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Abstract

Nowadays, the increasingly growing number of mobile

and computing devices has led to a demand for safer user

authentication systems. Face anti-spoofing is a measure to-

wards this direction for biometric user authentication, and

in particular face recognition, that tries to prevent spoof

attacks. The state-of-the-art anti-spoofing techniques lever-

age the ability of deep neural networks to learn discrimina-

tive features, based on cues from the training set images or

video samples, in an effort to detect spoof attacks. However,

due to the particular nature of the problem, i.e. large vari-

ability due to factors like different backgrounds, lighting

conditions, camera resolutions, spoof materials, etc., these

techniques typically fail to generalize to new samples. In

this paper, we explicitly tackle this problem and propose a

class-conditional domain discriminator module, that, cou-

pled with a gradient reversal layer, tries to generate live

and spoof features that are discriminative, but at the same

time robust against the aforementioned variability factors.

Extensive experimental analysis shows the effectiveness of

the proposed method over existing image- and video-based

anti-spoofing techniques, both in terms of numerical im-

provement as well as when visualizing the learned features.

1. Introduction

Increasingly, people use computing devices, such as lap-

tops and smartphones, to work, pay their bills, purchase

things as well as interact with their social circle, entertain

themselves, etc. Given the constant use we make of these
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Figure 1. Sample frames from the four publicly available face

anti-spoofing datasets: CASIA-MFSD [52], MSU-MFSD [48],

Oulu-NPU [8] and Idiap Replay-Attack (RA) [10]. Note that, a

large variability can be observed due to factors like different attack

instruments, backgrounds, lighting conditions, camera resolutions

etc. resulting significant domain shift among these datasets.

devices, it is important to develop convenient, yet secure,

ways to log into them. Lately, biometric authentication, and

in particular face recognition, has emerged as an attractive

way of user identification due to the unique nature of each

individual’s face in combination with the ease-of-use of this

approach (e.g. Apple’s FaceID). At the same time, how-

ever, hackers have become more inventive in their attempts

to spoof someone’s face in order to fool the authentication

system. Typical examples include printing one’s face pic-

ture on paper (print attack), playing a video depicting the

person’s face on another device (replay attack), wearing a

special mask to closely imitate someone’s facial appearance

(mask attack), etc. Understandably, being able to effectively

detect such attacks, formally known as face anti-spoofing



(FAS), is a critical problem in computer vision.

On the one hand, traditional approaches to face anti-

spoofing rely on hand-crafted features, like LBP [10],

HoG [25] and SURF [7], to detect differences in texture

between the live and spoof face images, or heuristics, like

eyeblink [37] and lip motion [24], to identify regularities

that are absent from the spoof attacks. However, the afore-

mentioned methods are either not applicable to all possible

spoof attacks, i.e. print, replay, and mask, or they fail to gen-

eralize to different datasets, since the learned features spe-

cialize to the ‘trained’ textures, which largely vary between

datasets due to factors like different backgrounds, lighting

conditions, camera resolutions, spoof materials, etc. as can

be seen in Fig. 1.

On the other hand, modern approaches use convolutional

neural networks (CNNs) [33, 22] that have shown impres-

sive performance in many computer vision tasks, largely at-

tributed to the great representational power of their learned

features when trained on large-scale datasets. Despite the

improved performance, there are still open challenges in

FAS. A notable one is the domain1 shift [30] problem. The

latter occurs when a network trained on one dataset (source

domain) is tested on a completely unseen dataset (target do-

main). This is referred to as “cross-testing” in the FAS lit-

erature, while training and testing on the same dataset is

referred to as “intra-testing”. The existing deep learning

based approaches show promising results for intra-testing,

but their performance dramatically degrades when evalu-

ated under a cross-testing setup [40]. The main reason

for this performance drop is the feature distribution dis-

similarity (see Fig. 2) between the source and target do-

mains caused by several dataset specific cues, such as differ-

ences in: (1) environmental conditions (illumination, back-

ground), (2) spoofing mediums (printers, display screens),

and (3) the quality of video capturing devices (different mo-

bile phones, tablets). Thus, a model learns to differentiate

between live and spoof samples based on these dataset de-

pendent cues, but fails to correctly classify samples from

unknown datasets having different sets of cues.

