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Abstract— We present a delta DLP 3D printer with large size
in this paper. Compared with traditional DLP 3D printers that
use a low-cost off-the-shelf consumer projector and a single
vertical carriage, the platform of our delta DLP 3D printer
can also move horizontally in the plane. We show that this
structure allows the printer to have a larger printing area than
the projection area of a projector. Our system can print 3D
models much larger than traditional DLP 3D printers. The
major challenge to realize delta 3D printing with large size
comes from how to partition an arbitrary planar polygonal
shape (possibly with holes or multiple disjoint polygons) into
a minimum number of rectangles with fixed size, which is
NP-hard. We propose a simple yet efficient approximation
algorithm to solve this problem. The time complexity of our
algorithm is O(n®logn), where n is the number of edges in
the polygonal shape. A physical prototype system is built and
several large 3D models with complex geometric structures have
been printed as examples to demonstrate the effectiveness of
our approach.

I. INTRODUCTION

Digital Light Processing (DLP) is a technology in 3D
printing that use UV-light to solidify liquid photopolymer [1].
The technique of DLP is widely employed in 3D printing
because of its fast printing speed and its simple mechanism
in hardware. When preparing the information for fabrication,
a 3D CAD model is first sliced by a set of parallel planes and
each slice is later converted into a 2D mask image. By pro-
jecting the mask image onto a photocurable liquid surface, a
layer of solid in the same shape can be formed. A 3D object
can be fabricated in this way layer by layer. Different from
some other stereolithography (SLA) techniques which use
point or line light sources, DLP uses an areal light source
such that the whole mask image can be projected at the
same time (e.g., the commonly used low-cost off-the-shelf
consumer projector). As a result, the fabrication process of
DLP 3D printer is much faster than other point (or line)
based 3D printing techniques.

Most photopolymers react to radiation in the ultraviolet
(UV) range of wavelengths. To successfully solidify fluid
photopolymers, sufficient light intensity must be projected
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Fig. 1. Working principle of a conventional DLP 3D printer, in which the
platform can only move vertically.

onto the surface of liquid tank in DLP-based 3D print-
ing. Off-the-shelf projectors are good enough to take this
job (e.g., a consumer-level 1080P Projector is used in the
Phoenix Touch 1080P DLP 3D Printer [2]). To ensure the
light intensity and reduce the size of a machine, optimal
lenses are placed between the project and the working surface
to shorten the distance of projection. An illustration of DLP-
based 3D printing can be found in Fig.1. However, this
results in a very small working area (e.g., only 34mm X
34mm in our hardware setup when using a SONY VPL-
EW246 projector).

The basic idea of our work is to make multiple projections
for each layer of the 3D model to fabricate models with larger
sizes. We develop a working system to realize this function of
DLP-based 3D printing with large size. In addition to moving
vertically (along z-axis), the working platform holding cured
models can move and rotate horizontally (i.e., in the z-y
plane). This is realized by a Delta mechanism — a parallel
robot (see details in Section III). A practical challenge is
how to decompose a large planar shape into an optimal set
of smaller pieces, where each piece fits within the projected
area of light source. As discussed in Section II, this problem
is generally NP-hard. We present a simple yet effective
algorithm in Section V to cover a polygonal shape (possibly
with holes and disjoint components) using limited number
of rectangles with fixed sizes (i.e., the maximal area of
projection). This is the major contribution of our work.

II. RELATED WORK

A DLP-based 3D printing approach called mask-image-
projection-based stereolithograhy (MIP-SL) was proposed
in [3], [4], which follows the SLA technique but replace



the point or line light sources with an areal light source.
As illustrated in Fig. 1, liquid photopolymer resin to be
cured is contained in a transparent tank. In a bottom-up
projection system, UV lights controlled by mask images
are projected onto the bottom surface of resin and quickly
cure it through the transparent tank. After a layer is cured,
the platform is moved up (vertically in z-axis) and form
a small gap between the built model and bottom of the
tank. To prevent sticking the cured layer onto the tank, a
coating material polydimethylsiloxane (PDMS) is used. This
mask image projection and resin curing process is iteratively
applied to print the model layer by layer. A major drawback
of this conventional DLP framework is that the platform can
only move vertically and then the maximal cross-sections of
printed models are restricted by the area of projection.

