

An Ultra-fast Universal Incremental Update
Algorithm for Trie-based Routing Lookup

Tong Yang, Zhian Mi, Ruian Duan, Xiaoyu Guo, Jianyuan Lu, Shenjiang Zhang, Xianda Sun and Bin Liu

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract—With the rapid growth of the Internet, the update

messages in backbone routers become more and more frequent
due to the ever-increasing dynamic changes on network topolo-
gies and new emerging functionalities of the Internet. In addi-
tion, update messages often come as a burst. Update action
interrupts the packet lookup operation in the router’s data
plane, thus inefficient incremental update algorithm slows
down IP lookup speed, and potentially badly degrades the sys-
tem performance during bursty updates.

Among trie-based routing lookup algorithms, binary trie1
has the best update complexity O(W) (W is the maximum depth
of the trie), but exhibits slow lookup speed, failing to be compe-
tent for forwarding tens of gigabit-per-second traffic in back-
bone routers. Therefore, various improved routing lookup al-
gorithms are proposed to pursue high speed based on binary
trie, but sacrificing the performance of incremental update.

To minimize the interruption time that update operation in-
curs, we propose Blind Spot (BS) algorithm by picking out
those updating nodes which would have produced domino ef-
fect2, achieving an update complexity of O(lookup+h)3, mean-
while keeping the lookup speed almost unchanged. Blind Spot
algorithm is a universal methodology, which is applicable to all
the trie-based lookup algorithms. To evaluate the performance
of BS algorithm, we applied it to Lulea [1] and LC-trie [2] al-
gorithms as two representatives. Extensive experimental results
show that both Lulea+BS and LC+BS algorithms achieve a
much faster update speed than binary trie, while keeping the
same lookup speed as the original Lulea and LC-trie algo-
rithms.

I. INTRODUCTION

With the rapid increase of Internet traffic, backbone links
with tens of gigabit-per-second line rate are deployed, which
implies the backbone routers must be able to forward up to
tens of millions of packets per second on each port. Conse-
quently, routing lookup, which uses the destination IP ad-
dress to determine the next-hop for each packet based on the
exponential growing routing tables according to the Longest
Matching Rule (LPM), becomes a major performance bot-
tleneck in the forwarding plane of the backbone routers.

Routing lookup solutions can be classified into two cate-

Authors’ Email: {yangtongemail, mzaort}@gmail.com, {dra08,
Guoxiaoyu10, lu-jy11, zsj09, sunxd08}@mails.tsinghua.edu.cn,
liub@tsinghua.edu.cn.
Supported by NSFC (61202489, 61073171, 60873250), Tsinghua University
Initiative Scientific Research Program (20121080068), the Specialized
Research Fund for the Doctoral Program of Higher Education of China
(20100002110051).
1Trie is a tree-like data structure allowing the organization of prefixes on a
digital basis by using the bits of prefixes to direct the branching [3].
2
An update message may incur movements of many prefixes which is the

most time-consuming operation during update process. We call this phe-
nomenon ‘domino effect’ in this paper.
3h is the maximum depth of Blind Zone, and the meaning of Blind Zone is
detailed in Section I.

gories: hardware-based and software-based approaches.
Hardware-based methods need special hardware assistance,
such as TCAM or GPU, suffering from high hardware cost
and high power consumption. Software-based approaches
operate on general memory (such as SDRAM), thus can
concentrate on the storage and lookup optimization by algo-
rithmic improvements without extra cost. Therefore, soft-
ware-based approaches, especially trie-based solutions are
focused in this paper. The pioneer work of routing lookup is
the binary trie [3], owing to its simplicity and ease of use.
However, in the worst case, it needs 32 memory accesses for
a single lookup, and this makes naïve binary trie way not
applicable to high speed situations (such as tens of gigabit-
per-second link). Hence, various improved approaches are
proposed to increase the lookup speed of binary trie, such as
Path-compressed trie, K-stride Multibit trie, LC-trie, Lulea,
Full compression, Binary search on prefix lengths, Binary
range search, Multiway range search and Multiway range
trees [3] [4] (see Table I). All these algorithms trim the trie
into a ‘trimmed trie’, which is beneficial to routing lookup
unilaterally, but inevitably loses the simplicity of the origi-
nal binary trie, sacrificing the incremental update perfor-
mance. Consequently, none of them can reach the update
speed of the binary trie, which has an update complexity
O(W)4. A more sophisticated lookup algorithm often goes
along with a more complicated update procedure. For exam-
ple, LC-trie and Lulea algorithms can achieve fast lookup
speed and high memory efficiency. They only need three or
four memory accesses for one lookup in average, achieving
tens of millions search per second by using up-to-date
SRAM, which is close to the lookup speed of hardware-
based solutions, but can hardly operate incremental update.

Fig. 1. The size of routing table of AS6447 over the past 19 years.

Making the matter worse, routing updates become more

4
W is the maximum depth of the trie.

and more frequent. Taking the backbone router AS6447 as
an example, the changes of its routing table size over the
past years are shown in Figure 1 [5]. Besides the rapid
growth of routing table size, this figure also shows the up-
date messages often come as a burst5: the curve is toothed,
and many bursty updates occur (see the eclipses in Figure 1).
Based on our statistical results, the received update messag-
es of the backbone routers reached up to 35K/s in the peak.
Similar results are also reported in [5] and [6] – the re-
ceived update messages reach tens of thousands of prefixes
per second in the peak. An update operation will interrupt
routing lookup, with a dozen times of per lookup in average,
which will suspend the routing lookup operation for a rela-
tively long time with a potential risk of incurring packet loss
if the lookup queue goes full during bursty updates. There-
fore, the update performance of lookup algorithms has been
raised to be an important concern nowadays.

In order to achieve high performance, backbone routers
must gracefully handle the update messages, as well as the
bursty updates. Then is there a fast incremental update algo-
rithm which can be applied to any trie-based lookup algo-
rithms? This is the issue studied in this paper.

The ideal goal is to propose a novel universal incremental
update mechanism, which can operate fast incremental up-
date without degrading the lookup speed of the original al-
gorithms. We propose Blind Spot (BS) algorithm to achieve
this goal. Before going into its details, the origin and for-
mation process are introduced.

In our previous work[7][8], we have carried out a series of
studies and experiments on real routing tables and update
messages, which are downloaded from www.ripe.net [9].
Via our data mining on routing update messages, we discov-
er two significant characteristics of the routing updates:

a) Stabilization Characteristic: Although the routing
tables are huge, only a very minute fraction of prefixes are
frequently updated. For convenience, ‘stable prefixes’ are
used to represent those prefixes which do NOT change over
one day, while ‘unstable prefixes’ stand for those which
update over one day in this paper. Experimental results show
that the number of ‘stable prefixes’ is 86.7% of the whole
routing table.

