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Figure 1: Virtual Community supports embodied multi-agent simulation in open-world envi-
ronments. We introduce an automated pipeline that generates open-world scenes and agent commu-
nities, with agents instantiated as humanoid avatars or robots to enable diverse social interactions.

ABSTRACT

The rapid progress of AI and robotics may profoundly transform society, as hu-
mans and robots begin to coexist in shared communities, bringing both opportu-
nities and challenges. To explore this future, we present Virtual Community—an
open-world platform for humans, robots, and society—built on a universal physics
engine and grounded in real-world 3D scenes. With Virtual Community, we aim
to enable the study of embodied social intelligence at scale. To support these, Vir-
tual Community features: 1) An open-source multi-agent physics simulator that
supports robot, human, and their interactions within a society; 2) A large-scale,
real-world aligned environment generation pipeline, including vast outdoor space,
diverse indoor scenes, and a community of grounded agents with rich characters
and appearances. Leveraging Virtual Community, we propose two novel chal-
lenges. The Community Planning Challenge evaluates multi-agent reasoning and
planning in open-world settings, such as cooperating to help agents with daily
activities and efficiently connecting other agents. The Community Robot Chal-
lenge requires multiple heterogeneous robots to collaborate in solving complex
open-world tasks. We evaluate various baselines and demonstrate the challenges
in both high-level open-world task planning and low-level cooperation controls.
We have open-sourced our project* and hope that Virtual Community will unlock
further study of human-robot coexistence in open worlds.

*Website: https://virtual-community-ai.github.io/
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1 INTRODUCTION

In recent years, the development of intelligent embodied agents has been propelled by advances
in virtual simulators (Savva et al., 2019; Kolve et al., 2017; Anderson et al., 2018; Todorov et al.,
2012; Savva et al., 2017; Li et al., 2021; Xiang et al., 2020b; Makoviychuk et al., 2021; Gan et al.,
2021; Cheng et al., 2024; Wu et al., 2024; Wang et al., 2024a; Li et al., 2024; Zhong et al., 2024;
Zhuang* et al., 2025; Du et al., 2019). However, most of these platforms focus on robots (Tao et al.,
2024; Xiang et al., 2020b; Li et al., 2024), human-like agents (Puig et al., 2018; 2020), or only a
limited number of agents with simple interactions (Puig et al., 2023; Gan et al., 2021). In contrast,
support for large, heterogeneous communities of human and robot agents in scalable open worlds
remains limited. Such worlds allow agents to freely explore large, non-linear indoor–outdoor envi-
ronments instead of following fixed paths or sequences of levels, yet existing platforms rarely offer
this capability at scale, constraining the study of complex multi-agent behaviors between humans
and robots.

To address this challenge, simulators must support the following key features. First, they should
offer physically realistic simulations that accommodate large communities of human-like avatars
and robots. Existing multi-agent embodied AI platforms (Puig et al., 2018; 2023; Gan et al., 2021;
Li et al., 2021; Wu et al., 2024) typically handle only small groups of avatars or robots, or provide
limited physics-based interactions, thereby constraining the realism of community-level behaviors.
Second, the simulator must support the creation of diverse, populated worlds, including large-scale
3D environments and scene-grounded agent communities. Current approaches fall into two cate-
gories: manual design or procedural generation (Wang et al., 2024a; Gan et al., 2021; Tsoi et al.,
2022; Wu et al., 2024; Gao et al., 2024), which enable rich agent–environment interactions but suffer
from limited diversity and realism; and 3D reconstruction methods (Savva et al., 2019; Shen et al.,
2021), which produce visually realistic and varied scenes but require extensive visual input and often
yield low-interactivity environments in open-world settings.

In this paper, we present Virtual Community, an open world for humans, robots, and society. Virtual
Community addresses these challenges by building a unified simulation framework for human-like
agents and robot agents based on the Genesis (Authors, 2024) physics engine and integrating large-
scale, real-world geospatial data with generative models to produce interactive, scalable open worlds
(Figure 1). The platform offers two key advancements:

Unified Simulation for Avatars and Robots Virtual Community simulates human-like avatars and
diverse robots within the generated open worlds using a unified framework based on the Gene-
sis (Authors, 2024) physics engine, supporting diverse physical and social interactions among dif-
ferent types of agents. Virtual Community also provides robot and human agents with a unified
interface with distinct observation and action spaces.

Open World Generation from Real Scenarios Virtual Community fully automates the genera-
tion of open worlds with several key features: (1) scalable, real-world–aligned outdoor scenes of
customizable size and quantity, along with corresponding indoor scenes and annotations; and (2)
generation of agent communities endowed with scene-grounded profiles and social relationship net-
works. Virtual Community combines generative models with real-world geospatial data, ensuring
scalability in data volume, realism, and extent.

Virtual Community enables a variety of new possibilities in embodied AI research. The expan-
sive open-world scenes and their agent communities introduce a new challenge of multi-agent task
planning in open worlds. We introduce the Community Planning challenge as a first step in this
direction. This challenge includes assistant tasks, in which human agents interact with others to
provide assistance in daily open world activities, and social influence tasks, in which human agents
must efficiently explore the community and connect with one another. Virtual Community also sup-
ports physically realistic simulations of interactions, for which we propose the Community Robot
challenge. This challenge tasks robot agents with cooperating to complete tasks that involve both
indoor and dynamic open-world environments.

Our simulator advances the field by enabling unified simulations of human and robot communities
in generated open worlds, surpassing existing solutions in both scope and capability. By overcoming
limitations in the scalable simulation of humans, robots, and societies, we pave the way for studying
embodied general intelligence that can coexist with complex, interconnected human communities.
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2 RELATED WORKS

Embodied AI Simulation Recently, embodied AI has seen significant advancements through the
development of simulation platforms. Most existing simulators primarily focus on household tasks
within indoor scenes (Beattie et al., 2016; Savva et al., 2019; Yi et al., 2018; Das et al., 2018;
Xiang et al., 2020a; Shen et al., 2021; Li et al., 2021; Puig et al., 2018; Kolve et al., 2017; Yan
et al., 2018; Li et al., 2024; Tao et al., 2024; Deitke et al., 2020; 2022b), while some have extended
support to outdoor environments (Gan et al., 2021; Tsoi et al., 2022; Wang et al., 2024a; Dosovitskiy
et al., 2017; Kendall et al., 2018; Gulino et al., 2023; Wu et al., 2024). However, existing platforms
lack the diverse and scalable outdoor environments needed to support larger agent populations and
more complex multi-agent interactions. In contrast, this paper introduces a simulation platform with
expansive open-world environments, integrating both indoor and scalable outdoor scenes to facilitate
broader agent interactions and enable more intricate task scenarios.

Embodied Social Intelligence Current research on Embodied Social Intelligence is often limited to
small agent populations in constrained household scenarios (Puig et al., 2020; Zhang et al., 2023;
Stone et al., 2022; Savva et al., 2019; Jain et al., 2020; Szot et al., 2023; Zhang et al., 2024) or simpli-
fied to 2D or grid worlds (Carroll et al., 2019; Suarez et al., 2019; Tsoi et al., 2020; Samvelyan et al.,
2019; Yu et al., 2024; Yang et al., 2024a), hindering model development in the open world. Specif-
ically, (Park et al., 2023) demonstrates the robust simulation of human-like agents within a sym-
bolic community, ignoring the 3D perception and realistic physics in the open world. (Wang et al.,
2023c) studies human-like simulation guided by system 1 processing with basic needs. Predomi-
nant approaches, such as multi-agent reinforcement learning (MARL) and other planning models,
face several limitations when applied to open-world settings. MARL, for instance, often struggles
with scalability due to the exponential growth of state and action spaces as the number of agents
increases (Wen et al., 2022). This makes it difficult to learn effective policies in complex, dynamic
environments. Additionally, MARL approaches typically require extensive training data and com-
putational resources, which may not be feasible in real-world applications. Other planning models,
while potentially more efficient, often lack the adaptability required to handle the unpredictable na-
ture of open-world interactions. They may rely on predefined rules or assumptions that do not hold
in all scenarios, leading to suboptimal performance and limited generalization to new contexts (Puig
et al., 2020).

Foundation and Generative models for Embodied AI With the recent advance of foundation
models (Bubeck et al., 2023; Liu et al., 2023; Driess et al., 2023; Blattmann et al., 2023), numer-
ous works have explored how they can help build powerful embodied agents (Wang et al., 2023b;
Xi et al., 2023; Sumers et al., 2023; Wang et al., 2023d; Ahn et al., 2022; Sharma et al., 2021;
Wang et al., 2023a; Park et al., 2023; Hong et al., 2024; Black et al., 2024b), and scenes for sim-
ulation (Yang et al., 2024c; Hu et al., 2024; Höllein et al., 2023; Schult et al., 2023; Deitke et al.,
2022a; Fu et al., 2021; Yang et al., 2024b; Feng et al., 2024; Tang et al., 2023; Paschalidou et al.,
2021; Shcherbyna et al., 2024; Deitke et al., 2023). RoboGen (Wang et al., 2024c) utilizes foun-
dation models to automatically generate diverse tasks, scenes, and training supervision, scaling up
robotic skill learning with minimal human input. In contrast, our work fully integrates a generative
pipeline into the simulation platform to create expansive open-world scenes and agent communities.

3 GENERATING OPEN WORLDS FOR SIMULATION

3.1 SCALABLE 3D SCENE CREATION

The existing 3D geospatial data API* provides extensive data in terms of quantity and diversity.
However, they are not directly suitable for embodied AI research. First, these geospatial data often
contain noise, including transient objects and unrealistically rugged terrain that can disrupt sim-
ulations. Second, visual quality is inadequate for ground-level agent perspectives because these
environments are typically reconstructed from aerial imagery and lack visual detail at ground level.

