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ABSTRACT
Set queries are fundamental operations in computer system-
s and applications. This paper addresses the fundamental
problem of designing a probabilistic data structure that can
quickly process set queries using a small amount of memory.
We propose a Shifting Bloom Filter (ShBF) framework for
representing and querying sets. We demonstrate the effec-
tiveness of ShBF using three types of popular set queries:
membership, association, and multiplicity queries. The key
novelty of ShBF is on encoding the auxiliary information
of a set element in a location offset. In contrast, prior BF
based set data structures allocate additional memory to s-
tore auxiliary information. We conducted experiments using
real-world network traces, and results show that ShBF sig-
nificantly advances the state-of-the-art on all three types of
set queries.

1. INTRODUCTION
1.1 Motivations

Set queries, such as membership queries, association
queries, andmultiplicity queries, are fundamental operations
in computer systems and applications. Membership queries
check whether an element is a member of a given set. Net-
work applications, such as IP lookup, packet classification,
and regular expression matching, often involve membership
queries. Association queries identify which set(s) among a
pair of sets contain a given element. Network architectures
such as distributed servers often use association queries. For
example, when data is stored distributively on two servers
and the popular content is replicated over both servers to
achieve load balancing, for any incoming query, the gate-
way needs to identify the server(s) that contain the data
corresponding to that query. Multiplicity queries check how
many times an element appears in a multi-set. A multi-set
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allows elements to appear more than once. Network mea-
surement applications, such as measuring flow sizes, often
use multiplicity queries.
This paper addresses the fundamental problem of design-

ing a probabilistic data structure that can quickly process
set queries, such as the above-mentioned membership, as-
sociation, and multiplicity queries, using a small amount of
memory. Set query processing speed is critical for many sys-
tems and applications, especially for networking applications
as packets need to be processed at wire speed. Memory con-
sumption is also critical because small memory consumption
may allow the data structure to be stored in SRAM, which
is an order of magnitude faster than DRAM.
Widely used set data structures are the standard Bloom

Filter (BF) [3] and the counting Bloom Filter (CBF) [11].
Let h1(.), · · · , hk(.) be k independent hash functions with
uniformly distributed outputs. Given a set S, BF con-
structs an array B of m bits, where each bit is initial-
ized to 0, and for each element e∈S, BF sets the k bits
B[h1(e)%m], · · · , B[hk(e)%m] to 1. To process a member-
ship query of whether element e is in S, BF returns true if all
corresponding k bits are 1 (i.e., returns ∧k

i=1B[hi(e)%m]).
BF has no false negatives (FNs), i.e., it never says that e/∈S
when actually e ∈ S. However, BF has false positives (FP-
s), i.e., it may say that e ∈ S when actually e /∈ S with a
certain probability. Note that BF does not support element
deletion. CBF overcomes this shortcoming by replacing each
bit in BF by a counter. Given a set of elements, CBF first
constructs an array C of m counters, where each counter is
initialized to 0. For each element e in S, for each 1 � i � k,
CBF increments C[hi(e)%m] by 1. To process a member-
ship query of whether element e is in set S, CBF returns
true if all corresponding k counters are at least 1 (i.e., re-
turns ∧k

i=1(C[hi(e)%m] � 1)). To delete an element e from
S, for each 1 � i � k, CBF decrements C[hi(e)%m] by 1.

1.2 Proposed Approach
In this paper, we propose a Shifting Bloom Filter (ShBF)

framework for representing and querying sets. Let h1(.), · · · ,
hk(.) be k independent hash functions with uniformly dis-
tributed outputs. In the construction phase, ShBF first con-
structs an array B ofm bits, where each bit is initialized to 0.
We observe that in general a set data structure needs to store
two types of information for each element e: (1) existence in-
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formation, i.e., whether e is in a set, and (2) auxiliary infor-
mation, i.e., some additional information such as e’s counter
(i.e., multiplicity) or which set that e is in. For each ele-
ment e, we encode its existence information in k hash values
h1(e)%m, · · · , hk(e)%m, and its auxiliary information in an
offset o(e). Instead of, or in addition to, setting the k bits at
locations h1(e)%m, · · · , hk(e)%m to 1, we set the bits at lo-
cations (h1(e)+o(e))%m, · · · , (hk(e)+o(e))%m to 1. For dif-
ferent set queries, the offset has different values. In the query
phase, to query an element e, we first calculate the following
k locations: h1(e)%m, · · · , hk(e)%m. Let c be the maximum
value of all offsets. For each 1 � i � k, we first read the c
bits B[hi(e)%m], B[(hi(e)+1)%m], · · · , B[(hi(e)+c−1)%m]
and then calculate the existence and auxiliary information
about e by analyzing where 1s appear in these c bits. To
minimize the number of memory accesses, we extend the
number of bits in ShBF to m+ c; thus, we need k� c

w
� num-

ber of memory accesses in the worst case, where w is the
word size. Figure 1 illustrates our ShBF framework.

1 1 1 

Figure 1: Shifting Bloom Filter framework.

We demonstrate the effectiveness of ShBF using three
types of popular set queries: membership, association, and
multiplicity queries.

1.2.1 Membership Queries
Such queries only deal with the existence information of

each element, which is encoded in k random positions in
array B. To leverage our ShBF framework, we treat k/2
positions as the existence information and the other k/2
positions as the auxiliary information, assuming k is an
even number for simplicity. Specifically, the offset func-
tion o(.) = h k

2
+1(.)%(w − 1) + 1, where h k

2
+1(.) is anoth-

er hash function with uniformly distributed outputs and w
is a function of machine word size w. In the construc-
tion phase, for each element e ∈ S, we set both the
k/2 bits B[h1(e)%m], · · · , B[h k

2
(e)%m] and the k/2 bits

B[h1(e)%m + o(e)], · · · , B[h k
2
(e)%m + o(e)] to 1. In the

query phase, for an element e, if all these k bits are 1,
then we output e ∈ S; otherwise, we output e /∈ S. In terms
of false positive rate (FPR), our analysis shows that ShBF is
very close to BF with k hash functions. In terms of perfor-
mance, ShBF is about two times faster than BF because of
two main reasons. First, ShBF reduces the computational
cost by almost half because the number of hash functions
that ShBF needs to compute is almost the half of what BF
needs to compute. Second, ShBF reduces the number of
memory accesses by half because although both ShBF and
BF write k bits into the array B, when querying element
e, by one memory access, ShBF obtains two bits about e
whereas BF obtains only one bit about e.

