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Abstract’ —With the fast development of Internet, the size of
routing table in the backbone router continues to grow rapidly.
Forwarding Information Base (FIB), which is derived from
routing table, is stored in line-card to conduct routing lookup.
Since the line-card’s memory is limited, it would be worthwhile
to compress the FIB for consuming less storage. Therefore,
various FIB compression algorithms are proposed [2-7]. However,
there is no well-presented mathematical support for the
feasibility of the FIB compression solution, nor any mathematical
derivation to prove the correctness of these algorithms. To
address these problems, we propose a universal mathematical
method based on the Group? theory. By defining a Group
representing the Longest Prefix Matching Rule (LPM), the
bound of the worst case of FIB compression solution can be
figured out. Furthermore, in order to guarantee the ultimate
correctness of FIB compression algorithms, Routing Table
Equation Test (RTET) is proposed and implemented to verify the
equivalence of the two routing tables before and after
compression by traversing the 32-bit IP address space.

I. INTRODUCTION

The backbone routing table has been growing at an
exponential rate, driven mainly by multi-homing and the rapid
development of mobile communication [1]. The fast increasing
routing table incurs fast increasing FIB. For the routing lookup
schemes based on software [8-10], FIB compression can be
used to reduce their memory requirements; for the routing
lookup algorithms based on TCAM [11-13], FIB compression
can be used to reduce the hardware cost and power
consumption. Therefore, a variety of FIB compression
algorithms are proposed [2-7]. These algorithms compress the
routing table by transforming the binary trie structure.

In addition, the routing tables’ prefixes are overlapped,
which means that some prefixes are a part of others. This
brings many negative effects on the performance of routing
lookup and incremental update [15]. There are mainly two
overlap elimination algorithms: Leaf-pushing [14] and ONRTC
[15] algorithm. They can totally eliminate the overlap also by
transforming the binary trie’.

However, is FIB compression solution feasible? What’s the
worst case of the FIB compression solution? How to guarantee

1 This work is supported by NSFC (61202489), and the National Science &
Technology Pillar Program No.2012BAHO01B03, and the Instrument
Developing Project of CAS under Grant No.YZ201229.

2Group (mathematics) [20] is a set together with a binary operation satisfying
certain algebraic conditions.

3Both FIB compression and overlap elimination algorithms transform the
binary trie, thus they are called trie-transformation algorithms in this paper.
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the correctness of trie-transformation algorithm? Current FIB
compression algorithms just compress the routing table,
regardless of the size and structure of the routing table. In
contrast, the feasibility, effectiveness and correctness of FIB
compression algorithms are emphasized and well-studied in
this paper.

a) Feasibility and effectiveness. According to the
information theory, it is definite that the compressed routing
table holds the information equivalent to the original one.
Therefore, if and only if there is redundancy in the original
routing table, the FIB compression solution is feasible. Then is
there redundancy in the routing table? What’s the premise of
the existence of redundancy? After data mining of the routing
tables, we find that although the routing table is rapidly
growing (some backbone routers have more than 400K FIB
entries today), the port number of a router is very limited
(ranging from 3 to 80) and almost static. This observation
intuitionally gives a positive answer to the existence of
redundancy. Fortunately, the redundancy caused by the
almighty gap between the prefix number and port number in
the routing table can be quantized by Pigeonhole Principle.
Based on this observation, we also deduce the bound of the
worst case of the FIB compression solution in this paper.

b) Correctness. After a profound study, we find that the
LPM rule can be well expressed by the regular expression
syntax. We also find that the LPM rule can be well expressed
by the Group theory. Based on these two advancements, two
basic equivalent atomic models are induced -- election model
and representative model. We insist that all the trie-
transformation algorithms can be proven by these two
fundamental atomic models.

Actually, FIB compression algorithm is a tough task and is
error-prone during the algorithm design and implementation. In
order to guarantee the ultimate correctness of FIB compression
algorithms, we propose Routing Table Equation Test (RTET)
to verify the equivalence of the two routing tables before and
after compression by traversing the 32-bit IP address space.

Specifically, the main contributions of this paper lie in the
following aspects:

e  We propose a universal mathematical method based on
a new defined Group, and apply this method to four
classical FIB compression algorithms.

e We compute the bound of the worst case of FIB
compression solution.

e  We propose and implement Routing Table Equation
Test (RTET) for the first time, to verify the



equivalence of the two tries before and after binary trie
transformation by traversing the 32-bit IP address
space.

II.  MATHEMATIC PROOF

A. Group Definition

Prefixes are a series of bits. It can be well represented by
regular expression syntax [19], and the symbols frequently
used in this paper are defined below:

e A is a node in the trie, while (A) represents node A's
prefix. Solid nodes have next-hop, while hollow nodes
haven’t.

e (AB) represents the bit string of the path between node
A and B, while no solid nodes appear in the path.

e [f A is an ancestor of B, then A cB
L(A) represents the prefix length of node A.

