution statement
y ~ multi_normal_cholesky(mu, L)

Increment target log probability density with multi_normal_cholesky_lupdf(y
| mu, L).

Available since 2.0

Stan functions
real multi_normal_cholesky_lpdf(vectors y | vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L

Available since 2.18

real multi_normal_cholesky_lupdf(vectors y | vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and lower-triangular Cholesky factor of the covariance matrix L dropping constant
additive terms

Available since 2.25

real multi_normal_cholesky_lpdf(vectors y | row_vectors mu, matrix
L)

276 CHAPTER 26. DISTRIBUTIONS OVER UNBOUNDED VECTORS

The log of the multivariate normal density of vector(s) y given location row
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

Available since 2.18

real multi_normal_cholesky_lupdf(vectors y | row_vectors mu, matrix
L)
The log of the multivariate normal density of vector(s) y given location row vec-
tor(s) mu and lower-triangular Cholesky factor of the covariance matrix L dropping
constant additive terms

Available since 2.25

real multi_normal_cholesky_lpdf(row_vectors y | vectors mu, matrix
L)
The log of the multivariate normal density of row vector(s) y given location
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

Available since 2.18

real multi_normal_cholesky_lupdf(row_vectors y | vectors mu, matrix
L)
The log of the multivariate normal density of row vector(s) y given location vec-
tor(s) mu and lower-triangular Cholesky factor of the covariance matrix L dropping
constant additive terms

Available since 2.25

real multi_normal_cholesky_lpdf(row_vectors y | row_vectors mu, ma-
trix L)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

Available since 2.18

real multi_normal_cholesky_lupdf(row_vectors y | row_vectors mu,
matrix L)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L
dropping constant additive terms

Available since 2.25

vector multi_normal_cholesky_rng(vector mu, matrix L)
Generate a multivariate normal variate with location mu and lower-triangular

26.4. MULTIVARIATE GAUSSIAN PROCESS DISTRIBUTION 277

Cholesky factor of the covariance matrix L; may only be used in transformed data
and generated quantities blocks

Available since 2.3

vector multi_normal_cholesky_rng(row_vector mu, matrix L)
Generate a multivariate normal variate with location mu and lower-triangular
Cholesky factor of the covariance matrix L; may only be used in transformed data
and generated quantities blocks

Available since 2.18

vectors multi_normal_cholesky_rng(vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in trans-
formed data and generated quantities blocks

Available since 2.18

vectors multi_normal_cholesky_rng(row_vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in trans-
formed data and generated quantities blocks

Available since 2.18

26.4. Multivariate Gaussian process distribution
Probability density function

If K, N ∈ N, Σ ∈ RN×N is symmetric, positive definite kernel matrix and w ∈ RK

is a vector of positive inverse scales, then for y ∈ RK×N ,

MultiGP(y|Σ, w) =
K

∏
i=1

MultiNormal(yi|0, w−1
i Σ),

where yi is the ith row of y. This is used to efficiently handle Gaussian Processes with
multi-variate outputs where only the output dimensions share a kernel function
but vary based on their scale. Note that this function does not take into account the
mean prediction.

Distribution statement
y ~ multi_gp(Sigma, w)

Increment target log probability density with multi_gp_lupdf(y | Sigma, w).

278 CHAPTER 26. DISTRIBUTIONS OVER UNBOUNDED VECTORS

Available since 2.3

Stan functions
real multi_gp_lpdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and
inverses scales w

Available since 2.12

real multi_gp_lupdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and
inverses scales w dropping constant additive terms

Available since 2.25

26.5. Multivariate Gaussian process distribution, Cholesky pa-
rameterization

Probability density function

If K, N ∈ N, L ∈ RN×N is lower triangular and such that LL⊤ is positive definite
kernel matrix (implying Ln,n > 0 for n ∈ 1:N), and w ∈ RK is a vector of positive
inverse scales, then for y ∈ RK×N ,

MultiGPCholesky(y | L, w) =
K

∏
i=1

MultiNormal(yi|0, w−1
i LL⊤),

where yi is the ith row of y. This is used to efficiently handle Gaussian Processes with
multi-variate outputs where only the output dimensions share a kernel function
but vary based on their scale. If the model allows parameterization in terms of
Cholesky factor of the kernel matrix, this distribution is also more efficient than
MultiGP(). Note that this function does not take into account the mean prediction.

Distribution statement
y ~ multi_gp_cholesky(L, w)

Increment target log probability density with multi_gp_cholesky_lupdf(y | L,
w).

Available since 2.5

Stan functions
real multi_gp_cholesky_lpdf(matrix y | matrix L, vector w)
The log of the multivariate GP density of matrix y given lower-triangular Cholesky
factor of the kernel matrix L and inverses scales w

26.6. MULTIVARIATE STUDENT-T DISTRIBUTION 279

Available since 2.12

real multi_gp_cholesky_lupdf(matrix y | matrix L, vector w)
The log of the multivariate GP density of matrix y given lower-triangular Cholesky
factor of the kernel matrix L and inverses scales w dropping constant additive terms

Available since 2.25

26.6. Multivariate Student-t distribution
Probability density function

If K ∈ N, ν ∈ R+, µ ∈ RK, and Σ ∈ RK×K is symmetric and positive definite, then
for y ∈ RK,

MultiStudentT(y | ν, µ, Σ)

= 1
πK/2

1
νK/2

Γ((ν+K)/2)
Γ(ν/2)

1√
|Σ|

(
1 + 1

ν (y − µ)⊤ Σ−1 (y − µ)
)−(ν+K)/2

.

Distribution statement
y ~ multi_student_t(nu, mu, Sigma)

Increment target log probability density with multi_student_t_lupdf(y | nu,
mu, Sigma).

Available since 2.0

Stan functions
real multi_student_t_lpdf(vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location vector(s) mu, and scale matrix Sigma

Available since 2.18

real multi_student_t_lupdf(vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location vector(s) mu, and scale matrix Sigma dropping constant additive terms

Available since 2.25

real multi_student_t_lpdf(vectors y | real nu, row_vectors mu, ma-
trix Sigma)

280 CHAPTER 26. DISTRIBUTIONS OVER UNBOUNDED VECTORS

The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location row vector(s) mu, and scale matrix Sigma

Available since 2.18

real multi_student_t_lupdf(vectors y | real nu, row_vectors mu, ma-
trix Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location row vector(s) mu, and scale matrix Sigma dropping constant additive
terms

Available since 2.25

real multi_student_t_lpdf(row_vectors y | real nu, vectors mu, ma-
trix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location vector(s) mu, and scale matrix Sigma

Available since 2.18

real multi_student_t_lupdf(row_vectors y | real nu, vectors mu, ma-
trix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of free-
dom nu, location vector(s) mu, and scale matrix Sigma dropping constant additive
terms

Available since 2.25

real multi_student_t_lpdf(row_vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location row vector(s) mu, and scale matrix Sigma

Available since 2.18

real multi_student_t_lupdf(row_vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location row vector(s) mu, and scale matrix Sigma dropping constant
additive terms

Available since 2.25

vector multi_student_t_rng(real nu, vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location

26.7. MULTIVARIATE STUDENT-T DISTRIBUTION, CHOLESKY PARAMETERIZATION281

mu, and scale matrix Sigma; may only be used in transformed data and generated
quantities blocks

Available since 2.0

vector multi_student_t_rng(real nu, row_vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location
mu, and scale matrix Sigma; may only be used in transformed data and generated
quantities blocks

Available since 2.18

vectors multi_student_t_rng(real nu, vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
locations mu, and scale matrix Sigma; may only be used in transformed data and
generated quantities blocks

Available since 2.18

vectors multi_student_t_rng(real nu, row_vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
locations mu, and scale matrix Sigma; may only be used in transformed data
andgenerated quantities blocks

Available since 2.18

26.7. Multivariate Student-t distribution, Cholesky parameteriza-
tion

Probability density function

Let K ∈ N, ν ∈ R+, µ ∈ RK, and L a K × K lower-triangular matrix with strictly
positive, finite diagonal then

MultiStudentTCholesky(y | ν, µ, L)

= 1
πK/2

1
νK/2

Γ((ν+K)/2)
Γ(ν/2)

1
|L|

(
1 + 1

ν (y − µ)⊤ L−T L−1 (y − µ)
)−(ν+K)/2

.

Distribution statement
y ~ multi_student_t_cholesky(nu, mu, L)

Increment target log probability density with
multi_student_t_cholesky_lupdf(y | nu, mu, L).

Available since 2.30

282 CHAPTER 26. DISTRIBUTIONS OVER UNBOUNDED VECTORS

Stan functions
real multi_student_t_cholesky_lpdf(vectors y | real nu, vectors mu,
matrix L)
The log of the multivariate Student-t density of vector or array of vectors y given
degrees of freedom nu, location vector or array of vectors mu, and Cholesky factor of
the scale matrix L. For a definition of the arguments compatible with the vectors
type, see the probability vectorization section.

Available since 2.30

real multi_student_t_cholesky_lupdf(vectors y | real nu, vectors
mu, matrix L)
The log of the multivariate Student-t density of vector or vector array y given
degrees of freedom nu, location vector or vector array mu, and Cholesky factor of
the scale matrix L, dropping constant additive terms. For a definition of arguments
compatible with the vectors type, see the probability vectorization section.

Available since 2.30

vector multi_student_t_cholesky_rng(real nu, vector mu, matrix L)
Generate a multivariate Student-t variate with degrees of freedom nu, location mu,
and Cholesky factor of the scale matrix L; may only be used in transformed data
and generated quantities blocks.

Available since 2.30

array[] vector multi_student_t_cholesky_rng(real nu, array[] vector
mu, matrix L)
Generate a multivariate Student-t variate with degrees of freedom nu, location array
mu, and Cholesky factor of the scale matrix L; may only be used in transformed data
and generated quantities blocks.

Available since 2.30

array[] vector multi_student_t_cholesky_rng(real nu, array[]
row_vector mu, matrix L)
Generate an array of multivariate Student-t variate with degrees of freedom nu,
location array mu, and Cholesky factor of the scale matrix L; may only be used in
transformed data and generated quantities blocks.

Available since 2.30

26.8. GAUSSIAN DYNAMIC LINEAR MODELS 283

26.8. Gaussian dynamic linear models
A Gaussian Dynamic Linear model is defined as follows, For t ∈ 1, . . . , T,

yt ∼ N(F′θt, V)

θt ∼ N(Gθt−1, W)

θ0 ∼ N(m0, C0)

where y is n × T matrix where rows are variables and columns are observations.
These functions calculate the log-density of the observations marginalizing over the
latent states (p(y|F, G, V, W, m0, C0)). This log-density is a system that is calculated
using the Kalman Filter. If V is diagonal, then a more efficient algorithm which
sequentially processes observations and avoids a matrix inversions can be used
(Durbin and Koopman 2001, sec. 6.4).

Distribution statement
y ~ gaussian_dlm_obs(F, G, V, W, m0, C0)

Increment target log probability density with gaussian_dlm_obs_lupdf(y | F,
G, V, W, m0, C0).

Available since 2.0

Stan functions
The following two functions differ in the type of their V, the first taking a full obser-
vation covariance matrix V and the second a vector V representing the diagonal of
the observation covariance matrix. The sampling statement defined in the previous
section works with either type of observation V.

real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, matrix V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix
F, transition matrix G, observation covariance matrix V, system covariance matrix
W, and the initial state is distributed normal with mean m0 and covariance C0.

Available since 2.12

real gaussian_dlm_obs_lupdf(matrix y | matrix F, matrix G, matrix
V, matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix
F, transition matrix G, observation covariance matrix V, system covariance matrix

284 CHAPTER 26. DISTRIBUTIONS OVER UNBOUNDED VECTORS

W, and the initial state is distributed normal with mean m0 and covariance C0. This
function drops constant additive terms.

Available since 2.25

real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, vector V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix
F, transition matrix G, observation covariance matrix with diagonal V, system co-
variance matrix W, and the initial state is distributed normal with mean m0 and
covariance C0.

Available since 2.12

real gaussian_dlm_obs_lupdf(matrix y | matrix F, matrix G, vector
V, matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design matrix
F, transition matrix G, observation covariance matrix with diagonal V, system
covariance matrix W, and the initial state is distributed normal with mean m0 and
covariance C0. This function drops constant additive terms.

Available since 2.25

27. Simplex Distributions

The simplex probabilities have support on the unit K-simplex for a specified K.
A K-dimensional vector θ is a unit K-simplex if θk ≥ 0 for k ∈ {1, . . . , K} and
∑K

k=1 θk = 1.

27.1. Dirichlet distribution
Probability density function

If K ∈ N and α ∈ (R+)K, then for θ ∈ K-simplex,

Dirichlet(θ|α) =
Γ
(

∑K
k=1 αk

)
∏K

k=1 Γ(αk)

K

∏
k=1

θ
αk−1
k

Warning: If any of the components of θ satisfies θi = 0 or θi = 1, then the probability
is 0 and the log probability is −∞. Similarly, the distribution requires strictly
positive parameters, with αi > 0 for each i.

Meaning of Dirichlet parameters

A symmetric Dirichlet prior is [α, . . . , α]⊤. To code this in Stan,

data {
int<lower=1> K;
real<lower=0> alpha;

}
generated quantities {
vector[K] theta = dirichlet_rng(rep_vector(alpha, K));

}

Taking K = 10, here are the first five draws for α = 1. For α = 1, the distribution is
uniform over simplexes.

1) 0.17 0.05 0.07 0.17 0.03 0.13 0.03 0.03 0.27 0.05
2) 0.08 0.02 0.12 0.07 0.52 0.01 0.07 0.04 0.01 0.06
3) 0.02 0.03 0.22 0.29 0.17 0.10 0.09 0.00 0.05 0.03
4) 0.04 0.03 0.21 0.13 0.04 0.01 0.10 0.04 0.22 0.18
5) 0.11 0.22 0.02 0.01 0.06 0.18 0.33 0.04 0.01 0.01

285

286 CHAPTER 27. SIMPLEX DISTRIBUTIONS

That does not mean it’s uniform over the marginal probabilities of each element.
As the size of the simplex grows, the marginal draws become more and more
concentrated below (not around) 1/K. When one component of the simplex is large,
the others must all be relatively small to compensate. For example, in a uniform
distribution on 10-simplexes, the probability that a component is greater than the
mean of 1/10 is only 39%. Most of the posterior marginal probability mass for each
component is in the interval (0, 0.1).

When the α value is small, the draws gravitate to the corners of the simplex. Here
are the first five draws for α = 0.001.

1) 3e-203 0e+00 2e-298 9e-106 1e+000 0e+00 0e+000 1e-047 0e+00 4e-279
2) 1e+000 0e+00 5e-279 2e-014 1e-275 0e+00 3e-285 9e-147 0e+00 0e+000
3) 1e-308 0e+00 1e-213 0e+000 0e+000 8e-75 0e+000 1e+000 4e-58 7e-112
4) 6e-166 5e-65 3e-068 3e-147 0e+000 1e+00 3e-249 0e+000 0e+00 0e+000
5) 2e-091 0e+00 0e+000 0e+000 1e-060 0e+00 4e-312 1e+000 0e+00 0e+000

Each row denotes a draw. Each draw has a single value that rounds to one and
other values that are very close to zero or rounded down to zero.

As α increases, the draws become increasingly uniform. For α = 1000,

1) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
2) 0.10 0.10 0.09 0.10 0.10 0.10 0.11 0.10 0.10 0.10
3) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
4) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
5) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Distribution statement
theta ~ dirichlet(alpha)

Increment target log probability density with dirichlet_lupdf(theta | alpha).