In this paper, we address the aforementioned domain

shift problem in FAS under the domain generalization set-

ting. That is, the network is trained on multiple datasets

(source domains), but then tested on a completely unseen

dataset (target domain). Our goal is to generate domain ag-

nostic feature representations using the source domain sam-

ples that would generalize to the unseen target domain sam-

ples, so that each sample, regardless of its domain origin,

can effectively be classified as live or spoof. To this end,

we propose the use of class-conditional domain discrimi-

nator modules coupled with a gradient reversal layer [15].

The former take the feature representations generated from

a backbone network, and try to classify from which source

1The term domain in this paper is used to refer to a dataset.

domain each sample comes, conditioned on the class it be-

longs (i.e. live or spoof). The latter acts as an identity trans-

form during the forward propagation, but multiplies the gra-

dient by a certain negative constant during the backward

propagation, essentially reversing the objective of its sub-

sequent layers. In our case, this practically means that the

backbone network is now tasked with the extra objective

of generating live and spoof feature representations that are

indistinguishable across domains. Note that, our method

works for both image-based and video-based inputs, but we

explicitly avoid to include extra components as input, like

depth or rPPG signals [33], as the latter would require ex-

pensive ground truth labels in order to train the network.

Our key contributions can be summarized as: (1) a class-

conditional domain discriminator module (§ 3.3) which

coupled with a gradient reversal layer promotes the learn-

ing of domain agnostic features; (2) an LSTM network

(§ 3.2,3.5) to learn temporal domain agnostic features as

complementary information; (3) state-of-the-art results on

the four challenging domain generalization test sets (§ 4.2)

with an accompanying visual analysis of the feature embed-

ding (§ 4.4) and class activation maps (§ 4.6).

2. Related work

In what follows, we describe traditional, feature-based

as well as modern, CNN-based approaches to FAS. We then

elaborate on the few domain generalization works on FAS.

Traditional approaches. Before the advent of

CNNs [26], typical approaches to face anti-spoofing com-

bined the use of hand-crafted features with shallow classi-

fication techniques to detect differences in texture between

the live and spoof images. The most characteristic exam-

ples of hand-crafted features include LBP [34], HoG [25],

DoG [45], SIFT [38], and SURF [7]. In a similar vein,

other traditional approaches employed heuristics to lever-

age ‘liveliness’ cues that are not present in a spoof attack.

Examples of such heuristics are eyeblink [37] and lip mo-

tion [24]. Another ways to address face anti-spoofing are

making use of temporal cues [4], different color spaces [5],

image distortion analysis [48] or a transformation to the

temporal domain [2] and Fourier spectrum [31], have been

explored. In general, these traditional methods are either

not applicable to all possible spoof attacks, i.e. print, re-

play, mask, or they fail to generalize to different datasets,

since the learned features specialize to the ’trained’ textures,

which largely vary between datasets due to factors of varia-

tion like different backgrounds, lighting conditions, camera

resolutions, spoof materials, etc.

CNN-based approaches. The impressive results

achieved by applying CNNs to the tasks of image classi-

fication and object recognition [26, 19, 43, 44] motivated

researchers to employ them to other computer vision tasks

too. Face anti-spoofing is no exception. The obvious choice
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Figure 2. A t-SNE visualization of CNN features from a ResNet50 backbone trained on multiple source domains (i.e. FAS datasets) and

tested on an unseen target domain. For better visualization we show only one source and one target domain in these plots. We can easily

recognize the inherent domain shift problem in face anti-spoofing. That is, the live and spoof samples from the source and target domains

are not properly aligned in the feature space, resulting in poor generalization of the learned feature representations on the target domain.