In this paper, we present a new DLP system that allows
the platform to move not only vertically (in z-axis) but
also horizontally (in z-y plane). Then, larger layers of
3D models can be printed by multiple projections of a
consumer projector. To decompose a planar shape into an
optimal set of rectangles, two types of decompositions have
been considered [5]: partitions and coverings. It is called
a partition if a shape is decomposed into non-overlapped
sub-regions the union of which is exactly equal to the target
polygon. If the sub-regions are allowed to overlap, as long
as their union is equal to the target polygon, they are called
a covering. Both partition and covering problems have been
well studied in computational geometry.

The problem of covering a polygon with a minimum
number of convex components is NP-hard (ref. [6], [7]). Even
for the special problem of covering a rectilinear polygon
with squares, finding a minimum of such covering is also
NP-hard [8]. Many practical approximation algorithms have
been proposed in the field of VLSI chip design (e.g., [9],
[10]). These algorithms mainly focused on the study of a
collection of rectangles with sides parallel to two orthogonal
directions. However, the rectangles are allowed to be in any
orientation in our application. A constant-factor approxima-
tion algorithm was proposed in [11]. But this method can
only cover a polygon without any acute interior angles. In
contrast, the planar shape of a layer in our system can have
arbitrary polygons with holes.

The problem of partitioning a polygon with holes into a
minimum number of convex sub-polygons is NP-hard [12].
The special problem of partitioning a rectilinear polygon to
a minimum number of squares is also NP-hard [13]. Most
existing practical approximation algorithms to solve parti-
tion problems only deal with rectilinear/orthogonal polygons
(e.g., [5]). In our system, we are facing a more general and
difficult problem to partition an arbitrary polygonal shape
possibly with holes or multiple disconnected regions.

III. HARDWARE

We implement a delta structure such that the platform can
be moved both vertically and horizontally. A delta 3D printer
is in fact a parallel robot [14] and has been used in 3D
printing by fused deposition modeling (FDM). To the best of
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Fig. 2. The mechanical structure, control module and our prototype of
a delta DLP 3D printer. Vector graphics in (a) and (c) are provided for
zoom-in examination.

our knowledge, the delta structure has not been used in DLP
3D printing yet.

Refer to Fig. 2(a), a delta structure has three vertical axes
labeled 21, 22 and z3. Each axis has a carriage that can slide
along the vertical sliding guide. A carriage and the platform
are connected using a pair of parallel arms. The platform can
be moved to any position in a cylindrical working envelope
by positioning the three carriages along the vertical axes
simultaneously using geometric algorithms. Details about
these geometric algorithms can be found in [14].

The control module of a delta structure consists of an
Arduino chip, a LCD display and four stepping motors as
illustrated in Fig. 2(c). Three stepping motors (42BYGH60)
work cooperatively for driving the carriages to position
the platform. Different from conventional delta structure, a
lighter and smaller stepping motor (42BYGH33) is installed
for rotating the platform around the z-axis. All these motors
are drived by an A4988 DMOS Microstepping driver from
Allegro Microsystem. The whole system is controlled and
communicated by an Arduino chip. In addition, a common
1602 LCD display is connected with the Arduino board
to show parameters including positions and angles of the
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Fig. 3. To prepare mask images for DLP-based 3D printing, a digital
model is usually sliced by a set of parallel planes (perpendicular to z-axis)
and each slice is represented by a 2D binary image for projection. The blue
rectangles shown in the right images specify the maximal region can be
projected.

platform for an easier debugging. We name this hardware
system as delta DLP 3D printer.

IV. SOFTWARE

In DLP-based 3D printing, the 3D digital model of an
object is usually sliced by a set of parallel planes and each
thin slice is fabricated by projecting a 2D mask image onto
the surface of photocurable liquid. As illustrated in Fig. 3, the
white region in each mask image means a full light intensity
of projection and no light is projected into the black area.
Each of the white regions can be modeled by a polygon and
a slice could contain several disconnected polygons.