Available since 2.0

Stan functions
The Dirichlet probability functions are overloaded to allow the simplex θ and
prior counts (plus one) α to be vectors or row vectors (or to mix the two types).
The density functions are also vectorized, so they allow arrays of row vectors or
vectors as arguments; see section vectorized function signatures for a description of
vectorization.

real dirichlet_lpdf(vectors theta | vectors alpha)
The log of the Dirichlet density for simplex(es) theta given prior counts (plus one)
alpha

27.1. DIRICHLET DISTRIBUTION 287

Available since 2.12, vectorized in 2.21

real dirichlet_lupdf(vectors theta | vectors alpha)
The log of the Dirichlet density for simplex(es) theta given prior counts (plus one)
alpha dropping constant additive terms

Available since 2.25

vector dirichlet_rng(vector alpha)
Generate a Dirichlet variate with prior counts (plus one) alpha; may only be used
in transformed data and generated quantities blocks

Available since 2.0

28. Correlation Matrix Distributions

The correlation matrix distributions have support on the (Cholesky factors of)
correlation matrices. A Cholesky factor L for a K × K correlation matrix Σ of
dimension K has rows of unit length so that the diagonal of LL⊤ is the unit K-vector.
Even though models are usually conceptualized in terms of correlation matrices,
it is better to operationalize them in terms of their Cholesky factors. If you are
interested in the posterior distribution of the correlations, you can recover them in
the generated quantities block via

generated quantities {
corr_matrix[K] Sigma;
Sigma = multiply_lower_tri_self_transpose(L);

}

28.1. LKJ correlation distribution
Probability density function

For η > 0, if Σ a positive-definite, symmetric matrix with unit diagonal (i.e., a
correlation matrix), then

LkjCorr(Σ|η) ∝ det (Σ)(η−1) .

The expectation is the identity matrix for any positive value of the shape param-
eter η, which can be interpreted like the shape parameter of a symmetric beta
distribution:

• if η = 1, then the density is uniform over correlation matrices of order K;

• if η > 1, the identity matrix is the modal correlation matrix, with a sharper
peak in the density at the identity matrix for larger η; and

• for 0 < η < 1, the density has a trough at the identity matrix.

• if η were an unknown parameter, the Jeffreys prior is proportional

to
√

2 ∑K−1
k=1

(
ψ1

(
η + K−k−1

2

)
− 2ψ1 (2η + K − k − 1)

)
, where ψ1() is the

trigamma function

See (Lewandowski, Kurowicka, and Joe 2009) for definitions. However, it is much

288

28.2. CHOLESKY LKJ CORRELATION DISTRIBUTION 289

better computationally to work directly with the Cholesky factor of Σ, so this
distribution should never be explicitly used in practice.

Distribution statement
y ~ lkj_corr(eta)

Increment target log probability density with lkj_corr_lupdf(y | eta).

Available since 2.3

Stan functions
real lkj_corr_lpdf(matrix y | real eta)
The log of the LKJ density for the correlation matrix y given nonnegative shape
eta. lkj_corr_cholesky_lpdf is faster, more numerically stable, uses less memory,
and should be preferred to this.

Available since 2.12

real lkj_corr_lupdf(matrix y | real eta)
The log of the LKJ density for the correlation matrix y given nonnegative shape
eta dropping constant additive terms. lkj_corr_cholesky_lupdf is faster, more
numerically stable, uses less memory, and should be preferred to this.

Available since 2.25

matrix lkj_corr_rng(int K, real eta)
Generate a LKJ random correlation matrix of order K with shape eta; may only be
used in transformed data and generated quantities blocks

Available since 2.0

28.2. Cholesky LKJ correlation distribution
Stan provides an implicit parameterization of the LKJ correlation matrix density
in terms of its Cholesky factor, which you should use rather than the explicit
parameterization in the previous section. For example, if L is a Cholesky factor of a
correlation matrix, then

L ~ lkj_corr_cholesky(2.0); # implies L * L' ~ lkj_corr(2.0);

Because Stan requires models to have support on all valid constrained parameters,
L will almost always1 be a parameter declared with the type of a Cholesky factor
for a correlation matrix; for example,

1It is possible to build up a valid L within Stan, but that would then require Jacobian adjustments to
imply the intended posterior.

290 CHAPTER 28. CORRELATION MATRIX DISTRIBUTIONS

parameters { cholesky_factor_corr[K] L; # rather than corr_matrix[K] Sigma; // ...

Probability density function
For η > 0, if L is a K × K lower-triangular Cholesky factor of a symmetric positive-
definite matrix with unit diagonal (i.e., a correlation matrix), then

LkjCholesky(L|η) ∝ |J|det(LL⊤)(η−1) =
K

∏
k=2

LK−k+2η−2
kk .

See the previous section for details on interpreting the shape parameter η. Note
that even if η = 1, it is still essential to evaluate the density function because the
density of L is not constant, regardless of the value of η, even though the density of
LL⊤ is constant iff η = 1.

A lower triangular L is a Cholesky factor for a correlation matrix if and only if
Lk,k > 0 for k ∈ 1:K and each row Lk has unit Euclidean length.

Distribution statement
L ~ lkj_corr_cholesky(eta)

Increment target log probability density with lkj_corr_cholesky_lupdf(L |
eta).

Available since 2.4

Stan functions
real lkj_corr_cholesky_lpdf(matrix L | real eta)
The log of the LKJ density for the lower-triangular Cholesky factor L of a correlation
matrix given shape eta

Available since 2.12

real lkj_corr_cholesky_lupdf(matrix L | real eta)
The log of the LKJ density for the lower-triangular Cholesky factor L of a correlation
matrix given shape eta dropping constant additive terms

Available since 2.25

matrix lkj_corr_cholesky_rng(int K, real eta)
Generate a random Cholesky factor of a correlation matrix of order K that is dis-
tributed LKJ with shape eta; may only be used in transformed data and generated
quantities blocks

Available since 2.4

29. Covariance Matrix Distributions

The covariance matrix distributions have support on symmetric, positive-definite
K × K matrices or their Cholesky factors (square, lower triangular matrices with
positive diagonal elements).

29.1. Wishart distribution
Probability density function

If K ∈ N, ν ∈ (K − 1, ∞), and S ∈ RK×K is symmetric and positive definite, then
for symmetric and positive-definite W ∈ RK×K,

Wishart(W | ν, S) =
1

2νK/2
1

ΓK
(

ν
2
) |S|−ν/2 |W|(ν−K−1)/2 exp

(
−1

2
tr
(

S−1W
))

,

where tr() is the matrix trace function, and ΓK() is the multivariate Gamma function,

ΓK(x) =
1

πK(K−1)/4

K

∏
k=1

Γ
(

x +
1 − k

2

)
.

Distribution statement
W ~ wishart(nu, Sigma)

Increment target log probability density with wishart_lupdf(W | nu, Sigma).

Available since 2.0

Stan functions
real wishart_lpdf(matrix W | real nu, matrix Sigma)
Return the log of the Wishart density for symmetric and positive-definite matrix
W given degrees of freedom nu and symmetric and positive-definite scale matrix
Sigma.

Available since 2.12

real wishart_lupdf(matrix W | real nu, matrix Sigma)
Return the log of the Wishart density for symmetric and positive-definite matrix
W given degrees of freedom nu and symmetric and positive-definite scale matrix
Sigma dropping constant additive terms.

291

292 CHAPTER 29. COVARIANCE MATRIX DISTRIBUTIONS

Available since 2.25

matrix wishart_rng(real nu, matrix Sigma)
Generate a Wishart variate with degrees of freedom nu and symmetric and positive-
definite scale matrix Sigma; may only be used in transformed data and generated
quantities blocks.

Available since 2.0

29.2. Wishart distribution, Cholesky Parameterization
The Cholesky parameterization of the Wishart distribution uses a Cholesky factor
for both the variate and the parameter. If S and W are positive definite matrices with
Cholesky factors LS and LW (i.e., S = LSL⊤

S and W = LW L⊤
W), then the Cholesky

parameterization is defined so that

LW ∼ WishartCholesky(ν, LS)

if and only if
W ∼ Wishart(ν, S).

Probability density function

If K ∈ N, ν ∈ (K − 1, ∞), and LS, LW ∈ RK×K are lower triangular matrixes with
positive diagonal elements, then the Cholesky parameterized Wishart density is

WishartCholesky(LW | ν, LS) = Wishart(LW L⊤
W | ν, LSL⊤

S)
∣∣∣J f−1

∣∣∣ ,

where J f−1 is the Jacobian of the (inverse) transform of the variate, f−1(LW) =

LW L⊤
W . The log absolute determinant is

log
∣∣∣J f−1

∣∣∣ = K log(2) +
K

∑
k=1

(K − k + 1) log (LW)k, k.

The probability functions will raise errors if ν ≤ K − 1 or if LS and LW are not
Cholesky factors (square, lower-triangular matrices with positive diagonal elements)
of the same size.

Stan functions
real wishart_cholesky_lpdf(matrix L_W | real nu, matrix L_S)
Return the log of the Wishart density for lower-triangular Cholesky factor L_W given
degrees of freedom nu and lower-triangular Cholesky factor of the scale matrix L_S.

29.3. INVERSE WISHART DISTRIBUTION 293

Available since 2.30

real wishart_cholesky_lupdf(matrix L_W | real nu, matrix L_S)
Return the log of the Wishart density for lower-triangular Cholesky factor of L_W
given degrees of freedom nu and lower-triangular Cholesky factor of the scale
matrix L_S dropping constant additive terms.

Available since 2.30

matrix wishart_cholesky_rng(real nu, matrix L_S)
Generate the Cholesky factor of a Wishart variate with degrees of freedom nu and
lower-triangular Cholesky factor of the scale matrix L_S; may only be used in
transformed data and generated quantities blocks

Available since 2.30

29.3. Inverse Wishart distribution
Probability density function

If K ∈ N, ν ∈ (K − 1, ∞), and S ∈ RK×K is symmetric and positive definite, then
for symmetric and positive-definite W ∈ RK×K,

InvWishart(W | ν, S) =
1

2νK/2
1

ΓK
(

ν
2
) |S|ν/2 |W|−(ν+K+1)/2 exp

(
−1

2
tr(SW−1)

)
.

Distribution statement
W ~ inv_wishart(nu, Sigma)

Increment target log probability density with inv_wishart_lupdf(W | nu,
Sigma).

Available since 2.0

Stan functions
real inv_wishart_lpdf(matrix W | real nu, matrix Sigma)
Return the log of the inverse Wishart density for symmetric and positive-definite
matrix W given degrees of freedom nu and symmetric and positive-definite scale
matrix Sigma.

Available since 2.12

real inv_wishart_lupdf(matrix W | real nu, matrix Sigma)
Return the log of the inverse Wishart density for symmetric and positive-definite

294 CHAPTER 29. COVARIANCE MATRIX DISTRIBUTIONS

matrix W given degrees of freedom nu and symmetric and positive-definite scale
matrix Sigma dropping constant additive terms.

Available since 2.25

matrix inv_wishart_rng(real nu, matrix Sigma)
Generate an inverse Wishart variate with degrees of freedom nu and symmetric
and positive-definite scale matrix Sigma; may only be used in transformed data and
generated quantities blocks.

Available since 2.0

29.4. Inverse Wishart distribution, Cholesky Parameterization
The Cholesky parameterization of the inverse Wishart distribution uses a Cholesky
factor for both the variate and the parameter. If S and W are positive definite
matrices with Cholesky factors LS and LW (i.e., S = LSL⊤

S and W = LW L⊤
W), then

the Cholesky parameterization is defined so that

LW ∼ InvWishartCholesky(ν, LS)

if and only if
W ∼ InvWishart(ν, S).

Probability density function

If K ∈ N, ν ∈ (K − 1, ∞), and LS, LW ∈ RK×K are lower triangular matrixes
with positive diagonal elements, then the Cholesky parameterized inverse Wishart
density is

InvWishartCholesky(LW | ν, LS) = InvWishart(LW L⊤
W | ν, LSL⊤

S)
∣∣∣J f−1

∣∣∣ ,

where J f−1 is the Jacobian of the (inverse) transform of the variate, f−1(LW) =

LW L⊤
W . The log absolute determinant is

log
∣∣∣J f−1

∣∣∣ = K log(2) +
K

∑
k=1

(K − k + 1) log (LW)k, k.

The probability functions will raise errors if ν ≤ K − 1 or if LS and LW are not
Cholesky factors (square, lower-triangular matrices with positive diagonal elements)
of the same size.

29.4. INVERSE WISHART DISTRIBUTION, CHOLESKY PARAMETERIZATION295

Stan functions
real inv_wishart_cholesky_lpdf(matrix L_W | real nu, matrix L_S)
Return the log of the inverse Wishart density for lower-triangular Cholesky factor
L_W given degrees of freedom nu and lower-triangular Cholesky factor of the scale
matrix L_S.

Available since 2.30

real inv_wishart_cholesky_lupdf(matrix L_W | real nu, matrix L_S)
Return the log of the inverse Wishart density for lower-triangular Cholesky factor
of L_W given degrees of freedom nu and lower-triangular Cholesky factor of the
scale matrix L_S dropping constant additive terms.

Available since 2.30

matrix inv_wishart_cholesky_rng(real nu, matrix L_S)
Generate the Cholesky factor of an inverse Wishart variate with degrees of freedom
nu and lower-triangular Cholesky factor of the scale matrix L_S; may only be used
in transformed data and generated quantities blocks.

Available since 2.30

Part IV

Additional Distributions

296

30. Hidden Markov Models

An elementary first-order Hidden Markov model is a probabilistic model over
N observations, yn, and N hidden states, xn, which can be fully defined by the
conditional distributions p(yn | xn, ϕ) and p(xn | xn−1, ϕ). Here we make the
dependency on additional model parameters, ϕ, explicit. When x is continuous, the
user can explicitly encode these distributions in Stan and use Markov chain Monte
Carlo to integrate x out.

When each state x takes a value over a discrete and finite set, say {1, 2, ..., K}, we can
take advantage of the dependency structure to marginalize x and compute p(y | ϕ).
We start by defining the conditional observational distribution, stored in a K × N
matrix ω with

ωkn = p(yn | xn = k, ϕ).

Next, we introduce the K × K transition matrix, Γ, with

Γij = p(xn = j | xn−1 = i, ϕ).

Each row defines a probability distribution and must therefore be a simplex (i.e. its
components must add to 1). Currently, Stan only supports stationary transitions
where a single transition matrix is used for all transitions. Finally we define the
initial state K-vector ρ, with

ρk = p(x0 = k | ϕ).

The Stan functions that support this type of model are special in that the user does
not explicitly pass y and ϕ as arguments. Instead, the user passes log ω, Γ, and ρ,
which in turn depend on y and ϕ.

30.1. Stan functions
real hmm_marginal(matrix log_omega, matrix Gamma, vector rho)
Returns the log probability density of y, with xn integrated out at each iteration.

Available since 2.24

The arguments represent (1) the log density of each output, (2) the transition matrix,
and (3) the initial state vector.

• log_omega: log ωkn = log p(yn | xn = k, ϕ), log density of each output,

298

30.1. STAN FUNCTIONS 299

• Gamma: Γij = p(xn = j|xn−1 = i, ϕ), the transition matrix,

• rho: ρk = p(x0 = k | ϕ), the initial state probability.

array[] int hmm_latent_rng(matrix log_omega, matrix Gamma, vector
rho)
Returns a length N array of integers over {1, ..., K}, sampled from the joint posterior
distribution of the hidden states, p(x | ϕ, y). May be only used in transformed data
and generated quantities.