1.2.2 Association Queries
For this type of queries with two sets S1 and S2, for ele-

ments in S1 ∪ S2, there are three cases: (1) e ∈ S1 − S2,
(2) e ∈ S1 ∩ S2, and (3) e ∈ S2 − S1. For the first
case, i.e., e ∈ S1 − S2, the offset function o(e) = 0. For
the second case, i.e., e ∈ S1 ∩ S2, the offset function
o(e) = o1(e) = hk+1(e)%((w − 1)/2) + 1, where hk+1(.)

is another hash function with uniformly distributed outputs
and w is a function of machine word size w. For the third
case, i.e., e ∈ S2 − S1, the offset function o(e) = o2(e) =
o1(e) + hk+2(e)%((w − 1)/2) + 1, where hk+2(.) is yet an-
other hash function with uniformly distributed outputs. In
the construction phase, for each element e ∈ S1 ∪ S2, we
set the k bits B[h1(e)%m + o(e)], · · · , B[hk(e)%m + o(e)]
to 1 using an appropriate value of o(e) as just described
for the three cases. In the query phase, given an ele-
ment e ∈ S1 ∪ S2 , for each 1 � i � k, we read the 3
bits B[hi(e)%m], B[hi(e)%m + o1(e)], and B[hi(e)%m +
o2(e)]. If all the k bits B[h1(e)%m], · · · , B[hk(e)%m] are
1, then e may belong to S1 − S2. If all the k bits
B[h1(e)%m + o1(e)], · · · , B[hk(e)%m + o1(e)] are 1, then
e may belong to S1 ∩ S2. If all the k bits B[h1(e)%m +
o2(e)], · · · , B[hk(e)%m+ o2(e)] are 1, then e may belong to
S2 − S1. There are a few other possibilities that we will
discuss later in Section 4.2, that ShBF takes into account
when answering the association queries. In comparison, the
standard BF based association query scheme, namely iBF,
constructs a BF for each set. In terms of accuracy, iBF
is prone to false positives whenever it declares an elemen-
t e ∈ S1 ∪ S2 in a query to be in S1 ∩ S2, whereas ShBF
achieves an FPR of zero. In terms of performance, ShBF
is almost twice as fast as iBF because iBF needs 2k hash
functions and 2k memory accesses per query, whereas ShBF
needs only k+ 2 hash functions and k memory accesses per
query.

1.2.3 Multiplicity Queries
For multiplicity queries, for each element e in a multi-

set S, the offset function o(.) = c(e) − 1 where c(e) is e’s
counter (i.e., the number of occurrences of e in S). In the
construction phase, for each element e, we set the k bits
B[h1(e)%m+c(e)−1], · · · , B[hk(e)%m+c(e)−1] to 1. In the
query phase, for an element e, for each 1 � i � k, we read
the c bits B[hi(e)%m], B[hi(e)%m+1], · · · , B[hi(e)%m+c−
1], where c is the maximum number of occurrences that an
element can appear in S. For these ck bits, for each 1 � j �
c, if all the k bits B[h1(e)%m+j−1], · · · , B[hk(e)%m+j−1]
are 1, then we output j as one possible value of c(e). Due
to false positives, we may output multiple possible values.

1.3 Novelty and Advantages over Prior Art
The key novelty of ShBF is on encoding the auxiliary in-

formation of a set element in its location by the use of offset-
s. In contrast, prior BF based set data structures allocate
additional memory to store such auxiliary information.
To evaluate our ShBF framework in comparison with

prior art, we conducted experiments using real-world net-
work traces. Our results show that ShBF significantly ad-
vances the state-of-the-art on all three types of set queries:
membership, association, and multiplicity. For membership
queries, in comparison with the standard BF, ShBF has
about the same FPR but is about 2 times faster; in compari-
son with 1MemBF [17], which represents the state-of-the-art
in membership query BFs, ShBF has 10% ∼ 19% lower FPR
and 1.27 ∼ 1.44 times faster query speed. For association
queries, in comparison with iBF, ShBF has 1.47 times higher
probability of a clear answer, and has 1.4 times faster query
speed. For multiplicity queries, in comparison with Spectral
BF [8], which represents the state-of-the-art in multiplicity
query BFs, ShBF has 1.45 ∼ 1.62 times higher correctness
rate and the query speeds are comparable.
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2. RELATED WORK
We now review related work on the three types of set

queries: membership, association, and multiplicity queries,
which are mostly based on Bloom Filters. Elaborate surveys
of the work on Bloom Filters can be found in [5, 14,18, 19].

2.1 Membership Queries
Prior work on membership queries focuses on optimizing

BF in terms of the number of hash operations and the num-
ber of memory accesses. Fan et al. proposed the Cuckoo
filter and found that it is more efficient in terms of space
and time compared to BF [10]. This improvement comes at
the cost of non-negligible probability of failing when insert-
ing an element. To reduce the number of hash computation,
Kirsch et al. proposed to use two hash functions h1(.) and
h2(.) to simulate k hash functions (h1(.) + i ∗ h2(.))%m,
where (1 � i � k); but the cost is increased FPR [13]. To re-
duce the number of memory accesses, Qiao et al. proposed
to confine the output of the k hash functions within cer-
tain number of machine words, which reduces the number of
memory accesses during membership queries; but the cost
again is increased FPR [17]. In contrast, ShBF reduces the
number of hash operations and memory access by about half
while keeping FPR about the same as BF.

2.2 Association Queries
Prior work on association queries focuses on identifying

the set, among a group of pair-wise disjoint sets, to which
an element belongs. A straightforward solution is iBF, which
builds one BF for each set. To query an element, iBF gen-
erates a membership query for each set’s BF and finds out
which set(s) the unknown element is in. This solution is
used in the Summary-Cache Enhanced ICP protocol [11].
Other notable solutions include kBF [20], Bloomtree [22],
Bloomier [6], Coded BF [16], Combinatorial BF [12], and
SVBF [15]. When some sets have intersections, there will be
consecutive 1s in the filters, and the false positive rate will
increase and formulas will change. In this paper, we focus
on the query of two sets with intersections.

2.3 Multiplicity Queries
BF cannot process multiplicity queries because it only tell-

s whether an element is in a set. Spectral BF, which was pro-
posed by Cohen and Matias, represents the state-of-the-art
scheme for multiplicity queries [8]. There are three versions
of Spectral BF. The first version proposes some modifica-
tions to CBF to record the multiplicities of elements. The
second version increases only the counter with the minimum
value when inserting an element. This version reduces FPR
at the cost of not supporting updates. The third version min-
imizes space for counters with a secondary spectral BF and
auxiliary tables, which makes querying and updating proce-
dures time consuming and more complex. Aguilar-Saborit et
al. proposed Dynamic Count Filters (DCF), which combines
the ideas of spectral BF and CBF, for multiplicity queries [2].
DCF uses two filters: the first filter uses fixed size counter-
s and the second filter dynamically adjusts counter sizes.
The use of two filters degrades query performance. Anoth-
er well-known scheme for multiplicity queries is the Count-
Min (CM) Sketch [9]. A CM Sketch is actually a partitioned
Counting Bloom filter. We will show that our scheme is much
more-memory efficient than CM sketches.

3. MEMBERSHIP QUERIES
In this section, we first present the construction and query

phases of ShBF for membership queries. Membership queries
are the “traditional” use of a BF. We use ShBFM to denote
the ShBF scheme for membership queries. Second, we de-
scribe the updating method of ShBFM. Third, we derive
the FPR formula of ShBFM. Fourth, we compare the per-
formance of ShBFM with that of BF. Last, we present a
generalization of ShBFM. Table 1 summarizes the symbols
and abbreviations used in this paper.