It is easy to understand this characteristic: The routing ta-
ble was originally designed to be stable, though a dynamic
routing protocol is adopted. However, there are indeed some
unstable networks, resulting in frequent update messages.

b) Leaves Characteristic: Although the routing table
updates frequently, most of the updates occur in the leaf
nodes. This characteristic is also easy to understand: the leaf
nodes often represent the edge networks, which are usually
small and unstable, thus update frequently.

The rationale of BS algorithm is to make full use of these
two characteristics, pick out those updating nodes which
would have incurred domino effect (if many prefixes must be
moved for one update message, we call this domino effect),
and set them as Blind Spots. The work principle of BS algo-

5Because update messages are very bursty in practice, we use ‘bursty up-
date’ in this paper to represent those update messages which arrive a lot in a
short time.

rithm is illustrated in Figure 2. Most of the existing algo-
rithms usually trim the original trie into the ‘trimmed trie’
which avails to small routing table size and/or fast lookup.
With regard to the existing trie-based algorithms, some up-
dates change the structure of the trimmed trie, incur move-
ments of many prefixes and make the update process com-
plicated and inefficient. This kind of domino effect is the
most time-consuming operation during update process. The
core idea of BS algorithm is to eliminate domino effect by
setting those updating nodes which would have produced
domino effect as Blind Spots, so as to operate fast update.

Fig. 2. The work principle of BS algorithm.

BS algorithm classifies the update messages into two cat-
egories: 1) updates nodes which do not produce domino ef-
fect can be easily handled; 2) updates nodes which would
have incurred domino effect are set as Blind Spots, so as to
keep the structure of trimmed trie unchanged, meanwhile the
updated information is stored in another separate memory
zone (we call it Blind Zone in this paper) in the shape of trie
branches. In the worst case, BS algorithm needs to locate the
Blind Spot, and then updates the corresponding trie branch
in the Blind Zone. Suppose the average depth of Blind Zone
is h, the lookup complexity of the adopted lookup algorithm
is O(lookup), then the update complexity of BS algorithm is
O(lookup+h). For routing lookup, if the Blind Spot is not hit,
the lookup will finish quickly; otherwise, the trimmed trie
will be unable to ‘see’ the next-hop, but it knows where to
find the next-hop – the corresponding trie branch in Blind
Zone.

It is possible that BS algorithm might exhibit poor per-
formance if there are too many Blind Spots or the Blind
Zone is too large or too deep. In fact, the Blind Spots are
rare because of the ‘stabilization characteristic’, and the
Blind Zone is also small and shallow because of the ‘leaves
characteristic’. To evaluate the performance of BS algorithm,
we have applied BS algorithm to Lulea scheme6, named
Lulea+BS algorithm. The lookup complexity of Lulea algo-
rithm is O(W/k), and the update complexity of Lulea+BS is
O(W/k+h) (see Table I). Experimental results show that h is
no more than 2, and for update, the average memory access
count of Lulea+BS (W/k+h) is 7.49, while that of binary trie
is 22.9. With regard to the lookup speed, experimental re-

6
 Lulea algorithm is a representative trie-based approach proposed in [1] ,

which constructs compact lookup table to achieve fast lookup, but fails to
operate incremental update.

sults show that the memory access count of Lulea+BS is
almost the same as that of Lulea.

The proposed BS algorithm is a universal fast incremental
methodology. For more applications, we choose another
representative lookup algorithm – LC-trie algorithm [2]. It
combines Level Compression algorithm with Path Compres-
sion algorithm [3], exhibiting an excellent lookup perfor-
mance. However, this combination incurs complicated in-
cremental update procedure. We apply BS algorithm to LC-
trie scheme, named LC+BS algorithm, which exhibits both
excellent lookup and update performance.

After implementing Lulea and LC-trie algorithms by us-
ing C++ language, in order to guarantee the correctness of
our implemented algorithms, we finish two corresponding
verifying programs7 to examine the correctness of the im-
plementation of Lulea and LC-trie algorithms.

Specifically, we made the following main contributions:
• Based on the two significant characteristics of rout-

ing update messages discovered during massive data
mining, we propose Blind Spot algorithm by picking
out those updating nodes which would have pro-
duced domino effect, enabling a fast updating while
almost NOT degrading the lookup throughput. It can
be applied to all the trie-based lookup algorithms.

• We make case studies to apply Blind Spot algorithm
to Lulea and LC-trie algorithms. The performance of
BS algorithm is evaluated by mathematical analyses
and extensive experiments: Lulea+BS and LC+BS
algorithms achieve a much faster update speed than
binary trie while keeping the same lookup speed as
the original algorithms.

The remaining parts of this paper are organized as follows.
Section II reviews relevant researches related to trie-based
routing lookup. Section III presents BS algorithm. Section
IV applies BS algorithm to Lulea algorithm, while Section V
applies BS algorithm to LC-trie algorithm. Mathematical
analyses on BS algorithm’s performance are presented in
Section VI. Section VII carries out extensive experiments
over real data set and trace. Finally, we conclude this con-
clusion in Section VIII.

II. RELATED WORK

As mentioned above, there are two kinds of routing
lookup solutions: hardware-based solutions and software-
based solutions. The hardware-based solutions need special
hardware support, such as TCAM and GPU. The main ad-
vantage of TCAM and GPU is that they can perform parallel
lookup, and their main shortcomings lie in the high hard-
ware cost and high power consumption, as reported in [10]
and [11].

With the development of VLSI (Very Large Scale Inte-
gration) technologies, SRAM devices get faster and faster in
speed but cheaper and cheaper in price than ever before,

7Take the verifying program of Lulea as an example: for the same IP address,
the program compares the next-hop of Lulea and binary trie. If and only if all
the comparisons are equal by traversing IPv4’s 32-bit space, the implementa-
tion of Lulea algorithm is correct; otherwise, the program stops and tells the
prefix and the wrong next-hops. One whole comparison takes about 20
minutes for a 400K routing table. Only in this way can we guarantee the
ultimate correctness of Lulea and LC-trie.

together with increased capacity per unit chip. Thus the im-
proved trie-based lookup algorithms again obtain ISPs’ in-
terests given its flexibility and low implementation cost
compared with hardware solutions.

The software-based solutions include bloom filter-based
solutions [12][13] and trie-based solutions. Bloom filter
cannot incrementally deal with withdrawal messages, thus
counting bloom filter is introduced to fix it. However, be-
sides the false positive for general bloom filters, counting
bloom filter also suffers from false negative. Therefore, ex-
isting bloom filter-based algorithms suffer from either incor-
rect lookup or incremental update disability. Comparatively,
some sophisticated trie-based algorithms can approach the
lookup speed of hardware solutions, so this paper chooses
trie-based algorithms as the basis targeting at improving
their update performances while keeping their searching
throughput.