is to replace the hand-crafted features with features learned

from generic CNNs - known for their great representational

power when trained on large-scale datasets. Feng et al. [13]

explored the use of multiple cues, such as image quality and

motion cues. Xu et al. [49] incorporated video inputs and

proposed an LSTM-CNN model to take advantage of the

information from the extra frames. Dynamic textures were

proposed in [41, 42] to extract different facial motions. Re-

cently, Atoum et al. [1] introduced a multitasking-inspired

approach that combines the estimation of texture and depth

features for binary live/spoof classification, which was later

extended by Liu et al. [33] to also include fusion with tem-

poral supervision, i.e. rPPG signals. Finally, Joorabloo et

al. [22] followed a different path and inversely decomposed

a spoof face into a spoof noise and a live face using a GAN

architecture, and consequently utilized the spoof noise for

classification. Bresan et al. [9] explore depth, salience

and illumination maps associated with a pre-trained CNN

for FAS. They use combination of source domains (i.e.

NUAA [45], Idiap Replay-Attack [10], CASIA-MFSD [52]

dataset), different from ours, and thus their method is not

directly comparable.

The aforementioned works, despite showing improved

performance, partially attributed to the use of CNNs, still

face open challenges when it comes to generalizing across

domains (i.e. datasets). As mentioned, there is an inherent

domain shift [30] between the different FAS datasets (e.g.

Replay Attack [10] and CASIA-FASD [52]), which in turn

leads to poor cross-testing results. In this paper, we go be-

yond current CNN-based approaches and explicitly tackle

the domain shift problem in FAS without relying on su-

pervision from extra cues, like depth or rPPG signals, that

would require a significant annotation effort to acquire.

Domain generalization approaches. To tackle the do-

main shift problem across different datasets, domain adap-

tation [20, 14, 47, 15, 16] and generalization [23, 36, 50,

18, 17, 27, 35, 29] techniques have been used in computer

vision. The goal in each case is to bridge the distribution

gap between data from source and target domains in order

to create domain agnostic feature representations that gen-

eralize to new domains. In this paper, we are mostly in-

terested in domain generalization techniques, which have

been largely unexploited in FAS, with the following ex-

ceptions. Li et al. [28] encouraged the learning of gen-

eralized feature representations by taking both spatial and

temporal information into consideration and minimizing a

cross-entropy loss together with a generalization loss. Tu et

al. [46] proposed the use of Total Pairwise Confusion loss

for CNN training in conjunction with a Fast Domain Adap-

tation component into the CNN model to account for do-

main changes. Shao et al. [40] combined the learning a

generalized feature space that is shared by multiple discrim-

inative source domains with dual-force triplet mining con-

straint to improve the discriminability of the learned feature

space. In general, compared to the aforementioned works

our framework offers better integration to multiple domains,

and, as will be shown in Sec. 4, achieves significantly im-

proved results on four public datasets.

3. Proposed Approach

3.1. The domain shift problem in face anti­spoofing

Our main goal is to learn generalized feature representa-

tions in order to address the domain shift problem that in-
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Figure 3. Overview of the different components of the proposed approach. See Section 3 for more details.

herently exists among FAS datasets. That is, the distribution

dissimilarities between live and spoof samples that belong

to multiple source and unseen target domains. To illustrate

this problem, we use t-SNE plots (Fig. 2) generated from the

CNN features of a ResNet50 [21] backbone trained on mul-

tiple source domains (i.e. FAS datasets) for live/spoof clas-

sification, and tested on an unseen target domain. As can be

seen in Fig. 2 (a), the CNN features of the live samples from

the unseen target domain are far away from the live samples

of the source domain in the feature space. Similarly in Fig. 2

(b), we can see that the print attack features from the target

domain are far apart from the source domain’s print attacks,

and the target domain’s replay attack features are shifted

towards the live samples of the source domain. It is quiet

evident from these illustrations that even deep neural net-

works, like ResNet models, are not sufficient on their own

to tackle the problem. This calls for dedicated mechanisms

that can leverage the common attributes shared across mul-

tiple source domains to learn more generic feature represen-

tations. The term common attributes is used here to refer to

the common intrinsic properties of the print and replay at-

tacks across multiple domains. For example, although these

attacks might have been generated using different spoofing

mediums (i.e. different printers or video capturing devices),

or under different environmental conditions (e.g. illumina-

tion, background scene), they are inherently based on pa-

per materials or display screens. Thus, by leveraging these

common attributes one could expect that better feature rep-

resentations can be learned from the shared and discrimi-

native information across multiple source domains, that is

robust for live/spoofing classification and at the same time

domain agnostic. We expect such representations to demon-

strate better generalization on unseen target domains.