Table 1: Symbols & abbreviations used in the paper
Symbol Description

m size of a Bloom Filter
n # of elements of a Bloom Filter
k # of hash functions of a Bloom Filter

kopt the optimal value of k
S a set
e one element of a set
u one element of a set

hi(s) the i-th hash function
FP false positive
FPR false positive rate
f the FP rate of a Bloom Filter

p′
the probability that one bit is still 0
after inserting all elements into BF

BF standard Bloom Filter

iBF
individual BF: the solution that builds one
individual BF per set

ShBF Shifting Bloom Filters
ShBFM Shifting Bloom Filters for membership qrs.
ShBFA Shifting Bloom Filters for association qrs.
ShBF× Shifting Bloom Filters for multiplicities qrs.
Qps queries per second

multi-set
a generalization of the notion of a set in
which members can appear more than once

o(.)
offset(.), referring to the offset value for a
given input

w # of bits in a machine word

w
the maximum value of offset(.) for
membership query of a single set

c
the maximum number of times
an element can occur in a multi-set

3.1 ShBFM – Construction Phase
The construction phase of ShBFM proceeds in three

steps. Let h1(.), h2(.), · · · , h k
2
+1(.) be k

2
+ 1 independent

hash functions with uniformly distributed outputs. First,
we construct an array B of m bits, where each bit is
initialized to 0. Second, to store the existence informa-
tion of an element e of set S, we calculate k

2
hash val-

ues h1(e)%m,h2(e)%m,· · · ,h k
2
(e)%m. To leverage our ShBF

framework, we also calculate the offset values for the elemen-
t e of set S as the auxiliary information for each element,
namely o(e) = h k

2
+1(e)% (w − 1) + 1. We will later discuss

how to choose an appropriate value for w. Third, we set the
k
2
bits B[h1(e)%m], · · · , B[h k

2
(e)%m] to 1 and the other k

2

bits B[h1(e)%m+ o(e)], · · · , B[h k
2
(e)%m+ o(e)] to 1. Note

that o(e) 
= 0 because if o(e) = 0, the two bits B[hi(e)%m]
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and B[hi(e)%m+o(e)] are the same bits for any value of i in
the range 1 � i � k

2
. For the construction phase, the maxi-

mum number of hash operations is k
2
+1. Figure 2 illustrates

the construction phase of ShBFM.

1 1 1 1 1 1 

Figure 2: Illustration of ShBFM construction phase.

We now discuss how to choose a proper value for w so that
for any 1 � i � k

2
, we can access both bits B[hi(e)%m] and

B[hi(e)%m+o(e)] in one memory access. Note that modern
architecture like x86 platform CPU can access data starting
at any byte, i.e., can access data aligned on any boundary,
not just on word boundaries. Let B[hi(e)%m] be the j-th
bits of a byte where 1 � j � 8. To access bit B[hi(e)%m],
we always need to read the j − 1 bits before it. To access
both bits B[hi(e)%m] and B[hi(e)%m+o(e)] in one memory
access, we need to access j−1+w bits in one memory access.
Thus, j − 1 + w � w, which means w � w + 1 − j. When
j = 8, w+ 1− j has the minimum value of w− 7. Thus, we
choose w � w−7 as it guarantees that we can read both bits
B[hi(e)%m] and B[hi(e)%m+ o(e)] in one memory access.

3.2 ShBFM – Query Phase
Given a query e, we first read the two bits B[h1(e)%m]

and B[h1(e)%m+o(e)] in one memory access. If both bits are
1, then we continue to read the next two bits B[h2(e)%m]
and B[h2(e)%m+ o(e)] in one memory access; otherwise we
output that e /∈ S and the query process terminates. If for
all 1 � i � k

2
, B[hi(e)%m] and B[hi(e)%m + o(e)] are 1,

then we output e ∈ S. For the query phase, the maximum
number of memory accesses is k

2
.

3.3 ShBFM – Updating
Just like BF handles updates by replacing each bit by

a counter, we can extend ShBFM to handle updates by
replacing each bit by a counter. We use CShBFM to de-
note this counting version of ShBFM. Let C denote the ar-
ray of m counters. To insert an element e, instead of set-
ting k bits to 1, we increment each of the corresponding
k counters by 1; that is, we increment both C[hi(e)%m]
and C[hi(e)%m + o(e)] by 1 for all 1 � i � k

2
. To delete

an element e ∈ S, we decrement both C[hi(e)%m] and
C[hi(e)%m + o(e)] by 1 for all 1 � i � k

2
. In most appli-

cations, 4 bits for a counter are enough. Therefore, we can
further reduce the number of memory accesses for updating
CShBFM. Similar to the analysis above, if we choose w �
�w−7

z
� where z is the number of bits for each counter, we can

guarantee to access both C[hi(e)%m] and C[hi(e)%m+o(e)]
in one memory access. Consequently, one update of CShBFM

needs only k/2 memory accesses.
Due to the replacement of bits by counters, array C in

CShBFM uses much more memory than array B in ShBFM.
To have the benefits of both fast query processing and small
memory consumption, we can maintain both ShBFM and
CShBFM, but store array B in fast SRAM and array C in
DRAM. Note that SRAM is at least an order of magnitude

faster than DRAM. Array B in fast SRAM is for processing
queries and array C in slow DRAM is only for updating.
After each update, we synchronize array C with array B.
The synchronization is quite straightforward: when we insert
an element, we insert it to both array C and B; when we
delete an element, we first delete it from C, if there is at least
one of the k counters becomes 0, we clear the corresponding
bit in B to 0.

3.4 ShBFM – Analysis
We now calculate the FPR of ShBFM, denoted as fShBFM .

Then, we calculate the minimum value of w so that ShBFM

can achieve almost the same FPR as BF. Last, we calculate
the optimum value of k that minimizes fShBFM .

3.4.1 False Positive Rate
We calculate the false positive rate of ShBFM in the fol-

lowing theorem.

Theorem 1. The FPR of ShBFM for a set of n elements
is calculated as follows:

fShBFM ≈ (1− p)
k
2

(
1− p+

1

w − 1
p2
) k

2

(1)

where p = e
−nk
m .

Proof. Let p′ represent the probability that one bit (sup-
pose it is at position i) in the filter B is still 0 after in-
serting information of all n elements. For an arbitrary ele-
ment e, if hi(e)%m does not point to i or i − o(e), where
o(e) = h k

2
(e)%(w−1)+1, then the bit at position i will still

be 0, thus p′ is given by the following equation.

p′ =
(
m− 2

m

)kn

2 =

(
1− 2

m

)kn

2 (2)

When m is large, we can use the identity
∞∑
x

(
1− 1

x

)−x

= e,

to get the following equation for p′.

p′ =
(
1− 2

m

)kn

2 =

⎛
⎜⎝(

1− 2

m

)m

2

⎞
⎟⎠

kn

m

≈ e
−
nk

m (3)

Let X and Y be the random variables for the event that
the bit at position hi(.) and the bit at position hi(.)+h k

2
+1(.)

is 1, respectively. Thus, P {X} = 1− p′. Suppose we look at
a hash pair 〈hi, h k

2
+ 1〉, we want to calculate P {XY }. As

P {XY } = P {X} × P {Y |X}, next we calculate P {Y |X}.
There are w − 1 bits on the left side of position hi. The 1s
in these w − 1 bits could be due to the first hash function
in a pair and/or due to the second hash function in the
pair . In other words, event X happens because a hash pair
〈hj , h k

2
+1〉 sets the position hi to 1 during the construction

phase. When event X happens, there are two cases:

1. The event X1 happens, i.e., the position hi is set to
1 by h k

2
+1, i.e., the left w − 1 bits cause hi to be

1, making X and Y independent. Thus, in this case
P {Y } = 1− p′.
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2. The event X2 happens, i.e., the position hi is set to
1 by hj . In this case, As P {X1} + P {X2} =1, thus,
P {Y |X} = P {Y |X,X1} × P {X1}+ P {Y |X,X2} ×
P {X2}.