Available since 2.24

matrix hmm_hidden_state_prob(matrix log_omega, matrix Gamma, vector
rho)
Returns the matrix of marginal posterior probabilities of each hidden state value.
This will be a K × N matrix. The nth column is a simplex of probabilities for the nth

variable. Moreover, let A be the output. Then Aij = p(xj = i | ϕ, y). This function
may only be used in transformed data and generated quantities.

Available since 2.24

Part V

Appendix

300

31. Mathematical Functions

This appendix provides the definition of several mathematical functions used
throughout the manual.

31.1. Beta
The beta function, B(a, b), computes the normalizing constant for the beta distribu-
tion, and is defined for a > 0 and b > 0 by

B(a, b) =
∫ 1

0
ua−1(1 − u)b−1 du =

Γ(a) Γ(b)
Γ(a + b)

,

where Γ(x) is the Gamma function.

31.2. Incomplete beta
The incomplete beta function, B(x; a, b), is defined for x ∈ [0, 1] and a, b ≥ 0 such
that a + b ̸= 0 by

B(x; a, b) =
∫ x

0
ua−1 (1 − u)b−1 du,

where B(a, b) is the beta function defined in appendix. If x = 1, the incomplete beta
function reduces to the beta function, B(1; a, b) = B(a, b).

The regularized incomplete beta function divides the incomplete beta function by
the beta function,

Ix(a, b) =
B(x; a, b)

B(a, b)
.

31.3. Gamma
The gamma function, Γ(x), is the generalization of the factorial function to continu-
ous variables, defined so that for positive integers n,

Γ(n + 1) = n!

Generalizing to all positive numbers and non-integer negative numbers,

Γ(x) =
∫ ∞

0
ux−1 exp(−u) du.

302

31.4. DIGAMMA 303

31.4. Digamma
The digamma function Ψ is the derivative of the log Γ function,

Ψ(u) =
d

du
log Γ(u) =

1
Γ(u)

d
du

Γ(u).

References

Bailey, David H., Karthik Jeyabalan, and Xiaoye S. Li. 2005. “A Comparison of
Three High-Precision Quadrature Schemes.” Experiment. Math. 14 (3): 317–29.
https://projecteuclid.org:443/euclid.em/1128371757.

Bowling, Shannon R., Mohammad T. Khasawneh, Sittichai Kaewkuekool, and
Byung Rae Cho. 2009. “A Logistic Approximation to the Cumulative Normal
Distribution.” Journal of Industrial Engineering and Management 2 (1): 114–27.

Ding, Peng, and Joseph K. Blitzstein. 2018. “On the Gaussian Mixture Represen-
tation of the Laplace Distribution.” The American Statistician 72 (2): 172–74.
https://doi.org/10.1080/00031305.2017.1291448.

Durbin, J., and S. J. Koopman. 2001. Time Series Analysis by State Space Methods. New
York: Oxford University Press.

Feller, William. 1968. An Introduction to Probability Theory and Its Applications. Vol. 1.
3. Wiley, New York.

Gaebler, Johann D. 2021. “Autodiff for Implicit Functions in Stan.” https://www.jg
aeb.com/2021/09/13/implicit-autodiff.html#fn:7.

Gelman, Andrew, J. B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin. 2013. Bayesian Data Analysis. Third Edition. London: Chapman
& Hall / CRC Press.

Golub, G. H., and V. Pereyra. 1973. “The Differentiation of Pseudo-Inverses and
Nonlinear Least Squares Problems Whose Variables Separate.” SIAM Journal on
Numerical Analysis 10 (2): 413–32. https://doi.org/10.1137/0710036.

Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.”
http://eigen.tuxfamily.org.

Hindmarsh, Alan C, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban, Dan
E Shumaker, and Carol S Woodward. 2005. “SUNDIALS: Suite of Nonlinear
and Differential/Algebraic Equation Solvers.” ACM Transactions on Mathematical
Software (TOMS) 31 (3): 363–96.

Jorge J. More, Kenneth E. Hillstrom, Burton S. Garbow. 1980. User Guide for
MINPACK-1. 9700 South Cass Avenue, Argonne, Illinois 60439: Argonne Na-
tional Laboratory.

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. “Generating
Random Correlation Matrices Based on Vines and Extended Onion Method.”
Journal of Multivariate Analysis 100: 1989–2001.

Margossian, Charles C, and Michael Betancourt. 2022. “Efficient Automatic Differ-

304

https://projecteuclid.org:443/euclid.em/1128371757
https://doi.org/10.1080/00031305.2017.1291448
https://www.jgaeb.com/2021/09/13/implicit-autodiff.html#fn:7
https://www.jgaeb.com/2021/09/13/implicit-autodiff.html#fn:7
https://doi.org/10.1137/0710036

entiation of Implicit Functions.” Preprint. arXiv:2112.14217.
Mori, Masatake. 1978. “An IMT-Type Double Exponential Formula for Numerical

Integration.” Publications of the Research Institute for Mathematical Sciences 14 (3):
713–29. https://doi.org/10.2977/prims/1195188835.

Navarro, Danielle J, and Ian G Fuss. 2009. “Fast and Accurate Calculations for First-
Passage Times in Wiener Diffusion Models.” Journal of Mathematical Psychology
53 (4): 222–30.

Powell, Michael J. D. 1970. “A Hybrid Method for Nonlinear Equations.” In
Numerical Methods for Nonlinear Algebraic Equations, edited by P. Rabinowitz.
Gordon; Breach.

Serban, Radu, Cosmin Petra, Alan C. Hindmarsh, Cody J. Balos, David J. Gardner,
Daniel R. Reynolds, and Carol S. Woodward. 2021. “User Documentation for
IDAS V5.0.0.” Lawrence Livermore National Laboratory.

Takahasi, Hidetosi, and Masatake Mori. 1974. “Double Exponential Formulas for
Numerical Integration.” Publications of the Research Institute for Mathematical
Sciences 9 (3): 721–41. https://doi.org/10.2977/prims/1195192451.

Tanaka, Ken’ichiro, Masaaki Sugihara, Kazuo Murota, and Masatake Mori. 2009.
“Function Classes for Double Exponential Integration Formulas.” Numerische
Mathematik 111 (4): 631–55. https://doi.org/10.1007/s00211-008-0195-1.

Vandekerckhove, Joachim, and Dominik Wabersich. 2014. “The RWiener Package:
An R Package Providing Distribution Functions for the Wiener Diffusion Model.”
The R Journal 6/1. http://journal.r-project.org/archive/2014-1/vandekerckho
ve-wabersich.pdf.

Wichura, Michael J. 1988. “Algorithm AS 241: The Percentage Points of the Normal
Distribution.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 37
(3): 477–84. http://www.jstor.org/stable/2347330.

305

https://doi.org/10.2977/prims/1195188835
https://doi.org/10.2977/prims/1195192451
https://doi.org/10.1007/s00211-008-0195-1
http://journal.r-project.org/archive/2014-1/vandekerckhove-wabersich.pdf
http://journal.r-project.org/archive/2014-1/vandekerckhove-wabersich.pdf
http://www.jstor.org/stable/2347330

Index

abs
(T x): T, 8, 24
(complex z): real, 47

acos
(T x): R, 28
(complex z): complex, 50

acosh
(T x): R, 29
(complex z): complex, 51

add_diag
(complex_matrix m, complex d):

complex_matrix, 119
(complex_matrix m, com-

plex_row_vector d): com-
plex_matrix, 119

(complex_matrix m, complex_vector
d): complex_matrix, 119

(matrix m, real d): matrix, 79
(matrix m, row_vector d): matrix, 79
(matrix m, vector d): matrix, 79

algebra_solver
(function algebra_system, vector

y_guess, vector theta, data
array[] real x_r, array[] int
x_i, data real rel_tol, data
real f_tol, int max_steps):
vector, 173

algebra_solver_newton
(function algebra_system, vector

y_guess, vector theta, data
array[] real x_r, array[] int
x_i): vector, 173

(function algebra_system, vector
y_guess, vector theta, data
array[] real x_r, array[] int
x_i, data real rel_tol, data
real f_tol, int max_steps):
vector, 173

append_array
(T x, T y): T, 60

append_col
(complex x, complex_row_vector y):

complex_row_vector, 121
(complex_matrix x, complex_matrix

y): complex_matrix, 121
(complex_matrix x, complex_vector

y): complex_matrix, 121
(complex_row_vector x, complex y):

complex_row_vector, 122
(complex_row_vector x, com-

plex_row_vector y): com-
plex_row_vector, 121

(complex_vector x, complex_matrix
y): complex_matrix, 121

(complex_vector x, complex_vector
y): complex_matrix, 121

(matrix x, matrix y): matrix, 84
(matrix x, vector y): matrix, 84
(real x, row_vector y): row_vector,

85
(row_vector x, real y): row_vector,

85
(row_vector x, row_vector y):

row_vector, 85
(vector x, matrix y): matrix, 84
(vector x, vector y): matrix, 85

append_row
(complex x, complex_vector y):

complex_vector, 122
(complex_matrix x, complex_matrix

y): complex_matrix, 122
(complex_matrix x, com-

plex_row_vector y): com-
plex_matrix, 122

(complex_row_vector x, com-
plex_matrix y): complex_matrix,
122

(complex_row_vector x, com-
plex_row_vector y): com-
plex_matrix, 122

(complex_vector x, complex y):
complex_vector, 122

(complex_vector x, complex_vector
y): complex_vector, 122

(matrix x, matrix y): matrix, 85
(matrix x, row_vector y): matrix, 85
(real x, vector y): vector, 86
(row_vector x, matrix y): matrix, 85
(row_vector x, row_vector y): ma-

trix, 85
(vector x, real y): vector, 86
(vector x, vector y): vector, 86

306

arg
(complex z): real, 48

asin
(T x): R, 28
(complex z): complex, 50

asinh
(T x): R, 29
(complex z): complex, 52

atan
(T x): R, 28
(complex z): complex, 51

atan2
(T y, T x): R, 28

atanh
(T x): R, 29
(complex z): complex, 52

bernoulli
sampling statement, 185

bernoulli_cdf
(ints y | reals theta): real, 185

bernoulli_lccdf
(ints y | reals theta): real, 185

bernoulli_lcdf
(ints y | reals theta): real, 185

bernoulli_logit
sampling statement, 186

bernoulli_logit_glm
sampling statement, 187

bernoulli_logit_glm_lpmf
(array[] int y | matrix x, real

alpha, vector beta): real, 188
(array[] int y | matrix x, vector

alpha, vector beta): real, 189
(array[] int y | row_vector x, real

alpha, vector beta): real, 188
(array[] int y | row_vector x, vec-

tor alpha, vector beta): real,
188

(int y | matrix x, real alpha,
vector beta): real, 187

(int y | matrix x, vector alpha,
vector beta): real, 188

bernoulli_logit_glm_lupmf
(array[] int y | matrix x, real

alpha, vector beta): real, 189
(array[] int y | matrix x, vector

alpha, vector beta): real, 189
(array[] int y | row_vector x, real

alpha, vector beta): real, 188

(array[] int y | row_vector x, vec-
tor alpha, vector beta): real,
188

(int y | matrix x, real alpha,
vector beta): real, 187

(int y | matrix x, vector alpha,
vector beta): real, 188

bernoulli_logit_glm_rng
(matrix x, vector alpha, vector

beta): array[] int, 189
(row_vector x, vector alpha, vector

beta): array[] int, 189
bernoulli_logit_lpmf

(ints y | reals alpha): real, 186
bernoulli_logit_lupmf

(ints y | reals alpha): real, 186
bernoulli_logit_rng

(reals alpha): R, 187
bernoulli_lpmf

(ints y | reals theta): real, 185
bernoulli_lupmf

(ints y | reals theta): real, 185
bernoulli_rng

(reals theta): R, 186
bessel_first_kind

(T1 x, T2 y): R, 34
(int v, real x): real, 34

bessel_second_kind
(T1 x, T2 y): R, 35
(int v, real x): real, 35

beta
(T1 x, T2 y): R, 31
(real alpha, real beta): real, 31
sampling statement, 263

beta_binomial
sampling statement, 195

beta_binomial_cdf
(ints n | ints N, reals alpha, reals

beta): real, 196
beta_binomial_lccdf

(ints n | ints N, reals alpha, reals
beta): real, 196

beta_binomial_lcdf
(ints n | ints N, reals alpha, reals

beta): real, 196
beta_binomial_lpmf

(ints n | ints N, reals alpha, reals
beta): real, 195

beta_binomial_lupmf

307

(ints n | ints N, reals alpha, reals
beta): real, 195

beta_binomial_rng
(ints N, reals alpha, reals beta):

R, 196
beta_cdf

(reals theta | reals alpha, reals
beta): real, 263

beta_lccdf
(reals theta | reals alpha, reals

beta): real, 264
beta_lcdf

(reals theta | reals alpha, reals
beta): real, 264

beta_lpdf
(reals theta | reals alpha, reals

beta): real, 263
beta_lupdf

(reals theta | reals alpha, reals
beta): real, 263

beta_neg_binomial
sampling statement, 217

beta_neg_binomial_cdf
(ints n | reals r, reals alpha,

reals beta): real, 218
beta_neg_binomial_lccdf

(ints n | reals r, reals alpha,
reals beta): real, 218

beta_neg_binomial_lcdf
(ints n | reals r, reals alpha,

reals beta): real, 218
beta_neg_binomial_lpmf

(ints n | reals r, reals alpha,
reals beta): real, 218

beta_neg_binomial_lupmf
(ints n | reals r, reals alpha,

reals beta): real, 218
beta_neg_binomial_rng

(reals r, reals alpha, reals beta):
R, 218

beta_proportion
sampling statement, 264

beta_proportion_lccdf
(reals theta | reals mu, reals

kappa): real, 265
beta_proportion_lcdf

(reals theta | reals mu, reals
kappa): real, 265

beta_proportion_lpdf

(reals theta | reals mu, reals
kappa): real, 265

beta_proportion_lupdf
(reals theta | reals mu, reals

kappa): real, 265
beta_proportion_rng

(reals mu, reals kappa): R, 265
beta_rng

(reals alpha, reals beta): R, 264
binary_log_loss

(T1 x, T2 y): R, 31
(int y, real y_hat): real, 31

binomia_cdf
(ints n | ints N, reals theta):

real, 191
binomia_lccdf

(ints n | ints N, reals theta):
real, 191

binomia_lcdf
(ints n | ints N, reals theta):

real, 191
binomia_lpmf

(ints n | ints N, reals theta):
real, 190

binomia_lupmf
(ints n | ints N, reals theta):

real, 190
binomial

sampling statement, 190
binomial_logit

sampling statement, 192
binomial_logit_glm

sampling statement, 193
binomial_logit_glm_lpmf

(array[] int n | array[] int N,
matrix x, real alpha, vector
beta): real, 194

(array[] int n | array[] int N,
matrix x, vector alpha, vector
beta): real, 194

(array[] int n | array[] int N,
row_vector x, real alpha, vec-
tor beta): real, 193

(array[] int n | array[] int N,
row_vector x, vector alpha,
vector beta): real, 194

(int n | int N, matrix x, real
alpha, vector beta): real, 193

(int n | int N, matrix x, vector

308

alpha, vector beta): real, 193
binomial_logit_glm_lupmf

(array[] int n | array[] int N,
matrix x, real alpha, vector
beta): real, 194

(array[] int n | array[] int N,
matrix x, vector alpha, vector
beta): real, 195

(array[] int n | array[] int N,
row_vector x, real alpha, vec-
tor beta): real, 194

(array[] int n | array[] int N,
row_vector x, vector alpha,
vector beta): real, 194