Let R be the maximal area that can be projected by a
light source, which is a rectangular region in our delta DLP
3D printer. Each slice can be represented by S = (P, 2),
where z is the height of slice and P = (PLUPU---UP,)
is a set of n disconnected polygons, {P;}, to be solidified.
In traditional DLP 3D printers, the platform can only move
vertically. In such case, even if a polygon P; in a slice can
be covered by R, it is also possible that the whole model
cannot be fabricated when U; P; O R for all the z values (see
Fig. 3 for an example). Our system overcome this problem
by allowing the platform to move and rotate in the x-y plane,
where the horizontal motion of platform is supervised by a
geometric algorithm solving the following problem:

Problem I: Given a polygon soup P in a plane, which
contains several disconnected polygons {Pi, Ps,---, P,}
(PNP; = (), Vi # 7), find a minimum set Q of rectangles
{Ri,k = 1,2,---} all with a fixed size w X h such that
P C UpRy, VR, € Q.

Here, each rectangle Ry is called a covering rectangle in the
rest of this paper.

V. DECOMPOSITION ALGORITHM

As aforementioned in Section II, Problem 1 is NP-hard. In
this section, we propose a simple yet effective approximation
algorithm to tackle this problem. A greedy heuristic is
applied: for each polygon P in the soup P, we find a

Fig. 4. The geometric location of a covering rectangle R in x-y plane is
uniquely determined by a position o(z, y) and a tilting angle 6, which is the
angle between the bottom edge [ of R and the z-axis. The tilted bounding
box of a polygon P is also uniquely determined by the tilting angle 6.
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Fig. 5. An illustrative example shows the flow chart of our algorithm.
(a) The problem is to find a small set of non-overlapped rectangles R to
cover the polygonal shape P U P». (b) Two bounding boxes with different
orientations €7 and 02 are placed. (c) The bounding boxes are cut into
slabs according to the width w (or the height h) of R. (d) Place covering
rectangles in each slabs to get the solution.

bounding box of P and cover it by a set of non-overlapped
rectangles with size w X h.

First of all, a tilting angle 6 is employed to define the
rotation on a covering rectangle R and the rotated bounding
box of a polygon P — see Fig. 4 for an illustration. To
reduce the space of problem solving, we impose a constraint
that the bounding box of a polygon P and its covering
rectangles, I?;’s, all having the same tilting angle. In practice,
this constraint does not only simplify the problem but also
speed up the speed of fabrication. Specifically, the platform
of fabrication rotates only once (by the 42BYGH33 motor)
and then moves in parallel (by the delta structure) to fabricate
the solid according to a polygon. Therefore, in our system,
motion planning is processed as solving the following prob-
lem.

Problem II: Considering the polygon soup P defined in
Problem I, for each polygon P € P, find a tilting angle ¢ and
a minimal set 2(6) of non-overlapped rectangles { Ry, k =
1,2,---} all with a fixed size w x h and tilted with angle 6,
such that P C U, Ry, VR, € Q.

When solving Problem II, another heuristic is employed in
our algorithm: the optimal covering with parallel rectangles
always has no overlap between the rectangles. Figure 5
provides an illustration of our algorithm’s flow chart. After
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(a) By the minimal bounding box (b) With an optimal tilting angle

Fig. 6. Problem cannot be optimally solved by using a minimal bounding-
box: (a) seven rectangles are needed when covering Po (Fig. 5) in the
orientation of a minimal bounding-box, and (b) only five covering rectangles
are needed when having an optimal tilting angle.

computing the bounding boxes of each polygon with differ-
ent orientations, each bounding box can be first cut into slabs
with width equaling to w (or h). The covering rectangle R
is then packed in each slab in a non-overlapped way. The
orientation with minimal number of covering rectangles is
used as the titling angle in the final fabrication to generate
mask images.

Based on the above framework, our algorithm consists of
two parts:

« Inter step: given a tilting angle 6, cover a polygon by
a minimal number of covering rectangles in this tilting
angle (Section V-A).
« Outer loop: find an optimal tilting angle 0,,, for each
polygon (Section V-B).
It is worthy to note that computing a bounding box with min-
imal area (e.g., by the rotating calipers algorithm [10], [15])
does not always result in a minimal set of non-overlapped
rectangles. An example is shown in Fig. 6. Although deter-
mining an optimal tilting angle takes more computing time,
a covering with smaller number of rectangles can be found.