Next, we compute P {X1} and P {X2}.
As there are w−1 bits on the left side of position hi, there

are w−1 combinations, i.e.,
(
w−1
1

)
= w−1. Probability that

any bit of the w − 1 bits is 1 is 1− p′. When one bit in the
w−1 bits is 1, probability that this bit sets the bit at location
hi using the hash function h k

2
+ 1 to 1 is 1

w−1
. Therefore,

P {X1} =
(
w−1
1

) × (1 − p′) × 1
w−1

= 1 − p′. Consequently,
P {X2} = 1− P {X1} = p′. Again there are two cases:

1. If the bit which hi(x) points to is set to 1 by the left 1s,
X and Y are independent, and thus P {Y } =

(
w−1
1

)×
(1− p′)× 1

w−1
= 1− p′.

2. If the bit which hi(x) points to is not set to 1 by the
left 1s, then it must set one bit of the latter w− 1 bits
to be 1. This case will cause one bit of the latter w− 1
bits after position hi to be 1. In this case, there are
following two situations for the second hashing hi +
h k

2
+1:

(a) when the second hash points to this bit, the prob-
ability is 1

w−1
× 1;

(b) otherwise, the probability is (1− 1
w−1

)× (1− p′).

When the second case above happens, P {Y |X,X2} is given
by the following equation.

P {Y |X,X2} =
(1− p′)(w − 2)

w − 1
+

1

w − 1
=

(
1− w − 2

w − 1
p′
)

(4)
Integrating the two cases, we can compute P {Y |X} as fol-
lows.

P {Y |X} = (1− p′)(1− p′) +
(
1− (1− p′)

)(
1− w − 2

w − 1
p′
)

(5)
The probability that all the first hashes point to bits that

are 1 is (1 − p′)
k
2 . The probability that the second hash

points to a bit that is 1 is the k
2
-th power of Equation (5).

Thus, the overall FPR of ShBFM is given by the following
equation.

fShBFM =(1− p′)
k
2

(
(1− p′)(1− p′) + p′

(
1− w − 2

w − 1
p′
)) k

2

=(1− p′)
k
2

(
1− p′ +

1

w − 1
p′2

) k
2

(6)
Note that when w → ∞, this formula becomes the formula

of the FPR of BF.

Let we represent e
−
nk

m by p. Thus, according to equation
3, p′ ≈ p. Consequently, we get:

fShBFM ≈ (1− p)
k
2

(
1− p+

1

w − 1
p2
) k

2

Note that the above calculation of FPRs is based on the
original Bloom’s FPR formula [3]. In 2008, Bose et al. point-
ed out that Bloom’s formula [3] is slightly flawed and gave

a new FPR formula [4]. Specifically, Bose et al. explained
that the second independence assumption needed to derive
fBloom is too strong and does not hold in general, resulting
in an underestimation of the FPR. In 2010, Christensen et
al. further pointed out that Bose’s formula is also slightly
flawed and gave another FPR formula [7]. Although Chris-
tensen’s formula is final, it cannot be used to compute the
optimal value of k, which makes the FPR formula practically
not much useful. Although Bloom’s formula underestimates
the FPR, both studies pointed out that the error of Bloom’s
formula is negligible. Therefore, our calculation of FPRs is
still based on Bloom’s formula.

3.4.2 Optimizing System Parameters
Minimum Value of w: Recall that we proposed to use

w � w − 7. According to this inequation, w � 25 for 32-bit
architectures and w � 57 for 64-bit architectures. Next, we
investigate the minimum value of w for ShBFM to achieve
the same FPR with BF. We plot fShBFM of ShBFM as a
function of w in Figures 3(a) and 3(b). Figure 3(a) plots
fShBFM vs. w for n = 10000, m = 100000, and k =4, 8, and
12 and Figure 3(b) plots fShBFM vs. w for n = 10000, k =
10, and m = 100000, 110000, and 120000. The horizontal
solid lines in these two figures plot the FPR of BF. From
these two figures, we observe that when w > 20, the FPR of
ShBFM becomes almost equal to the FPR of BF. Therefore,
to achieve similar FPR as of BF, w needs to be larger than
20. Thus, by using w = 25 for 32−bit and w = 57 for 64−bit
architecture, ShBFM will achieve almost the same FPR as
BF.

(a) m = 100000, n = 10000 (b) k = 10, n = 10000

Figure 3: FPR vs. w.

Optimum Value of k: Now we calculate the value of
k that minimizes the FPR calculated in Equation (1). The
standard method to obtain the optimal value of k is to d-
ifferentiate Equation (1) with respect to k, equate it to 0,
i.e., ∂

∂k
fShBFM = 0, and solve this equation for k. Unfor-

tunately, this method does not yield a closed form solution
for k. Thus, we use standard numerical methods to solve
the equation ∂

∂k
fShBFM = 0 to get the optimal value of k

for given values of m,n, and w. For w = 57, differentiating
Equation (1) with respect to k and solving for k results in
the following optimum value of k.

kopt = 0.7009
m

n

Substituting the value of kopt from the equation above
into Equation (1), the minimum value of fShBFM is given by
the following equation.

fmin
ShBFM

= 0.6204
m
n (7)
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3.5 Comparison of ShBFM FPR with BF FPR
Our theoretical comparison of ShBFM and BF shows that

the FPR of ShBFM is almost the same as that of BF. Fig-
ure 4 plots FPRs of ShBFM and BF using Equations (1) and
(8), respectively for m = 100000 and n = 4000, 6000, 8000,
10000, 12000. The dashed lines in the figure correspond to
ShBFM whereas the solid lines correspond to BF. We ob-
serve from this figure that the sacrificed FPR of ShBFM in
comparison with the FPR of BF is negligible, while the num-
ber of memory accesses and hash computations of ShBFM

are half in comparison with BF.
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n�12000
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Figure 4: ShBFM FPR vs. BF FPR.

Next, we formally arrive at this result. We calculate the
minimum FPR of BF as we calculated for ShBFM in Equa-
tion (7) and show that the two FPRs are practically equal.
For a membership query of an element u that does not be-
long to set S, just like ShBFM, BF can also report true with
a small probability, which is the FPR of BF and has been
well studied in literature [3]. It is given by the following
equation.

fBF =

(
1−

(
1− 1

m

)nk
)k

≈
(
1− e−

nk
m

)k

(8)

For given values of m and n, the value of k that minimizes
fBF is = m

n
ln 2 = 0.6931m

n
. Substituting this value of k

into Equation (8), the minimum value of fBF is given by the
following equation.

fmin
BF =

(
1

2

)(m
n

ln 2)
≈ 0.6185

m
n (9)

By comparing Equations (7) and (9), we observe that the
FPRs of ShBFM and BF are almost the same. Thus, ShBFM

achieves almost the same FPR as BF while reducing the
number of hash computations and memory accesses by half.