(int n | int N, matrix x, real
alpha, vector beta): real, 193

(int n | int N, matrix x, vector
alpha, vector beta): real, 193

binomial_logit_lpmf
(ints n | ints N, reals alpha):

real, 192
binomial_logit_lupmf

(ints n | ints N, reals alpha):
real, 192

binomial_rng
(ints N, reals theta): R, 191

block
(complex_matrix x, int i, int j,

int n_rows, int n_cols): com-
plex_matrix, 120

(matrix x, int i, int j, int n_rows,
int n_cols): matrix, 82

categorical
sampling statement, 197

categorical_logit
sampling statement, 198

categorical_logit_glm
sampling statement, 199

categorical_logit_glm_lpmf
(array[] int y | matrix x, vector

alpha, matrix beta): real, 200
(array[] int y | row_vector x, vec-

tor alpha, matrix beta): real,
200

(int y | matrix x, vector alpha,
matrix beta): real, 200

(int y | row_vector x, vector alpha,
matrix beta): real, 199

categorical_logit_glm_lupmf

(array[] int y | matrix x, vector
alpha, matrix beta): real, 200

(array[] int y | row_vector x, vec-
tor alpha, matrix beta): real,
200

(int y | matrix x, vector alpha,
matrix beta): real, 200

(int y | row_vector x, vector alpha,
matrix beta): real, 199

categorical_logit_lpmf
(ints y | vector beta): real, 198

categorical_logit_lupmf
(ints y | vector beta): real, 198

categorical_logit_rng
(vector beta): int, 198

categorical_lpmf
(ints y | vector theta): real, 198

categorical_lupmf
(ints y | vector theta): real, 198

categorical_rng
(vector theta): int, 198

cauchy
sampling statement, 236

cauchy_cdf
(reals y | reals mu, reals sigma):

real, 236
cauchy_lccdf

(reals y | reals mu, reals sigma):
real, 236

cauchy_lcdf
(reals y | reals mu, reals sigma):

real, 236
cauchy_lpdf

(reals y | reals mu, reals sigma):
real, 236

cauchy_lupdf
(reals y | reals mu, reals sigma):

real, 236
cauchy_rng

(reals mu, reals sigma): R, 236
cbrt

(T x): R, 26
ceil

(T x): R, 26
chi_square

sampling statement, 244
chi_square_cdf

(reals y | reals nu): real, 244
chi_square_lccdf

309

(reals y | reals nu): real, 245
chi_square_lcdf

(reals y | reals nu): real, 244
chi_square_lpdf

(reals y | reals nu): real, 244
chi_square_lupdf

(reals y | reals nu): real, 244
chi_square_rng

(reals nu): R, 245
chol2inv

(matrix L): matrix, 98
cholesky_decompose

(matrix A): matrix, 102
cholesky_factor_corr_constrain

(vectors y, int K): matrices, 164
cholesky_factor_corr_jacobian

(vectors y, int K): matrices, 164
cholesky_factor_corr_unconstrain

(matrices x): vectors, 164
cholesky_factor_cov_constrain

(vectors y, int M, int N): matrices,
164

cholesky_factor_cov_jacobian
(vectors y, int M, int N): matrices,

165
cholesky_factor_cov_unconstrain

(matrices x): vectors, 165
choose

(T1 x, T2 y): R, 34
(int x, int y): int, 34

col
(complex_matrix x, int n): com-

plex_vector, 119
(matrix x, int n): vector, 82

cols
(complex_matrix x): int, 107
(complex_row_vector x): int, 106
(complex_vector x): int, 106
(matrix x): int, 63
(row_vector x): int, 63
(vector x): int, 63

columns_dot_product
(complex_matrix x, complex_matrix

y): complex_row_vector, 114
(complex_row_vector x, com-

plex_row_vector y): com-
plex_row_vector, 114

(complex_vector x, complex_vector
y): complex_row_vector, 114

(matrix x, matrix y): row_vector, 71
(row_vector x, row_vector y):

row_vector, 71
(vector x, vector y): row_vector, 71

columns_dot_self
(complex_matrix x): com-

plex_row_vector, 115
(complex_row_vector x): com-

plex_row_vector, 115
(complex_vector x): com-

plex_row_vector, 115
(matrix x): row_vector, 72
(row_vector x): row_vector, 72
(vector x): row_vector, 72

complex_schur_decompose
(complex_matrix A): tu-

ple(complex_matrix, com-
plex_matrix), 128

(matrix A): tuple(complex_matrix,
complex_matrix), 127

complex_schur_decompose_t
(complex_matrix A): complex_matrix,

127
(matrix A): complex_matrix, 127

complex_schur_decompose_u
(complex_matrix A): complex_matrix,

127
(matrix A): complex_matrix, 127

conj
(Z z): Z, 48
(complex z): complex, 48

corr_matrix_constrain
(vectors y, int K): matrices, 165

corr_matrix_jacobian
(vectors y, int K): matrices, 165

corr_matrix_unconstrain
(matrices x): vectors, 165

cos
(T x): R, 28
(complex z): complex, 50

cosh
(T x): R, 29
(complex z): complex, 51

cov_exp_quad
(array[] real x, real alpha, real

rho): matrix, 176
(array[] real x1, array[] real x2,

real alpha, real rho): matrix,
176

310

(row_vectors x, real alpha, real
rho): matrix, 175

(row_vectors x1, row_vectors x2,
real alpha, real rho): matrix,
176

(vectors x, real alpha, real rho):
matrix, 176

(vectors x1, vectors x2, real alpha,
real rho): matrix, 176

cov_matrix_constrain
(vectors y, int K): matrices, 166

cov_matrix_jacobian
(vectors y, int K): matrices, 166

cov_matrix_unconstrain
(matrices x): vectors, 166

crossprod
(matrix x): matrix, 72

csr_extract
(matrix a): tuple(vector, array[]

int, array[] int), 130
csr_extract_u

(matrix a): array[] int, 130
csr_extract_v

(matrix a): array[] int, 130
csr_extract_w

(matrix a): vector, 130
csr_matrix_times_vector

(int m, int n, vector w, array[] int
v, array[] int u, vector b):
vector, 131

csr_to_dense_matrix
(int m, int n, vector w, array[] int

v, array[] int u): matrix, 131
cumulative_sum

(array[] complex x): array[] real,
124

(array[] int x): array[] int, 87
(array[] real x): array[] real, 87
(complex_row_vector rv): com-

plex_row_vector, 124
(complex_vector v): complex_vector,

124
(row_vector rv): row_vector, 87
(vector v): vector, 87

dae
(function residual, vector ini-

tial_state, vector ini-
tial_state_derivative, data
real initial_time, data array[]

real times, ...): array[]
vector, 150

dae_tol
(function residual, vector ini-

tial_state, vector ini-
tial_state_derivative, data
real initial_time, data ar-
ray[] real times, data real
rel_tol, data real abs_tol, int
max_num_steps, ...): array[]
vector, 150

determinant
(matrix A): real, 97

diag_matrix
(complex_vector x): complex_matrix,

119
(vector x): matrix, 79

diag_post_multiply
(complex_matrix m, com-

plex_row_vector v): com-
plex_matrix, 116

(complex_matrix m, complex_vector
v): complex_matrix, 116

(matrix m, row_vector rv): matrix,
74

(matrix m, vector v): matrix, 74
diag_pre_multiply

(complex_row_vector v, com-
plex_matrix m): complex_matrix,
116

(complex_vector v, complex_matrix
m): complex_matrix, 116

(row_vector rv, matrix m): matrix,
74

(vector v, matrix m): matrix, 74
diagonal

(complex_matrix x): complex_vector,
119

(matrix x): vector, 79
digamma

(T x): R, 32
dims

(T x): array[] int, 58
dirichlet

sampling statement, 286
dirichlet_lpdf

(vectors theta | vectors alpha):
real, 286

dirichlet_lupdf

311

(vectors theta | vectors alpha):
real, 287

dirichlet_multinomial
sampling statement, 221

dirichlet_multinomial_lpmf
(array[] int y | vector alpha):

real, 221
dirichlet_multinomial_lupmf

(array[] int y | vector alpha):
real, 221

dirichlet_multinomial_rng
(vector alpha, int N): array[] int,

222
dirichlet_rng

(vector alpha): vector, 287
discrete_range

sampling statement, 201
discrete_range_cdf

(ints n | ints N, reals theta):
real, 201

discrete_range_lccdf
(ints n | ints N, reals theta):

real, 202
discrete_range_lcdf

(ints n | ints N, reals theta):
real, 201

discrete_range_lpmf
(ints y | ints l, ints u): real, 201

discrete_range_lupmf
(ints y | ints l, ints u): real, 201

discrete_range_rng
(ints l, ints u): ints, 202

distance
(row_vector x, row_vector y): real,

56
(row_vector x, vector y): real, 56
(vector x, row_vector y): real, 56
(vector x, vector y): real, 56

dot_product
(complex_row_vector x, com-

plex_row_vector y): complex,
114

(complex_row_vector x, com-
plex_vector y): complex, 114

(complex_vector x, com-
plex_row_vector y): complex,
114

(complex_vector x, complex_vector
y): complex, 114

(row_vector x, row_vector y): real,
71

(row_vector x, vector y): real, 71
(vector x, row_vector y): real, 71
(vector x, vector y): real, 71

dot_self
(complex_row_vector x): complex, 115
(complex_vector x): complex, 115
(row_vector x): real, 72
(vector x): real, 72

double_exponential
sampling statement, 237

double_exponential_cdf
(reals y | reals mu, reals sigma):

real, 238
double_exponential_lccdf

(reals y | reals mu, reals sigma):
real, 238

double_exponential_lcdf
(reals y | reals mu, reals sigma):

real, 238
double_exponential_lpdf

(reals y | reals mu, reals sigma):
real, 238

double_exponential_lupdf
(reals y | reals mu, reals sigma):

real, 238
double_exponential_rng

(reals mu, reals sigma): R, 238
e

(): real, 16
eigendecompose

(complex_matrix A): tu-
ple(complex_matrix, com-
plex_vector), 125

(matrix A): tuple(complex_matrix,
complex_vector), 99

eigendecompose_sym
(complex_matrix A): tu-

ple(complex_matrix, com-
plex_vector), 125

(matrix A): tuple(matrix, vector),
100

eigenvalues
(complex_matrix A): complex_vector,

125
(matrix A): complex_vector, 99

eigenvalues_sym
(complex_matrix A): complex_vector,

312

125
(matrix A): vector, 99

eigenvectors
(complex_matrix A): complex_matrix,

125
(matrix A): complex_matrix, 99

eigenvectors_sym
(complex_matrix A): complex_matrix,

125
(matrix A): matrix, 100

erf
(T x): R, 30

erfc
(T x): R, 30

exp
(T x): R, 26
(complex z): complex, 49

exp2
(T x): R, 26

exp_mod_normal
sampling statement, 232

exp_mod_normal_cdf
(reals y | reals mu, reals sigma,

reals lambda): real, 232
exp_mod_normal_lccdf

(reals y | reals mu, reals sigma,
reals lambda): real, 232

exp_mod_normal_lcdf
(reals y | reals mu, reals sigma,

reals lambda): real, 232
exp_mod_normal_lpdf

(reals y | reals mu, reals sigma,
reals lambda): real, 232

exp_mod_normal_lupdf
(reals y | reals mu, reals sigma,

reals lambda): real, 232
exp_mod_normal_rng

(reals mu, reals sigma, reals
lambda): R, 233

expm1
(T x): R, 38

exponential
sampling statement, 247

exponential_cdf
(reals y | reals beta): real, 248

exponential_lccdf
(reals y | reals beta): real, 248

exponential_lcdf
(reals y | reals beta): real, 248

exponential_lpdf
(reals y | reals beta): real, 248

exponential_lupdf
(reals y | reals beta): real, 248

exponential_rng
(reals beta): R, 248

falling_factorial
(T1 x, T2 y): R, 36
(real x, real n): real, 36

fatal_error
(T1 x1,..., TN xN): void, 5

fdim
(T1 x, T2 y): R, 24
(real x, real y): real, 24

fft
(complex_vector v): complex_vector,

123
fft2

(complex_matrix m): complex_matrix,
123

floor
(T x): R, 25

fma
(real x, real y, real z): real, 38

fmax
(T1 x, T2 y): R, 25
(real x, real y): real, 25

fmin
(T1 x, T2 y): R, 24
(real x, real y): real, 24

fmod
(T1 x, T2 y): R, 25
(real x, real y): real, 25

frechet
sampling statement, 252

frechet_cdf
(reals y | reals alpha, reals

sigma): real, 252
frechet_lccdf

(reals y | reals alpha, reals
sigma): real, 253

frechet_lcdf
(reals y | reals alpha, reals

sigma): real, 253
frechet_lpdf

(reals y | reals alpha, reals
sigma): real, 252

frechet_lupdf

313

(reals y | reals alpha, reals
sigma): real, 252

frechet_rng
(reals alpha, reals sigma): R, 253

gamma
sampling statement, 249

gamma_cdf
(reals y | reals alpha, reals beta):

real, 249
gamma_lccdf

(reals y | reals alpha, reals beta):
real, 249

gamma_lcdf
(reals y | reals alpha, reals beta):

real, 249
gamma_lpdf

(reals y | reals alpha, reals beta):
real, 249

gamma_lupdf
(reals y | reals alpha, reals beta):

real, 249
gamma_p

(T1 x, T2 y): R, 33
(real a, real z): real, 33

gamma_q
(T1 x, T2 y): R, 34
(real a, real z): real, 33

gamma_rng
(reals alpha, reals beta): R, 249

gaussian_dlm_obs
sampling statement, 283

gaussian_dlm_obs_lpdf
(matrix y | matrix F, matrix G,

matrix V, matrix W, vector m0,
matrix C0): real, 283

(matrix y | matrix F, matrix G,
vector V, matrix W, vector m0,
matrix C0): real, 284

gaussian_dlm_obs_lupdf
(matrix y | matrix F, matrix G,

matrix V, matrix W, vector m0,
matrix C0): real, 283

(matrix y | matrix F, matrix G,
vector V, matrix W, vector m0,
matrix C0): real, 284

generalized_inverse
(matrix A): matrix, 99

get_imag
(T x): T_demoted, 118

(complex z): real, 44
get_real

(T x): T_demoted, 118
(complex z): real, 44

gp_dot_prod_cov
(array[] real x, real sigma): ma-

trix, 89
(array[] real x1, array[] real x2,

real sigma): matrix, 89
(vectors x, real sigma): matrix, 89
(vectors x1, vectors x2, real

sigma): matrix, 89
gp_exp_quad_cov

(array[] real x, real sigma, real
length_scale): matrix, 88

(array[] real x1, array[] real x2,
real sigma, real length_scale):
matrix, 88

(vectors x, real sigma, array[] real
length_scale): matrix, 88

(vectors x, real sigma, real
length_scale): matrix, 88

(vectors x1, vectors x2, real sigma,
array[] real length_scale):
matrix, 89

(vectors x1, vectors x2, real sigma,
real length_scale): matrix, 88

gp_exponential_cov
(array[] real x, real sigma, real

length_scale): matrix, 90
(array[] real x1, array[] real x2,

real sigma, real length_scale):
matrix, 90

(vectors x, real sigma, array[] real
length_scale): matrix, 90

(vectors x, real sigma, real
length_scale): matrix, 90

(vectors x1, vectors x2, real sigma,
array[] real length_scale):
matrix, 91

(vectors x1, vectors x2, real sigma,
real length_scale): matrix, 90

gp_matern32_cov
(array[] real x, real sigma, real

length_scale): matrix, 91
(array[] real x1, array[] real x2,

real sigma, real length_scale):
matrix, 91

(vectors x, real sigma, array[] real

314

length_scale): matrix, 92
(vectors x, real sigma, real

length_scale): matrix, 91
(vectors x1, vectors x2, real sigma,

array[] real length_scale):
matrix, 92

(vectors x1, vectors x2, real sigma,
real length_scale): matrix, 92

gp_matern52_cov
(array[] real x, real sigma, real

length_scale): matrix, 92
(array[] real x1, array[] real x2,

real sigma, real length_scale):
matrix, 92

(vectors x, real sigma, array[] real
length_scale): matrix, 93

(vectors x, real sigma, real
length_scale): matrix, 93

(vectors x1, vectors x2, real sigma,
array[] real length_scale):
matrix, 93

(vectors x1, vectors x2, real sigma,
real length_scale): matrix, 93

gp_periodic_cov
(array[] real x, real sigma, real

length_scale, real period):
matrix, 94

(array[] real x1, array[] real x2,
real sigma, real length_scale,
real period): matrix, 94