A. Optimal covering with a fixed orientation

We first tackle the problem of inner step in our algorithm.
Given a predefined tilting angle 6, the polygon P is rotated
by this angle first. The bounding box after rotation can also
be easily determined by the minimal/maximal coordinates
of P’s vertices. Having four corner points of the bounding
box defined as o; (¢ = 1,2, 3,4), the two adjacent sides of
a corner point o; is denoted as e;; and e;o (see Fig. 7(a)
and (b)). For each side of the bounding box, we use line
segments with length w (or h) to cover them as illustrated
in Fig. 7(c). In our implementation, both w and h are tried,
and the one leads to smaller number of covering rectangles
at the end of computation is selected as the final result.

Without loss of generality, when e4 is selected to be
covered by line segments with length h (see Fig. 7(c)), slabs
are formed by adding lines perpendicular to the line segments
(denoted by [; and [,, for lower and upper ones). The line
segment and the slab are denoted by s and S respectively
(see Fig. 7(d)). The following steps are then used to cover
SN P by a minimum number of rectangles, {R;}.

o Step 1: Denote the set of all polygonal vertices falling
into S as V(S5).

€4 €>
L0 01 91 02
(a) (b)

— Line segments

s [— S; Slahs——» S
i —
S S S

% %o

\

S

0 © %

Fig. 7. Steps for covering with a fixed orientation: (a) given a predefined
tilting angle 6 for an orientation, (b) rotate the polygon P and find its axis-
aligned bounding box, (c) cover the box edge es by two line segments s
and s’ in an end-to-end manner, (d) each line segment s (or s’) defines a
slab S (or S’), (e) cover the slab S N P by a minimum set of rectangles
R, and (f) cover the S’ N P.

o Step 2: Compute the intersection points between [;, [,
and P and denote them as Z; and Z,,.

o Step 3: Sort all points in Z = Z; UZ, U V(S) in the
ascending order of coordinate values along the direction
of line ;.

o Step 4: If 7 is empty, stop the algorithm; otherwise, pop
up a point pt from Z (with the minimum coordinate) and
remove it from I = I \ pt.

o Step 5: Place a rectangle R in S by aligning its lower-
left corner as o = pt and its edges as €1 C [j, €3 C [y,
where o =€, Néy and €; (¢ = 1,2, 3,4) are four edges
of R.

— Step 5.1: If &5 intersects P, locate a rectangle R at
the point €; Ney by the same alignment method in
Step 5.

— Step 5.2: Remove all the points in Z falling into
this R.

— Step 5.3: Repeat the above steps until e does not
intersect P anymore.

« Step 6: Go back to Step 4.

An example has been shown in Fig. 7(e) and (f) to illustrate
the covering results in slabs S and S’.

The intersection points between every boundary line of
slabs and the polygon can be efficiently computed in O(n)
time by finding the intersection of a set of parallel line
segments and the polygon. Here, n is the number of edges
in the polygon. In the worst case, there are O(n) points in
T in Step 3. As a result, our algorithm runs in O(n?logn)
time.

B. Finding an optimal orientation

The problem of finding an optimal orientation is formu-
lated as finding a minimal value of a function f(#), which
returns the minimal number of rectangles to cover a polygon
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P. As the function value is integer and the function f(6) can
only be implicitly evaluated, we approximate its function
value by a real function f(¢) and then find the ‘optimal’
value of @ by applying numerical optimization on f(#).
First of all, we evaluate the value of f(f) at a few sampled
angles, which consists of two parts:
1) a uniform sampling {6; = %W} (i=1,---,6), and
2) a set of angles by aligning each edge of P’s convex
hull along the vertical axis.

The set of all these tilting angles is denoted by ©. The
approximation function is then constructed to interpolate the
function values at these samples, that is

F(0:) = f(0;) (V0; € ©). (1)

Due to the good property of interpolation, the radial basis
functions (RBFs) [16] is employed here. That is,

F0)=">" \e®(0 — 61) 2

0,€0

where )\, is a coefficient for each 6, and we choose the
Gaussian RBF &(r) = e~ due to its property of positive
definite. Substituting Eq.(1) into Eq.(2), all the coefficients
A can be determined by solving a linear system. Given
the analytical form of f(6), we find its minimal value 0,
using a variant of Brent’s method [17]. After obtaining an
‘optimal’ titling angle 0,,;, the optimal covering by R can
be determined by the method introduced in Section V-A.

Complexity Analysis: In the worst case, there are O(n)
elements in © and the algorithm to evaluate the function
value of f() is in the complexity of O(n?logn). As a result,
our overall optimization algorithm has a time complexity of
O(n3logn).