For trie-based algorithms, there is an inherent conflict be-
tween fast lookup and incremental update, because fast
lookup algorithms require sophisticated design of trie struc-
ture, accordingly bringing challenges and difficulties to in-
cremental update. The typical trie-based algorithms include:
Path-compressed trie, K-stride Multibit trie, LC-trie, Lulea,
Full compression, Binary search on prefix lengths, Binary
range search, Multiway range search, and Multiway range
trees [3] [4] (see Table I). It can be concluded that binary
trie achieves the fastest update performance, but a poor
lookup speed, while other algorithms are seeking a proper
trade-off between lookup and update performance.

TABLE I8
TYPICAL TRIE-BASED LOOKUP ALGORITHMS

Classical lookup algorithms
Lookup

complexity
Update

complexity

Predicted
Update com-
plexity using

BS
Binary trie O(W) O(W) -

Path-compressed tries O(W) O(W) -
K-stride multibit trie O(W/k) O(W/k+2k) O(W/k+h)

LC-trie O(W/k) - O(W/k+h)
Lulea O(W/k) - O(W/k+h)

Full expansion/compression 3 - 3+h
Binary search on prefix

lengths
O(log2W) O(Nlog2W) O(log2W+h)

Binary range search O(log2N) O(N) O(log2N+h)
Multiway range search O(logkN) O(N) O(logkN+h)
Multiway range trees O(logkN) O(klogkN) O(logkN+h)

BST(binary prefix tree) O(W) O(W) -
Priority Trie O(W) O(W) -

BSR (Binary search on range) O(logk+1N), O(N) O(logk+1N)+h

Is the trade-off between lookup and update indispensable?
Can’t the update complexity O(W) of binary trie be exceed-
ed? The answer is negative. This paper presents a universal
update algorithm, which makes it possible that the faster the
lookup is, the faster the incremental update will be. The pre-
dicted update complexity of using BS algorithm is presented
in the last column of Table I. Given the space limitation,
only two of them: Lulea and LC-trie algorithms, are chosen
for our case studies, because Lulea algorithm fails to support

8
For K-stride Multibit tries and LC-trie, k is the maximum stride size in bit in

the multibit trie. For Lulea, k is the number of table degree of the new con-
structed table. For Multiway range search and Multiway range trees, k means
the number of branches of each node. For BSR, k is the number of search
keys in a search node.

incremental update and the update of LC-trie algorithm is
difficult and complicated. In fact, BS algorithm is a univer-
sal methodology and can be applied to any of the trie-based
algorithm. To the best of our knowledge, this is the first ef-
fort on a universal fast incremental update mechanism for
trie-based routing lookup algorithms.

III. BLIND SPOT ALGORITHM

A. Terms and Definitions

The following terms will be used in this paper, so their
definitions are provided in Table II.

TABLE II
TERMS AND DEFINITIONS

Terms Definitions
FIB Forwarding Information Base
BS Blind Spot
BZ Blind Zone
W The maximum depth of trie
O(lookup) The routing lookup complexity of an algorithm
Oldport The next-hop of a prefix in FIB before trimmed
Newport The next-hop of a prefix in FIB after trimmed

B. Blind Spot Algorithm

As mentioned above, routing updates become more and
more frequent. Consequently, some sophisticated trie-based
algorithms fail to be well applied to real-world routers due
to their complicated update, such as Lulea and LC-trie algo-
rithms. In [1], the authors supposed the routing table is sta-
ble, and the update messages are very rare. In [2], the au-
thors didn’t mention the corresponding incremental update
algorithm.

Update operation interrupts routing lookup, thus fast in-
cremental update algorithm will contribute to high lookup
speed. As shown in Table I, we can see that among all the
existing trie-based algorithms, binary trie achieves the best
update complexity O(W). Can’t O(W) be exceeded? The
answer is negative, and the following gives the reason.

1) The rationale of Blind Spot algorithm
A Blind Spot, also known as a scotoma, is an obscuration

of the visual field. Just imagine, a routing table is like an eye,
and each prefix is like a visual spot. When a lookup request
arrives, the longest matched prefix will be found in the rout-
ing table, just as that this eye (the routing table) sees the
visual spot (the matched prefix). In order to achieve fast
lookup, existing algorithms usually trim the trie, i.e., arrange
the prefixes (the visual spot) in a compact structure, which is
in favor of the memory-efficiency of the routing lookup al-
gorithms, but inevitably bringing difficulties to incremental
update.

The rationale of Blind Spot algorithm is to keep the com-
pact structure (like the visual field) unchanged during update
process to avoid domino effect: if the updates will not
change the trimmed structure, i.e., not incur domino effect,
just making simple update operations; otherwise, set the
affected nodes (like the infected visual spot) to Blind Spots,
and record the relevant update information in Blind Zone.
Actually, the Blind Spots are very few because of ‘stabiliza-
tion characteristic’, and the Blind Zone is small and shallow
because of the ‘leaves characteristic’.

BS algorithm is a novel universal incremental update

scheme, which can operate fast incremental update with a
complexity O(lookup+h), while keeping its lookup speed
almost unchanged. The details of Blind Spot algorithm are
elaborated below.

2) The update mechanism of Blind Spot algorithm
Specifically, when an update message arrives, BS algo-

rithm will judge whether it will change the trimmed struc-
ture: if not, just update the trimmed trie quickly (this is con-
venient and fast); otherwise, figure out and set those affected
prefixes as Blind Spots to keep the structure of the trimmed
trie unchanged, avoiding domino effect.

(a) The appearance of Blind Spot during updates.

(b) The appearance of Blind Zone during updates.

Fig. 3. The data structure organization of BS algorithm.

In order to make a clearer picture of Blind Spot algorithm,
an example is given in Figure 3. Here the ‘trimmed trie’ is
the trie without node E and F. For example, two update mes-
sages arrive: ‘announce 000111*:4’ and ‘announce 1110*:5’.
They mean inserting a node E with a next-hop 4 as node B’s
right child and inserting a node F with a next-hop 5 as node
D’s left child. In order to keep the structure of the trimmed
trie unchanged, Blind Spot algorithm sets node B as a Blind
Spot, and set node B’s next-hop to Point_B which points to
the blind trie (trie branch) – B(5), as shown in Figure 3. In
the same way, node D is set as a Blind Spot, and the corre-
sponding blind trie D(3) is also built. In practice, the Blind
Zone does not need to be built, because FIB is usually stored
by a trie in the slow memory (such as DRAM), and Blind
Spot algorithm just needs to set Point_B to the sub-trie root-
ed at B. In this way, Blind Zone does not need additional
memory, although Blind Zone is very small according to our
experimental results. It is likewise definitely feasible that
Blind Zone is stored independently, given its size is small.