3.2. System overview

To tackle the aforementioned problem, we propose a

novel framework which learns both image- and video-based

domain agnostic feature representations (see Fig. 3). More

specifically, a ResNet backbone (encoder) is trained to min-

imize the live/spoof classification loss, while at the same

time it competes against a class-conditional domain dis-

criminator (§3.3) coupled with a gradient reversal layer to

maximize the domain classification loss of live and spoof

samples respectively. During the training process the en-

coder gradually learns the shared and discriminative feature

representations. A system overview is given in Fig. 3.

You can observe two variations (see Fig. 3). First, an

image based (IB) network that follows an image-level train-

ing, in which a training example consists of an image and

its associated ground-truth label (either “live” or “spoof”).

This is to demonstrate the scenario where only a single im-

age is given as input, and the system has to decide if this

is a spoof attack or not. However, FAS can also be a video

classification problem, i.e. we expect the final output to

be a live/spoof label for an input video sample. Thus, a

CNN trained following an image-level protocol might fail

if we process the results on a frame-by-frame basis, as the

video itself usually contains richer information. For such

instances, we want the network to learn strong temporal

features which are complementary to the spatial represen-

tation learned by the IB network. Based on this idea, we

also propose a video-based (VB) network which is trained

along-side the IB network, following an alternating train-

ing scheme [33]. This VB network uses the same ResNet

backbone, i.e. model parameters of the ResNet backbone

are shared between the IB and VB networks. Unlike the

IB network, the VB network inputs video sequence and



processes these through multiple long-short term memory

(LSTM) units and outputs a single class label for each input

video sequence.

3.3. Class­conditional domain discriminator

In Fig. 3 (c), we show the network architecture of our

proposed class-conditional domain discriminator (CCDD).

CCDD consists of two fully connected layers, FC1 and FC2,

followed by a live and a spoof head. FC1 and FC2 layers

are followed by a ReLU and a dropout layer. During train-

ing, an SGD mini-batch that consists of live and spoof train-

ing examples is processed through the FC1 and FC2 layers.

Consequently, the outputs of the FC2 layer are first split into

“live” and “spoof” batches, and then, they are passed as in-

put to their respective heads. The live and spoof heads have

the same layer configuration, i.e. each consists of a single

linear transformation layer followed by a domain classifier.

They output two score vectors sl and sf having D scores,

i.e. the softmax probability scores for each domain. Note

that, we use the same network architecture for the image-

and video-based CCDD (DIB and DVB in Fig.3 (a) & (b)).

The proposed CCDD coupled with the gradient reversal

layer imposes the desired conditional invariance property on

the learned feature representations. The conditional invari-

ance is realized by the class-conditional losses (see below),

which consider the source domain label information only

and aim to make the representation in each class indistin-

guishable across domains. We present a t-SNE visualiza-

tion (§4.4) to demonstrate that the proposed CCDD learns

to correctly align the live and spoof features of the target

domain with the features of source domains. Besides, we

present quantitative experimental results to attest the effec-

tiveness of the CCDD. A more detailed network design is

provided in the supplementary material.

3.4. Gradient reversal layer

The gradient reversal layer (GRL) [15] was originally

proposed for unsupervised domain adaptation. Instead, we

couple CCDD with GRL in order to learn domain agnostic

features from multiple source domains for FAS. In partic-

ular, we use two GRL layers, one in the image-based and

another one in the video-based network (Fig.3). What GRL

essentially does, is to reverse the gradient by multiplying it

by a negative scalar (i.e. the adaptation factor λGRL) during

the backward propagation. During the forward propagation,

it leaves the input unchanged, i.e. it acts as an identity trans-

form. By doing so, it essentially reverses the objective of its

subsequent layers, i.e. CCDD in our case. What this prac-

tically means, is that the backbone network is now tasked

with the extra objective of generating live and spoof fea-

ture representations that are indistinguishable across multi-

ple source domains.