VI. EXPERIMENTS AND DISCUSSION

We have implemented this proposed algorithm in our
hardware system. In our practice, a printed 3D model usually
have hundreds to thousands of layers and the polygon soup
in each layer has a few disconnected polygons with tens to
hundreds of vertices. The running time of our algorithm is

Photographs to illustrate different stages of fabrication using our delta DLP 3D printer. More details can be found in supplemental demo video.
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Fig. 9. Results of fabrication — all are fabricated by our system, where
the smaller ones are fabricated without applying horizontal movement on
the platform as their cross-sections can be fully covered by the region of a
projection, R.

TABLE I
STATISTIC OF FABRICATION

Model Kitten Stairway
#Triangles 2,470 9,842
Size x1.0 x2.0 x1.0 x2.0
#Layers 460 922 367 736
Height (mm) 47.2 934 379 74.8
[ Total Time [ 92 min. | 608 min. | 78 min. | 222 min. |

from tens of seconds to a few minutes for generating motion
paths of the printer’s platform on a PC with an Intel I7-
860 CPU (2.80GHz) and 8GB RAM. Furthermore, models
in different sizes are fabricated to verify the performance of
our delta DLP 3D printer (see Fig. 9). When the models are
small, each of their slices can be completed covered by the
region of a single projection, R. There is no need to apply
the decomposition algorithm. Such models are fabricated by
our system without applying horizontal movement. We then
scale these models by 2.0 in all axes. As a result, the models
are too large and they can only be fabricated by applying
decomposition and horizontal movement.

Statistic of fabrication is listed in Table I. Note that, the
thickness of each layer in fabrication is 0.1mm, and the
solidification time of each projection is 10 sec. The speed
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Fig. 10. Two methods for fabricating samples to verify the mechanical
strength of models: I) one layer one project and II) one layer by two
projections — half for each.

Fig. 11. Printed samples for verifying the mechanical strength of models
fabricated by our method: from left to right, 0.5mm, 1.0mm and 1.5mm
respectively in thicknesses — all have the size of 26mm x 26mm. Top row
is fabricated by method I and the bottom row by method IIL.

of rotation by 42BYGH33 motor is 0.3 rad./sec., and the
maximal speed for translation is 80 mm/sec. It is easy to
find that our method has a very good scalability — when
increasing the volume of solid to be fabricated by 8x,
the total fabrication time only increases 6.60x and 2.85x
respectively. Figure 8 shows the photographs of system in
the process of fabrication.

To verify the mechanical strength of a model fabricated
by decomposing a large layer into smaller pieces in delta
DLP 3D printing, we fabricate models with the same area of
cross-sections (i.e., 26mm x 26mm) but different thickness
(0.5mm, 1.0mm and 1.5mm respectively). The models
are made by two different methods: I) each layer by one
complete projection (left of Fig. 10) and II) each layer is
decomposed into two projections — half for each (see the
right of Fig. 10). Some fabricated samples can be found in
Fig. 11.

These samples are tested in both the tensile stretch and the
bending tests. In both tests, the similar mechanical stiffness
is observed on the models fabricated by methods I and II. In
other words, no significant weakness is found on the models
made by decomposing a large cross-section into smaller
ones to be solidified. The models fabricated by our delta
DLP printer can satisfy the requirement of normal usage.
Moreover, when being applied to a practical model (e.g., the
ones shown in Fig. 9), the boundaries in different slabs (in z-
y planes) and in different slices (along the z-axis) are stagger
from each other. This can further enhance the mechanical
stiffness of fabricated models.

VII. CONCLUSIONS

In this paper, we present a system for DLP-based 3D
printing with large size. The hardware of our system is based
on an extension of parallel delta robot and a conventional
DLP printer. The major technical contribution of our work
is an approach to move working platform horizontally when
the area of a layer to be solidified is larger than the maximal
region that can be done by a single projection. A simple
yet effective algorithm is developed to decompose the large
area of a layer into small number of projected regions. The
mechanical strength of models fabricated by decomposition
has been studied and compared with models resulted from
conventional DLP process. The results showed that similar
stiffness can be found. The functionality of our system has
been verified on freeform models in different sizes, and a
good scalability of our approach is observed.
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