3) The lookup procedure of Blind Spot algorithm
Then how to lookup the routing table with Blind Spots? If

a lookup doesn't hit Blind Spot, it will finish quickly. Oth-
erwise, a second lookup is needed – those lookups which
hit the Blind Spot will access the Blind Zone. To be clearer,

two examples are given below.
As shown in Figure 3, for example, when looking up a

prefix 0110*, no Blind Spot node is accessed, the lookup
will finish promptly, and the lookup speed is equal to that of
the adopted routing table algorithm. For an example in the
worst case (see Figure 3), given an prefix 00011100*, the
Blind Spot node ‘B’ is matched, at this moment, the adopted
lookup algorithm cannot ‘see’ the next-hop, but knows
where to find it – Point_B, which points to the small blind
trie (trie branch) B(5) in the Blind Zone. Then a second
lookup happens, the prefix 00011100* is looked-up in the
blind trie B(5), where ‘5’ indicates the level of this blind trie
is 5, thus the lookup only needs to start from the sixth bit, in
other words, only 100* is looked up in the blind trie B(5).
As a result, the purple node E is matched according to LPM,
and then the next-hop of 00011100* is node E’s next-hop.
Only in this case, a second lookup is needed. Nonetheless,
because of the ‘leaves characteristic’, the average depth of
the Blind Zone is around 2 (Luea) or 4 (LC-trie), according
to our experimental results. In other words, for routing
lookup, only 2 or 4 additional memory accesses are required
in the worst case.

4) Periodical defragment
The Blind Spots are like the fragments of the disk. After a

long time, the Blind Spot might be many, the routing table
needs to be reconstructed upon the concrete lookup algo-
rithm. But this procedure will not affect the lookup much.

IV. APPLICATION OF BS ALGORITHM ON LULEA

ALGORITHM

BS algorithm is a universal methodology, representing a
kind of update mechanism rather than a specific approach. It
can be applied to all the trie-based lookup algorithms. In this
section, Lulea algorithm is chosen for performance evalua-
tion of BS algorithm. The algorithm introduces a new data
structure called bitmap for low storage requirement and fast
lookup, yielding dramatically different characteristics from
trie. The data structure is highly interrelated, consequently
Lulea algorithm is hard to make incremental update. As
aforementioned, the binary trie updates incrementally faster
than all other existing lookup algorithms. This section will
present an inspiring result: Lulea+BS algorithm exhibits an
ultra-fast update speed, which is superior to binary trie up-
date.

To achieve fast routing lookup speed and small memory
requirement, Lulea algorithm builds three tables based on a
trimmed trie – ‘complete trie’9, by using Leaf-pushing algo-
rithm [14].

It is noteworthy to mention that only those updates which
interrupt routing lookup have impacts on system perfor-
mance. In order to reduce the interruption time of routing
lookup as much as possible, the update messages are prepro-
cessed, i.e., being translated into different update messages
with two parts: one interrupts routing lookup, and the other
does not. The preprocessing operation does not interrupt
lookup, because they access the raw trie which is stored in

9A complete trie in this paper means that every node in this trie either has
two child nodes, or has no node.

slow memory, such as DRAM, while the fast memory (such
as SRAM) stores routing table which is used to perform
routing lookup.

1) Preprocessing operations
One update message could trigger more than one change

on the trimmed trie structure by routing lookup algorithm,
but this process can be completed without interrupting rout-
ing lookup, and we call it preprocessing or translation. Then
how does translation work? The scheme is divided into two
situations:

a) Leaf nodes updates
For these updates, one update message merely affects one

node. These updates are easy to handle – just update the
next-hop of the corresponding node.

b) Internal nodes update
The internal nodes updates should be handled carefully,

because one update could trigger the change of several
nodes even a sub-trie. An example is illustrated in Figure 4.
Figure 4(a) is the original trie, and Figure 4(b) is the
trimmed trie by utilizing Leaf-pushing. The shape of the
node is used to represent its next-hop: solid ellipse, solid
rectangle, and solid triangle represent the Newport 1, 2 and
3, respectively, while the next-hop of hollow node is NULL.
In this example, the update message is ‘announce 1*:3’, the
‘shadow’ of node B should be found and updated to keep the
structure of ‘complete trie’ unchanged. It is obvious that
node B’ is the shadow of node B (there may be more in
practice), thus the next-hop of node B’ is changed to 3 (the
shape of B’ is changed from rectangle to triangle (see Figure
4(b)). This is the preprocessing process of internal nodes.

 a) The original trie b) the trimmed trie using Leaf-pushing

Fig. 4. An example when an update occurs in the internal nodes using
Leaf-pushing.

2) Update operations
After the preprocessing operations are accomplished, each

original update message is translated into one or several
nodes update messages, which are divided into two catego-
ries:

a) Internal and leaf nodes update: The first category
is the update of the internal nodes and the leaf nodes, which
does not break the structure of ‘complete binary trie’. The
leaf nodes update are easy to handle. For the internal nodes
update, the complexity of this part is the same as lookup
complexity, i.e., O(m(w/k)), where ‘m’ indicates the number
of nodes update translated by one original update. Only the
update of internal nodes may incur this situation. According
to our experimental results, m is around 2 in average, and
the internal nodes updates are only 13.3% of the whole

updates. Therefore, this part of update does not affect the
overall update performance much, so its complexity can be
regarded as O(w/k).

b) Leaf Insertion: The second category is the
operation of inserting a new node as the leaf nodes’
offspring, which would have broken the structure of
‘complete trie’, incurring domino effect of the data structure
of Lulea. To avoid domino effect, the structure of ‘complete
trie’ should be kept unchanged, thus BS algorithm first sets
the nearest ancestor node which belongs to the ‘complete
trie’ as Blind Spot. The complexity of this step is the same
as the lookup complexity O(W/k). The subsequent step of
BS algorithm is to update the corresponding trie in Blind
Zone. Because the average depth of Blind Zone is 2, the
complexity of this step is O(2). In sum, the complexity of
the second category is O(W/k+2).

According to the analyses of 1) and 2), it can be conclud-
ed that the update complexity of Blind Zone algorithm is
O(W/k+2). To extend this conclusion, any trie-based lookup
scheme combined with BS algorithm can achieve an update
complexity O(lookup+h), while h is the average depth of
Blind Zone. This is an exciting result.

V. APPLICATION OF BS ALGORITHM ON LC-TRIE

ALGORITHM

In [2], Stefan Nilsson et al. proposed the classical LC-trie
– a trie structure, which combines Path Compression and
Level Compression, so as to build efficient, compact, and
easily searchable implementation of a routing table. Because
the update of both level compression and path compression
is not simple, the update of their combination–LC-trie is
rather complex. We apply BS algorithm to LC-trie algorithm,
named LC+BS algorithm. By picking out those updates
which are most time-consuming, the update process of LC-
trie becomes fast. The update scheme of LC+BS can be clas-
sified into two categories:

A. The Update of Level Compression

Level compression works only in a complete sub-trie,
thus the update scheme of LC+BS is divided into the follow-
ing situations:

1) Inside the complete sub-trie
The nodes inside the complete sub-trie are unaffected by

Level Compression. For this kind of update messages, in
order to maintain the trie structure, the update algorithm is
divided into two steps:

Step 1: Update the changed node. This step is straightfor-
ward, just set the next-hop of the changed node to the new
next-hop.