P represents a trie, and (A) represents a prefix, then
P(A) means the next-hop of prefix (A) in trie P.
Definition 1. LPM Group.

Let G be the LPM Group, and G=Z. The operation on LPM
Group is XOR:

Vx,y € G

x+y, xylx+y)=0
xEBy={ Y, x>0,y>0
meaningless, other else

As shown in Figure 1, the function z = x@®y is plotted in
three-dimensional space.
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Figure 1. LPM Group in three-dimensional space.

Condition 1. Closure

Proof.
Vx,y € G,obviously, x®y € G.

Therefore, LPM Group satisfies Closure. U
Condition 2. Associativity
Proof.

Vx,y,Zz € G

(x®y)Dz = x®(yD2).
DIfx=0, (x®y)®z=yDz,x®(yDz) = yDz.
Therefore,

(x®y)®z = x®(yDz).
Similarly, if y=0 or z =0, (x®y)®z = xB(yDz).
2)x# 0andy # Oand z # 0.

2.1) If x+y=0, in order to make (x®y)®z and
x@®(y®z) meaningful, y + z must be zero. Therefore,

(x®y)Dz = 0Bz = z,
x®(y®z) = xP0 = x = z.
- (x@y)®z = x®(yD2).
22)Ifx > 0,andy >0
(x®y)®z = y®z =z,
x®(y®z) = xDz = z.
» (x®y)Dz = xB(yD2).

Therefore, LPM Group satisfies Associativity. O
Condition 3. Identity
Proof-
0, y=0 _
00y = {y, y>0 = 0®y =y
0, y=0
y@O—{y’ y>0= Y0 =y
= 0 is the identity.
Therefore, LPM Group satisfies Identity. O
Condition 4. Invertibility
Proof.
Vx € G, xB(—x) = (—x)PBx = 0.
Therefore, -x is the inverse of x. O
According to the above four conditions, it can be
concluded that G is a Group. O

LPM Group is used to describe the matching process and
results of prefixes in this paper, and thus we define the next-
hop and induce Theorem 1 in the following.

Definition 2. P(R)
VIP address R, R=[0,1]{32}, the match result of each bit is
S;, for IPv4, i=1,2,..,32; for IPv6, i=12,..,128 ;

According to the Longest Prefix Matching rule, the next-hop of
RisP(R) =S5, S,D S;0 ... S5, = B34S,

Theorem 1. If the match results of every section of two prefixes
are same, then the next-hops of the two prefixes are same.

Proof.
P1(R) =@,
= (@SB (DZ11415) O(B212415) © . O(DZ1115)

P2(R) = ®32,V;
= (69121‘/1' )® (Galztlﬂvi )B( @gt2+1Vi )@ ... &( ®i3=2tn+1Vi)

Pl = ea{'(:txﬂsiv P2y = @{‘{=tx+1Vi: then
Pl(R) = P1f1®P1t2® ...®P132

Suppose



PZ(R) = P2t1®P2t2® 6P232
Pl, = P2,k =t1,t2,..,32
Therefore, P1(R) = P2(R). O

This theorem can be used to prove the equivalence of the
next-hop of two tries section by section with regard to one IP
address.

Theorem 2. Decision Theorem

The necessary and sufficient condition that two tries are
equivalent is the next-hops are equal in the two trie for any IP
addresses by LPM rule.

Obviously, this Decision Theorem naturally holds.
Combining Theorem 1 and Theorem 2, we can prove the
equivalence of two trie (or two models) section by section.

B. Election and Representative Models

We insist that all the trie-transformation algorithms can be
proven by two basic transformation models: election model and
representative model.

1) Election Model
Election Model: two or more nodes elect their common
ancestor node, and no solid node appears in the path from the
candidate nodes to the common ancestor node. Any candidates
can be elected as representative, resulting in different
compression ratio.

A

@) A
J elect E

(a) The original trie

& &

(b) Trie after election
Figure 2. Election Model.
Election models can work on both binary trie and multi-bit

trie. As shown in Figure 2, the next-hop of Node Xi is Ni, the
count of Ni is Ci.

Election result: if such t exists: V j! = t,Cj < Ct holds, then
Xt is the elected representative. If such t doesn’t exist, election
fails. Then the common ancestor’s next-hop is set to NULL,
and participates in the next round election. In this way, an
optimal compression ratio can be achieved.