3.5. Optimization cost

First, we specify the energy function used to optimize

the IB network (Fig.3 (a)). Consider the following nota-

tions: θf , θl and θs be the model parameters of the com-

mon layers (i.e. FC1 & FC2), live and spoof heads of the

DIB respectively; θe and θc be the model parameters of the

encoder (i.e. the ResNet backbone) and the label classi-

fier (i.e. the live/spoof classifier); Ll and Ls be the domain

classification losses (i.e. multinomial) for the live and spoof

heads that penalize for incorrect domain label prediction

separately for the “live” and “spoof” training examples; Lc

be the label classification (e.g. multinomial) loss that pe-

nalizes for incorrect class label (i.e. “live” or “spoof”) pre-

diction; i denotes the index for a training example and F

be the number of training examples, i.e. i = {1, 2, . . . , F};

bi be a binary variable denoting the class label of the i-th

example, i.e. bi = 0 indicates that the example is live and

bi = 1 that it is a spoof. During the IB network training,

the encoder’s model parameters θe learn to minimize the

discrepancy in the class conditional distribution [32] across

different domains. This is done by maximizing the domain

classification losses of the live and spoof heads of the DIB.

In other words, it tries to make the feature distributions (be-

longing to a class c ∈ C) maximally similar across different

domains. At the same time, the live and spoof heads seek

parameters θl and θs which minimize the class conditional

domain classification losses. This yields as energy function

for our IB network:

E(θe, θc, θf , θl, θs) =
∑

i=1...F

Li
c(θe, θc)

+ λIB

(

∑

i=1...F
b=0

Li
l(θe, θf , θl) +

∑

i=1...F
b=1

Li
s(θe, θf , θs)

)

(1)

Now, we specify the energy function used to optimize

the VB network (Fig.3 (b)). Let: θ̂r be the model param-

eters of the LSTM network; θ̂f , θ̂l and θ̂s be the model

parameters of the common layers (i.e. FC1 & FC2), live

and spoof heads of the video-based class-conditional do-

main discriminator respectively; θ̂c be the model parame-

ters of the LSTM’s label classifier (i.e. the live/spoof clas-

sifier). In a similar fashion, during the VB network training

the encoder’s and LSTM’s model parameters (i.e. θe and

θ̂r) learn to minimize the discrepancy in the class condi-

tional distribution across different domains by maximizing

the domain classification losses of the live and spoof heads

of the DVB. At the same time, the live and spoof heads seek

parameters θ̂l and θ̂s which minimize the class conditional

domain classification losses. This yields as energy function

for our VB network:



Table 1. Comparison to state-of-the-art FAS methods on four domain generalization test sets.

Method
O&C&I→M O&M&I→C O&C&M→I I&C&M→O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MS LBP [34] 29.76 78.50 54.28 44.98 50.30 51.64 50.29 49.31

Binary CNN [51] 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54

IDA [48] 66.67 27.86 55.17 39.05 28.35 78.25 54.20 44.59

Color Texture [6] 28.09 78.47 30.58 76.89 40.40 62.78 63.59 32.71

LBPTOP [12] 36.90 70.80 42.60 61.05 49.45 49.54 53.15 44.09

Auxiliary(Depth Only) [33] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61

Auxiliary(All) [33] - - 28.4 - 27.6 - - -

Ours 15.42 91.13 17.41 90.12 15.87 91.72 14.72 93.08

Table 2. Comparison to state-of-the-art domain generalization FAS methods on four domain generalization test sets.