(vectors x, real sigma, real
length_scale, real period):
matrix, 94

(vectors x1, vectors x2, real sigma,
real length_scale, real pe-
riod): matrix, 94

gumbel
sampling statement, 240

gumbel_cdf
(reals y | reals mu, reals beta):

real, 240
gumbel_lccdf

(reals y | reals mu, reals beta):
real, 240

gumbel_lcdf
(reals y | reals mu, reals beta):

real, 240
gumbel_lpdf

(reals y | reals mu, reals beta):

real, 240
gumbel_lupdf

(reals y | reals mu, reals beta):
real, 240

gumbel_rng
(reals mu, reals beta): R, 240

head
(array[] T sv, int n): array[] T, 83
(complex_row_vector rv, int n):

complex_row_vector, 120
(complex_vector v, int n): com-

plex_vector, 120
(row_vector rv, int n): row_vector,

83
(vector v, int n): vector, 83

hmm_hidden_state_prob
(matrix log_omega, matrix Gamma,

vector rho): matrix, 299
hmm_latent_rng

(matrix log_omega, matrix Gamma,
vector rho): array[] int, 299

hmm_marginal
(matrix log_omega, matrix Gamma,

vector rho): real, 298
hypergeometric

sampling statement, 197
hypergeometric_1F0

(real a, real z): real, 41
hypergeometric_2F1

(real a1, real a2, real b1, real z):
real, 41

hypergeometric_3F2
(T1 a, T2 b, real z): real, 42

hypergeometric_lpmf
(int n | int N, int a, int b):

real, 197
hypergeometric_lupmf

(int n | int N, int a, int b):
real, 197

hypergeometric_pFq
(T1 a, T2 b, real z): real, 42

hypergeometric_rng
(int N, int a, int2 b): int, 197

hypot
(T1 x, T2 y): R, 28
(real x, real y): real, 28

identity_matrix_matrix
(int k): matrix, 80

inc_beta

315

(real alpha, real beta, real x):
real, 32

int_step
(int x): int, 8
(real x): int, 8

integrate_1d
(function integrand, real a, real

b, array[] real theta, array[]
real x_r, array[] int x_i):
real, 153

(function integrand, real a, real
b, array[] real theta, array[]
real x_r, array[] int x_i, real
relative_tolerance): real, 153

integrate_ode
(function ode, array[] real ini-

tial_state, real initial_time,
array[] real times, array[]
real theta, array[] real x_r,
array[] int x_i): array[,]
real, 170

integrate_ode_adams
(function ode, array[] real ini-

tial_state, real initial_time,
array[] real times, array[]
real theta, data array[] real
x_r, data array[] int x_i):
array[,] real, 170

(function ode, array[] real ini-
tial_state, real initial_time,
array[] real times, array[]
real theta, data array[]
real x_r, data array[] int
x_i, data real rel_tol,
data real abs_tol, data int
max_num_steps): array[,] real,
171

integrate_ode_bdf
(function ode, array[] real ini-

tial_state, real initial_time,
array[] real times, array[]
real theta, data array[] real
x_r, data array[] int x_i):
array[,] real, 171

(function ode, array[] real ini-
tial_state, real initial_time,
array[] real times, array[]
real theta, data array[]
real x_r, data array[] int

x_i, data real rel_tol,
data real abs_tol, data int
max_num_steps): array[,] real,
171

integrate_ode_rk45
(function ode, array[] real ini-

tial_state, real initial_time,
array[] real times, array[]
real theta, array[] real x_r,
array[] int x_i): array[,]
real, 170

(function ode, array[] real ini-
tial_state, real initial_time,
array[] real times, array[]
real theta, array[] real
x_r, array[] int x_i, real
rel_tol, real abs_tol, int
max_num_steps): array[,] real,
170

inv
(T x): R, 27

inv_chi_square
sampling statement, 245

inv_chi_square_cdf
(reals y | reals nu): real, 245

inv_chi_square_lccdf
(reals y | reals nu): real, 246

inv_chi_square_lcdf
(reals y | reals nu): real, 246

inv_chi_square_lpdf
(reals y | reals nu): real, 245

inv_chi_square_lupdf
(reals y | reals nu): real, 245

inv_chi_square_rng
(reals nu): R, 246

inv_cloglog
(T x): R, 30

inv_erfc
(T x): R, 30

inv_fft
(complex_vector u): complex_vector,

123
inv_fft2

(complex_matrix m): complex_matrix,
124

inv_gamma
sampling statement, 250

inv_gamma_cdf
(reals y | reals alpha, reals beta):

316

real, 250
inv_gamma_lccdf

(reals y | reals alpha, reals beta):
real, 250

inv_gamma_lcdf
(reals y | reals alpha, reals beta):

real, 250
inv_gamma_lpdf

(reals y | reals alpha, reals beta):
real, 250

inv_gamma_lupdf
(reals y | reals alpha, reals beta):

real, 250
inv_gamma_rng

(reals alpha, reals beta): R, 250
inv_inc_beta

(real alpha, real beta, real p):
real, 32

inv_logit
(T x): R, 30

inv_phi
(T x): R, 30

inv_sqrt
(T x): R, 27

inv_square
(T x): R, 27

inv_wishart
sampling statement, 293

inv_wishart_cholesky_lpdf
(matrix L_W | real nu, matrix L_S):

real, 295
inv_wishart_lpdf

(matrix W | real nu, matrix Sigma):
real, 293

inv_wishart_lupdf
(matrix L_W | real nu, matrix L_S):

real, 295
(matrix W | real nu, matrix Sigma):

real, 293
inv_wishart_rng

(real nu, matrix L_S): matrix, 295
(real nu, matrix Sigma): matrix, 294

inverse
(matrix A): matrix, 98

inverse_spd
(matrix A): matrix, 98

is_inf
(real x): int, 22

is_nan

(real x): int, 22
lambert_w0

(T x): R, 41
lambert_wm1

(T x): R, 41
lbeta

(T1 x, T2 y): R, 32
(real alpha, real beta): real, 32

lchoose
(T1 x, T2 y): R, 37
(real x, real y): real, 36

ldexp
(T1 x, T2 y): R, 38
(real x, int y): real, 38

lgamma
(T x): R, 32

linspaced_array
(int n, data real lower, data real

upper): array[] real, 80
linspaced_int_array

(int n, int lower, int upper):
array[] real, 80

linspaced_row_vector
(int n, data real lower, data real

upper): row_vector, 80
linspaced_vector

(int n, data real lower, data real
upper): vector, 80

lkj_corr
sampling statement, 289

lkj_corr_cholesky
sampling statement, 290

lkj_corr_cholesky_lpdf
(matrix L | real eta): real, 290

lkj_corr_cholesky_lupdf
(matrix L | real eta): real, 290

lkj_corr_cholesky_rng
(int K, real eta): matrix, 290

lkj_corr_lpdf
(matrix y | real eta): real, 289

lkj_corr_lupdf
(matrix y | real eta): real, 289

lkj_corr_rng
(int K, real eta): matrix, 289

lmgamma
(T1 x, T2 y): R, 33
(int n, real x): real, 33

lmultiply
(T1 x, T2 y): R, 38

317

(real x, real y): real, 38
log

(T x): R, 26
(complex z): complex, 49

log10
(): real, 16
(T x): R, 27
(complex z): complex, 49

log1m
(T x): R, 39

log1m_exp
(T x): R, 39

log1m_inv_logit
(T x): R, 40

log1p
(T x): R, 38

log1p_exp
(T x): R, 39

log2
(): real, 16
(T x): R, 27

log_determinant
(matrix A): real, 98

log_diff_exp
(T1 x, T2 y): R, 39
(real x, real y): real, 39

log_falling_factorial
(real x, real n): real, 37

log_inv_logit
(T x): R, 40

log_inv_logit_diff
(T1 x, T2 y): R, 40

log_mix
(T1 thetas, T2 lps): real, 40
(real theta, real lp1, real lp2):

real, 39
log_modified_bessel_first_kind

(T1 x, T2 y): R, 35
(real v, real z): real, 35

log_rising_factorial
(T1 x, T2 y): R, 37
(real x, real n): real, 37

log_softmax
(vector x): vector, 86

log_sum_exp
(T1 x, T2 y): R, 40
(array[] real x): real, 54
(matrix x): real, 75
(row_vector x): real, 75

(vector x): real, 75
logistic

sampling statement, 239
logistic_cdf

(reals y | reals mu, reals sigma):
real, 239

logistic_lccdf
(reals y | reals mu, reals sigma):

real, 239
logistic_lcdf

(reals y | reals mu, reals sigma):
real, 239

logistic_lpdf
(reals y | reals mu, reals sigma):

real, 239
logistic_lupdf

(reals y | reals mu, reals sigma):
real, 239

logistic_rng
(reals mu, reals sigma): R, 239

logit
(T x): R, 29

loglogistic
sampling statement, 254

loglogistic_cdf
(reals y | reals alpha, reals beta):

real, 255
loglogistic_lpdf

(reals y | reals alpha, reals beta):
real, 255

loglogistic_rng
(reals alpha, reals beta): R, 255

lognormal
sampling statement, 243

lognormal_cdf
(reals y | reals mu, reals sigma):

real, 243
lognormal_lccdf

(reals y | reals mu, reals sigma):
real, 244

lognormal_lcdf
(reals y | reals mu, reals sigma):

real, 243
lognormal_lpdf

(reals y | reals mu, reals sigma):
real, 243

lognormal_lupdf
(reals y | reals mu, reals sigma):

real, 243

318

lognormal_rng
(reals mu, reals sigma): R, 244

lower_bound_constrain
(reals y, reals lb): reals, 158

lower_bound_jacobian
(reals y, reals lb): reals, 158

lower_bound_unconstrain
(reals x, reals lb): reals, 159

lower_upper_bound_constrain
(reals y, reals lb, reals ub):

reals, 159
lower_upper_bound_jacobian

(reals y, reals lb, reals ub):
reals, 160

lower_upper_bound_unconstrain
(reals x, reals lb, reals ub):

reals, 160
machine_precision

(): real, 17
map_rect

(F f, vector phi, array[] vector
theta, data array[,] real x_r,
data array[,] int x_i): vector,
157

matrix_exp
(matrix A): matrix, 97

matrix_exp_multiply
(matrix A, matrix B): matrix, 97

matrix_power
(matrix A, int B): matrix, 97

max
(array[] int x): int, 53
(array[] real x): real, 53
(int x, int y): int, 9
(matrix x): real, 75
(row_vector x): real, 75
(vector x): real, 75

mdivide_left_spd
(matrix A, matrix B): vector, 96
(matrix A, vector b): matrix, 96

mdivide_left_tri_low
(matrix A, matrix B): matrix, 95
(matrix A, vector b): vector, 95

mdivide_right_spd
(matrix B, matrix A): matrix, 96
(row_vector b, matrix A):

row_vector, 96
mdivide_right_tri_low

(matrix B, matrix A): matrix, 96

(row_vector b, matrix A):
row_vector, 95

mean
(array[] real x): real, 54
(matrix x): real, 76
(row_vector x): real, 76
(vector x): real, 76

min
(array[] int x): int, 53
(array[] real x): real, 53
(int x, int y): int, 9
(matrix x): real, 75
(row_vector x): real, 75
(vector x): real, 75

modified_bessel_first_kind
(T1 x, T2 y): R, 35
(int v, real z): real, 35

modified_bessel_second_kind
(T1 x, T2 y): R, 36
(int v, real z): real, 36

multi_gp
sampling statement, 278

multi_gp_cholesky
sampling statement, 278

multi_gp_cholesky_lpdf
(matrix y | matrix L, vector w):

real, 278
multi_gp_cholesky_lupdf

(matrix y | matrix L, vector w):
real, 279

multi_gp_lpdf
(matrix y | matrix Sigma, vector w):

real, 278
multi_gp_lupdf

(matrix y | matrix Sigma, vector w):
real, 278

multi_normal
sampling statement, 271

multi_normal_cholesky
sampling statement, 275

multi_normal_cholesky_lpdf
(row_vectors y | row_vectors mu,

matrix L): real, 276
(row_vectors y | vectors mu, matrix

L): real, 276
(vectors y | row_vectors mu, matrix

L): real, 275
(vectors y | vectors mu, matrix L):

real, 275

319

multi_normal_cholesky_lupdf
(row_vectors y | row_vectors mu,

matrix L): real, 276
(row_vectors y | vectors mu, matrix

L): real, 276
(vectors y | row_vectors mu, matrix

L): real, 276
(vectors y | vectors mu, matrix L):

real, 275
multi_normal_cholesky_rng

(row_vector mu, matrix L): vector,
277

(row_vectors mu, matrix L): vectors,
277

(vector mu, matrix L): vector, 276
(vectors mu, matrix L): vectors, 277

multi_normal_lpdf
(row_vectors y | row_vectors mu,

matrix Sigma): real, 272
(row_vectors y | vectors mu, matrix

Sigma): real, 272
(vectors y | row_vectors mu, matrix

Sigma): real, 272
(vectors y | vectors mu, matrix

Sigma): real, 271
multi_normal_lupdf

(row_vectors y | row_vectors mu,
matrix Sigma): real, 272

(row_vectors y | vectors mu, matrix
Sigma): real, 272

(vectors y | row_vectors mu, matrix
Sigma): real, 272

(vectors y | vectors mu, matrix
Sigma): real, 271

multi_normal_prec
sampling statement, 273

multi_normal_prec_lpdf
(row_vectors y | row_vectors mu,

matrix Omega): real, 274
(row_vectors y | vectors mu, matrix

Omega): real, 274
(vectors y | row_vectors mu, matrix

Omega): real, 274
(vectors y | vectors mu, matrix

Omega): real, 273
multi_normal_prec_lupdf

(row_vectors y | row_vectors mu,
matrix Omega): real, 274

(row_vectors y | vectors mu, matrix

Omega): real, 274
(vectors y | row_vectors mu, matrix

Omega): real, 274
(vectors y | vectors mu, matrix

Omega): real, 274
multi_normal_rng

(row_vector mu, matrix Sigma):
vector, 273

(row_vectors mu, matrix Sigma):
vectors, 273

(vector mu, matrix Sigma): vector,
272

(vectors mu, matrix Sigma): vec-
tors, 273

multi_student_t
sampling statement, 279

multi_student_t_cholesky
sampling statement, 281

multi_student_t_cholesky_lpdf
(vectors y | real nu, vectors mu,

matrix L): real, 282
multi_student_t_cholesky_lupdf

(vectors y | real nu, vectors mu,
matrix L): real, 282

multi_student_t_cholesky_rng
(real nu, row_vectors mu, matrix L):

vector, 282
(real nu, vector mu, matrix L):