To bridge this gap, we propose an online pipeline that performs comprehensive cleaning and en-
hancement in both geometry and texture to make the scenes suitable for embodied AI simulations.
This pipeline consists of four steps: mesh simplification, texture refinement, object placement, and

*https://www.google.com/maps/
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Character 
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● Name
● Age
● Skin
…

Chad Thompson
Groups: ["Berlin
Foodies Club"]
Living: Palais 

Morten Lindqvist
Values: Security
Cash: 200$
Lifestyle: Healthy

Kate Novak
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Science Building
Task: Go to class
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Hugo
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Liam Novak
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Kate Novak
Cash: 50$
Student
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…

Herald Towers

Fine-tuned Scene
Bus Line 33
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Million Dollar Corner
    …

3D Geospatial Data

Morten Lindqvist
Current: 
City Square
Heading to: None
Task: Working

Figure 2: Framework of the Virtual Community Generation Pipeline. This pipeline generates
scenes and corresponding human agents from real-world geospatial data. The scene generation
component (A) refines rough 3D data by using generative models to enhance textures and geospa-
tial data to simplify geometry. It also utilizes generative methods to create interactive objects and
detailed indoor scenes. The agent generation component (B) leverages LLMs to generate agent
characters and social relationship networks based on scene descriptions. (C) We simulate the human
communities and robots in the open world scenes based on Genesis engine.

automatic annotation. The pipeline supports automatic creation of 3D urban scenes at arbitrary loca-
tions. Using this pipeline, we generated 35 annotated scenes of various cities worldwide and present
some qualitative examples of these scenes in Figure 3.

Geometry Reconstruction and Simplification Since the mesh topologies in 3D geospatial data
sources are unreliable for embodied AI simulations, we decompose scenes into terrain, building,
and decorative-roof elements, then apply specialized reconstruction operations to each component
to make the entire scene simulation-ready. The terrain is generated procedurally from sparse refer-
ence elevation points via bilinear interpolation. We then derive simple, topologically sound building
meshes using OpenStreetMap (OSM) data. Each building mesh is automatically adjusted to bet-
ter match the Google 3D Tiles geometry and to align with the terrain elevation. By aligning mesh
geometries to OSM primitives, we remove unnecessary details and artifacts—such as distorted sur-
faces and irregular shapes resulting from aerial reconstruction errors—thereby denoising the meshes
for more efficient physics simulations and improved rendering performance.

Texture Enhancement for Realistic Simulation We further apply advanced image-processing tech-
niques to enhance mesh textures. During mesh construction and simplification, textures from the
original 3D Tiles are baked onto new geometries, which can result in missing or distorted regions.
To address these issues, we first employ a Stable Diffusion 3 (Stability AI, 2024) based inpainting
method to remove noise and repair damaged or incomplete textures. We then refine texture de-
tails using street-view imagery. This two-step process significantly improves visual fidelity, making
textures more suitable for ground-level rendering.

Object Replacement for Interactive Scene To enhance scene interactivity, we combine generative
and retrieval methods to populate the environment with interactive objects (e.g., bikes and tents).
Using OSM annotations, we identify object types and locations to reflect real-world contexts. For
relatively simple objects, such as tents, we adopt a generative pipeline that uses OSM text annota-
tions on amenities as input: a Stable Diffusion model (Rombach et al., 2021) first generates images
of the relevant objects, which are then processed by the One-2-3-45 framework (Liu et al., 2024)
to produce corresponding 3D meshes. For more complex objects, such as trees, we use the re-
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Figure 3: Egocentric view of the generated scenes. The resulting scene features clean geometry
and realistic textures, which support physical simulation and enhance real-world style fidelity.

trieval pipeline, which randomly samples assets whose categories match the OSM annotations from
a pre-collected dataset.

Place and Transit Annotations with Geospatial Data To facilitate alignment with real-world lo-
cations and provide semantic context for community activities, we developed a pipeline to automat-
ically annotate places, buildings, and public transit within scenes using geospatial data. First, we
query Google Maps Places for location information in the target area and organize results into dif-
ferent categories. Next, we use OSM to retrieve building names and bounding boxes, matching them
with the place entries. We then filter out unmatched or inaccessible locations to generate accurate
place annotations. Finally, we annotate bus transit routes based on these place annotations. These
metadata enable agents to access location-specific information and support tasks that require spatial
context, such as navigation and location-based decision-making, and also power traffic simulation,
including buses, pedestrians, and other vehicles.

Indoor Scenes Creation To create indoor scenes in the communities, we employ a pipeline combin-
ing generation and retrieval to produce detailed, realistic multi-room environments. The pipeline’s
input is the building names in the target area, obtained from Google Maps and OSM. We first re-
trieve indoor layouts from GRUTopia (Wang et al., 2024a) for categories such as offices, restaurants,
and stores. For building types not covered by GRUTopia, we use Architect (Wang et al., 2024b) to
generate the corresponding indoor rooms for simulation.

3.2 AGENT COMMUNITY GENERATION

Given diverse generated scenes from real-world geospatial data, we introduce a generative pipeline
to populate these environments with communities of agents endowed with grounded character pro-
files and social relationship networks, given their embodiments.

Characters and Social Network Generation We utilize the open-world knowledge of the Large
Language Model (LLM) to generate agent character profiles and personalities grounded in the scene.
Specifically, we use GPT-4o to perform this generation. The input to the LLM is structured into two
parts to create characters grounded in a specific scene. The first part contains scene-related infor-
mation, such as the scene name and details about various places, including their names, types, and
functionalities. The second part includes details on the agents’ appearances to ensure consistency
between their visual attributes and generated profiles, which are annotated with the name and age.
With both parts provided, the LLM generates agent profiles along with their social relationships.
The profiles consist of basic attributes such as names, ages, occupations, personalities, and hobbies,
which influence each agent’s daily activities. Social relationships are structured as groups, each con-
taining a subset of agents along with a text description and a designated place for group activities,
connecting these agents into a cohesive community.

Grounding Validator We implemented a grounding validator that verifies whether generated char-
acter profiles are accurately grounded in the scene by ensuring all referenced places exist. If val-
idation fails, the LLM receives feedback from the validator and attempts to correct the mismatch.
Detailed examples of prompts used in the pipeline, generated characters, and social relationship
networks are provided in the Appendix. K.

Human-Like Avatar Creation We first obtained 20 avatar skins representing diverse genders, pro-
fessions, and appearances from Mixamo* for integration into the Virtual Community. We also used

*https://www.mixamo.com/
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the Avatar SDK* to generate high-fidelity human meshes from synthetic human face images from
FaceSynthetics (Wood et al., 2021), enabling representation of diverse individuals.

3.3 UNIFIED SIMULATION FOR HUMAN AND ROBOT COMMUNITY

Virtual Community provides a unified framework for simulating both robots and human agents
in the community. It implements an avatar simulation framework for human agents, while robot
simulations are largely inherited from Genesis. Genesis is a universal physics engine for general-
purpose embodied AI and robotics applications.

Avatar Simulation and Control To simulate avatars in Genesis physics engine, we combine
SMPL-X human skeletons with these avatar skins to model human avatars. The motions of these
avatars are parameterized by SMPL-X pose vectors J ∈ R162 and global translation and rotation
vectors T,R ∈ R3. We use over 2,000 motion clips from Mixamo and adjust their playback speeds
to match our avatars, including walking, object manipulation, and vehicle entry. For walking, we
loop the clip until the avatar covers the required distance. For object-related actions, objects are
kinematically attached to or detached from the avatars’ hands based on the action. Similarly, during
vehicle-related motions, avatars are kinematically attached to or detached from vehicles. We also
incorporate physics constraints: collision detection is performed between avatars and scene entities,
and motion terminates upon detection of a potential collision.

Daily Schedule Generation and Simulation Given the scene-grounded character profiles and social
relationship networks, we prompt foundation models to generate each agent’s daily schedule (Park
et al., 2023). However, we structure each schedule so that every activity includes a start time, an end
time, an activity description, and a corresponding location. We also explicitly account for the com-
mute time between activities at different locations to reflect the actual cost of navigating an expansive
3D environment. This approach allows agents to follow the organized high-level plan effectively and
maintain consistency over time. During simulation, agents follow the generated schedules to carry
out daily activities. Examples of detailed daily plans are provided in the Appendix. B.2.

Robot Agent Simulation We simulate robots alongside avatars in the Genesis simulator. Virtual
Community supports five types of robots: drones, quadruped robots, humanoid robots, wheeled
robots, and mobile manipulators, each with a distinct robot controller. The robot controller bridges
the interface between Virtual Community and Genesis, exposing only selected action spaces. Vir-
tual Community shares the same simulation loop between avatars and robots with different control
frequencies. To support faster collision detection during robot physics simulation, we use an invisi-
ble terrain mesh and decomposed building meshes as collision geometry for the background scene,
enabling more efficient physics simulation.

4 OPEN WORLD MULTI-AGENT PLANNING

Based on Virtual Community, we propose the Community Planning Challenge to evaluate
multi-agent planning capabilities in outdoor and indoor environments. The challenge comprises
three community assistant tasks, in which human agents cooperatively plan to assist multiple hu-
mans with daily open-world activities, and a community influence task, in which human agents
competitively plan to efficiently connect and interact with other human agents in the community to
increase their social influence.

4.1 COMMUNITY ASSISTANT TASKS

The community assistant tasks include the following three categories that require agents to plan
cooperatively to provide humans with assistance on daily activities:

• Carry: Locate people and follow them to help carry objects to their home.

• Delivery: Move objects from source locations (indoor or outdoor) to a destination.

• Search: Locate target objects within an outdoor region or an indoor room.

*https://avatarsdk.com
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Table 1: Main results of the Multi-Agent Community Planning Challenge. We report Success
Rate (SR), Time Consumed (Ts), and Human Following Rate (HR) for three community assistance
tasks averaged over 24 scenes.