Step 2: Update the affected nodes. The affected nodes re-
fer to those nodes which are in the sub-trie with NULL
Oldport and directly connected with the updating node. The
update mechanism of this step is classified into three cases:

a) Insertion operation: Just change the Newport of the
affected nodes to the insertion port;

b) Changing operation: Just change the Newport of
the affected nodes to the changing port;

c) Deletion operation: Just change the Newport of the
affected nodes to 0;

During the above three steps, the Oldport of the affected
nodes are maintained by LC+BS algorithm.

2) The leaf nodes of the complete sub-trie
Note that the leaf nodes of the complete sub-trie are not

really leaf nodes, but the nodes which are at the bottom of
the complete sub-trie.

In this situation, the update process is convenient: 1) for
the insertion and changing operation, just set the next-hop of
the changed nodes to update port; 2) for the deletion opera-
tion, just set the Newport and Oldport to 0.

B. The Update of Path Compression

1) Inside the path compressed sub-trie
For the updates which occur inside the path compressed

sub-trie, if the sub-trie is changed back, a lot of operations
and overhead are needed. In this case, LC+BS just:

a) Set the affected nodes to Blind Spots. This step is
fast enough with the same complexity as that of LC-trie
O(W/k).

b) Put the original sub-trie to Blind Zone. The original
sub-trie can be restored according to the Path Compression
sub-trie, and can also be obtained from the original trie.
Although this step costs some time and memory, it operates
in Blind Zone, which is rarely accessed by lookup, thereby
almost not affecting routing lookup.

2) The leaf nodes of the path compressed sub-trie
The leaf nodes have the similar meaning with the above

leaf nodes of the Level Compression, and their update
schemes are the same.

3) The under leaf nodes of the complete sub-trie
This is easy to deal with – just insert a new node with

the given next-hop.

C. The Nodes Unaffected by Level and Path Compression

For these nodes unaffected by either Level Compression
or Path Compression, the update scheme is natural: just in-
sert, change or delete the corresponding node.

VI. MATHEMATICAL ANALYSES

Before going to experiments, the performance of BS algo-
rithm is evaluated by mathematical method in this section.
There are two main metrics of BS algorithm: the effect of
lookup speed using BS algorithm and the update complexity
of BS algorithm.

A. The Effect of Lookup Speed Using BS Algorithm

Suppose the size of the original routing table is M, the
prefix count of the trimmed trie is N, the count of Blind
Spots is B, and the average depth of the Blind Zone is h.
Therefore, the size of Blind Zone is B*h.

Intuitively, the access probability of Blind Spots is below
the average value, because most Internet traffic is apt to go
through the huge and stable networks rather than the
acroteric and unstable networks which are the main source
of Blind Spots. This intuitive judgment is in conformity with
the subsequent experimental results. In order to make arith-
metical analyses close to reality, we suppose the access
probability of Blind Spots is equal to the average (B/N).

Suppose the traffic is V bps, and each packet is at its min-
imum size of 40 bytes, thus a router should accomplish

V/8/40 IP lookups per second.
Suppose the average count of memory access of each

lookup is C, thus the memory access count that the original
algorithm requires is: C୭ ൌ V଼40 כ C ൌ 1320 VC

After applying BS algorithm, the memory access count is: CBS ൏ V଼40 כ C כ ൬1 െ BN൰ ൅ V଼40 כ ሺC ൅ hሻ כ BN ൌ 1320 VC ൅ V320 h BN

Therefore, the additional memory access count is δ ൌ CBS െ C୭ ൏ ൬ 1320 VC ൅ V320 h BN൰ െ 1320 VC ൌ V320 h BN

The ratio of the additional memory access count to the
original memory access count is: µ ൌ δC୭ ൏ hC כ BN

When BS algorithm is applied to Lulea scheme, experi-
mental results show that B/N (the proportion of Blind Spots
to the total prefixes) is no more than 0.8%, the average depth
of Blind Zone – h is no more than 2, and the memory access
count – C is 4.56 in average, therefore, µ ൏ hC כ BN ൌ 2C כ 0.008 ൌ 24.56 כ 0.008 ൌ 0.0035 ሺ1ሻ

Similarly, when BS algorithm is applied to LC-trie
scheme, experimental results show that B/N is no more than
0.004, h is around 4 in average, and C is 3.17 in average,
therefore, µ ൏ hC כ BN ൌ 2C כ 0.004 ൌ 23.17 כ 0.004 ൌ 0.0025 ሺ2ሻ

In conclusion, according to the inequality (1) and (2), af-
ter applying BS algorithm, the additional memory access
count is bounded to 0.25% and 0.35% of the original
memory access count, and this is so small that the effect BS
brings can be ignored.

B. The Update Complexity of BS Algorithm

As for the update performance, the update process of BS
algorithm is divided into two steps:

1) Step 1: Update in the Trimmed Trie: For an update
message, the updating node should be located and
subsequently updated in the ‘Trimmed trie’. The complexity
of this step depends on the concrete lookup algorithm, which
is represented by O(lookup) in this paper. In the worst case,
when Blind Spots are hit, step II is needed.

2) Step II: Update Blind Zone: Because the Blind Zone
consists of small trie branches, thus the complexity of this
step is O(h) (h is the average depth of Blind Zone).

According to (1) and (2), the update complexity of BS al-
gorithm is O(lookup+h). It suggests that the memory access
count of BS algorithm is merely h more than the adopted
lookup algorithm. According to our experimental results of
Lulea+BS, the average memory access count of lookup is
4.56, while that of update is 7.49, 7.49-4.57 is a little bigger
than h (ൎ2), because one internal node update might be
translated into several node updates.

VII. EVALUATION OF BS ALGORITHM

A. Experimental Settings

The routing tables are taken from www.ripe.net [9] at
RIPE NCC, Amsterdam, which collects default free routing
updates from backbone routers. To test the performance of
BS algorithm, the routing tables from three routers (RRC00,
RRC03, and RRC05) at 08:00 in 2012.01.01 and the corre-
sponding update data from 2012.01.01/08:00 to
2012.01.02/08:00 are downloaded and parsed.

The real traffic used in lookup experiments is from [15].
The traffic at 20:59, 21:09, and 21:19 on 2011.02.17 in Chi-
cago, lasting for one minute, is downloaded and parsed.

Our experiments have been done on a windows XP SP3
machine with Pentium (R) Dual-Core CPU 5500@2.80GHz
and 4GB memory.

B. Experiments on the Characteristics of Update Messages

Fig. 5. Comparison between leaf update count and total update count over

one day.