3.6 Generalization of ShBFM

As mentioned earlier, ShBFM reduces k independent hash
functions to k/2 + 1 independent hash functions. Conse-
quently, it calculates k/2 locations independently and re-
maining k/2 locations are correlated through the equation
hi(e) + o1(e) (1 � i � k/2). Carrying this construction s-
trategy one step further, one could replace the first k/2 hash
functions with k/4 independent hash functions and an offset
o2(e), i.e., hj(e) + o2(e) (1 � j � k/4). Continuing in this
manner, one could eventually arrive at log(k)+1 hash func-
tions. Unfortunately, it is not trivial to calculate the FPR
for this case because log(k) is seldom an integer. In this sub-
section, we simplify this log method into a linear method
by first using a group of k

t+1
(1 � t � k − 1) hash functions

to calculate k
t+1

hash locations and then applying shifting
operation t times on these hash locations.
Consider a group of hash function comprising of t + 1

elements, i.e., 〈h1(x), h2(x), . . . , ht+1(x)〉. After completing
the construction phase using this group of hash function-

s, the probability that any given bit is 0 is
m− w

m
+

w − 1

m

w − 2

w − 1
. . .

w − t− 1

w − t
= 1− t+ 1

m
. To insert n elements,

we need
nk

t+ 1
such group insertion operations. After com-

pleting the insertion, the probability p′ that one bit is still
0 is given by the following equation.

p′ =
(
1− t+ 1

m

) kn

t+ 1 ≈ e
−
kn

m (10)

Note that this probability formula is essentially k times
product of e−

n
m . Thus, we can treat our ShBFM as a par-

titioned Bloom filter, where the output of each hash func-

tion covers a distinct set of consecutive
w − 1

t
bits. Setting

w = m makes this scheme partitioned Bloom filter. The
equations below calculate the FPR f for this scheme.

f =
(
1− p′

) k

t+ 1 × (fgroup)

k

t+ 1 (11)

where

fgroup =
1

t
× (

1− p′
)2 × (1− p′)t −

(
1− w − 1− t

w − 1
× p′

)t

(1− p′)−
(
1− w − 1− t

w − 1
× p′

)

+ p′ ×
(
1− w − 1− t

w − 1
× p′

)t

(12)
Due to space limitations, we have moved the derivation of
this equation to our extended version at arxiv.org [21].
When t = 1, its false positive rate can be simplified as

f = (1− p′)
k

2 *

(
1− p′ +

1

w − 1
× p′2

)k

2 . Similarly, when

w goes to infinity, FPR simplifies to f = (1− p′)k, which is
the formula for FPR of a standard Bloom filter.

4. ASSOCIATION QUERIES
In this section, we first describe the construction and

query phases of ShBF for association queries, which are al-
so called membership test. We use ShBFA to denote the
ShBF scheme for association queries. Second, we describe
the updating methods of ShBFA. Third, we derive the FPR
of ShBFA. Last, we analytically compare the performance
of ShBFA with that of iBF.

4.1 ShBFA – Construction Phase
The construction phase of ShBFA proceeds in three steps.

Let h1(.), · · · , hk(.) be k independent hash functions with u-
niformly distributed outputs. Let S1 and S2 be the two given
sets. First, ShBFA constructs a hash table T1 for set S1 and
a hash table T2 for set S2. Second, it constructs an array B
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ofm bits, where each bit is initialized to 0. Third, for each el-
ement e ∈ S1, to store its existence information, ShBFA cal-
culates k hash functions h1(e)%m, · · · , hk(e)%m and search-
es e in T2. If it does not find e in T2, to store its auxiliary
information, it sets the offset o(e) = 0. However, if it does
find e in T2, to store its auxiliary information, it calculates
the offset o(e) as o(e) = o1(e) = hk+1(e)%((w − 1)/2) + 1,
where hk+1(.) is a hash function with uniformly distribut-
ed output and w is a function of machine word size w,
which we will discuss shortly. Fourth, it sets the k bit-
s B[h1(e)%m + o(e)], · · · , B[hk(e)%m + o(e)] to 1. Fifth,
for each element e ∈ S2, to store its existence information,
ShBFA calculates the k hash functions and searches it in
T1. If it finds e in T1, it does not do anything because its
existence as its auxiliary information have already been s-
tored in the array B. However, if it does not find e in T1, to
store its auxiliary information, it calculates the offset o(e) as
o(e) = o2(e) = o1(e)+hk+2(e)%((w−1)/2)+1, where hk+2(.)
is also a hash function with uniformly distributed output.
Last, it sets the k bits B[h1(e)%m+o(e)], · · · , B[hk(e)%m+
o(e)] to 1. To ensure that ShBFA can read B[hi(e)%m],
B[hi(e)%m + o1(e)], and B[hi(e)%m + o2(e)] in a single
memory access when querying, we let w � w−7. We derived
this condition w � w − 7 earlier at the end of Section 3.1.
As the maximum value of hi(e)%m+ o2(e) can be equal to
m+ w − 2, we append the m-bit array B with w − 2 bits.

4.2 ShBFA – Query Phase
We assume that the incoming elements always belong to

S1 ∪ S2 in the load balance application1 for convenience.
To query an element e ∈ S1 ∪ S2, ShBFA finds out which
sets the element e belongs to in the following three step-
s. First, it computes o1(e), o2(e), and the k hash func-
tions hi(e)%m (1 � i � k). Second, for each 1 � i �
k, it reads the 3 bits B[hi(e)%m], B[hi(e)%m + o1(e)],
and B[hi(e)%m + o2(e)]. Third, for these 3k bits, if all
the k bits B[h1(e)%m], · · · , B[hk(e)%m] are 1, e may be-
long to S1 − S2. In this case, ShBFA records (but does
not yet declare) e ∈ S1 − S2. Similarly, if all the k bits
B[h1(e)%m + o1(e)], · · · , B[hk(e)%m + o1(e)] are 1, e may
belong to S1∩S2 and ShBFA records e∈S1∩S2. Finally, if all
the k bits B[h1(e)%m+ o2(e)], · · · , B[hk(e)%m+ o2(e)] are
1, e may belong to S2 − S1 and ShBFA records e∈ S2 − S1.
Based on what ShBFA recorded after analyzing the 3k

bits, there are following 7 outcomes. If ShBFA records that:

1. only e∈S1 −S2, it declares that e belongs to S1 −S2.

2. only e ∈ S1 ∩ S2, it declares that e belongs to S1 ∩ S2.

3. only e∈S2 −S1, it declares that e belongs to S2 −S1.

4. both e ∈ S1 − S2 and e ∈ S1 ∩ S2, it declares that e
belongs to S1 but is unsure whether or not it belongs
to S2.

5. both e ∈ S2 − S1 and e ∈ S1 ∩ S2, it declares that e
belongs to S2 but is unsure whether or not it belongs
to S1.

6. both e ∈ S1 − S2 and e ∈ S2 − S1, it declares that e
belongs to S1 − S2 ∪ S2 − S1.

1The application is mentioned in the first paragraph of In-
troduction Section.

7. all e∈S1 −S2, e∈S1 ∩S2, and e∈S2 −S1, it declares
that e belongs S1 ∪ S2.

Note that for all these seven outcomes, the decisions of
ShBFA do not suffer from false positives or false negatives.
However, decisions 4 through 6 provide slightly incomplete
information and the decision 7 does not provide any infor-
mation because it is already given that e belongs to S1∪S2.
We will shortly show that the probability that decision of
ShBFA is one of the decisions 4 through 7 is very smal-
l, which means that with very high probability, it gives a
decision with clear meaning, and we call it a clear answer.