Method
O&C&I→M O&M&I→C O&C&M→I I&C&M→O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MMD-AAE [29] 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08

MADDG [40] 17.69 88.06 24.5 84.51 22.19 84.99 27.98 80.02

Ours 15.42 91.13 17.41 90.12 15.87 91.72 14.72 93.08

E(θe, θ̂r, θ̂c, θ̂f , θ̂l, θ̂s) =
∑

i=1...F

L̂
i

c(θe, θ̂r, θ̂c)

+ λV B

(

∑

i=1...F
b=0

L̂
i

l(θe, θ̂r, θ̂f , θ̂l) +
∑

i=1...F
b=1

L̂
i

s(θe, θ̂r, θ̂f , θ̂s)

)

(2)
L̂
i

c, L̂
i

l and L̂
i

s are the live/spoof classification loss and

the domain classification losses (for the live and spoof

heads) for VB network. λIB and λV B are the scalar pa-

rameters weighting the relative importance of the two loss

terms in Eq. 1 and Eq. 2 respectively. Note that, the en-

coder’s model parameters θe are shared across the image-

and video-based networks.

4. Experiments

4.1. Experimental setting

Datasets. We evaluate our method on four publicly

available FAS datasets: Oulu-NPU [8] (O for short),

CASIA-MFSD [52] (C for short), Idiap Replay-Attack [10]

(I for short), and MSU-MFSD [48] (M for short).

Training and evaluation. We consider a dataset to be

one domain in our experiments. Our model learns domain

generalized representations from three out of four datasets,

as in [40]. In particular, we randomly select three datasets

as the source domains, and the remaining unseen domain,

which is not accessed during training, is kept for evaluation

only. Half Total Error Rate (HTER) [3] and Area Under

Curve (AUC) are used as the evaluation metrics in our ex-

periments.

Implementation details. We use ResNet-50 [21] as our

backbone network. The dimension of the input image is

224×224. During training, we use SGD optimizer, and fol-

low an alternative training approach [33] to train both our IB

and VB networks (Fig. 3). We use a constant learning rate

of 0.0003, momentum 0.9 and weight decay 0.00001. The

mini-batch size for the IB network is 48, i.e. 16 training im-

ages from each of the three domains. For the VB network,

the mini-batch size is 6, i.e. 2 training video sequences from

each of the three source domains, and the LSTM sequence

length is 8. The LSTM’s input dimension is 2048, while

the hidden layer dimension is 256. We use a constant GRL

adaptation factor (λGRL = −0.2) [15], and set the λIB and

λV B to 1. Additional experimental details are presented in

the supplementary material.

4.2. Comparison to the state­of­the­art

In Table 1, we compare our full model against state-

of-the-art FAS methods. Our proposed method outper-

forms [34, 51, 48, 6, 12, 33] on all the four domain gen-

eralization test sets. The significantly better performance

mostly lies in the ability to learn rich generalizable features,

which adapt well to the unseen target domain (see Fig.4).

Note that, these FAS methods do not explicitly address the

domain shift problem, and thus naturally fail to general-

ize well on unseen target domains. In contrast, our pro-

posed method explicitly learns a generalizable representa-

tion by leveraging the available information (live and spoof

examples with ground truth labels) from multiple source do-

mains. In particular, it learns to map all the live and spoof

samples (from multiple source domains) to a common fea-

ture space where the live and spoof features are far apart,

while being domain invariant at the same time.

In addition, we compare against the state-of-the-art do-

main generalization FAS method [40] and also compare to

the related state-of-the-art method in domain generalization

for the face anti-spoofing task: MMD-AAE [29] as in [40].

These methods explicitly address the domain shift problem.

Table 2 shows this comparison, where our method consis-

tently achieves much better performance. We conclude that

the proposed method can overcome the distribution dissimi-

larities in the feature space more effectively. Moreover, [40]

is relatively expensive and not end-to-end trainable, in con-
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Figure 4. A t-SNE plot of the CNN features coming from ResNet (a) vs our full model (b,c), both trained on three source domains

and tested on an unseen target domain (best viewed in color). Note that, the live features of source and target domains are far apart (a);

similar trend can be noticed for the spoof features of source and target domain, but our model learns to group together all live and spoof

features (from multiple source domains) into two different clusters (b), thus improving the classification accuracy. Importantly, the learned

representations generalize well on the target domain (c).