Fig. 6. Comparison between stable node count and total node count over

one day.

The x-axes of Figure 5~10 and Figure 14~17 mean the ar-
rival time of the update messages. For instance,
‘201210231945’ represents the time 2012-10-10 23:19:45.
Section I states two characteristics of routing updates, which
are supported by Figure 5 and Figure 6.

The number of update messages is shown in Figure 5. Re-
sults show that the number of update messages reaches
2,000,000 in one day. The higher curve is the number of
update messages, while the lower one is the number of leaf
node updates. This result supports the ‘leaves characteristic’:

20
12

01
01

08
50

20
12

01
01

09
40

20
12

01
01

10
30

20
12

01
01

11
20

20
12

01
01

12
10

20
12

01
01

13
00

20
12

01
01

13
50

20
12

01
01

14
40

20
12

01
01

15
30

20
12

01
01

16
20

20
12

01
01

17
10

20
12

01
01

18
00

20
12

01
01

18
50

20
12

01
01

19
40

20
12

01
01

20
30

20
12

01
01

21
20

20
12

01
01

22
10

20
12

01
01

23
00

20
12

01
01

23
50

20
12

01
02

00
40

20
12

01
02

01
30

20
12

01
02

02
20

20
12

01
02

03
10

20
12

01
02

04
00

20
12

01
02

04
50

20
12

01
02

05
40

20
12

01
02

06
30

20
12

01
02

07
20

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

of

 a
cc

um
ul

at
ed

 u
pd

at
e

m
es

sa
ge

s

time

 # of leaf update
 # of update messages

20
12

01
01

09
00

20
12

01
01

10
00

20
12

01
01

11
00

20
12

01
01

12
00

20
12

01
01

13
00

20
12

01
01

14
00

20
12

01
01

15
00

20
12

01
01

16
00

20
12

01
01

17
00

20
12

01
01

18
00

20
12

01
01

19
00

20
12

01
01

20
00

20
12

01
01

21
00

20
12

01
01

22
00

20
12

01
01

23
00

20
12

01
02

00
00

20
12

01
02

01
00

20
12

01
02

02
00

20
12

01
02

03
00

20
12

01
02

04
00

20
12

01
02

05
00

20
12

01
02

06
00

20
12

01
02

07
00

0

50000

100000

150000

200000

250000

300000

350000

400000

of

 p
re

fi
xe

s

time

 # of unchanged prefixes
 # of overall prefixes

regardless of the fact that the routing table updates frequent-
ly, 86.7% updates occur in the leaf nodes.

Figure 6 shows the number of stable nodes and total
nodes over one day. It can be observed that the unchanged
nodes decrease slowly, and the number is 362018 over one
day, while that of all prefixes is 377051. In other words,
only 3.99% nodes update over one day. This result supports
the ‘Stabilization characteristic’: despite the fact that the
routing tables are very large, only a very small proportion of
prefixes update.

C. Experiments on Lulea+BS Algorithm

As aforementioned, the Blind Spots are rare. In order to
verify this conclusion, routing tables from three routers
(RRC00, RRC03, and RRC05 [9]) are selected to evaluate
the Blind Spot count in Figure 7. This figure shows that the
Blind Spot count is only about 3200 after one day. In addi-
tion, the BS count grows slower and slower as time goes by.

Fig. 7. BS count over one day.

To give a more intuitional result, the ratio of Blind Spot
count to all prefixes count is plotted in Figure 8. It can be
observed that the ratio increases slowly, and only 0.8% pre-
fixes become Blind Spots after one day.

Fig. 8. The proportion of BS count to the total node count over one day.

Because only when one Blind Spot is hit during a lookup
process, a second lookup is needed. On average, the proba-
bility of the second lookup is only 0.8%. In practice, because
the Blind Spots are mostly leaf nodes and unstable nodes,

the probability that routing lookup hits Blind Spots will be
lower than the average value, and this is supported by Figure
11.

We not only insist that the Blind Spots are rare, but also
insist that the Blind Zone (BZ) is small and shallow. In order
to verify these conclusions, the experimental results of BZ
size are shown in Figure 9, and the evaluation of BZ depth is
shown in Figure 10.

As shown in Figure 9, the BZ size, which is defined as the
number of all the nodes (including hollow nodes) in the trie
of the BZ, increases slowly, and its change is generally in
accord with the ratio of BS count. Specifically, the BZ size
is only around 10800 after one day.

Fig. 9. The size of BZ over one day.

Figure 10 shows the average depth of BZ. Results show
that the average depth is relatively steady, and fluctuates
below 2. This result suggests that even if a second lookup
occurs, only two additional memory accesses will be needed.
Then what about the probability that the second lookup oc-
curs? Figure 11 gives the answer.

Fig. 10. The average depth of BZ over one day.

In order to make the results more precise and objective,
three-interval traffic is chosen to test the proportion of the
second lookup. The x-axis of Figure 11 means the seconds
in one minute, and the y-axis represents the proportion of the
second lookup to the total lookup. The results are similar:
the proportion of second lookup to the total lookup is only

20
12

01
01

08
49

20
12

01
01

09
39

20
12

01
01

10
29

20
12

01
01

11
19

20
12

01
01

12
09

20
12

01
01

12
59

20
12

01
01

13
49

20
12

01
01

14
39

20
12

01
01

15
29

20
12

01
01

16
19

20
12

01
01

17
09

20
12

01
01

17
59

20
12

01
01

18
49

20
12

01
01

19
39

20
12

01
01

20
29

20
12

01
01

21
19

20
12

01
01

22
09

20
12

01
01

22
59

20
12

01
01

23
49

20
12

01
02

00
39

20
12

01
02

01
29

20
12

01
02

02
19

20
12

01
02

03
09

20
12

01
02

03
59

20
12

01
02

04
49

20
12

01
02

05
39

20
12

01
02

06
29

20
12

01
02

07
19

0

2000

4000

6000

8000

10000

12000

14000

of

 B
lin

d
S

po
t o

f L
ul

ea
 +

 B
S

time

 # of Blind Spot @ RRC00
 # of Blind Spot @ RRC03
 # of Blind Spot @ RRC05

20
12

01
01

08
49

20
12

01
01

09
39

20
12

01
01

10
29

20
12

01
01

11
19

20
12

01
01

12
09

20
12

01
01

12
59

20
12

01
01

13
49

20
12

01
01

14
39

20
12

01
01

15
29

20
12

01
01

16
19

20
12

01
01

17
09

20
12

01
01

17
59

20
12

01
01

18
49

20
12

01
01

19
39

20
12

01
01

20
29

20
12

01
01

21
19

20
12

01
01

22
09

20
12

01
01

22
59

20
12

01
01

23
49

20
12

01
02

00
39

20
12

01
02

01
29

20
12

01
02

02
19

20
12

01
02

03
09

20
12

01
02

03
59

20
12

01
02

04
49

20
12

01
02

05
39

20
12

01
02

06
29

20
12

01
02

07
19

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ra
tio

 o
f B

lin
d

S
po

t o
f L

ul
ea

 +
 B

S

time

 ratio of Blind Spot @ RRC00
 ratio of Blind Spot @ RRC03
 ratio of Blind Spot @ RRC05