Method Carry Delivery Search Avg SR↑
SR↑ HR↑ SR↑ Ts↓ SR↑ Ts↓

1-assistant
Random 0.0 0.0 0.0 1500.0 0.0 1500.0 0.0
Heuristic 34.7 16.5 46.5 1462.9 45.1 1440.3 42.1
MCTS Planner 42.3 7.7 39.6 1500.0 45.1 1500.0 42.4
LLM Planner 29.9 15.3 41.7 1500.0 70.1 1339.0 47.2

2-assistant
Heuristic 52.8 25.6 59.7 1415.8 51.4 1364.3 54.6
MCTS Planner 42.4 8.0 43.8 1500.0 48.6 1500.0 44.9
LLM Planner 30.2 10.7 43.8 1500.0 77.8 1141.3 50.6

Task Settings Each task includes multiple subtasks. For example, the Carry task requires agents to
help humans carry several objects while following them. Therefore, adaptive task planning is essen-
tial for scheduling these runs, routing in the dynamic open world between waypoints, and managing
task-level dependencies. We study two settings with different numbers of assistants: the 1-assistant
setting, in which a single assistant needs to provide assistance to human agents in the community,
and the 2-assistants setting, in which two assistants plan cooperatively to provide assistance.

Observation and Action Spaces At each simulation step, agents are provided with an observa-
tion consisting of RGB-D images with the corresponding camera matrix, segmentations, current
poses, and task information. The action space includes move forward, turn left, turn right, enter/exit
bus/bike, and communicate. The movement and turning actions can be set with a continuous amount.

Evaluation Metrics We provide three evaluation metrics for all assistant tasks: success rate (SR),
defined as the number of successful subtasks divided by the total number of subtasks; average time
consumed (T) per task; and human following rate (HR) for the carry task, defined as the number
of frames in which the agent follows a human within a specified distance range divided by the total
number of frames during the task. When the simulation reaches a total step limit of 1500, it stops
and the results are evaluated automatically.

Baselines

• Perception and Navigation Module: We implement all baseline agents within a hierarchical plan-
ner framework. The high-level actions include choosing subgoals, such as navigating to a specific
person or building. Low-level actions include moving forward, turning, and object-related actions
such as picking up items. All agents employ the same low-level navigation algorithm, which re-
constructs a point cloud from egocentric RGB–D observations at each step and converts it into a
volumetric grid representation at a resolution of 0.1m. Based on this grid, a 2D occupancy map
with a resolution of 0.5m is generated, and an A* algorithm is used to efficiently compute the
shortest path to a bounding box. To accommodate dynamic environments, the navigation module
recalculates the optimal path at every step.

• Random Planner: The Random planner is a trivial planner that randomly selects from the space
of high-level actions without any planning.

• Heuristic Planner: The heuristic planner is based on a finite-state automaton defined by domain
experts. At each state, the agent takes an action such as navigating, picking objects, entering rooms
(see details in Appendix.F.4).

• MCTS Planner: We also introduce a new Monte-Carlo Tree Search (MCTS) based baseline plan-
ner, which employs Monte-Carlo Tree Search to optimize task plans.

• LLM Planner: We follow CoELA (Zhang et al., 2023) to design an LLM Planner with a modular
framework driven by gpt-4o to generate and select subplans, including navigation to specified
open-space locations, searching for objects, entering indoor areas, and performing object manipula-
tion actions (pick and put). At each decision point, the LLM is prompted with the current state and
task objectives and produces a subplan—a sequence of high-level actions (Song et al., 2022), which
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Table 2: Ablations on Distance Modeling (DM). Without explicit distance modeling, the perfor-
mance of both the LLM planner and the MCTS planner drops, with the decline being especially
significant for the MCTS planner.

Method Carry Delivery Search Avg SR↑
SR↑ HR↑ SR↑ Ts↓ SR↑ Ts↓

1-assistant
MCTS Planner w/o DM 33.3 7.0 29.9 1500.0 23.9 1500.0 29.0
LLM Planner w/o DM 27.5 14.6 39.7 1500.0 66.0 1236.2 44.4

2-assistant
MCTS Planner w/o DM 34.0 6.9 27.1 1500.0 27.1 1500.0 29.4
LLM Planner w/o DM 25.0 15.2 55.6 1432.9 76.4 1060.2 52.3

is then executed step by step by the agent. A communication module is also adopted to facilitate the
cooperation among agents through natural language communication.

Results We evaluate the above baselines on all three tasks. The results in Table 1 demonstrate the
challenges of planning in open-world environments. From our experiment, the Random baseline
fails to understand spatial relationships among tasks and no single method prevails for all the tasks.
One common failure mode of baseline agents is underestimating the cost of open-world navigation
and search, which leads to suboptimal task arrangement. Heuristic Planner performs strongly in the
delivery task. While the LLM Agent prevails by a large margin in the search task, which involves
no interaction with objects, it performs poorly in the other two tasks, where LLMs show difficulty
tracking the task progress given only action history.

Ablation study To assess distance modeling, we ablate both the LLM planner and the MCTS plan-
ner, omitting the Heuristic planner since it lacks distance modeling. We remove spatial information
from the LLM prompt and use a uniform distance heuristic for MCTS. As shown in Table 2, both
degrade without distance modeling, with MCTS suffering far more. Notably, while the LLM planner
drops in the 1-assistant setting, it can surpass its baseline in the 2-assistant setting, suggesting that
cooperation helps offset missing distance modeling.

4.2 COMMUNITY INFLUENCE TASK

To further investigate agents’ planning and social capabilities in open-world settings, we introduce
the Community Influence Task—a novel, open-ended social challenge in which two main human
agents compete to connect with and persuade other community members to form relationships with
them. Due to differences in personality traits and social status, strategic planning is required to
influence and shift member opinions over time.

Task Settings Each community contains two main agents and thirteen other members. The main
agents must navigate the environment, locate potential members to connect with, and attempt to
persuade them through dialogue. At the end of each day, every community member ranks their
friendship level with the two main agents.

Observation and Action Spaces The observation and action spaces for all agents match those in
the Community Assistant Tasks. Since this task focuses on social planning, both main agents are
given access to the daily schedules of all members.

Experimental Settings and Evaluation Metrics We run experiments in five distinct communities.
An agent is considered more effective at influencing others if it achieves a higher average friendship
rank across all members.

Baseline We evaluate different LLMs as the planning backbone for the main agent. Given the daily
schedules and character traits of community members, the main agent prompts the LLM to select the
next member to visit, considering both spatial proximity and potential influence. After navigating
to the target, the same LLM generates up to three rounds of conversation, conditioned on the main
agent’s and the target member’s profiles. Once the conversation concludes, the main agent proceeds
to the next selected target. Full prompt details are provided in the Appendix. K.
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Yara Mbatha (Main Agent): "I'm 
Yara Mbatha. Hello Theo! It's 
great to connect with you, 
especially since we both share 
a connection through the Denver 
Scholars Society… "
Theo Caldwell (Member): "Great 
to connect with you too! I 
really appreciate your kind 
words… "

Marco Ruiz
age: 36,
innate: "power, achievement, 
security"

Tariq Johnson
age: 24,
innate: "achievement, self-
direction, stimulation"

Morten Lindqvist
age: 38,
innate: "tradition, 
benevolence, universalism"

Theo Caldwell
age: 34,
innate: "achievement, self-
direction, stimulation"

0.63

0.13

0.57

0.17

0 0.2 0.4 0.6 0.8

Win.

Conv.

GPT-4o o1

Figure 4: We evaluate baseline agents on the Community Influence Task across five communities.
Results show that more powerful LLMs are better able to connect with and influence other members
in the community.

Metrics We use two metrics: (1) Average friendship-ranking wins (Win.) — the average win rate
in the friendship ranking across all community members at the end of the day. Higher values indi-
cate that an agent is more effective at forming new connections and expanding its social influence.
(2) Conversion rate (Conv.) — the proportion of originally non-supporting members who become
friends with the agent by the end of the day.

Results As shown in Figure 4, the main agent with the o1 backbone achieves higher average friend-
ship rankings and conversion rates than the gpt-4o backbone *, indicating greater ability to change
members’ opinions in most communities. For example, in the Denver community, the agent, Yara
Mbatha, persuaded Theo by leveraging their shared affiliation with the Denver Scholars Society and
emphasizing that common bond. We also observe that when starting with a large advantage, the
gpt-4o agent sometimes fails to gain additional supporters, primarily due to suboptimal target
selection and less effective persuasion strategies. These results suggest that, even with advanced
LLMs, there remains substantial room to improve embodied agents’ abilities in building social con-
nections and exerting influence.

Ablation study To further understand the effects of the persuasion target selection and dialogue
generation, we conduct an ablation study with two settings: (1) With the same backbone for target
selection, use different backbones for dialogue generation. (2) With the same backbone for dialogue
generation, use different backbones for selecting targets. The results in Table 3 show that both target
selection and dialogue generation improve with a stronger backbone, while dialogue generation
contributes more substantially to the overall performance gains.

Table 3: Ablation experiments on the target-selection and dialogue components.

Dialogue Target Selection Win.↑ Conv.↑

GPT-4o GPT-4o 0.57 0.17
GPT-4o o1 0.58 0.06

o1 GPT-4o 0.60 0.20
o1 o1 0.63 0.13

5 OPEN WORLD MULTI-ROBOT COOPERATION

In addition to high-level planning and interactions, we also explore low-level physics challenges in
multi-agent, open-world settings. In this section, we introduce the Community Robot Challenge,
which features scenarios where two heterogeneous robots cooperate to assist humans in open-world
environments.

*We used GPT-4o-2024-11-20 and o1-2024-12-17 during experiments.
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Table 4: Detailed results of the Community Robot Challenge. We report Success Rate (SR) and
Time Consumed (Ts) for two community robot tasks averaged over 21 different scenes.