vector, 282
multi_student_t_lpdf

(row_vectors y | real nu,
row_vectors mu, matrix Sigma):
real, 280

(row_vectors y | real nu, vectors
mu, matrix Sigma): real, 280

(vectors y | real nu, row_vectors
mu, matrix Sigma): real, 279

(vectors y | real nu, vectors mu,
matrix Sigma): real, 279

multi_student_t_lupdf
(row_vectors y | real nu,

row_vectors mu, matrix Sigma):
real, 280

(row_vectors y | real nu, vectors
mu, matrix Sigma): real, 280

(vectors y | real nu, row_vectors
mu, matrix Sigma): real, 280

(vectors y | real nu, vectors mu,
matrix Sigma): real, 279

320

multi_student_t_rng
(real nu, row_vector mu, matrix

Sigma): vector, 281
(real nu, row_vectors mu, matrix

Sigma): vectors, 281
(real nu, vector mu, matrix Sigma):

vector, 280
(real nu, vectors mu, matrix Sigma):

vectors, 281
multinomial

sampling statement, 219
multinomial_logit

sampling statement, 220
multinomial_logit_lpmf

(array[] int y | vector gamma):
real, 220

multinomial_logit_lupmf
(array[] int y | vector gamma):

real, 220
multinomial_logit_rng

(vector gamma, int N): array[] int,
221

multinomial_lpmf
(array[] int y | vector theta):

real, 219
multinomial_lupmf

(array[] int y | vector theta):
real, 219

multinomial_rng
(vector theta, int N): array[] int,

219
multiply_lower_tri_self_transpose

(matrix x): matrix, 74
neg_binomial

sampling statement, 207
neg_binomial_2

sampling statement, 209
neg_binomial_2_cdf

(ints n | reals mu, reals phi):
real, 209

neg_binomial_2_lccdf
(ints n | reals mu, reals phi):

real, 209
neg_binomial_2_lcdf

(ints n | reals mu, reals phi):
real, 209

neg_binomial_2_log
sampling statement, 210

neg_binomial_2_log_glm

sampling statement, 211
neg_binomial_2_log_glm_lpmf

(array[] int y | matrix x, real
alpha, vector beta, real phi):
real, 212

(array[] int y | matrix x, vector
alpha, vector beta, real phi):
real, 213

(array[] int y | row_vector x, real
alpha, vector beta, real phi):
real, 212

(array[] int y | row_vector x, vec-
tor alpha, vector beta, real
phi): real, 212

(int y | matrix x, real alpha, vec-
tor beta, real phi): real,
211

(int y | matrix x, vector alpha,
vector beta, real phi): real,
211

neg_binomial_2_log_glm_lupmf
(array[] int y | matrix x, real

alpha, vector beta, real phi):
real, 213

(array[] int y | matrix x, vector
alpha, vector beta, real phi):
real, 213

(array[] int y | row_vector x, real
alpha, vector beta, real phi):
real, 212

(array[] int y | row_vector x, vec-
tor alpha, vector beta, real
phi): real, 212

(int y | matrix x, real alpha, vec-
tor beta, real phi): real,
211

(int y | matrix x, vector alpha,
vector beta, real phi): real,
212

neg_binomial_2_log_lpmf
(ints n | reals eta, reals phi):

real, 210
neg_binomial_2_log_lupmf

(ints n | reals eta, reals phi):
real, 210

neg_binomial_2_log_rng
(reals eta, reals phi): R, 210

neg_binomial_2_lpmf
(ints n | reals mu, reals phi):

321

real, 209
neg_binomial_2_lupmf

(ints n | reals mu, reals phi):
real, 209

neg_binomial_2_rng
(reals mu, reals phi): R, 210

neg_binomial_cdf
(ints n | reals alpha, reals beta):

real, 208
neg_binomial_lccdf

(ints n | reals alpha, reals beta):
real, 208

neg_binomial_lcdf
(ints n | reals alpha, reals beta):

real, 208
neg_binomial_lpmf

(ints n | reals alpha, reals beta):
real, 207

neg_binomial_lupmf
(ints n | reals alpha, reals beta):

real, 207
neg_binomial_rng

(reals alpha, reals beta): R, 208
negative_infinity

(): real, 17
norm

(complex z): real, 48
norm1

(array[] real x): real, 55
(row_vector x): real, 55
(vector x): real, 55

norm2
(array[] real x): real, 56
(row_vector x): real, 56
(vector x): real, 55

normal
sampling statement, 225

normal_cdf
(reals y | reals mu, reals sigma):

real, 225
normal_id_glm

sampling statement, 228
normal_id_glm_lpdf

(real y | matrix x, real alpha,
vector beta, real sigma): real,
228

(real y | matrix x, real alpha, vec-
tor beta, vector sigma): real,
229

(real y | matrix x, vector alpha,
vector beta, real sigma): real,
229

(real y | matrix x, vector alpha,
vector beta, vector sigma):
real, 229

(vector y | matrix x, real alpha,
vector beta, real sigma): real,
230

(vector y | matrix x, real alpha,
vector beta, vector sigma):
real, 231

(vector y | matrix x, vector alpha,
vector beta, real sigma): real,
230

(vector y | matrix x, vector alpha,
vector beta, vector sigma):
real, 231

(vector y | row_vector x, real al-
pha, vector beta, real sigma):
real, 229

(vector y | row_vector x, vector al-
pha, vector beta, real sigma):
real, 230

normal_id_glm_lupdf
(real y | matrix x, real alpha,

vector beta, real sigma): real,
228

(real y | matrix x, real alpha, vec-
tor beta, vector sigma): real,
229

(real y | matrix x, vector alpha,
vector beta, real sigma): real,
229

(real y | matrix x, vector alpha,
vector beta, vector sigma):
real, 229

(vector y | matrix x, real alpha,
vector beta, real sigma): real,
230

(vector y | matrix x, real alpha,
vector beta, vector sigma):
real, 231

(vector y | matrix x, vector alpha,
vector beta, real sigma): real,
231

(vector y | matrix x, vector alpha,
vector beta, vector sigma):
real, 231

322

(vector y | row_vector x, real al-
pha, vector beta, real sigma):
real, 230

(vector y | row_vector x, vector al-
pha, vector beta, real sigma):
real, 230

normal_lccdf
(reals y | reals mu, reals sigma):

real, 226
normal_lcdf

(reals y | reals mu, reals sigma):
real, 225

normal_lpdf
(reals y | reals mu, reals sigma):

real, 225
normal_lupdf

(reals y | reals mu, reals sigma):
real, 225

normal_rng
(reals mu, reals sigma): R, 226

not_a_number
(): real, 17

num_elements
(array[] T x): int, 58
(complex_matrix x): int, 106
(complex_row_vector x): int, 106
(complex_vector x): int, 106
(matrix x): int, 63
(row_vector x): int, 63
(vector x): int, 63

ode_adams
(function ode, vector initial_state,

real initial_time, array[] real
times, ...): array[] vector,
146

ode_adams_tol
(function ode, vector initial_state,

real initial_time, array[]
real times, data real rel_tol,
data real abs_tol, data int
max_num_steps, ...): array[]
vector, 146

ode_bdf
(function ode, vector initial_state,

real initial_time, array[] real
times, ...): array[] vector,
146

ode_bdf_tol
(function ode, vector initial_state,

real initial_time, ar-
ray[] real times, data real
rel_tol, data real abs_tol, int
max_num_steps, ...): array[]
vector, 146

(function ode, vector initial_state,
real initial_time, ar-
ray[] real times, data real
rel_tol_forward, data vector
abs_tol_forward, data real
rel_tol_backward, data vec-
tor abs_tol_backward, data
real rel_tol_quadrature, data
real abs_tol_quadrature,
int max_num_steps, int
num_steps_between_checkpoints,
int interpolation_polynomial,
int solver_forward, int
solver_backward, ...): ar-
ray[] vector, 147

ode_ckrk
(function ode, array[] real ini-

tial_state, real initial_time,
array[] real times, ...): ar-
ray[] vector, 145

ode_ckrk_tol
(function ode, vector initial_state,

real initial_time, ar-
ray[] real times, data real
rel_tol, data real abs_tol, int
max_num_steps, ...): array[]
vector, 146

ode_rk45
(function ode, array[] real ini-

tial_state, real initial_time,
array[] real times, ...): ar-
ray[] vector, 145

ode_rk45_tol
(function ode, vector initial_state,

real initial_time, ar-
ray[] real times, data real
rel_tol, data real abs_tol, int
max_num_steps, ...): array[]
vector, 145

offset_multiplier_constrain
(reals y, reals offset, reals mult):

reals, 160
offset_multiplier_jacobian

(reals y, reals offset, reals mult):

323

reals, 160
offset_multiplier_unconstrain

(reals x, reals offset, reals mult):
reals, 160

one_hot_array
(int n, int k): array[] real, 81

one_hot_int_array
(int n, int k): array[] int, 81

one_hot_row_vector
(int n, int k): row_vector, 81

one_hot_vector
(int n, int k): vector, 81

ones_array
(int n): array[] real, 81

ones_int_array
(int n): array[] int, 81

ones_row_vector
(int n): row_vector, 81

ones_vector
(int n): vector, 81

operator/
(complex_matrix B, complex_matrix

A): complex_matrix, 125
(complex_row_vector b, com-

plex_matrix A): com-
plex_row_vector, 124

operator_add
(complex x, complex y): complex, 45
(complex x, complex_matrix y):

complex_matrix, 110
(complex x, complex_vector y):

complex_vector, 110
(complex x, row_complex_vector y):

row_complex_vector, 110
(complex_matrix x, complex y):

complex_matrix, 110
(complex_matrix x, complex_matrix

y): complex_matrix, 108
(complex_vector x, complex y):

complex_vector, 110
(complex_vector x, complex_vector

y): complex_vector, 108
(int x): int, 8
(int x, int y): int, 7
(matrix x, matrix y): matrix, 65
(matrix x, real y): matrix, 67
(real x): real, 23
(real x, matrix y): matrix, 67
(real x, real y): real, 22

(real x, row_vector y): row_vector,
67

(real x, vector y): vector, 66
(row_complex_vector x, complex y):

row_complex_vector, 110
(row_complex_vector x,

row_complex_vector y):
row_complex_vector, 108

(row_vector x, real y): row_vector,
66

(row_vector x, row_vector y):
row_vector, 65

(vector x, real y): vector, 66
(vector x, vector y): vector, 65

operator_add
(complex z): complex, 45

operator_assign
(complex x, complex y): void, 47

operator_compound_add
(T x, U y): void, 140
(complex x, complex y): void, 47

operator_compound_divide
(T x, U y): void, 141
(complex x, complex y): void, 47

operator_compound_elt_divide
(T x, U y): void, 141

operator_compound_elt_mulitply
(T x, U y): void, 141

operator_compound_mulitply
(T x, U y): void, 140

operator_compound_multiply
(complex x, complex y): void, 47

operator_compound_subtract
(T x, U y): void, 140
(complex x, complex y): void, 47

operator_divide
(complex x, complex y): complex, 45
(complex_matrix x, complex y):

complex_matrix, 111
(complex_vector x, complex y):

complex_vector, 111
(int x, int y): int, 7
(matrix B, matrix A): matrix, 95
(matrix x, real y): matrix, 68
(real x, real y): real, 23
(row_complex_vector x, complex y):

row_complex_vector, 111
(row_vector b, matrix A):

row_vector, 95

324

(row_vector x, real y): row_vector,
68

(vector x, real y): vector, 67
operator_elt_divide

(complex x, complex_matrix y):
complex_matrix, 113

(complex x, complex_row_vector y):
complex_row_vector, 112

(complex x, complex_vector y):
complex_vector, 112

(complex_matrix x, complex y):
complex_matrix, 113

(complex_matrix x, complex_matrix
y): complex_matrix, 113

(complex_row_vector x, complex y):
complex_row_vector, 112

(complex_row_vector x, com-
plex_row_vector y): com-
plex_row_vector, 112

(complex_vector x, complex y):
complex_vector, 112

(complex_vector x, complex_vector
y): complex_vector, 112

(matrix x, matrix y): matrix, 69
(matrix x, real y): matrix, 69
(real x, matrix y): matrix, 69
(real x, row_vector y): row_vector,

69
(real x, vector y): vector, 69
(row_vector x, real y): row_vector,

69
(row_vector x, row_vector y):

row_vector, 69
(vector x, real y): vector, 69
(vector x, vector y): vector, 69

operator_elt_multiply
(complex_matrix x, complex_matrix

y): complex_matrix, 112
(complex_row_vector x, com-

plex_row_vector y): com-
plex_row_vector, 112

(complex_vector x, complex_vector
y): complex_vector, 112

(matrix x, matrix y): matrix, 69
(row_vector x, row_vector y):

row_vector, 68
(vector x, vector y): vector, 68

operator_elt_pow
(complex_matrix x, complex y):

matrix, 114
(complex_matrix x, complex_matrix

y): matrix, 113
(complex x, complex_matrix y):

matrix, 114
(complex x, complex_row_vector y):

complex_row_vector, 113
(complex x, complex_vector y):

vector, 113
(complex_row_vector x, complex y):

complex_row_vector, 113
(complex_row_vector x, com-

plex_row_vector y): com-
plex_row_vector, 113

(complex_vector x, complex y):
vector, 113

(complex_vector x, complex_vector
y): vector, 113

(matrix x, matrix y): matrix, 70
(matrix x, real y): matrix, 70
(real x, matrix y): matrix, 70
(real x, row_vector y): row_vector,

70
(real x, vector y): vector, 70
(row_vector x, real y): row_vector,

70
(row_vector x, row_vector y):

row_vector, 70
(vector x, real y): vector, 70
(vector x, vector y): vector, 70

operator_int_divide
(int x, int y): int, 7

operator_left_div
(matrix A, matrix B): matrix, 95
(matrix A, vector b): vector, 95

operator_logical_and
(int x, int y): int, 20
(real x, real y): int, 20

operator_logical_equal
(complex x, complex y): int, 46
(int x, int y): int, 19
(real x, real y): int, 19

operator_logical_greater_than
(int x, int y): int, 18
(real x, real y): int, 18

operator_logical_greater_than_equal
(int x, int y): int, 19
(real x, real y): int, 19

operator_logical_less_than

325

(int x, int y): int, 18
(real x, real y): int, 18

operator_logical_less_than_equal
(int x, int y): int, 18
(real x, real y): int, 18

operator_logical_not_equal
(complex x, complex y): int, 46
(int x, int y): int, 19
(real x, real y): int, 19

operator_logical_or
(int x, int y): int, 21
(real x, real y): int, 21

operator_mod
(int x, int y): int, 8

operator_multiply
(complex x, complex y): complex, 45
(complex x, complex_matrix y):

complex_matrix, 108
(complex x, complex_vector y):

complex_vector, 108
(complex x, row_complex_vector y):

row_complex_vector, 108
(complex_matrix x, complex y):

complex_matrix, 109
(complex_matrix x, complex_matrix

y): complex_matrix, 109
(complex_matrix x, complex_vector

y): complex_vector, 109
(complex_vector x, complex y):

complex_vector, 109
(complex_vector x,

row_complex_vector y): com-
plex_matrix, 109

(int x, int y): int, 7
(matrix x, matrix y): matrix, 66
(matrix x, real y): matrix, 66
(matrix x, vector y): vector, 66
(real x, matrix y): matrix, 65
(real x, real y): real, 22
(real x, row_vector y): row_vector,