20
12

01
01

08
49

20
12

01
01

09
39

20
12

01
01

10
29

20
12

01
01

11
19

20
12

01
01

12
09

20
12

01
01

12
59

20
12

01
01

13
49

20
12

01
01

14
39

20
12

01
01

15
29

20
12

01
01

16
19

20
12

01
01

17
09

20
12

01
01

17
59

20
12

01
01

18
49

20
12

01
01

19
39

20
12

01
01

20
29

20
12

01
01

21
19

20
12

01
01

22
09

20
12

01
01

22
59

20
12

01
01

23
49

20
12

01
02

00
39

20
12

01
02

01
29

20
12

01
02

02
19

20
12

01
02

03
09

20
12

01
02

03
59

20
12

01
02

04
49

20
12

01
02

05
39

20
12

01
02

06
29

20
12

01
02

07
19

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

si
ze

 o
f B

lin
d

Z
on

e
of

 L
ul

ea
 +

 B
S

time

 size of Blind Zone @ RRC 00
 size of Blind Zone @ RRC 03
 size of Blind Zone @ RRC 05

20
12

01
01

08
50

20
12

01
01

09
40

20
12

01
01

10
30

20
12

01
01

11
20

20
12

01
01

12
10

20
12

01
01

13
00

20
12

01
01

13
50

20
12

01
01

14
40

20
12

01
01

15
30

20
12

01
01

16
20

20
12

01
01

17
10

20
12

01
01

18
00

20
12

01
01

18
50

20
12

01
01

19
40

20
12

01
01

20
30

20
12

01
01

21
20

20
12

01
01

22
10

20
12

01
01

23
00

20
12

01
01

23
50

20
12

01
02

00
40

20
12

01
02

01
30

20
12

01
02

02
20

20
12

01
02

03
10

20
12

01
02

04
00

20
12

01
02

04
50

20
12

01
02

05
40

20
12

01
02

06
30

20
12

01
02

07
20

0.0

0.5

1.0

1.5

2.0

2.5

av
er

ag
e

de
pt

h
of

 B
lin

d
Z

on
e

of
 L

ul
e

a
+

 B
S

time

 average depth of Blind Zone @ RRC00
 average depth of Blind Zone @ RRC03
 average depth of Blind Zone @ RRC05

0.38%~0.58%. This is in conformity with our previous pre-
diction: the actual proportion of the second lookup is smaller
than the average case (0.8%). These results indicate that
after applying BS algorithm, the lookup speed of the original
lookup scheme is almost unaffected. This will be confirmed
again by the following experiments.

Fig. 11. Proportion of the second lookup to the total lookup over one day.

Fig. 12. Comparison of average memory access count between Lulea and
Lulea+BS algorithms using three-interval traffic.

Fig. 13. Comparison of average memory access count between Lulea and
Lulea+BS algorithms over one day update.

To evaluate the lookup performance of Lulea+BS algo-
rithm, three-interval traffic is chosen to test the memory
access count of Lulea and Lulea+BS algorithms. As shown
in Figure 12, the memory access count ranges from 4.5 to
4.6. There are actually six curves, but it seems to be only
three, because the memory access count curves of Lulea and

Lulea+BS algorithms almost overlap. In other words, be-
cause the Blind Spots are rare and the Blind Zone is small
and shallow, the lookup performance of Lulea+BS algorithm
is almost the same as that of Lulea.

The update performance of Lulea+BS algorithm is evalu-
ated by its memory access count in Figure 13. Results show
that the memory access count of Lulea+BS ranges from 1.1
to 28.38 with a mean of 7.49, while that of binary trie is
around 22.9. It can be observed that the memory access
count of Lulea+BS fluctuates, because one update message
might be translated into several nodes update by prepro-
cessing.

D. Experiments on LC+BS Algorithm

Fig. 14. BS count of LC-trie over one day.

As aforementioned, we also apply BS algorithm to LC-
trie scheme, and similar experiments are conducted, and the
experimental results are shown in Figure 14~20.

Figure 14 shows the number of Blind Spots is around
1490 after one day, and the ratio of Blind Spots is about 0.39%
(see Figure 15), which is smaller than that of Lulea+BS. The
size of Blind Zone is around 8600 after one day (see Figure
16), which is also smaller than that of Lulea+BS algorithm.

According to the work principle of BS algorithm, the
Blind Spots of LC+BS emerge inside the Path Compression
trie, hence the depth of Blind Zone will be bigger than that
in Lulea+BS algorithm. The corresponding results are
shown in Figure 17, which indicates the average depth of
Blind Zone of LC+BS is around 4.

In order to evaluate the effect of BS algorithm on routing
lookup, the probability of the second lookup of LC+BS is
tested in Figure 18. The results show that the proportion of
the second lookup of LC+BS over one day ranges from
0.0324% to 0.0845% with a mean of 0.0576%, which is so
small that can be ignored.

The average memory access counts of LC-trie and
LC+BS algorithms using three-interval traffic are plotted in
Figure 19. Results show that the LC+BS algorithm exhibits
almost the same lookup performance as LC-trie algorithm.

With the same lookup performance, LC+BS algorithm
achieves a much faster update speed than binary trie: as
shown in Figure 20, the memory access count of LC+BS is
only 8.22 in average, while that of binary trie is 22.9.

0 5 10 15 20 25 30 35 40 45 50 55 60
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

ra
tio

 o
f s

ec
on

d
lo

o
ku

p

second

 traffic I-ratio
 traffic II-ratio
 traffic III-ratio

0 10 20 30 40 50 60
4.48

4.50

4.52

4.54

4.56

4.58

4.60

4.62

av
e

ra
ge

 m
e

m
o

ry
 v

is
it

co
un

t

second

 # of memory visit of Lulea on TI
 # of memory visit of Lulea+BS on TI
 # of memory visit of Lulea on TII
 # of memory visit of Lulea+BS on TII
 # of memory visit of Lulea on TIII
 # of memory visit of Lulea+BS on TIII