Method Carry Deliver Avg SR↑
SR↑ Ts↓ SR↑ Ts↓

Heuristic 17.6 126.9 22.2 129.4 19.9
RL 9.5 143.6 19.0 166.7 14.3

Heuristic w Oracle Grasp 23.5 124.4 50.0 131.2 36.8
RL w Oracle Grasp 19.0 149.7 42.9 168.1 31.0

Task settings The Community Robot Challenge builds upon the Carry and Deliver categories from
the Community Assistant tasks (Section 4.1), introducing physics-level collaboration in open-world
environments. In this challenge, robots must cooperate to deliver an object to a destination or assist
a human avatar by picking up and carrying personal items while following the avatar.

Robot Settings We use two robot assistants: a mobile manipulator—based on the Google robot
model in MuJoCo (Todorov et al., 2012), augmented with one degree of freedom for forward trans-
lation and another for rotation about the z-axis—and a wheeled robot carrier with four degrees of
freedom (one per wheel). In addition, Virtual Community supports quadruped and humanoid robots,
which are described in the Appendix. D.

Observation and Control Spaces Observations include RGB–D images, segmentations, the base
pose, and task-related information. The action space consists of 11 DoFs for the mobile manipulator
(7 DoFs for the arm, 2 for the gripper, and 2 for locomotion) and 4 DoFs for the wheeled robot (1
for each wheel).

Baseline Pipeline We implement two baselines including Heuristic and RL. The heuristic baseline
inherits the navigation module from baseline avatars in the Community Assistant Tasks 4.1. For
navigation, robot computes a collision-free path with A* search. For manipulation, the robot solves
for a feasible grasp pose with inverse kinematics, and plans and executes the grasp motion with
RRT-Connect (Kuffner & LaValle, 2000). We also implemented a VLA baseline, which achieved
near-zero performance. Full details are provided in the Appendix. F.6.

Results According to the results in Table 4, all baselines achieve higher scores on the delivery task
than on the carry task, highlighting the added difficulty of simultaneously manipulating objects and
following a human in a dynamic open-world environment. Moreover, without using an oracle grasp,
performance drops significantly, underscoring the challenge posed by the manipulation component
in this task. The reinforcement learning baseline performs worse than the heuristic baseline, which
uses inverse kinematics and RRTConnect to compute manipulation trajectories. This gap is because
the classical planner explicitly solves for optimal paths in configuration space, whereas the RL agent
must discover effective control sequences under sparse reward signals.

Ablation study We additionally evaluate a decomposed RL variant that trains separate reach and
place policies. As shown in Table 5, decomposition slightly improves the performance.

Table 5: Ablation experiments on the RL baseline. Decomposing task with different policies leads
to minor improvements on both tasks.

Method Carry Deliver Avg SR↑
SR↑ Ts↓ SR↑ Ts↓

RL w/ Oracle Grasp 19.0 149.7 42.9 168.1 31.0
RL Decomposed w/ Oracle Grasp 19.0 149.0 47.6 172.1 33.3

6 CONCLUSION

We introduce Virtual Community, an open-world simulation platform for multi-agent embodied AI
that supports scalable, simulation-ready generation of open-world scenes and agent communities,
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along with physically realistic simulation of multiple embodied avatars and robots. As an initial
demonstration, we propose two novel open-world multi-agent challenges—the Community Plan-
ning Challenge and the Community Robot Challenge—each developed and evaluated using a
variety of baseline methods. One limitation of this work is that the outdoor scenes are not modeled
in sufficient detail to accurately reflect the physical and visual properties of real-world environ-
ments. We hope Virtual Community will advance embodied AI research toward embodied general
intelligence capable of handling real-world complexities and coexisting with human communities.

11



Published as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023. 32

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022. 3

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-Language Navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2018. 2

Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond,
December 2024. URL https://github.com/Genesis-Embodied-AI/Genesis. 2,
24

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
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Appendix

A 3D SCENE GENERATION DETAILS

In this section, we present the implementation details of the 3D scene generation pipeline. This
pipeline takes three inputs—latitude, longitude, and range radius—to generate 3D community
scenes for simulation, automatically outputting multiple textured 3D meshes, including buildings,
terrain, roofs, and a JSON format of objects that can be loaded in the physics engine. The entire
scene generation pipeline is implemented in Blender*.

A.1 MESH PREPROCESSING AND TERRAIN CONSTRUCTION

Given the latitude, longitude, and range radius, we first retrieve the 3D tiles data within the specified
range. The original 3D tiles data is in the Earth-Centered Earth-Fixed (ECEF) coordinate system,
which is then converted to East-North-Up (ENU) coordinates, setting the mesh centroid as the origin
by averaging the positions of all vertices. After this translation, we seamlessly join all tile meshes
by merging each vertex near the boundary of one tile with the nearest vertex of an adjacent tile. With
these preprocessing steps, we obtain a coordinate-aligned and integrated mesh for each scene.

To construct the corresponding terrain mesh, we retrieve OpenStreetMap (OSM) road and ground
annotations within the specified area and align them with the mesh obtained from the previous step.
By sampling latitude-longitude pairs along roads and ground surfaces and performing ray casting
from these sampled points, we calculate the heightfield for each road and ground area. However,
the heightfield can be noisy due to extraneous meshes, such as cars or other objects, in the 3D tiles
data. To address this, we apply a rule-based filter to remove abnormal points from the heightfield.
The terrain mesh is then constructed using bilinear interpolation on the cleaned heightfield.

Terrain

Building

Roof

Figure 5: We decompose the outdoor 3D scene into three components - the terrain, buildings, and
roofs. Each part is generated separately using different strategies to balance the visual appearance
and geometry complexity.

*https://blender.org/
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A.2 TEXTURE TRANSFER AND ENHANCEMENT

The meshes in the 3D tiles data have sub-optimal geometry and noisy textures for simulation since
they are reconstructed by photometric methods from aerial photos. To generate meshes suitable for
simulators, we apply the texture transfer and texture enhancement step to the 3D tiles data.

Texture Transfer To create topologically sound geometry for the simulator, we first construct ge-
ometries called OSM geoms using the Simple 3D Buildings* annotation from OpenStreetMap over-
pass API. These OSM geoms have significantly fewer vertices and faces compared to the 3D tiles
while ensuring water-tightness and topological soundness. However, these geometries constructed
by the rule-based method do not contain any texture information. We address this deficiency by
baking the texture from 3D tiles to the OSM geoms using Blender. Specifically, we used the caged
baking method to improve the texture transfer quality further.

Texture Enahancement Since the original texture does not have sufficient resolution for photo-
realistic first-person-view rendering, we apply diffusion models such as StableDiffusion for inpaint-
ing and super-resolution (Rombach et al., 2021).

a) b)

Figure 6: Comparing the scene geometry of a) raw Google 3D Tiles and b) our reconstructed scene
at the Boston, MA. Our scene has much simpler geometry and reliable mesh topology, facilitating
physical simulation at scale.

A.3 STREET VIEW REPROJECTION DETAILS

To further enhance the realism of building and terrain texture, we utilize the Street Views from
Google StreetView* and Mapillary* to fine-tune the scene texture. This process, called Street View
reprojection, is composed of four major steps: 1) camera initiation, 2) view fine-tuning, 3) street-
view inpainting, and 4) texture reprojection.

Camera Initilization In this step, we fetch all the street-view images in the range of 3D scenes.
Using the provided metadata on longitude, latitude, orientation, and camera configuration, we in-
stantiate cameras with corresponding intrinsic and extrinsic matrices in Blender.

View Fine-Tuning Since the image metadata are prone to sensor measurement noise, we perform an
additional step of view fine-tuning to perform minor pose correction on the camera in Blender. For
each camera placed in the initialization step, we first render the 3D scene mesh from the camera’s
perspective. The rendered image is then matched with the street-view image using LoFTR matching
algorithm (Sun et al., 2021). Using the matched keypoint pair, we are able to solve the pose differ-
ence between the street-view image and the rendering camera following the 5-point method (Nistér,
2004). The pose correction estimated by the 5-point method is then validated by comparing the
norm of se(3) pose vector with a pre-defined threshold.

*https://wiki.openstreetmap.org/wiki/Simple 3D Buildings
*https://www.google.com/streetview/
*https://www.mapillary.com
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Table 6: Average counts of object categories per scene.

Object category Average count
Amenities objects 133
Natural objects 357
Transit objects 9

Table 7: Averaged number of annotated elements per scene.

Annotated element Avg. number per scene
Buildings 53
Places 85
Roads 473
Junctions 76
Restaurant 25
Store 21
Accommodation 16
Transit 9
Office 8
Entertainment 5
Open 1

Streetview Inpainting The street-view images often contain dynamic objects such as vehicles and
pedestrians. These objects are intrinsically dynamic and do not have corresponding geometry on the
reconstructed 3D scene. Therefore, we identify these objects using Language grounded Segment
Anything (LangSAM) (Ren et al., 2024) and perform inpainting using StableDiffusion.

Texture Reprojection Finally, we project the inpainted street-view images to the 3D meshes using
the corrected camera pose and Texture Painting feature from Blender. Since the street-view images
are taken under various lighting and weather conditions, the color distribution between images and
3D scene texture may differ significantly. To mitigate the gap between color distributions, we im-
plement a color-correction routine that automatically aligns the color temperature and exposure of
multiple images using histogram alignment. We also apply performance optimizations, including
view-frustum clipping and greedy camera-mesh matching to speed up this process.

A.4 INDOOR SCENE GENERATION PIPELINE

The Indoor Scene Generation Pipeline comprises two main stages to create detailed, realistic
multi-room environments. Given building names in the target area—fetched from Google Maps
and OpenStreetMap—as input, it outputs corresponding indoor scenes loadable in the simulator.
In the retrieval stage, we query GRUTopia (Wang et al., 2024a) for the most relevant indoor lay-
out, but because GRUTopia scenes can be extremely complex, we employ the generative stage for
all but the most frequently used scenes. In the generative stage, following (Wang et al., 2024b), a
diffusion-based inpainting model populates empty rooms with large objects, which are then detected
and spatially positioned by vision models; subsequently, large-language models assist in selecting
and placing suitable small objects onto or within the arranged large objects.