4.3 ShBFA – Updating
Just like BF handles updates by replacing each bit by a

counter, we can also extend ShBFA to handle updates by
replacing each bit by a counter. We use CShBFA to denote
this counting version of ShBFA. Let C denote the array of
m counters. To insert an element e, after querying T1 and T2

and determining whether o(e) = 0, o1(e), or o2(e), instead
of setting k bits to 1, we increment each of the correspond-
ing k counters by 1; that is, we increment the k counters
C[h1(e)%m+o(e)], · · · , C[hk(e)%m+o(e)] by 1. To delete an
element e, after querying T1 and T2 and determining whether
o(e) = 0, o1(e), or o2(e), we decrement C[hi(e)%m + o(e)]
by 1 for all 1 � i � k. To have the benefits of both fast
query processing and small memory consumption, we main-
tain both ShBFA and CShBFA, but store array B in fast
SRAM and array C in slow DRAM. After each update, we
synchronize array C with array B.

4.4 ShBFA – Analysis
Recall from Section 4.2 that ShBFA may report seven d-

ifferent outcomes. Next, we calculate the probability of each
outcome. Let Pi denote the probability of the ith outcome.
Before proceeding, we show that hi(.)+o(.) and hj(.)+o(.),
when i 
= j, are independent of each other. For this we show
that given two random variables X and Y and a number
z ∈ R+, where R+ is the set of positive real numbers, if X
and Y are independent, then X+z and Y+z are independen-
t. As X and Y are independent, for any x ∈ R and y ∈ R,
we have

P (X � x, Y � y) = P (X � x) ∗ P (Y � y) (13)

Adding z to both sides of all inequality signs in P (X �
x, Y � y), we get

P (X + z � x+ z, Y + z � y + z)

= P (X � x, Y � y)

= P (X � x) ∗ P (Y � y)

= P (X + z � x+ z) ∗ P (Y = z � y + z)

(14)

Therefore, X + z and Y + z are independent.
Let n′ be the number of distinct elements in S1 ∪ S2, and

let k be the number of hash functions. After inserting all n′

elements into ShBFA, the probability p′ that any given bit
is still 0 is given by the following equation.

p′ =
(
1− 1

m

)kn′

(15)

This is similar to one minus the false positive probability of
a standard BF. When k = ln 2m

n′ , p
′ ≈ 0.5.
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Note that the probabilities for outcomes 1, 2, and 3 are the
same. Similarly, the probabilities for outcomes 4, 5, and 6
are also the same. Following equations state the expressions
for these probabilities.

P1 = P2 = P3 = (1− 0.5k)2

P4 = P5 = P6 = 0.5k ∗ (1− 0.5k)

P7 = (0.5k)2

(16)

When the incoming element e actually belongs to one
of the three sets: S1 − S2, S1 ∩ S2, and S2 − S1, there is
one combination each for S1 − S2 and S2 − S1 and two
combinations for S1 ∩ S2. Consequently, the total proba-
bility is P1 + P4 ∗ 2 + P7, which equals 1. This validates
our derivation of the expressions in Equation 16. As an ex-
ample, let k=m

n′ ln 2=10. Thus, P1=P2=P3=(1 − 0.510)2 ≈
0.998, P4=P5=P6=0.510 ∗ (1 − 0.510) = 9.756 ∗ 10−4, and
P7 = (1 − 0.510)2 ≈ 9.54 ∗ 10−7. This example shows that
with probability of 0.998, ShBFA gives a clear answer, and
with probability of only 9.756∗10−4, ShBFA gives an answer
with incomplete information. The probability with which it
gives an answer with no information is just 9.54∗10−7, which
is negligibly small.

4.5 Comparison between ShBFA with iBF
For association queries, a straightfoward solution is to

build one individual BF (iBF) for each set. Let n1, n2, and
n3 be the number of elements in S1, S2, and S1∩S2, respec-
tively. For iBF, let m1 and m2 be the size of the Bloom filter
for S1 and S2, respectively. Table 2 presents a comparison
between ShBFA and iBF. We observe from the table that
ShBFA needs less memory, less hash computations, and less
memory accesses, and has no false positives. For the iBF,
as we use the traffic trace that hits the two sets with the
same probability, iBF is optimal when the two BFs use i-
dentical values for the optimal system parameters and have
the same number of hash functions. Specifically, for iBF,
when m1 + m2 = (n1 + n2)k/ ln 2, the probability of an-
swering a clear answer is 2

3
(1 − 0.5k). For ShBFA, when

m = (n1 + n2 − n3)k/ ln 2, the probability of answering a
clear answer is(1− 0.5k)2.

5. MULTIPLICITY QUERIES
In this section, we first present the construction and query

phases of ShBF for multiplicity queries. Multiplicity queries
check how many times an element appears in a multi-set.
We use ShBF× to denote the ShBF scheme for multiplic-
ity queries. Second, we describe the updating methods of
ShBF× . Last, we derive the FPR and correctness rate of
ShBF×.

5.1 ShBF× – Construction Phase
The construction phase of ShBF× proceeds in three step-

s. Let h1(.), · · · , hk(.) be k independent hash functions with
uniformly distributed outputs. First, we construct an array
B of m bits, where each bit is initialized to 0. Second, to
store the existence information of an element e of multi-
set S, we calculate k hash values h1(e)%m, · · · , hk(e)%m.
To calculate the auxiliary information of e, which in this
case is the count c(e) of element e in S, we calculate off-
set o(e) as o(e) = c(e) − 1. Third, we set the k bits

B[h1(e)%m + o(e)], · · · , B[hk(e)%m + o(e)] to 1. To deter-
mine the value of c(e) for any element e ∈ S, we store the
count of each element in a hash table and use the simplest
collision handling method called collision chain.

5.2 ShBF× – Query Phase
Given a query e, for each 1 � i � k, we first read c consec-

utive bits B[hi(e)%m], B[hi(e)%m + 1], · · · , B[hi(e)%m +
c − 1] in � c

w
� memory accesses, where c is the maxi-

mum value of c(e) for any e ∈ S. In these k arrays of
c consecutive bits, for each 1 � j � c, if all the k bits
B[h1(e)%m+ j − 1], · · · , B[hk(e)%m+ j − 1] are 1, we list
j as a possible candidate of c(e). As the largest candidate
of c(e) is always greater than or equal to the actual value of
c(e), we report the largest candidate as the multiplicity of e
to avoid false negatives. For the query phase, the number of
memory accesses is k� c

w
�.

5.3 ShBF× – Updating

5.3.1 ShBF× – Updating with False Negatives
To handle element insertion and deletion, ShBF× main-

tains its counting version denoted by CShBF×, which is an
array C that consists of m counters, in addition to an ar-
ray B of m bits. During the construction phase, ShBF× in-
crements the counter C[hi(e)%m + o(e)] (1 � i � k) by
one every time it sets B[hi(e)%m + o(e)] to 1. During the
update, we need to guarantee that one element with multi-
ple multiplicities is always inserted into the filter one time.
Specifically, for every new element e to insert into the multi-
set S, ShBF× first obtains its multiplicity z from B as ex-
plained in Section 5.2. Second, it deletes the z−th multi-
plicity (o(e) = z − 1) and inserts the (z + 1)−th multiplic-
ity (o(e) = z). For this, it calculates the k hash functions
hi(e)%m and decrements the k counters C[hi(e)%m+z−1]
by 1 when the counters are � 1. Third, if any of the decre-
mented counters becomes 0, it sets the corresponding bit
in B to 0. Note that maintaining the array C of counters
allows us to reset the right bits in B to 0. Fourth, it incre-
ments the k counters C[hi(e)%m+ z] by 1 and sets the bits
B[hi(e)%m+ z] to 1.