65
(real x, vector y): vector, 65
(row_complex_vector x, complex y):

row_complex_vector, 109
(row_complex_vector x,

complex_matrix y):
row_complex_vector, 109

(row_complex_vector x, com-
plex_vector y): complex, 109

(row_vector x, matrix y):
row_vector, 66

(row_vector x, real y): row_vector,
66

(row_vector x, vector y): real, 66
(vector x, real y): vector, 65
(vector x, row_vector y): matrix, 66

operator_negation
(int x): int, 20
(real x): int, 20

operator_pow
(complex x, complex y): complex, 46
(real x, real y): real, 23

operator_subtract
(T x): T, 8, 23, 45, 64, 107
(complex x, complex y): complex, 45
(complex x, complex_matrix y):

complex_matrix, 111
(complex x, complex_vector y):

complex_vector, 110
(complex x, row_complex_vector y):

row_complex_vector, 110
(complex_matrix x): complex_matrix,

107
(complex_matrix x, complex y):

complex_matrix, 111
(complex_matrix x, complex_matrix

y): complex_matrix, 108
(complex_vector x): complex_vector,

107
(complex_vector x, complex y):

complex_vector, 110
(complex_vector x, complex_vector

y): complex_vector, 108
(int x): int, 8
(int x, int y): int, 7
(matrix x): matrix, 64
(matrix x, matrix y): matrix, 65
(matrix x, real y): matrix, 67
(real x): real, 23
(real x, matrix y): matrix, 67
(real x, real y): real, 22
(real x, row_vector y): row_vector,

67
(real x, vector y): vector, 67
(row_complex_vector x):

row_complex_vector, 107
(row_complex_vector x, complex y):

row_complex_vector, 110

326

(row_complex_vector x,
row_complex_vector y):
row_complex_vector, 108

(row_vector x): row_vector, 64
(row_vector x, real y): row_vector,

67
(row_vector x, row_vector y):

row_vector, 65
(vector x): vector, 64
(vector x, real y): vector, 67
(vector x, vector y): vector, 65

operator_subtract
(complex z): complex, 45

operator_transpose
(complex_matrix x): complex_matrix,

111
(complex_vector x):

row_complex_vector, 111
(matrix x): matrix, 68
(row_complex_vector x): com-

plex_vector, 111
(row_vector x): vector, 68
(vector x): row_vector, 68

ordered_constrain
(vectors y): vectors, 161

ordered_jacobian
(vectors y): vectors, 161

ordered_logistic
sampling statement, 202

ordered_logistic_glm
sampling statement, 204

ordered_logistic_glm_lpmf
(array[] int y | matrix x, vector

beta, vector c): real, 205
(array[] int y | row_vector x, vec-

tor beta, vector c): real,
204

(int y | matrix x, vector beta,
vector c): real, 204

(int y | row_vector x, vector beta,
vector c): real, 204

ordered_logistic_glm_lupmf
(array[] int y | matrix x, vector

beta, vector c): real, 205
(array[] int y | row_vector x, vec-

tor beta, vector c): real,
204

(int y | matrix x, vector beta,
vector c): real, 204

(int y | row_vector x, vector beta,
vector c): real, 204

ordered_logistic_lpmf
(ints k | vector eta, vectors c):

real, 203
ordered_logistic_lupmf

(ints k | vector eta, vectors c):
real, 203

ordered_logistic_rng
(real eta, vector c): int, 203

ordered_probit
sampling statement, 205

ordered_probit_lpmf
(ints k | real eta, vectors c):

real, 206
(ints k | vector eta, vectors c):

real, 205
ordered_probit_lupmf

(ints k | real eta, vectors c):
real, 206

(ints k | vector eta, vectors c):
real, 206

ordered_probit_rng
(real eta, vector c): int, 206

ordered_unconstrain
(vectors x): vectors, 161

owens_t
(T1 x, T2 y): R, 31
(real h, real a): real, 31

pareto
sampling statement, 256

pareto_cdf
(reals y | reals y_min, reals al-

pha): real, 256
pareto_lccdf

(reals y | reals y_min, reals al-
pha): real, 257

pareto_lcdf
(reals y | reals y_min, reals al-

pha): real, 256
pareto_lpdf

(reals y | reals y_min, reals al-
pha): real, 256

pareto_lupdf
(reals y | reals y_min, reals al-

pha): real, 256
pareto_rng

(reals y_min, reals alpha): R, 257
pareto_type_2

327

sampling statement, 257
pareto_type_2_cdf

(reals y | reals mu, reals lambda,
reals alpha): real, 258

pareto_type_2_lccdf
(reals y | reals mu, reals lambda,

reals alpha): real, 258
pareto_type_2_lcdf

(reals y | reals mu, reals lambda,
reals alpha): real, 258

pareto_type_2_lpdf
(reals y | reals mu, reals lambda,

reals alpha): real, 257
pareto_type_2_lupdf

(reals y | reals mu, reals lambda,
reals alpha): real, 257

pareto_type_2_rng
(reals mu, reals lambda, reals

alpha): R, 258
phi

(T x): R, 30
phi_approx

(T x): R, 30
pi

(): real, 16
poisson

sampling statement, 213
poisson_cdf

(ints n | reals lambda): real, 214
poisson_lccdf

(ints n | reals lambda): real, 214
poisson_lcdf

(ints n | reals lambda): real, 214
poisson_log

sampling statement, 215
poisson_log_glm

sampling statement, 215
poisson_log_glm_lpmf

(array[] int y | matrix x, real
alpha, vector beta): real, 217

(array[] int y | matrix x, vector
alpha, vector beta): real, 217

(array[] int y | row_vector x, real
alpha, vector beta): real, 216

(array[] int y | row_vector x, vec-
tor alpha, vector beta): real,
216

(int y | matrix x, real alpha,
vector beta): real, 215

(int y | matrix x, vector alpha,
vector beta): real, 216

poisson_log_glm_lupmf
(array[] int y | matrix x, real

alpha, vector beta): real, 217
(array[] int y | matrix x, vector

alpha, vector beta): real, 217
(array[] int y | row_vector x, real

alpha, vector beta): real, 216
(array[] int y | row_vector x, vec-

tor alpha, vector beta): real,
216

(int y | matrix x, real alpha,
vector beta): real, 216

(int y | matrix x, vector alpha,
vector beta): real, 216

poisson_log_lpmf
(ints n | reals alpha): real, 215

poisson_log_lupmf
(ints n | reals alpha): real, 215

poisson_log_rng
(reals alpha): R, 215

poisson_lpmf
(ints n | reals lambda): real, 213

poisson_lupmf
(ints n | reals lambda): real, 213

poisson_rng
(reals lambda): R, 214

polar
(real r, real theta): complex, 49

positive_infinity
(): real, 17

positive_ordered_constrain
(vectors y): vectors, 161

positive_ordered_jacobian
(vectors y): vectors, 161

positive_ordered_unconstrain
(vectors x): vectors, 162

pow
(T1 x, T2 y): R, 27
(T1 x, T2 y): Z, 49
(complex x, complex y): complex, 49
(real x, real y): real, 27

print
(T1 x1,..., TN xN): void, 4

prod
(array[] int x): real, 54
(array[] real x): real, 54
(complex_matrix x): complex, 117

328

(complex_row_vector x): complex, 117
(complex_vector x): complex, 117
(matrix x): real, 76
(row_vector x): real, 76
(vector x): real, 76

proj
(complex z): complex, 48

qr
(matrix A): tuple(matrix, matrix),

101
qr_q

(matrix A): matrix, 101
qr_r

(matrix A): matrix, 101
qr_thin

(matrix A): tuple(matrix, matrix),
100

qr_thin_q
(matrix A): matrix, 100

qr_thin_r
(matrix A): matrix, 100

quad_form
(matrix A, matrix B): matrix, 73
(matrix A, vector B): real, 73

quad_form_diag
(matrix m, row_vector rv): matrix,

73
(matrix m, vector v): matrix, 73

quad_form_sym
(matrix A, matrix B): matrix, 73
(matrix A, vector B): real, 73

quantile
(data array[] real x, data array[]

real p): real, 57
(data array[] real x, data real p):

real, 57
(data row_vector x, data array[]

real p): real, 78
(data row_vector x, data real p):

real, 78
(data vector x, data array[] real

p): real, 77
(data vector x, data real p): real,

77
rank

(array[] int v, int s): int, 61
(array[] real v, int s): int, 61
(row_vector v, int s): int, 103
(vector v, int s): int, 103

rayleigh
sampling statement, 253

rayleigh_cdf
(real y | real sigma): real, 254

rayleigh_lccdf
(real y | real sigma): real, 254

rayleigh_lcdf
(real y | real sigma): real, 254

rayleigh_lpdf
(reals y | reals sigma): real, 253

rayleigh_lupdf
(reals y | reals sigma): real, 253

rayleigh_rng
(reals sigma): R, 254

reduce_sum
(F f, array[] T x, int grainsize, T1

s1, T2 s2, ...): real, 155
reduce_sum_static

(F f, array[] T x, int grainsize, T1
s1, T2 s2, ...): real, 155

reject
(T1 x1,..., TN xN): void, 4

rep_array
(T x, int k, int m, int n): ar-

ray[„] T, 59
(T x, int m, int n): array[,] T, 58
(T x, int n): array[] T, 58

rep_matrix
(complex z, int m, int n): com-

plex_matrix, 118
(complex_row_vector rv, int m):

complex_matrix, 118
(complex_vector v, int n): com-

plex_matrix, 118
(real x, int m, int n): matrix, 78
(row_vector rv, int m): matrix, 78
(vector v, int n): matrix, 78

rep_row_vector
(complex z, int n): com-

plex_row_vector, 118
(real x, int n): row_vector, 78

rep_vector
(complex z, int m): complex_vector,

118
(real x, int m): vector, 78

reverse
(array[] T v): array[] T, 62
(complex_row_vector v): com-

plex_row_vector, 128

329

(complex_vector v): complex_vector,
128

(row_vector v): row_vector, 104
(vector v): vector, 104

rising_factorial
(T1 x, T2 y): R, 37
(real x, int n): real, 37

round
(T x): R, 26

row
(complex_matrix x, int m): com-

plex_row_vector, 119
(matrix x, int m): row_vector, 82

rows
(complex_matrix x): int, 106
(complex_row_vector x): int, 106
(complex_vector x): int, 106
(matrix x): int, 63
(row_vector x): int, 63
(vector x): int, 63

rows_dot_product
(complex_matrix x, complex_matrix

y): complex_vector, 115
(complex_row_vector x, com-

plex_row_vector y): com-
plex_vector, 115

(complex_vector x, complex_vector
y): complex_vector, 115

(matrix x, matrix y): vector, 71
(row_vector x, row_vector y): vec-

tor, 71
(vector x, vector y): vector, 71

rows_dot_self
(complex_matrix x): complex_vector,

116
(complex_row_vector x): com-

plex_vector, 115
(complex_vector x): complex_vector,

115
(matrix x): vector, 72
(row_vector x): vector, 72
(vector x): vector, 72

scale_matrix_exp_multiply
(real t, matrix A, matrix B): ma-

trix, 97
scaled_inv_chi_square

sampling statement, 246
scaled_inv_chi_square_cdf

(reals y | reals nu, reals sigma):

real, 247
scaled_inv_chi_square_lccdf

(reals y | reals nu, reals sigma):
real, 247

scaled_inv_chi_square_lcdf
(reals y | reals nu, reals sigma):

real, 247
scaled_inv_chi_square_lpdf

(reals y | reals nu, reals sigma):
real, 246

scaled_inv_chi_square_lupdf
(reals y | reals nu, reals sigma):

real, 247
scaled_inv_chi_square_rng

(reals nu, reals sigma): R, 247
sd

(array[] real x): real, 55
(matrix x): real, 77
(row_vector x): real, 77
(vector x): real, 77

segment
(array[] T sv, int i, int n): ar-

ray[] T, 84
(complex_row_vector rv, int i, int

n): complex_row_vector, 121
(complex_vector v, int i, int n):

complex_vector, 120
(row_vector rv, int i, int n):

row_vector, 84
(vector v, int i, int n): vector, 84

simplex_constrain
(vectors y): vectors, 162

simplex_jacobian
(vectors y): vectors, 162

simplex_unconstrain
(vectors x): vectors, 162

sin
(T x): R, 28
(complex z): complex, 50

singular_values
(complex_matrix A): vector, 126
(matrix A): vector, 102

sinh
(T x): R, 29
(complex z): complex, 51

size
(array[] T x): int, 58
(complex_matrix x): int, 107
(complex_row_vector x): int, 107

330

(complex_vector x): int, 107
(int x): int, 9
(matrix x): int, 64
(real x): int, 9
(row_vector x): int, 64
(vector x): int, 64

skew_double_exponential
sampling statement, 241

skew_double_exponential_cdf
(reals y | reals mu, reals sigma,

reals tau): real, 241
skew_double_exponential_lccdf

(reals y | reals mu, reals sigma,
reals tau): real, 242

skew_double_exponential_lcdf
(reals y | reals mu, reals sigma,

reals tau): real, 241
skew_double_exponential_lpdf

(reals y | reals mu, reals sigma,
reals tau): real, 241

skew_double_exponential_lupdf
(reals y | reals mu, reals sigma,

reals tau): real, 241
skew_double_exponential_rng

(reals mu, reals sigma, reals tau):
R, 242

skew_normal
sampling statement, 233

skew_normal_cdf
(reals y | reals xi, reals omega,

reals alpha): real, 233
skew_normal_lccdf

(reals y | reals xi, reals omega,
reals alpha): real, 234

skew_normal_lcdf
(reals y | reals xi, reals omega,

reals alpha): real, 234
skew_normal_lpdf

(reals y | reals xi, reals omega,
reals alpha): real, 233

skew_normal_lupdf
(reals y | reals xi, reals omega,

reals alpha): real, 233
skew_normal_rng

(reals xi, reals omega, real alpha):
R, 234

softmax
(vector x): vector, 86

solve_newton

(function algebra_system, vector
y_guess, ...): vector, 143

solve_newton_tol
(function algebra_system, vec-

tor y_guess, data real scal-
ing_step, data real f_tol, int
max_steps, ...): vector, 143

solve_powell
(function algebra_system, vector

y_guess, ...): vector, 143
solve_powell_tol

(function algebra_system, vector
y_guess, data real rel_tol,
data real f_tol, int max_steps,
...): vector, 143

sort_asc
(array[] int v): array[] int, 61
(array[] real v): array[] real, 61
(row_vector v): row_vector, 103
(vector v): vector, 102

sort_desc
(array[] int v): array[] int, 61
(array[] real v): array[] real, 61
(row_vector v): row_vector, 103
(vector v): vector, 103

sort_indices_asc
(array[] int v): array[] int, 61
(array[] real v): array[] int, 61
(row_vector v): array[] int, 103
(vector v): array[] int, 103

sort_indices_desc
(array[] int v): array[] int, 61
(array[] real v): array[] int, 61
(row_vector v): array[] int, 103
(vector v): array[] int, 103

sqrt
(T x): R, 26
(complex x): complex, 50

sqrt2
(): real, 16

square
(T x): R, 26

squared_distance
(row_vector x, row_vector y): real,

57
(row_vector x, vector y): real, 57
(vector x, row_vector y): real, 57
(vector x, vector y): real, 56