A.5 QUANTITATIVE STATISTICS OF GENERATED SCENES

Currently, Virtual Community provides 33 amenity types and common city objects, along with two
special transit amenities, including bus stop and bicycle station. Table 6 shows the statistics of
object categories. The generated scenes are automatically annotated with places, buildings, and
public transit within scenes using map data. Table 7 shows the statistics of annotated elements per
scene.
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(1) Liam Novak (2) Kenji Watanabe (3) Marco Ruiz (4) Elena Petrovna

(5) Walter Greene (6) Tariq Johnson (7) Felix Braun (8) Nico Vega

(9) Zane Matthews (10) Ivy Holloway (11) Morten Lindqvist (12) Yara Mbatha

Figure 7: Some examples of generated avatars. These names have been randomly generated and do
not correspond to any real individuals.

B AVATAR SIMULATION

B.1 AVATAR MODELS AND MOTIONS

To simulate avatars in Virtual Community, we download FBX files from Mixamo that record hu-
man skeletal motion sequences and parse them into a hierarchical structure of human joints. Each
skeleton joint is mapped one by one with the joints of the SMPL-X model. Then, we recursively
traverse the joint tree structure to calculate the global coordinate system vector for each joint after
its rotation at each time step t, and use this to drive the movement of the human skeleton. Based on
these pose representations, each avatar’s skin mesh is computed via forward kinematics.

We present examples of generated humanoid avatars in Figure 7. These demonstrates the capabil-
ity of our method to create detailed and varied human-like avatars. Each skin model of characters
includes 71 skeletal joints and can be adapted to animation sequences in SMPL-X and FBX for-
mats. To reduce the computational load during animation playback in the Virtual Community, we
optimized the skin models by applying Blender’s Decimate Modifier tool, reducing the number of
vertices in the 3D skin mesh by 90%.
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Brian Carter

Age: 35
Job: Dance Instructor
Hobby: dancing
Workplace: Arthur Bodie Dance 
and Fitness Studio
Values: stimulation, hedonism
Group(s): CrossFit, Warriors
Living: EŌS NoMad Apartments
Cash: $600
Lifestyle: I go to bed around 11pm, 
wake up around 7am, eat dinner 
around 8pm.

00:00:00 - 07:00:00
Sleep in Brian Carter's room
07:00:00 - 08:00:00
Morning Routine in Brian Carter's room
08:00:00 - 08:30:00
Commute
08:30:00 - 11:30:00
Dance Instruction in Arthur Bodie Dance 
and Fitness Studio
11:30:00 - 12:00:00
Commute
12:00:00 - 13:00:00
Lunch Break in Friedman's Herald Square
13:00:00 - 13:30:00
Commute
13:30:00 - 15:00:00
CrossFit Training in CrossFit NYC ……

Profile Schedule

Figure 8: An example of generated character and daily schedule.

B.2 PROFILE AND DAILY PLAN GENERATION

An example character with social relationship networks and daily schedule generated is shown in
Figure 8 (a). Given the scene-grounded characters and social relationship networks, we prompt the
foundation models to generate the daily schedule for each agent, using a similar design to (Park et al.,
2023). Differently, we generate the daily schedule in a structured manner directly with each activity
represented with a start time, an ending time, an activity description, and the corresponding activity
place, and consider the required commute time between adjacent activities that are happening in
different places explicitly, due to the actual cost of navigating in an expansive 3D environment.
During character initialization, we use a flood-fill-like algorithm to verify every candidate starting
position and reject any point that is not connected to the map boundary. This guarantees global
reachability for all initialized agents.

C TRAFFIC SIMULATION

In this section, we present a detailed description of our traffic simulation implementation. The sim-
ulation pipeline includes two components: road network construction and traffic control. Together,
these modules enable realistic and efficient urban traffic simulation.

C.1 ROAD NETWORK

To implement traffic simulation, the first step is to construct an accurate and structured representation
of the urban road network. Our system uses data obtained from the OSM API. Based on the raw
OSM data, we build a comprehensive road information database that includes attributes such as road
type, location, and width for each segment of the network.

For more advanced traffic simulation and control, we further convert the raw OSM data into the
OpenDRIVE format. This format provides a highly structured and semantic-rich description of the
road network, including road direction, geometry, lane configurations, and connectivity between
roads. These features are essential for enabling precise vehicle navigation and traffic behavior mod-
eling. Specifically, we use the OSM to OpenDrive converter provided by CARLA (Dosovitskiy
et al., 2017).

C.2 TRAFFIC CONTROL

Once we have the road network, pedestrians and vehicles can be placed either manually or randomly
on the map. To make their behaviors realistic and coherent, we implement a Traffic Manager module
responsible for controlling and coordinating all traffic participants.

The main functions of the Traffic Manager include path planning, collision avoidance, and traffic
flow regulation. It ensures that both vehicles and pedestrians follow reasonable movement patterns
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Figure 9: An example of the road map (left) and the corresponding traffic flow at one of its junctions
(right).

while maintaining safety and efficiency. Considering both realism and computational performance,
we define a set of simplified traffic rules within the Traffic Manager:

• Junction Access Control If any pedestrian or vehicle is currently inside an junction, no
other agent will enter until the junction is clear.

• Direction Preference When a vehicle reaches an intersection and has multiple directions
to choose from, it selects the route with fewer vehicles to minimize congestion.

• Pedestrian Behavior Pedestrians are allowed to walk in both directions along sidewalks.
When two pedestrians come too close, they adjust their positions to avoid collisions.

• Lane Change under Congestion In cases where a lane becomes congested, some vehicles
are allowed to switch to adjacent lanes to maintain traffic flow.

Figure 9 shows a road map and part of the traffic flow in Detroit. Since the traffic simulation takes
OSM data as input, it can be generated in any scene where OSM data is available.

D ROBOT SIMULATION

In the Community Robot Challenge, we employ a robot carrier and a mobile manipulator. Al-
though Virtual Community also supports other robot types—including quadruped and humanoid
robots—and can readily accommodate any robot platform thanks to its Genesis foundation, in this
section we describe the simulation details for the four default robot types.

D.1 MOBILE MANIPULATOR

We adopt the Google Robot from the MuJoCo library and integrate it into Genesis as the default
mobile manipulator. Following AI2-THOR (Kolve et al., 2017), Habitat (Savva et al., 2019), and
ManiSkill3 (Tao et al., 2024), we add one joint to control forward/backward motion and another
joint to enable rotation about the z-axis at the base.

D.2 QUADRUPED AND HUMANOID ROBOTS

The Unitree Go2 serves as our default quadruped, and the Unitree H1 as our default humanoid,
shown in Figure 10. We utilize the corresponding URDF files supported by Genesis (Authors,
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Figure 10: An example of simulating quadruped and humanoid robots in Virtual Community.

2024), together with reinforcement-learning-trained locomotion policies provided by the Genesis
team.

D.3 ROBOT CARRIER

We use the Husky robot as the default carrier, importing its URDF file from Bullet*. The carrier
has four degrees of freedom—one per wheel. We have modified its top surface so that any object
landing on it is automatically attached to the carrier.

D.4 NESTED LOOP FOR ROBOT SIMULATION

To simultaneously support simulation of avatars with lower control frequencies and robots with
higher control frequencies, we employ a nested framework in the simulation loop. The outer
loop, which corresponds to one second of simulation time, handles the observation–action cycle
for avatars. Each outer loop consists of 100 inner-loop steps for robots; in each inner step, we ex-
ecute one physics frame in Genesis, one avatar-animation frame, and one observation–control step
for the robots.

E BENCHMARKING

E.1 SCENE BENCHMARKING

In this section, we provide both quantitative and qualitative summaries of the scenes generated for
the Virtual Community. Currently, all outdoor 3D scenes have a size of 800m × 800m. We generated
35 diverse scenes covering 17 countries from North America, Europe, and Oceania. We show some
of the generation results in Figure 11 and Figure 12.

To assess the quantitative quality of our generated scenes, we compare them with the original Google
3D Tiles data along two dimensions: visual fidelity and geometric complexity. Visual fidelity di-
rectly impacts the ego-view observations received by agents, whereas geometric complexity affects
the difficulty of physics simulations. For visual fidelity, we compute the Fréchet Inception Distance
(FID) (Heusel et al., 2017) and Kernel Inception Distance (KID) (Bińkowski et al., 2018) between
our generated scenes (and the baseline scenes) and Google Street View images captured at identical
camera positions and orientations. For geometric complexity, we measure the average number of
mesh faces per scene—excluding roof faces, which are not involved in the physics simulation—and
compare these values between our scenes and the baseline. We rendered 31k images per method to
evaluate visual fidelity, and utilize the 3D meshes of all 35 generated scenes to measure geometric
complexity. According to the results in Table 8, our generated scenes has significantly improved the
visual effects and reduced the geometric complexity compared with the origianl data.

*https://github.com/bulletphysics/bullet3
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Figure 11: Images rendered from the generated large-scale scenes in North America, Europe, and
Oceania. For each location, we generated high-quality scenes with an area of 640,000 m2.

Figure 12: Close-up view of the generated scenes. The resulting scene has clean geometry and
realistic texture, which is essential for physical simulation.

Table 8: We evaluate the generated scenes using Fréchet Inception Distance (FID) and Kernel Incep-
tion Distance (KID) for visual fidelity, and the average mesh face count for geometric complexity.

Methods FID↓ KID (×10−2)↓ Face Num. (×105)↓
3D Tiles 108.04 8.88 ± 0.66 20.94
Ours 83.65 7.60 ± 0.63 3.76
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E.2 SIMULATION BENCHMARKING

Speed benchmarking We benchmark the simulation speed of Virtual Community with the follow-
ing settings:

• RGB Setting: The simulator provides avatar observations, including RGB signals, at 1 Hz,
which encompasses 100 physics frames per second. We record the average physics frames
per second (FPS) in this setting.

• Depth Setting: Similar to Habitat 3.0 (Puig et al., 2023), we adopt a depth-only configu-
ration that renders a depth image at each physics step (at 100 Hz). In this setting, we also
record the average physics frames per second (FPS).