Table 3. An ablation study of the different components in the proposed FAS architecture on four domain generalization test sets.

ResNet DIB LSTM DVB
O&C&I→M O&M&I→C O&C&M→I I&C&M→O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

X 21.66 89.64 25.92 82.16 20.12 90.1 18.81 89.53

X X 18.33 90.58 21.29 85.82 17.63 86.3 17.05 90.01

X X 17.92 90.27 19.26 87.85 18.0 89.78 16.42 90.82

X X X 18.33 88.25 21.11 88.22 18.25 85.61 17.05 91.09

X X X 14.58 92.58 18.7 89.35 15.13 95.76 14.86 93.00

X X X X 15.42 91.13 17.41 90.12 15.87 91.87 14.72 93.08

trast to our method.

4.3. Ablation study on model components

So far, we have shown results with our full model that

contains all the different components, i.e. ResNet back-

bone (ResNet), image-level domain discriminator (DIB),

LSTM module (LSTM), and video-level domain discrim-

inator (DVB). In what follows, we present a detailed abla-

tion study when using different combinations of these com-

ponents. The experimental results on all four domain gen-

eralization test sets are summarized in Table 3. When we

mention DIB or DVB in Table 3, it automatically includes

the associated GRL layer.

To demonstrate the applicability of the proposed model

components, we first setup our own baseline for the abla-

tion study. The baseline is comprised of a ResNet-50 back-

bone and a live/spoof classifier which is trained on the four

different domain generalization training sets. Our base-

line itself exhibits some desirable performance. In the sup-

plementary material, we report experiments with a lighter

ResNet backbone. When adding DIB on top of the ResNet

backbone, the results are consistently improved on all four

test sets. Additionally adding LSTM, the results are again

improved significantly. Finally, our full model boosts the

results further. Combining ResNet and LSTM, provides

slightly better results on three test setups compared to the

model using ResNet and DIB. However, adding DVB to the

model with ResNet and LSTM does not bring any further

improvements. However, when DVB is jointly trained with

ResNet, DIB and LSTM, i.e. our full model, improves over

the ResNet baseline. This observation verifies that by ex-

ploiting both spatial (DIB or image-based) and temporal

(DVB or video-based) domain-agnostic features our pro-

posed model can achieve the best results on the two most

challenging domain generalization test sets (O&M&I→C

and I&C&M→O).

4.4. Visualization of the learned CNN features

Fig. 4 depicts t-SNE plots of the CNN activations (i.e.

features) coming from our ResNet baseline vs our full

model. Both networks were trained on 3 source do-

mains (i.e. Oulu-NPU, CASIA-MFSD and MSU-MFSD)

and tested on a target domain (i.e. Idiap replay-attack). Note

that, the plots in (b) and (c) are generated using the same

trained model, i.e. our full model, and the same set of

live and spoof samples. For the sake of better visualiza-

tion, however, we have deactivated the visualization of the

target domain in (b). As can be seen in (b), our model

learns more discriminative features for live and spoof im-

ages. What is more interesting is that the representation

learned by our model aligns well with unseen target do-

main’s live and spoof features, as can be seen by activat-

ing the target domain visualization in (c). In contrast, the

ResNet learnt representation shows relatively weaker gener-

alization ability on the target domain, as shown in (a). In the

latter case, the live, print- and replay-attack features from



multiple source domains are far apart in the feature space,

whereas our model learns to minimize this inter-domain dis-

tances between live and spoof features, as shown in (b, c).

From these visualizations, we can conclude that our net-

work generalizes well on the target domain. Particularly

observe in (c) how the target domain live and spoof features

are properly aligned with the live and spoof features of the

source domains in (b).

ClassifierDomain
FC- 1

Domain Disciminator (Dis) 

FC- 3FC- 2
ReLU
Dropout

ReLU
Dropout

Figure 5. Architectural components of our default Domain Dis-

criminator network (Dis).

(a) Live (b) Print attack (c) Video attack

Figure 6. Activation map visualization of the proposed network.

For each column (a), (b) and (c), the original input images and its

associated network class activation maps are shown.