For deleting element e, ShBF× first obtains its multiplic-
ity z from B as explained in Section 5.2. Second, it cal-
culates the k hash functions and decrements the counters
C[hi(e)%m + z − 1] by 1. Third, if any of the decremented
counters becomes 0, it sets the corresponding bit in B as 0.
Fourth, it increments the counters C[hi(e)%m+ z− 2] by 1
and sets the bits B[hi(e)%m+ z − 2] to 1.

Note that ShBF× may introduce false negatives because
before updating the multiplicity of an element, we first query
its current multiplicity from B. If the answer to that query
is a false positive, i.e., the actual multiplicity of the element
is less than the answer, ShBF× will perform the second step
and decrement some counters, which may cause a counter
to decrement to 0. Thus, in the third step, it will set the
corresponding bit in B to 0, which will cause false negatives.

5.3.2 ShBF× – Updating without False Negatives
To eliminate false negatives, in addition to arrays B and

C, ShBF× maintains a hash table to store counts of each el-
ement. In the hash table, each entry has two fields: element
and its counts/multiplicities. When inserting or deleting el-
ement e, ShBF× follows four steps shown in Figure 5. First,
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Table 2: Comparison Between ShBFA and iBF.
Optimal Memory #hash computations #memory accesses Probability of a clear answer false positives

iBF m1+m2=(n1+n2)k/ln2 2k 2k 2
3
(1− 0.5k) YES

ShBFA m=(n1+n2-n3)k/ln2 k+2 k (1− 0.5k)2 NO

we obtain e’s counts/multiplicities from the hash table in-
stead of ShBF×. Second, we delete e’s z-th multiplicity from
CShBF×. Third, if a counter in CShBF× decreases to 0,
we set the corresponding bit in ShBF× to 0. Fourth, when
inserting/deleting e, we insert the (z − 1)−th/(z + 1)−th
multiplicity into ShBF×.

Hash Table
Each bucket stores an element 

and its counts/multiplicities
Counting ShBFX ShBFX

insert/
delete e

1) obtain e's 
multiplicities z, and 
update the hash table.

2) delete e's zth 
multiplicity from 
counting ShBFX. 

4) It inserts the z-1th multiplicity into ShBFx when 
deleting e. It inserts the z+1th multiplicity into 
ShBFx when inserting e.

3) If a counter decreases to 
0, set the corresponding bit 
in ShBFX to 0.

On-chipOff-chip

Figure 5: The update process of ShBF×.

Note that although the counter array C and the hash table
are much larger than the bit array B, we store B in SRAM
for processing multiplicity queries and store C and the hash
table in DRAM for handling updates.

5.4 ShBF× – Analysis
For multiplicity queries a false positive is defined as re-

porting the multiplicity of an element that is larger than its
actual multiplicity. For any element e belonging to multi-
set Sm, ShBF× only sets k bits in B to 1 regardless of how
many times it appears in Sm. This is because every time in-
formation about e is updated, ShBF× removes the existing
multiplicity information of the element before adding the
new information. Let the total number of distinct elements
in set Sm be n. The probability that an element is reported
to be present j times is given by the following equation.

f0 ≈
(
1− e−

kn
m

)k

(17)

We define a metric called correctness rate, which is the
probability that an element that is present j times in a
multi-set is correctly reported to be present j times. When
querying an element not belonging to the set, the correctness
rate CR is given by the following equation.

CR = (1− f0)
c (18)

When querying an element with multiplicity j (1 � j � c)
in the set, the correctness rate CR′ is given by the following
equation.

CR′ = (1− f0)
j−1 (19)

Note the right hand side of the expression for CR′ is not
multiplied with f0 because when e has j multiplicities, all
positions hi(e) + j, where 1 � i � k, must be 1.

6. PERFORMANCE EVALUATION
In this section, we conduct experiments to evaluate our

ShBF schemes and side-by-side comparison with state-of-
the-art solutions for the three types of set queries.

6.1 Experimental Setup
We give a brief overview of the data we have used for

evaluation and describe our experimental setup.
Data set: We evaluate the performance of ShBF and

state-of-the-art solutions using real-world network traces.
Specifically, we deployed our traffic capturing system on a
10Gbps link of a backbone router. To reduce the processing
load, our traffic capturing system consists of two parallel
sub-systems each of which is equipped with a 10G network
card and uses netmap to capture packets. Due to high link
speed, capturing entire traffic was infeasible because our de-
vice could not access/write to memory at such high speed.
Thus, we only captured 5-tuple flow ID of each packet, which
consists of source IP, source port, destination IP, destination
port, and protocol type. We stored each 5-tuple flow ID as
a 13-byte string, which is used as an element of a set during
evaluation. We collected a total of 10 million 5-tuple flow
IDs, out of which 8 million flow IDs are distinct. To fur-
ther evaluate the accuracy of our proposed schemes, we also
generated and used synthetic data sets.
Hash functions: We collected several hash functions

from open source web site [1] and tested them for random-
ness. Our criteria for testing randomness is that the prob-
ability of seeing 1 at any bit location in the hashed value
should be 0.5. To test the randomness of each hash function,
we first used that hash function to compute the hash value of
the 8 million unique elements in our data set. Then, for each
bit location, we calculated the fraction of times 1 appeared
in the hash values to empirically calculate the probability of
seeing 1 at that bit location. Out of all hash functions, 18
hash functions passed our randomness test, which we used
for evaluation of ShBF and state-of-the-art solutions.
Implementation: We implemented our query process-

ing schemes in C++ using Visual C++ 2012 platform. To
compute average query processing speeds, we repeat our ex-
periments 1000 times and take the average. Furthermore,
we conducted all our experiments for 20 different sets of
parameters. As the results across different parameter sets
follow same trends, we will report results for one parameter
set only for each of the three types of queries.
Computing platform: We did all our experiments on

a standard off the shelf desktop computer equipped with
an Intel(R) Core i7-3520 CPU @2.90GHz and 8GB RAM
running Windows 7.

6.2 ShBFM – Evaluation
In this section, we first validate the false positive rate

of ShBFM calculated in Equation (1) using our experimen-
tal results. Then we compare ShBFM with BF and 1Mem-
BF [13], which represents the prior scheme for answering
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Figure 6: Comparison false positive rates of ShBFM and 1MemBF.
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Figure 7: Comparison of number of memory accesses per query of ShBFM and BF.
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Figure 8: Comparison of query processing speeds of ShBFM, BF, and 1MemBF.
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Figure 9: Comparison of ShBFA and iBF.
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Figure 10: Comparison of ShBF×, Spectral BF, and CM Sketch.
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membership queries, in terms of FPR, the number of mem-
ory accesses, and query processing speed.