(a) RGB Setting Benchmarking Results (b) Depth Setting Benchmarking Results

Figure 13: Simulation Speed Benchmarking under RGB and Depth Settings

We ran all experiments using a single process on an NVIDIA A100 GPU. Figure 13 presents the
benchmarking results under various conditions. In each experiment, we load a fixed terrain back-
ground while varying the number of buildings. We also evaluate simulation speed as a function of
the number of simulated avatar agents.

Memory benchmarking We measure the memory footprint of Virtual Community as a function of
the number of simulated avatar agents while keeping the simulator configuration fixed. In each run,
we load the full scene assets and record peak and average RAM usage and peak GPU memory usage
during execution. All experiments are conducted with a single process on an NVIDIA L40S GPU.
The results are summarized in Table 14.

Overall, memory usage scales approximately linearly with the number of agents. When increasing
from 1 to 50 agents, peak RAM grows from 17.45 GB to 38.46 GB, average RAM grows from
15.11 GB to 36.01 GB, and peak GPU memory grows from 4.38 GB to 14.26 GB. This corresponds
to an average increase of roughly 0.43 GB peak RAM, 0.43 GB average RAM, and 0.20 GB peak
GPU memory per additional agent, indicating stable and predictable memory scaling for large agent
communities.
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Figure 14: Memory benchmarking of Virtual Community.

F CHALLENGE DETAILS

F.1 AVATAR OBSERVATION SPACE

Virtual Community provides each agent with the following observations at each frame:

• RGB: Visual input with dimensions of 256×256 and 3 channels.

• Depth: Depth information represented as a 256×256 single-channel map.

• Segmentation: Segmentation information represented as a 256×256 single-channel map.

• Pose: A 6D vector containing the 3D location and a 3D facing vector in ENU coordinates.

• Camera Extrinsics: Parameters defining the camera’s position and orientation.

• Events: Text messages sent from nearby agents using the communicate action.

• Other States: Includes current cash, accessible locations, and action status.

F.2 TASK GENERATION

For both assistant tasks in the Community Planning Challenge and the Community Robot Challenge,
we employ a procedural task-generation pipeline that produces tasks for all scenes. The pipeline
consists of:

• Place Selection: When a task requires a specific location (e.g., the destination in a carry
task), we use the agent’s profile and a list of known places as inputs, and prompt a large
language model to select a valid target. Outdoor regions are included among the options.

• Object Selection: To determine the target object, we prompt the language model with the
task description and provide nine candidate object types for it to choose from.

• Object Placement: After the object type and place are chosen, we retrieve the correspond-
ing asset and position it appropriately.

– Outdoor locations: placed at a random point not occluded by any building.
– Indoor locations: placed on the surface of a randomly selected semantic container

(floor, sofa, table, chair, desk, or bed).

• Evaluation: Once the object is placed, the pipeline automatically generates evaluation
metadata (e.g., bounding boxes for the target object or agent). After the agent signals task
completion, the simulator checks whether the success criteria are met and records the result.

F.3 ADVANCED SETTING OF THE COMMUNITY PLANNING CHALLENGE

To provide comprehensive benchmarking in the Community Planning Challenge, we also introduce
an advanced setting by increasing the source regions and restricting the distance-to-target constraint.
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Table 9: Results of the advanced Community Planning Challenge. We report Success Rate
(SR), Time Consumed (Ts), and Human Following Rate (HR) for three community assistance tasks
averaged over three scenes.

Method Carry Delivery Search Avg SR↑
SR↑ HR↑ SR↑ Ts↓ SR↑ Ts↓

Random 0.00 0.00 0.00 1500 0.00 1500 0.00
Heuristic 0.00 0.00 16.7 1500 0.00 1500 5.55
LLM Planner 0.00 0.00 16.7 1500 27.7 1493 14.8

HP + HP 5.55 0.00 16.7 1500 5.55 1500 9.26
LLM + LLM 0.00 0.6 11.1 1500 38.8 1368 16.7
HP + LLM 5.55 1.6 22.2 1500 27.8 1412 18.5
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Figure 15: Finite-state automaton of the heuristic planner logic on the delivery task.

Table 9 shows the results for the simplified setting. The performance of baseline methods drops
significantly in the advanced setting, indicating the increased difficulty in a larger task region. We
also evaluate different combinations in the 2-assistant setting, where HP+LLM outperforms all other
baselines, while LLM+LLM fails to generate an optimal plan in open-world scenes, highlighting the
challenges of cooperative planning in the Community Planning Challenge. Most baselines struggle
to complete tasks within the step limit, resulting in time consumption that approaches this maximum.

F.4 IMPLEMENTATION OF THE HEURISTIC PLANNER

The heuristic agents use a finite-state automaton defined by human experts for each task. For ex-
ample, Figure 15 shows the execution logic for the deliver task. With high-level actions such as

29



Published as a conference paper at ICLR 2026

searching parsed as functions, we implement different automata for all three tasks with different
logic.

F.5 REWARD DESIGN FOR COMMUNITY ROBOT CHALLENGE

Reward Function. We design a shaped reward for the pick-and-place task of the mobile manipu-
lator. The reward integrates distance penalties, grasp bonuses, and placement criteria:

• Distance penalty to object. At each step, the agent is penalized by the clamped Euclidean
distance between gripper and object:

robj = −min(∥pgripper − pobject∥, 10.0)× 0.02.

• Distance penalty to goal (optional). A similar penalty can be added for the object–goal
distance:

rgoal = −min(∥pobject − pgoal∥, 10.0)× 0.02.

• Grasp success bonus. When the object is lifted above 2× its size and the gripper is closed,
a binary grasp reward is given:

rgrasp = ⊮{cube lifted and gripper closed} × 5.0.

• Placement-hold bonus. Once the cube stays within 0.1m of the goal for 100 consecutive
steps, a one-time placement reward is triggered:

rplace = ⊮{cube held at goal for 100 steps} × 100.0.

The total reward is the sum of the active components:

rt = robj + rgoal + rgrasp + rplace.

Training Details. We use Proximal Policy Optimization (PPO) implemented in rsl rl (Schwarke
et al., 2025). The main settings are summarized in Table 10.

Table 10: RL training configuration for the community robot task.

Aspect Configuration
Observation space Joint pos/vel, robot pos, object pos,

relative vectors (≈ 2×DoF + 15 dims)
Action space Continuous joint increments (all DoFs except base)
Policy network Actor–critic, hidden dims [256, 256, 128], ELU activation
Algorithm PPO, clip 0.2, entropy coef 0.001, value loss coef 1.0
Discount / GAE γ = 0.99, λ = 0.95
Learning rate 3× 10−4 (adaptive schedule)
Batching 24 steps/env, 1024 envs, 5 epochs/update, 4 minibatches
Episode length 250 steps max
Iterations 500

F.6 VLA BASELINE IMPLEMENTATION

We also implemented a Vision-Language-Action (VLA) baseline for the mobile manipulator in the
Community Robot Challenge. This baseline is built upon the π0 model (Black et al., 2024a), which
provides a pretrained backbone model for physical manipulation tasks. We finetuned the model us-
ing a dataset collected in Virtual Community, where the initial robot poses were randomly sampled
at the beginning of each episode to ensure diversity of starting conditions. In total, we collected ap-
proximately 3,000 successful trajectories of pick-and-place subtasks. Following the original imple-
mentation in π0, We applied filtering to remove datapoints with actions which maximum dimension
smaller than 0.01, selected success-only trajectories, and clipped values between the p0.01 and p0.99
percentiles.
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Table 11: Detailed results of the Community Robot Challenge, including the VLA baseline. We
report Success Rate (SR) and Time Consumed (Ts) for two community robot tasks averaged over
21 different scenes.

Method Carry Deliver Avg SR↑
SR↑ Ts↓ SR↑ Ts↓

Heuristic 17.6 126.9 22.2 129.4 19.9
Heuristic w Oracle Grasp 23.5 124.4 50.0 131.2 36.8
RL w Oracle Grasp 19.0 149.7 42.9 168.1 31.0
VLA w Oracle Grasp 0.0 1500.0 4.8 1434.4 2.4

Input and Output Spaces. The VLA model receives multimodal observations at each step, in-
cluding:

• RGB images rendered at 224× 224 resolution,

• Joint positions and velocities of the manipulator.

The model outputs joint increments ∆q for all controllable degrees of freedom. Actions are executed
at a control frequency of 20 Hz.

Training Setup. We finetuned the model on collected trajectories using supervised behavior
cloning. We used a learning rate of 5e − 5 and a batch size of 32. Training was performed for
5e4 steps with early stopping based on validation loss.

Performance. As shown in Table 11, despite successful finetuning, the VLA baseline achieves
near-zero performance in the Community Robot Challenge tasks. We identify three main reasons:
(1) our tasks involve picking objects placed on the ground, whereas the pretrained VLA model is
primarily trained on tabletop manipulation, leading to a large task gap; (2) our environments are
outdoor scenes with small target objects, creating a significant visual domain gap; (3) the finetun-
ing dataset size and training iterations are insufficient compared to full from-scratch training, and
therefore cannot bridge the gap caused by the domain shift.

G SINGLE AGENT TASK

We introduce Community Commute, a single-agent task, to illustrate open-world city environments,
traffic systems, and the execution of an agent’s daily plan in Virtual Community. This single-agent
task focuses on daily-life simulation for an individual agent. While providing this single-agent task
as an example, Virtual Community mainly supports and encourages the development of multi-agent
scenarios.

Task Definition How to leverage public transit in a community to plan the daily commute route
to save the most time and energy is a fundamental but also challenging task. We introduce the
community commute task to study this open-world planning and navigation capability of embodied
agents. In this task, an agent needs to commute between 4 - 8 different places given a daily schedule
covering 2.5 km of routes on average. The agent can utilize available transit options, including buses
with fixed routes and rental bikes along the roads. The bus is only available at several bus stops and
the agent can only take a bus when the bus arrives. The bikes are available at given bike stations,
and the agent also needs to return the bike to any bike station before the task finishes.