std_normal

331

sampling statement, 227
std_normal_cdf

(reals y): real, 227
std_normal_lccdf

(reals y): real, 227
std_normal_lcdf

(reals y): real, 227
std_normal_log_qf

(T x): R, 227
std_normal_lpdf

(reals y): real, 227
std_normal_lupdf

(reals y): real, 227
std_normal_qf

(T x): R, 227
std_normal_rng

(): real, 228
step

(real x): real, 21
stochastic_column_constrain

(matrices y): matrices, 166
stochastic_column_jacobian

(matrices y): matrices, 166
stochastic_column_unconstrain

(matrices x): matrices, 166
stochastic_row_constrain

(matrices y): matrices, 167
stochastic_row_jacobian

(matrices y): matrices, 167
stochastic_row_unconstrain

(matrices x): matrices, 167
student_t

sampling statement, 234
student_t_cdf

(reals y | reals nu, reals mu, reals
sigma): real, 235

student_t_lccdf
(reals y | reals nu, reals mu, reals

sigma): real, 235
student_t_lcdf

(reals y | reals nu, reals mu, reals
sigma): real, 235

student_t_lpdf
(reals y | reals nu, reals mu, reals

sigma): real, 235
student_t_lupdf

(reals y | reals nu, reals mu, reals
sigma): real, 235

student_t_rng

(reals nu, reals mu, reals sigma):
R, 235

sub_col
(complex_matrix x, int i, int j, int

n_rows): complex_vector, 120
(matrix x, int i, int j, int

n_rows): vector, 83
sub_row

(complex_matrix x, int i, int j, int
n_cols): complex_row_vector,
120

(matrix x, int i, int j, int
n_cols): row_vector, 83

sum
(array[] complex x): complex, 53
(array[] int x): int, 53
(array[] real x): real, 53
(complex_matrix x): complex, 117
(complex_row_vector x): complex, 116
(complex_vector x): complex, 116
(matrix x): real, 76
(row_vector x): real, 76
(vector x): real, 76

sum_to_zero_constrain
(matrices y): matrices, 167
(vectors y): vectors, 162

sum_to_zero_jacobian
(matrices y): matrices, 167
(vectors y): vectors, 163

sum_to_zero_unconstrain
(matrices x): matrices, 168
(vectors x): vectors, 163

svd
(complex_matrix A): tu-

ple(complex_matrix, vector,
complex_matrix), 126

(matrix A): tuple(matrix, vector,
matrix), 102

svd_U
(complex_matrix A): complex_matrix,

126
(matrix A): matrix, 102

svd_V
(complex_matrix A): complex_matrix,

126
(matrix A): matrix, 102

symmetrize_from_lower_tri
(complex_matrix A): complex_matrix,

119

332

(matrix A): matrix, 79
tail

(array[] T sv, int n): array[] T, 83
(complex_row_vector rv, int n):

complex_row_vector, 120
(complex_vector v, int n): com-

plex_vector, 120
(row_vector rv, int n): row_vector,

83
(vector v, int n): vector, 83

tan
(T x): R, 28
(complex z): complex, 50

tanh
(T x): R, 29
(complex z): complex, 51

target
(): real, 17

tcrossprod
(matrix x): matrix, 72

tgamma
(T x): R, 32

to_array_1d
(array[...] complex a): array[]

complex, 138
(array[...] int a): array[] int,

138
(array[...] real a): array[] real,

138
(complex_matrix m): array[] com-

plex, 138
(complex_row_vector v): array[]

complex, 138
(complex_vector v): array[] com-

plex, 138
(matrix m): array[] real, 138
(row_vector v): array[] real, 138
(vector v): array[] real, 138

to_array_2d
(complex_matrix m): array[,] com-

plex, 137
(matrix m): array[,] real, 137

to_complex
(): complex, 44
(T1 re, T2 im): Z, 44
(real re): complex, 44
(real re, real im): complex, 44

to_int
(data R x): I, 10

(data real x): int, 10
to_matrix

(array[,] complex a): com-
plex_matrix, 135

(array[,] int a): matrix, 135
(array[,] real a): matrix, 135
(array[] complex a, int m, int n):

complex_matrix, 134
(array[] complex a, int m, int n,

int col_major): complex_matrix,
135

(array[] complex_row_vector vs):
complex_matrix, 135

(array[] int a, int m, int n):
matrix, 134

(array[] int a, int m, int n, int
col_major): matrix, 134

(array[] real a, int m, int n):
matrix, 134

(array[] real a, int m, int n, int
col_major): matrix, 134

(array[] row_vector vs): matrix, 135
(complex_matrix A, int m, int n, int

col_major): complex_matrix, 133
(complex_matrix M, int m, int n):

complex_matrix, 132
(complex_matrix m): complex_matrix,

132
(complex_row_vector v): com-

plex_matrix, 132
(complex_row_vector v, int m, int

n): complex_matrix, 133
(complex_row_vector v, int m, int n,

int col_major): complex_matrix,
134

(complex_vector v): complex_matrix,
132

(complex_vector v, int m, int n):
complex_matrix, 133

(complex_vector v, int m, int n, int
col_major): complex_matrix, 133

(matrix A, int m, int n, int
col_major): matrix, 133

(matrix M, int m, int n): matrix,
132

(matrix m): matrix, 132
(row_vector v): matrix, 132
(row_vector v, int m, int n): ma-

trix, 133

333

(row_vector v, int m, int n, int
col_major): matrix, 134

(vector v): matrix, 132
(vector v, int m, int n): matrix,

133
(vector v, int m, int n, int

col_major): matrix, 133
to_row_vector

(array[] complex a): com-
plex_row_vector, 137

(array[] int a): row_vector, 137
(array[] real a): row_vector, 137
(complex_matrix m): com-

plex_row_vector, 136
(complex_row_vector v): com-

plex_row_vector, 137
(complex_vector v): com-

plex_row_vector, 137
(matrix m): row_vector, 136
(row_vector v): row_vector, 137
(vector v): row_vector, 137

to_vector
(array[] complex a): com-

plex_vector, 136
(array[] int a): vector, 136
(array[] real a): vector, 136
(complex_matrix m): complex_vector,

136
(complex_row_vector v): com-

plex_vector, 136
(complex_vector v): complex_vector,

136
(matrix m): vector, 135
(row_vector v): vector, 136
(vector v): vector, 136

trace
(complex_matrix A): complex, 125
(matrix A): real, 97

trace_gen_quad_form
(matrix D, matrix A, matrix B):

real, 74
trace_quad_form

(matrix A, matrix B): real, 73
(matrix A, vector B): real, 73

trigamma
(T x): R, 33

trunc
(T x): R, 26

uniform

sampling statement, 269
uniform_cdf

(reals y | reals alpha, reals beta):
real, 269

uniform_lccdf
(reals y | reals alpha, reals beta):

real, 270
uniform_lcdf

(reals y | reals alpha, reals beta):
real, 269

uniform_lpdf
(reals y | reals alpha, reals beta):

real, 269
uniform_lupdf

(reals y | reals alpha, reals beta):
real, 269

uniform_rng
(reals alpha, reals beta): R, 270

uniform_simplex
(int n): vector, 82

unit_vectors_constrain
(vectors y): vectors, 163

unit_vectors_jacobian
(vectors y): vectors, 163

unit_vectors_unconstrain
(vectors x): vectors, 163

upper_bound_constrain
(reals y, reals ub): reals, 159

upper_bound_jacobian
(reals x, reals ub): reals, 159

upper_bound_unconstrain
(reals x, reals ub): reals, 159

variance
(array[] real x): real, 54
(matrix x): real, 77
(row_vector x): real, 77
(vector x): real, 76

von_mises
sampling statement, 266

von_mises_cdf
(reals y | reals mu, reals kappa):

real, 267
von_mises_lcdf

(reals y | reals mu, reals kappa):
real, 267

von_mises_lpdf
(reals y | reals mu, reals kappa):

real, 266
von_mises_lupdf

334

(reals y | reals mu, reals kappa):
real, 267

von_mises_rng
(reals mu, reals kappa): R, 267

weibull
sampling statement, 251

weibull_cdf
(reals y | reals alpha, reals

sigma): real, 251
weibull_lccdf

(reals y | reals alpha, reals
sigma): real, 252

weibull_lcdf
(reals y | reals alpha, reals

sigma): real, 251
weibull_lpdf

(reals y | reals alpha, reals
sigma): real, 251

weibull_lupdf
(reals y | reals alpha, reals

sigma): real, 251
weibull_rng

(reals alpha, reals sigma): R, 252
wiener

sampling statement, 260
wiener_lpdf

(real y | real alpha, real tau,
real beta, real delta, real
var_delta): real, 260

(real y | real alpha, real tau,
real beta, real delta, real
var_delta, real var_beta, real
var_tau): real, 260

(reals y | reals alpha, reals tau,
reals beta, reals delta): real,
260

wiener_lupdf
(real y | real alpha, real tau,

real beta, real delta, real
var_delta): real, 261

(real y | real alpha, real tau,
real beta, real delta, real
var_delta, real var_beta, real
var_tau): real, 261

(reals y | reals alpha, reals tau,
reals beta, reals delta): real,
261

wishart
sampling statement, 291

wishart_cholesky_lpdf
(matrix L_W | real nu, matrix L_S):

real, 292
wishart_lpdf

(matrix W | real nu, matrix Sigma):
real, 291

wishart_lupdf
(matrix L_W | real nu, matrix L_S):

real, 293
(matrix W | real nu, matrix Sigma):

real, 291
wishart_rng

(real nu, matrix L_S): matrix, 293
(real nu, matrix Sigma): matrix, 292

zeros_array
(int n): array[] real, 81

zeros_int_array
(int n): array[] int, 81

zeros_row_vector
(int n): row_vector, 82

zeros_vector
(int n): vector, 82

335

	Overview
	I Built-in Functions
	Void Functions
	Print statement
	Reject statement
	Fatal error statement

	Integer-Valued Basic Functions
	Integer-valued arithmetic operators
	Absolute functions
	Bound functions
	Size functions
	Casting functions

	Real-Valued Basic Functions
	Vectorization of real-valued functions
	Mathematical constants
	Special values
	Log probability function
	Logical functions
	Real-valued arithmetic operators
	Step-like functions
	Power and logarithm functions
	Trigonometric functions
	Hyperbolic trigonometric functions
	Link functions
	Probability-related functions
	Combinatorial functions
	Composed functions
	Special functions
	Hypergeometric Functions

	Complex-Valued Basic Functions
	Complex assignment and promotion
	Complex constructors and accessors
	Complex arithmetic operators
	Complex comparison operators
	Complex (compound) assignment operators
	Complex special functions
	Complex exponential and power functions
	Complex trigonometric functions
	Complex hyperbolic trigonometric functions

	Array Operations
	Reductions
	Array size and dimension function
	Array broadcasting
	Array concatenation
	Sorting functions
	Reversing functions

	Matrix Operations
	Integer-valued matrix size functions
	Matrix arithmetic operators
	Transposition operator
	Elementwise functions
	Dot products and specialized products
	Reductions
	Broadcast functions
	Diagonal matrix functions
	Container construction functions
	Slicing and blocking functions
	Matrix and vector concatenation
	Special matrix functions
	Gaussian Process Covariance Functions
	Linear algebra functions and solvers
	Sort functions
	Reverse functions

	Complex Matrix Operations
	Complex promotion
	Integer-valued complex matrix size functions
	Complex matrix arithmetic operators
	Complex Transposition Operator
	Complex elementwise functions
	Dot products and specialized products for complex matrices
	Complex reductions
	Vectorized accessor functions
	Complex broadcast functions
	Diagonal complex matrix functions
	Slicing and blocking functions for complex matrices
	Complex matrix concatenation
	Complex special matrix functions
	Complex linear algebra functions
	Reverse functions for complex matrices

	Sparse Matrix Operations
	Compressed row storage
	Conversion functions
	Sparse matrix arithmetic

	Mixed Operations
	Compound Arithmetic and Assignment
	Compound addition and assignment
	Compound subtraction and assignment
	Compound multiplication and assignment
	Compound division and assignment
	Compound elementwise multiplication and assignment
	Compound elementwise division and assignment

	Higher-Order Functions
	Algebraic equation solvers
	Ordinary differential equation (ODE) solvers
	Differential-Algebraic equation (DAE) solver
	1D integrator
	Reduce-sum function
	Map-rect function

	Variable Transformation Functions
	Transforms for scalars
	Transforms for constrained vectors
	Transforms for constrained matrices

	Deprecated Functions
	Integer division with operator/
	integrate_ode_rk45, integrate_ode_adams, integrate_ode_bdf ODE Integrators
	algebra_solver, algebra_solver_newton algebraic solvers

	Removed Functions
	multiply_log and binomial_coefficient_log functions
	get_lp() function
	fabs function
	Exponentiated quadratic covariance functions
	Real arguments to logical operators operator&&, operator||, and operator!

	Conventions for Probability Functions
	Suffix marks type of function
	Argument order and the vertical bar
	Sampling notation
	Finite inputs
	Boundary conditions
	Pseudorandom number generators
	Cumulative distribution functions
	Vectorization

	II Discrete Distributions
	Binary Distributions
	Bernoulli distribution
	Bernoulli distribution, logit parameterization
	Bernoulli-logit generalized linear model (Logistic Regression)

	Bounded Discrete Distributions
	Binomial distribution
	Binomial distribution, logit parameterization
	Binomial-logit generalized linear model (Logistic Regression)
	Beta-binomial distribution
	Hypergeometric distribution
	Categorical distribution
	Categorical logit generalized linear model (softmax regression)
	Discrete range distribution
	Ordered logistic distribution
	Ordered logistic generalized linear model (ordinal regression)
	Ordered probit distribution

	Unbounded Discrete Distributions
	Negative binomial distribution
	Negative binomial distribution (alternative parameterization)
	Negative binomial distribution (log alternative parameterization)
	Negative-binomial-2-log generalized linear model (negative binomial regression)
	Poisson distribution
	Poisson distribution, log parameterization
	Poisson-log generalized linear model (Poisson regression)
	Beta negative binomial distribution

	Multivariate Discrete Distributions
	Multinomial distribution
	Multinomial distribution, logit parameterization
	Dirichlet-multinomial distribution

	III Continuous Distributions
	Unbounded Continuous Distributions
	Normal distribution
	Normal-id generalized linear model (linear regression)
	Exponentially modified normal distribution
	Skew normal distribution
	Student-t distribution
	Cauchy distribution
	Double exponential (Laplace) distribution
	Logistic distribution
	Gumbel distribution
	Skew double exponential distribution

	Positive Continuous Distributions
	Lognormal distribution
	Chi-square distribution
	Inverse chi-square distribution
	Scaled inverse chi-square distribution
	Exponential distribution
	Gamma distribution
	Inverse gamma Distribution
	Weibull distribution
	Frechet distribution
	Rayleigh distribution
	Log-logistic distribution

	Positive Lower-Bounded Distributions
	Pareto distribution
	Pareto type 2 distribution
	Wiener First Passage Time Distribution

	Continuous Distributions on [0, 1]
	Beta distribution
	Beta proportion distribution

	Circular Distributions
	Von Mises distribution

	Bounded Continuous Distributions
	Uniform distribution

	Distributions over Unbounded Vectors
	Multivariate normal distribution
	Multivariate normal distribution, precision parameterization
	Multivariate normal distribution, Cholesky parameterization
	Multivariate Gaussian process distribution
	Multivariate Gaussian process distribution, Cholesky parameterization
	Multivariate Student-t distribution
	Multivariate Student-t distribution, Cholesky parameterization
	Gaussian dynamic linear models

	Simplex Distributions
	Dirichlet distribution

	Correlation Matrix Distributions
	LKJ correlation distribution
	Cholesky LKJ correlation distribution

	Covariance Matrix Distributions
	Wishart distribution
	Wishart distribution, Cholesky Parameterization
	Inverse Wishart distribution
	Inverse Wishart distribution, Cholesky Parameterization

	IV Additional Distributions
	Hidden Markov Models
	Stan functions

	V Appendix
	Mathematical Functions
	Beta
	Incomplete beta
	Gamma
	Digamma

	References
	Index