Table 4. Performance comparison of different domain discrimina-

tors on three domain generalization test sets.

ResNet Dis DIB

S&O&I&R S&O&C&R S&C&I&R

→C →I →O

HTER(%) HTER(%) ACER(%)

X 17.5 20.6 10.27

X X 15.3 17.7 8.75

X X X 15.1 17.0 23.4

X X 14.0 14.7 8.05

4.5. Impact of different domain discriminators

We conduct experiments to analyze the effect of using

different domain discriminators on the FAS performance.

We consider two domain discriminator architectures: the

proposed DIB (Fig. 3), and the default domain classifier

(Fig. 5) originally proposed by [15] for unsupervised do-

main adaptation (Dis in Table 4). Note that, for the ex-

periments in this section we used – only for training pur-

poses – two more datasets, i.e. SiW (S for short) [33]

and Idiap replay-mobile (R for short) [11]. Following [33],

when testing on Oulu-NPU dataset, we use the ACER met-

ric. From Table 4, it can be seen that our ResNet-DIB gives

the best performance. When ResNet-Dis is used, the perfor-

mance degrades slightly. Even combining Dis with DIB de-

grades the performance heavily on Oulu-NPU. From these

experiments, we observe that learning feature representa-

tions from multiple source domains conditioned on class

labels (i.e. live and spoof) can provide discriminative and

domain agnostic features, while conditioning them on do-

main labels only may not correctly align the live and spoof

features, resulting poor classification accuracy. As the pro-

posed DIB has access to both class (live and spoof) and do-

main labels, in contrast to Dis, it is able to learn better repre-

sentations by correctly grouping live features from multiple

source domain into one cluster and spoof features into an-

other (see Fig. 4).

4.6. Class activation map visualization

In this section, we provide a visual analysis of the class

activation maps to get an intuition about the decisions the

network makes when making a particular prediction. For

this visualization, we use the Grad-CAM [39] technique.

In Fig. 6 we show the class activation maps for the live,

print and replay attack test samples. Some interesting ob-

servations can be made. The network gives more impor-

tance to the facial regions for detecting a “live” class (see

Fig. 6 (a)) which is intuitive as most of the information

about a live face comes from the facial region. For exam-

ple, the texture of a live skin, the eye blinking, head motion

etc. On the other hand, for print attacks the network pays

more attention to the surface of the paper (on which the face

image is printed) (Fig. 6 (b)). For video replay attacks, if

strong features like “a hand in the background” and “a tablet

screen” are present then the network takes decision from

these salient information (Fig. 6 (c) top). In the absence of

such strong features, it tries to see both the facial region and

the background (Fig. 6 (c) bottom).

5. Conclusion

In this paper, we addressed an inherent problem in face

anti-spoofing, i.e. the large variability in factors such as the

different backgrounds, lighting conditions, camera resolu-

tions, spoof materials, etc., makes feature representations

learned by CNNs for this task too domain-dependent, lead-

ing to decreased performance when testing on unseen do-

mains. We propose a solution based on generalizable fea-

ture learning that naturally fits this ’domain shift’ problem

in both image-based and video-based face anti-spoofing.

We provide extensive experimentation on multiple aspects

of our approach, and among others, we demonstrate state-

of-the-art performance across different test sets, we illus-

trate the qualitative improvement of the learned feature rep-

resentations w.r.t. generalization, and visualize through the

class activation maps the network’s attention when making

predictions. For future work, we would like to use multi-

modal inputs and apply domain agnostic multi-modal fea-

ture learning to further improve the classification accuracy.



References

[1] Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming

Liu. Face anti-spoofing using patch and depth-based cnns.

In 2017 IEEE International Joint Conference on Biometrics

(IJCB), pages 319–328. IEEE, 2017. 3

[2] Wei Bao, Hong Li, Nan Li, and Wei Jiang. A liveness de-

tection method for face recognition based on optical flow

field. In 2009 International Conference on Image Analysis

and Signal Processing, pages 233–236. IEEE, 2009. 2

[3] Samy Bengio and Johnny Mariéthoz. A statistical sig-
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