The Community Commute task covers 10 different daily schedules in each of 10 different scenes,
making 100 test episodes in total. For each episode, we assess the results of all commutes in their
daily plan over a single day. On average, each agent completes 5.5 commutes per episode.

G.1 OBSERVATION SPACES

Virtual Community provides each agent with the following observations at each frame:

31



Published as a conference paper at ICLR 2026

• RGB: Visual input with dimensions of 256×256 and 3 channels.
• Depth: Depth information represented as a 256×256 single-channel map.
• Pose: A 6D vector containing the 3D location and a 3D facing vector in ENU coordinates.
• Camera Extrinsics: Parameters defining the camera’s position and orientation.
• Events: Text messages sent from nearby agents using the communicate action.
• Other States: Includes current cash, accessible locations, and action status.

G.2 ACTION SPACES

For the Commute task, we restrict the action space to the following:

• Walk: Move forward by any distance.
• Turn: Rotate left or right by any angle.
• Enter bus: Board a bus. Upon execution, the agent is moved inside the bus and parented

to it.
• Exit bus: Leave a bus. Upon execution, the agent is moved outside the bus and unparented

from it.
• Enter bike: Mount and start riding a bike. Once executed, the agent’s walk and turn actions

are replaced with corresponding bike-riding actions.
• Exit bike: Dismount the bike and return to the ground.

Metrics: A good commute plan should cost the least time, money, and energy, and avoid missing
the schedule. We design the following metric for thorough evaluation.

• Travel Time: The average travel time in minutes taken on the route to finish a day’s commute.

• Travel Price: The average cost for a day’s commute.

• Walk Distance: The average distance in kilometers an agent walked in a day’s commute, measures
the energy cost.

• Late Rate: Percentage of commute that fails to arrive at the destination in time, measures the
method’s robustness.

G.3 BASELINES

Rule-based Agent ignores the public transit options and always walks directly toward the target
location on foot, representing traditional navigation agents.

LLM Agent converts the task information into a prompt and queries Large Langauge Model (we
use Llama-3.1-8B-Instruct (Dubey et al., 2024), Qwen-2.5-7B-Instruct (Hui et al., 2024), and GPT-
4o (Achiam et al., 2023)) to generate a commute plan directly, which may include multiple steps
such as walking to a bus stop, taking the bus to a specific stop, and then walk to the final destination.

MCTS-based Planner is based on Monte Carlo Tree Search and simulates different decisions. In
our MCTS implementation, transitions from a parent node to its child represent high-level decisions,
including:

• Walking: Moving to an adjacent position on the map.
• Taking a bus: Traveling to any of the Nbus bus stops from the nearest bus stop.
• Taking a bike: Traveling to any of the Nbike bike stations from the nearest bike station.

RL Planner is based on reinforcement learning (RL) models in the Commute task. We trained two
RL models using PPO (Schulman et al., 2017) and A2C (Mnih, 2016). The RL-based agents share
the same observation and action spaces as described in Section F. The cumulative reward is designed
as the sum of the following terms

• For each goal place reached, add 1000 to the reward
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• Add the difference d0 − dt to the reward, where d0 is the initial distance to the goal place
and dt is the current distance.

• For each step taken while walking, add -1 to the reward. This encourages agents to opt for
public transit system instead.

• For every unit of cash spent, add -1 to the reward.
• For each action performed, add -0.1 to the reward.

For both PPO and A2C algorithms, we set learning rates to 3× 10−4 and trained for 106 steps.

Each parent node can have up to 1+Nbus +Nbike child nodes, where 1 corresponds to walking, Nbus
to bus stops, and Nbike to bike stations. This structure balances connectivity and the exploration of
diverse transportation options.

In our MCTS framework, we use Upper Confidence Bound 1 (UCB1) for node selection. For simu-
lation, the reward for each node is designed to evaluate the agent’s progress towards the target while
considering the total travel cost. Given the following parameters:

• vwalk, vbike, vbus: Estimated speeds for walking, biking, and taking the bus, respectively,
• dtarget: Euclidean distance from the current position to the target,
• dwalk, dbike, dbus: Total Euclidean distances traveled by walking, biking, and using the bus

from the root node to the current node.

The simulated reward R for a node is defined as:

R = −
(
dwalk

vwalk
+

dbike

vbike
+

dbus

vbus

)
− α · dtarget,

where the parameter α controls the trade-off between exploring closer nodes and exploiting paths
with lower travel time. In our experiments, we take α = 1.

Notably, unlike baseline agents described in the main paper, RL agents does not rely on a hierarchical
decision-making framework. Instead, RL planners directly process observations from the environ-
ment to select an action from the action space, differentiating them from high-level decision-making
planners such as MCTS and LLMs.

G.4 RESULTS

Table 12: Results of different planners in the Commute challenge. All metrics are averaged across
10 characters and 10 scenes.

Methods Travel Time↓ Travel Price↓ Walk Distance↓ Late Rate↓
Rule 41.68 0.00 2.44 10.43
MCTS 54.33 7.50 1.62 20.24
LLMs

Qwen 99.67 26.04 2.52 58.88
Llama 66.74 0.82 1.25 33.98
GPT-4o 78.20 20.68 1.19 35.72

RL
PPO 81.96 1.29 4.03 43.50
A2C 97.23 1.66 3.36 44.54

As shown in Table 12, The simplest rule-based agent demonstrates the best performance in terms of
travel time, cost, and robustness, achieving the smallest late rate. However, it consumes nearly twice
as much energy as the LLM agent powered by GPT-4o when considering walking distance. Both
the traditional planning approach using MCTS agents and the advanced foundation model-based
LLM agent struggle to effectively utilize the available public transit options. This inefficiency leads
to longer commute times and higher late rates compared to the straightforward rule-based agent.
Notably, while the LLM agent leverages public transit more frequently, its inability to accurately

33



Published as a conference paper at ICLR 2026

estimate the time required to reach transit stations—due to uncertainty in navigation—results in sig-
nificantly increased commuting time. Similarly, planning-based methods fail under the complexity
of predicting whether the agent can catch a bus, particularly when working with partially built maps
of the environment. RL agents exibit overall longer travel times and higher late rates compared to
other agents with low-level navigation planners. Futhermore, RL agents also fail to leverage the
public transit system effectively, resulting in relatively lower travel costs but greater walk distances
compared to LLM-based agents.

H GRAPHICAL USER INTERFACE AND VISUALIZATION TOOL

Figure 16: Screenshot of the Virtual Community GUI.

Table 13: Keyboard shortcuts.

Action Key

move forward Up-Arrow

turn left Left-Arrow

turn right Right-Arrow

pick B

put N

enter/exit bus M

enter/exit bike <

enter/exit building >

As Figure 16 shows, Virtual Community provides a keyboard-controlled graphical user interface
(GUI), that allows human users to control a human avatar agent during each simulation run and
receive RGB observations. In addition, as Figure 17 shows, Virtual Community also supports an
HTML-based visualization script to display live status information, such as agent positions and ac-
tion logs, for all agents. This interactive system provides an intuitive platform for human evaluation
and lays the groundwork for future human–robot collaboration studies.

I COMPUTATIONAL RESOURCES

The computational cost of our experiments varies across different scenes. Most scene-generation
experiments require approximately four hours and 50 GB of GPU memory on a single GPU, exclud-
ing the inpainting and upscaling steps, which can be parallelized. For the simulation experiments,
we use a single NVIDIA A100, H100, A40, or L40S GPU for each run. Running a single episode
requires at least 12 GB of system RAM and 6 GB of GPU memory. For smoother runs, we recom-
mend 15 GB of system RAM and 8 GB of GPU memory. Detailed runtime benchmarks are analyzed
in Section E.2.

J DISCUSSION

J.1 PHYSICS SIMULATION AND REAL-WORLD FIDELITY

We build Virtual Community on the Genesis physics engine, which supports rich physics-based
interactions—including deformable objects. Accordingly, as Figure 18a shows, Virtual Community
simulates a demo fountain in the Bratislava community. For collision handling, as Figure 18b shows,
robots are already simulated with detailed collision meshes. We use colliders for avatar collision
detection, which is a common practice in many embodied AI simulators (Gan et al., 2021; Puig
et al., 2023; 2018; Li et al., 2021; Kolve et al., 2017).

For the scene generation, we generate a 640,000 m² scene for each location for the experiments.
This process requires at least one GPU with 8 GB of memory and takes approximately six hours per
scene; using additional GPUs accelerates the procedure. The input needed by this single script is a
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Figure 17: HTML-based real time visualizer tool.

(a) Simulation of a fountain at Bratislava. (b) Robot manipulation with contact visualized.

Figure 18: Supported by the Genesis physics engine, Virtual Community provides physically real-
istic simulation such as robot interactions and deformable objects.
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tuple of (latitude, longitude, radius). The pipeline can run in parallel on headless servers, making it
fully scalable.

J.2 ETHICS DISCUSSION

All characters and profiles in this paper are LLM-generated and do not correspond to real people.
Avatar meshes come from Mixamo and synthetic images, with no real photographs involved. The
Community Influence task is conducted purely in simulation and does not involve real human sub-
jects. Scenes are produced via an online pipeline from APIs directly for the use of the physics
engine, without offline storage or redistribution of OSM, 3D Tiles, or Places data.

In addition, we used LLMs both as baselines in our experiments and as assistants for grammar
correction in writing.

J.3 LIMITATIONS AND FUTURE WORK

Currently, Virtual Community faces two limitations. The first is that the visual quality of the gener-
ated scenes could still be improved. Recent advances in methods such as NeRF (Mildenhall et al.,
2020) and Gaussian Splatting (Kerbl et al., 2023) have made 3D reconstruction for large-scale out-
door environments increasingly feasible. However, we currently lack 2D data sources with sufficient
density and coverage to generate scalable and diverse community scenes. The second limitation is
the number of agents the simulation can support, which is typically 15–25 agents per scene.