6.2.1 ShBFM – False Positive Rate
Our experimental results show that the FPR of ShBFM

calculated in Equation (1) matches with the FPR calculated
experimentally. For the experiments reported in this section,
we set k = 8, m = 22008, w = 57, and vary n from 1000 to
1500. We first insert 1000 elements into ShBFM and then
repeatedly insert 20 elements until the total number of ele-
ments inserted into ShBFM became 1500. On inserting each
set of 20 elements, we generated membership queries for
7, 000, 000 elements whose information was not inserted in-
to ShBFM and calculated the false positive rate. Figure 6(a)
shows the false positive rate of ShBFM calculated through
these simulations as well as through Equation (1). The bars
in Figure 6(a) represent the theoretically calculated FPR,
whereas the lines represent the FPR observed in our exper-
iments.
Our results show that the relative error between the FPRs

of ShBFM calculated using simulation and theory is less than
3%, which is practically acceptable. Relative error is defined
as |FPRs − FPRt|/FPRt, where FPRs is the false posi-
tive rate calculated using simulation and FPRt is the false
positive rates calculated using theory. The relative error of
3% for ShBFM is the same as relative error for BF calcu-
lated using simulation and the theory developed by Bloom
et al. [3]. Using same parameters, the FPR of 1MemBF is
over 5 ∼ 10 times that of ShBFM. If we increase the space
allocated to 1MemBF for storage to 1.5 times of the space
used by ShBFM, the FPR of 1MemBF is still a little more
than that of ShBFM because hashing k values into one or
more words incurs serious unbalance in distributions of 1s
and 0s in the memory, which in turn results in higher FPR.
Our results also show that the FPR of ShBFM is much

smaller than that of 1MemBF when changing k and m. Fig-
ure 6(b) and Figure 6(c) show the FPRs of ShBFM and
1MemBF for different values of k and m, respectively.

6.2.2 ShBFM – Memory Accesses
Our results show that ShBFM answers a membership query

using only about half the memory accesses and hash compu-
tations and twice as fast compared to BF. Our experiments
for evaluating the number of memory accesses per query are
similar to that for false positive rate, except that, now we
query 2 ∗ n elements, in which n elements belong to the set.
Figures 7(a), 7(b), and 7(c) show the number of memory
accesses for ShBFM and standard BF for different values of
n, k, and m, respectively. We also observed from our exper-
iments that standard deviation in the results for ShBFM is
also about half of that of standard BF.

6.2.3 ShBFM – Query Processing Speed
Our results show that ShBFM has 1.8 and 1.4 times faster

query processing speed compared to BF and 1MemBF, re-
spectively. Although 1MemBF only needs one memory ac-
cess per query, it needs k + 1 hash functions. BFs are usu-
ally small enough to be stored in on-chip memory (such as
caches, FPGA block RAM), thus the speed of hash compu-
tation will be slower than memory accesses. In contrast, our
ShBFM reduces both hash computation and memory access-
es. In our experiments, using those hashes which passed our
randomness test, ShBFM exhibits faster query processing

speed than that of 1MemBF. It is possible that 1MemBF is
faster than ShBFM when using simple hash functions, but
this probably incurs larger FPR. Our experiments for eval-
uating the query processing speed are similar to that for
memory accesses, except that, here we also compare with
1MemBF. Figures 8(a), 8(b), and 8(c) show the query pro-
cessing speed for ShBFM , standard BF, and 1MemBF for
different values of n, k, and m, respectively.

6.3 ShBFA – Evaluation
In this section, we first validate the probability of a clear

answer of ShBFM calculated in Table 2 using our experi-
mental results. Then we compare ShBFA with iBF in terms
of FPR, memory accesses, and query processing speed.

6.3.1 ShBFA – Probability of Clear Answer
Our results show that probability of clear answer for

ShBFA calculated in Table 2 matches with the probability cal-
culated experimentally. We performed experiments for both
iBF and ShBFA using two sets with 1 million elements such
that their intersection had 0.25 million elements. The query-
ing elements hit the three parts with the same probability.
While varying the value of k, we also varied the value of m
to keep the filter at its optimal. Note that in this case, iBF
uses 1/7 times more memory than ShBFA. We observe from
Figure 9(a) that the simulation results match the theoretical
results, and the average relative error is 0.7% and 0.004%
for iBF and ShBFA, respectively, which is negligible. When
the value of k reaches 8, the probability of a clear answer
reaches 66% and 99% for iBF and ShBFA, respectively.

6.3.2 ShBFA – Memory Accesses
Our results show that the average number of memory ac-

cesses per query of ShBFA is 0.66 times of that of iBF. Fig-
ure 9(b) shows the number of memory accesses for different
values of k. We observed similar trends for different values of
m and n, but have not including the corresponding figures
due to space limitation.

6.3.3 ShBFA – Query Processing Speed
Our results show that the average query processing speed

of ShBFA is 1.4 times faster than that of iBF. Figure 9(c)
plots the the query processing speed of ShBFA and iBF for
different values of m.

6.4 ShBF× – Evaluation
In this section, we first validate the correctness rate (CR)

of ShBF× calculated in Equation (18). Then we compare
ShBF× with spectral BF [8] and CM Sketches [9] in terms
of CR, number of memory accesses, and query processing
speed. The results for CM Sketches and Spectral BF are sim-
ilar because their methods of recording the counts is similar.

6.4.1 ShBF× – Correctness Rate
Our results show that the CR of ShBF× calculated in E-

quation (18) matches with the CR calculated experimentally.
Our results also show that on average, the CR of ShBF× is
1.6 times and 1.79 times of that of Spectral BF and CM S-
ketches, respectively. For the experiments reported in this
section, we set c = 57, n = 100, 000, and vary k in the range
8 � k � 16. For spectral BF and CM sketches, we set use 6
bits for each counter. For each value of k, as ShBF× is more
memory efficient, we use 1.5 times the optimal memory (i.e.,
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1.5 ∗nk/ln2) for all the three filters. Figure 10(a) shows the
results from our experiments for CR. Experimental results
show that the CR calculated through experiments matches
with the CR calculated theoretically.

6.4.2 ShBF× – Memory Accesses
Our results show that the number of memory accesses of

ShBF× is smaller than that of spectral BF and CM Sketches
for k � 7, and almost equal for k < 7. Figure 10(b) plots
the number of memory accesses of ShBF×, CM Sketch, and
spectral BF, calculated from the same experiments that we
used to plot Figure 10(a) except that k ranges from 3 to 18.

6.4.3 ShBF× – Query Processing Speed
Our results show that ShBF× is faster than spectral BF

and CM Sketches when k � 11. We evaluate the query pro-
cessing speed of ShBF×, CM Sketch, and spectral BF using
the same parameters as for Figure 10(b). Figure 10(c) plots
the query processing speeds of ShBF× and spectral BF. We
observe from this figure that when k > 11, the average query
processing speed of ShBF× is over 3 Mqps.

7. CONCLUSION
The key contribution of this paper is in proposing Shift-

ing Bloom Filter, a general framework to answer a vari-
ety of set queries. We present how to use ShBF to answer
three important set queries, i.e., membership, association,
and multiplicity queries. The key technical depth of this pa-
per is in the analytical modeling of ShBF for each of the
three types queries, calculating optimal system parameters,
and finding the minimum FPRs. We validated our analytical
models through simulations using real world network traces.
Our theoretical analysis and experimental results show that
ShBF significantly advances state-of-the-art solutions on all
three types of set queries.
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