Proof.
vV IP address R, obviously, L(R) =K,R = [0,n]{K}.
Suppose R = [0,n]{L(A)}[0,n][0,n]{K — L(A) — 1}.
Step1: match [0,1]{L(4)}
P1([0,1}{L(A)}) = P1(4)
P2([0,1{L(A)}) = P2(4A)
P1([0,1{L(A)}) = P1(/§)
P2([0,1]{L(A)}) = P2(4)
P1(A) = P2(4)
P1(A) = P2(4)

[0 = (4) = {

[0,1[{L(A)} # (A) = {

- {Pl([O,l]{L(A)}) = Ply
P2([0,1{L(A)}) = P2,

Step2: match [0,1]
P1([0,1]) = P1(X))
P2([0,1]) = P2(X;)
P1(X;) = P2(X;)
= P1([0,1]) = P2([0,1]) = Py, #0
Step3: match [0,1]{K — L(A) — 1}
[01]=ii=12, ..,n
P1(J0,n]{K — L(A) — 1}) = P1(X; %)
{PZ([O, nl{K — L(A) — 1}) = P2(X; *)
P1(X; ) = P2(X; %)

= P1([0,n[{K — L(A) — 1}) = P2([0,n]{K — L(A) — 1})

[01] = i,i =123, ..,n = {

= Fs3
According to stepl, step2, and step3,
P1(R) = P1([0,n[{L(A)}[0, n][0, n]{K — L(4) — 1})

= P1([0,n]{L(A)}HD®P1([0,n])®P1([0, n|{K
—L(A) -1}

= P15, ®P;;®P;
P2(R) = P2([0,n]{L(A)}[0,n][0, n]{K — L(A) — 1})

= P2([0,nJ{L(A)H®P2([0,n)®P2([0, n{K
—L(A) -1}

= P251@®Ps;®Ps3
P, #0, according to the associative law,
P1(R) = P15;®P@Ps3 = (P15 @Ps;)®Ps3 = Py, DPg3
P2(R) = P25;®Ps;®Ps3 = (P25,®Ps3)®Ps3 = Py ®Ps3
~ P1(R) = P2(R)
According to Theorem 1 and Theorem 2, P1 & P2. O

If P2 is the election model of P1, we say P2 = Ele(P1).
Actually, any node can be elected as representative, resulting in
different compression ratio, and the proof method is similar.

2) Representative Model
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(a)The original trie (b) the trie after transformation (c) three steps to match

Figure 3. Representative model.

Representative: after a successful election, the common
ancestor will exercise the right of representative immediately:
set the next-hop of its voters (those candidates which own the
same next-hop with representative) to 0. As shown in Figure 3,
the next-hop of A and B is same, and A is the nearest ancestor



of B. In this case, B’s next-hop is set to zero. The proof is
similar to that of election model, thus is ignored.

If P2 is the representative model of P1, we say P2 =
Rep(P1). We insist that all models can be proved by election
model and representative model.

III.  THE WORST CASE OF FIB COMPRESSION SOLUTION

In this section, the bound of the worst case of FIB
compression solution is computed, so as to prove the feasibility
and effectiveness of FIB compression algorithms.

A) Pigeonhole Principle

In mathematics, the Pigeonhole Principle states that if n+1
objects are distributed into n boxes, then at least one box
contains two or more of the objects [21]. This is a simple but
very useful principle. For example, if there are five people
from four countries, there are at least two people from the same

country.

B) The Worst Case for Full IP Address Space

For IPV4, the space is 232. Suppose there are 30 ports and
232 prefixes with the length of 32 (full IP address space) in a
routing table. At level 32, every 32 nodes elect their common
ancestor. At least two ports are the same according to the
Pigeonhole Principle. Therefore, at least two nodes of 32
nodes can be compressed into one, and thus 232/32 = 227
nodes are reduced. At level 27 of the trie, there are 227 nodes.
Similarly, 32 nodes select their common ancestor. According to
the Pigeonhole Principle, at least two nodes can be
compressed into one, and 227 /32 = 222 nodes are reduced.
Therefore, the number of left nodes is at least

232 232 232 232

R =23 "= (1)

T 25x1 p5x2  25x3

This worst case exists — if the preorder traverse results are
Ni (i=1, 2, 3...), and the next-hop of Ni is represented by P(Ni),
which satisfies:

P(Ni)= i mod(32)

In this case, the number of compressed routing table by
optimal algorithm is R in equation (1).

IV. ROUTING TABLE EQUATION TEST

The mathematical proof method has been elaborated above,
but there might be flaws in the process of mathematical
derivation and coding. How to guarantee the uwltimate
correctness of these algorithms? The ultimate correctness
refers to that for any IP address, the compressed routing table
tells the same next-hop with the original table. Therefore, we
propose Routing Table Equation Test (RTET) to judge the
equivalence of the two routing tables. RTET firstly builds two
tries, then traverses 32-bit IP address space, and compares the
next-hop of two tries by using the same IP address. If and only
if all are equal, the two routing tables are equivalent. Otherwise,
RTET stops and tells the prefix and the different next-hop of
the two tries. One comparison of two routing tables by using
RTET takes about 16 minutes. The algorithms [2-5] are all
implemented and verified by RTET, using the routing tables
downloaded from [22].

V. CONCLUSIONS

FIB compression has been a hot topic of scientific research
for years. There are many FIB compression and overlap
elimination algorithms, but there isn’t a formal and universal
mathematical method to guarantee their correctness. Therefore,
we propose a universal mathematical method for trie-
transformation algorithms based on a new defined Group.
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