Future work includes the following parts: First, enriching the 3D scenes with more texture de-
tails and scene-grounded objects. We will use map annotations, detection outputs, and procedural
methods to populate the community with these details and objects. Second, scaling the platform to
accommodate larger agent populations, for which we plan to incorporate techniques such as parallel
rendering. Third, dynamic social events and weather: we will implement weather effects, and based
on that implementation, we plan to use a rule-based method to generate random social events such
as temporary service closures or sudden adverse weather conditions in Virtual Community. Fourth,
we plan to narrow the current gap between Virtual Community and real-world environments by
integrating an improved renderer and enriching texture fidelity.

K PROMPTS FOR LLM PLANNERS

We use the following prompt template in the daily plan generation for agents:

Given my character description and known places, please help me plan tomorrow’s schedule.
My Character Description:
$Character$
List of places I know:
$Places$
Schedule format: The output should be a JSON object which is an array of activities for the
character. Each activity should follow the following format:
“type”: “activity type, should be one of the following: ‘commute’, ‘meal’, ‘sleep’, ‘main’”,
“activity”: “activity description”,
“place”: “name of the place where the activity takes place, should be in the list of the known
places. Should be null for commute activities”,
“building”: “name of the building the activity place belongs to, should be consistent as in
the list of known places. Should be null for commute activities”,
“start time”: “HH:MM:SS”,
“end time”: “HH:MM:SS”,
Note: The schedule should be planned based on the character’s description and known
places. The place should be mentioned for each activity and must be included in the known
places. Do not hallucinate places. Commute activities should be given enough time to finish
and be inserted between all consecutive activities that do not share the same building so the
agent can have time to commute to the correct building before the start of the activity, in-
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cluding commute to meal places. The schedule should start at 00:00:00 and end at 23:59:59,
and covering the consecutive time of 24 hours with no gaps. The schedule should be planned
in a way that the character can complete all the activities within the given time frame.
Tomorrow is $Date$. My full schedule for tomorrow:

We use the following prompt template for LLM-based agent in the commute task.

Given my character description, current time and schedule, and known transit system info,
please help me make the best commute plan.
My Character Description:
$Character$
Current Time:
$Time$
Current Schedule:
$Schedule$
Known Transit System Info:
$Transit$
Estimated Walking Time from Me to My Goal: $EstimatedTime1$
Estimated Walking Time from Me to Each Transit Stop:
$EstimatedTime2$
Estimated Walking Time from Each Transit Stop to My Goal:
$EstimatedTime3$
Note: There are three types of transit options: take a bus, rent a shared bike, or walk. Each
option comes with different time and cost. Shared bike has to be rented and returned at
bicycle stations. Please help me choose the best option based on my situation. Output the
commute plan as a JSON array where each item is a step in the commute plan with the
following format:
“goal place”: “name of the place where the character wants to go, could be a transit stop or
a destination”, “transit type”: “type of transit, could be ‘bus’, ‘bike’, or ‘walk’”
Commute Plan:

We use the following prompt template for main agents to selection the next target member in the
community influence task.

Given my character description and all potential friends’ information, as a friend seeker,
help me choose which friends I should approach first.
My Character Description:
$Character$
Current Time:
$Time$
I’m now at this place:
$Place$
Potential Friends List:
$Members$
When the distance between a potential friend and me is lesser than 2, I can directly talk
to them without moving. Also make sure that when I reach one potential friend, he or she
should NOT be commuting. Now I can only choose $limit$ potential friends among them,
please answer with one of the potential friend’s name that I should approach first, so I can
make as many caring, valuable friends as possible. Do not include other words.
Character’s name:

We use the following prompt template for main agents to generate the first message when commu-
nicating with the target member in the community influence task.
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I’m a friend seeker trying to make caring, valuable friends. Me and a potential friend are
now in a conversation.
My Character Description:
$Character$
Potential Friend Description:
$Members$
Please answer with what I should say next to befriend him or her in natural language. Don’t
include other words.
Hello!

We use the following prompt template for main agents to generate dialogue starting from the second
message when communicating with the target member in the community influence task.

Context:
Given my character description and a potential friend’s information, as a friend seeker trying
to make friends, help me convince him or her to be my friend.
My Character Description:
$Character$
The Potential Friend’s Character Description:
$Members$
Dialog History:
$Dialog$
Please answer with what I should say next to convince him or her to my side in natural
language. Don’t include other words.

We use the following prompt template for member agents to communicate with the main agents in
the community influence task.

Context:
A friend seeker is trying to befriend me. $Additional$
My Character Description:
$Character$
Dialog History:
$Dialog$
Please answer with what I should say next to him and whether or not we should be friends
in natural language. Don’t include other words.

We use the following prompt template for member agents to rank in the community influence task.

Given my character description, friend list, and interaction history, please help me decide
one person to befriend.
My Character Description:
$Character$
Potential Friend List:
$Mains$
Interaction history:
$Interaction$
Please help me decide a ranked list of lonely people to befriend. Output a JSON object with
the following format:
”friend”: ”name of the potential friend”, ”reason”: ”reason for choosing this potential
friend”

We use the following prompt template to generate assistant tasks.
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Given my information, the map information, and object library, please help me propose a
task. I will have an agent help me complete this task.
$Info$
Below is the information about this task.
Task type: $TaskType$
Task description: $TaskDescription$
Note that you should make the task as reasonable as possible. For example, if I am going to
commute from one place to another, then the ‘source’ and ‘destination’ in the json should be
in accordance with my schedule.
Your answer should be in a json format like the following:
{

json dict
}
Now give the json output. Don’t include any other words. Especially don’t include anything
like “ ```json”.

For LLM-based single agent baseline in the Community Assistant Tasks, we use the following
prompt templates.

I’m $NAME$, an assistive robot in a virtual community designed to help people with daily
tasks. I have six tasks to complete before $ENDTIME$. Given the tasks, location infor-
mation, current state, and my previous actions, help me select the best available action to
complete all tasks as efficiently as possible.
Tasks:
$TASKS$
Location Information:
$LOCATION INFORMATION$
Current State:
$STATE$
Previous Actions:
$PREVIOUS ACTIONS$
Available Actions:
$AVAILABLE ACTIONS$
Constraints and Strategy: Avoid searching for objects in regions and prioritize direct targets
like a specific place or agent. Avoid searching for objects in the same region for more
than 5 minutes. After completing a task, action with {‘type’: ‘task complete’, ‘arg1’: ‘i’}
immediately. I have two arms, but each arm can only hold one object. I can only pick up
an object if that arm is free. Before moving to a task destination, ensure that any required
objects are already picked up. I should be holding the target objects before starting the
following task. Tasks do not have to be completed in order, and completing part of a task
is allowed. Focus on actions that maximize overall task progress and completion within the
time limit.
Output a JSON object with the following format:
{

“action”: “full dictionary of the best available actions”,
“reason”: “Explain why this action is the best choice given the context.”

}

For LLM agent in the 2-assistant setting, we used the following prompt templates for the planning
module:

I’m $NAME$, an assistive robot in a virtual community designed to help people with daily
tasks. There’s another assistive robot $OPPO NAME$ in the community, I need to cooperate
with him to get tasks done efficiently. We have six tasks to complete before $ENDTIME$.
Given the tasks, location information, current state, my previous actions and our conversa-
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tion history, help me select the best available action to complete all tasks as efficiently as
possible.
Tasks:
$TASKS$
Location Information:
$LOCATION INFORMATION$
Current State:
$STATE$
Previous Actions:
$PREVIOUS ACTIONS$
Conversation History:
$Conversation History$
Available Actions:
$AVAILABLE ACTIONS$
Constraints and Strategy: Avoid searching for objects in regions and prioritize direct targets
like a specific place or agent. Avoid searching for objects in the same region for more
than 5 minutes. After completing a task, action with ‘type’: ‘task complete’, ‘arg1’: ‘i’
immediately. I have two arms, but each arm can only hold one object. I can only pick up
an object if that arm is free. Before moving to a task destination, ensure that any required
objects are already picked up. I should be holding the target objects before starting the
following task. Tasks do not have to be completed in order, and completing part of a task
is allowed. Focus on actions that maximize overall task progress and completion within the
time limit.
Output a JSON object with the following format:
{

“action”: “full dictionary of the best available actions”,
“reason”: “Explain why this action is the best choice given the context.”

}

For LLM agent in the 2-assistant setting, we used the following prompt templates for the communi-
cation module:

I’m $NAME$, an assistive robot in a virtual community designed to help people with daily
tasks. There’s another assistive robot $OPPO NAME$ in the community, I need to cooperate
with him to get tasks done efficiently. We have six tasks to complete before $ENDTIME$.
Given the tasks, location information, current state, my previous actions and progress and
our conversation history, help me generate a short message to send to $OPPO NAME$ to
complete all tasks as efficiently as possible.
Tasks:
$TASKS$
Location Information:
$LOCATION INFORMATION$
Current State:
$STATE$
Previous Actions:
$PREVIOUS ACTIONS$
Conversation History:
$Conversation History$
Progress:
$PROGRESS$
Constraints and Strategy: I should communicate with $OPPO NAME$ to coordinate our
actions and share information about the tasks and objects. Searching for objects in regions is
much more difficult than direct targets, like a specific place or agent, so it’s wise to prioritize
easier or more direct targets. If search for a too long time, I will be out of time. I have two
arms, but each arm can only hold one object. I can only pick up an object if that arm is free.
Before moving to a task destination, ensure that any required objects are already picked up.
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I should be holding the target objects before starting the following task. Tasks do not have
to be completed in order, and completing part of a task is allowed. Focus on actions that
maximize overall task progress and completion within the time limit.
Output a JSON object with the following format:
{

“message”: “a short message of what I should say to $OPPO NAME$, null if the conver-
sation should be ended now.”,

“reason”: “reason for generating this message”
}
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