20
12

01
01

08
49

20
12

01
01

09
39

20
12

01
01

10
29

20
12

01
01

11
19

20
12

01
01

12
09

20
12

01
01

12
59

20
12

01
01

13
49

20
12

01
01

14
39

20
12

01
01

15
29

20
12

01
01

16
19

20
12

01
01

17
09

20
12

01
01

17
59

20
12

01
01

18
49

20
12

01
01

19
39

20
12

01
01

20
29

20
12

01
01

21
19

20
12

01
01

22
09

20
12

01
01

22
59

20
12

01
01

23
49

20
12

01
02

00
39

20
12

01
02

01
29

20
12

01
02

02
19

20
12

01
02

03
09

20
12

01
02

03
59

20
12

01
02

04
49

20
12

01
02

05
39

20
12

01
02

06
29

20
12

01
02

07
19

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30 # of memory visit using Lulea+BS mean of # of memory visit using Lulea+BS
 # of memory visit using trie mean of memory visit count using trie

av
er

ag
e

m
em

or
y

vi
si

t c
ou

nt
 o

f
ea

ch
 u

pd
at

e
m

es
sa

ge

20
12

01
01

08
49

20
12

01
01

09
39

20
12

01
01

10
29

20
12

01
01

11
19

20
12

01
01

12
09

20
12

01
01

12
59

20
12

01
01

13
49

20
12

01
01

14
39

20
12

01
01

15
29

20
12

01
01

16
19

20
12

01
01

17
09

20
12

01
01

17
59

20
12

01
01

18
49

20
12

01
01

19
39

20
12

01
01

20
29

20
12

01
01

21
19

20
12

01
01

22
09

20
12

01
01

22
59

20
12

01
01

23
49

20
12

01
02

00
39

20
12

01
02

01
29

20
12

01
02

02
19

20
12

01
02

03
09

20
12

01
02

03
59

20
12

01
02

04
49

20
12

01
02

05
39

20
12

01
02

06
29

20
12

01
02

07
19

0

2000

4000

6000

8000

10000

12000

14000

#
 o

f
B

lin
d

S
po

t o
f L

C
 +

 B
S

time

 # of Blind Spot @ RRC00
 # of Blind Spot @ RRC03
 # of Blind Spot @ RRC05

Fig. 15. The proportion of BS count to Fig. 16. The size of BZ over one day. Fig. 17. The average depth of BZ over one day.
total node count of LC-trie over one day.

VIII. DISCUSSIONS AND CONCLUSIONS

With the fast development of the Internet, a major con-
cern of ISPs today is to continue to improve the routing
lookup speed. In the pursuit of fast lookup, the incremental
update performance usually declines in the existing trie-
based lookup algorithms. To cope with the frequent routing
updates, especially the bursty updates, a universal update
algorithm, named BS algorithm, is proposed. It can achieve
an update complexity O(lookup+h), while keeping the origi-
nal lookup performance almost unchanged. In order to verify
this conclusion, BS algorithm is applied to Lulea and LC-
trie schemes in this paper. Large-scale experimental results
show that the update performance of Lulea+BS and LC+BS
algorithms outperforms that of binary trie, without degrad-
ing the lookup performance of Lulea and LC-trie algorithms.

REFERENCES
[1] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small

Forwarding Tables for Fast Routing Lookups,” Proceedings of ACM
SIGCOMM’97, pp. 3-14, September 1997.

[2] S. Nilsson and G. Karlsson “IP-Address Lookup Using LC-Tries,”
IEEE Journal on Selected Areas in Communications June 1999, Vol.
17, Number 6, pp. 1083-1092.

[3] Miguel Á. Ruiz-Sánchez, Ernst W. Biersack, Walid Dabbous. Survey
and Taxonomy of IP Address Lookup Algorithms. Network, IEEE.
2001.

[4] Hyesook Lim, Changhoon Yim, and Earl E. Swartzlander. Priority
Tries for IP Address Lookup. IEEE transactions on computers, VOL.
59, NO. 6, JUNE 2010

[5] AS6447 BGP Routing Table Analysis. http://bgp.potaroo.net/as6447/.

[6] Layong Luo, Gaogang Xie, Yingke Xie, Laurent Mathy, Kavé
Salamatian. A Hybrid IP Lookup Architecture with Fast Updates. In
Proc. IEEE INFOCOM, 2012.

[7] Tong Yang, Ruian Duan, Jianyuan Lu, Shenjiang Zhang, Huichen Dai
and Bin Liu. CLUE: Achieving Fast Update over Compressed Table
for Parallel Lookup with Reduced Dynamic Redundancy. The 32nd
International Conference on Distributed Computing Systems (IEEE
ICDCS 2012), Macau, China, June 18-21, 2012.

[8] Tong Yang, Bo Yuan, Shenjiang Zhang, Ting Zhang, Ruian Duan, Yi
Wang, and Bin Liu. Approaching Optimal Compression with Fast
Update for Large Scale Routing Tables. The 20th International
Workshop on Quality of Service (IEEE/ACM IWQoS 2012), Coimbra,
Portugal, June 4-5, 2012.

[9] RIPE Network Coordination Centre. http://www.ripe.net/data-
tools/stats/ris/ris-raw-data.

[10] Zheng, K., Hu, C., Lu, H., Liu, B. A TCAM-based distributed parallel
IP lookup scheme and performance analysis. IEEE/ACM Trans. Netw.
14, 863–875, 2006.

[11] Sangjin Han, Keon Jang, KyoungSoo Park, Sue Moon. PacketShader:
a GPU-Accelerated Software Router. In Proc. SIGCOMM, 2010.

[12] Sarang Dharmapurikar, Praveen Krishnamurthy, David E. Taylor.
Longest Prefix Matching Using Bloom Filters. In Proc. ACM
SIGCOMM, 2003.

[13] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, John
Lockwood. Fast Hash Table Lookup Using Extended Bloom Filter:
An Aid to Network Processing. In Proc. ACM SIGCOMM, 2005

[14] V. Srinivasan and G. Varghese, Fast IP lookups using controlled
prefix expansion, ACM TOCS, vol. 17, pp. 1-40, Feb. 1999.

[15] The CAIDA Anonymized 2011 Internet Traces - <20110217> Colby
Walsworth, Emile Aben, kc claffy, Dan Andersen,
http://www.caida.org/data/passive/passive_2011_dataset.xml.

20
12

01
01

08
49

20
12

01
01

09
39

20
12

01
01

10
29

20
12

01
01

11
19

20
12

01
01

12
09

20
12

01
01

12
59

20
12

01
01

13
49

20
12

01
01

14
39

20
12

01
01

15
29

20
12

01
01

16
19

20
12

01
01

17
09

20
12

01
01

17
59

20
12

01
01

18
49

20
12

01
01

19
39

20
12

01
01

20
29

20
12

01
01

21
19

20
12

01
01

22
09

20
12

01
01

22
59

20
12

01
01

23
49

20
12

01
02

00
39

20
12

01
02

01
29

20
12

01
02

02
19

20
12

01
02

03
09

20
12

01
02

03
59

20
12

01
02

04
49

20
12

01
02

05
39

20
12

01
02

06
29

20
12

01
02

07
19

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
ra

tio
 o

f
B

lin
d

S
po

t
of

 L
C

+
 B

S

time

 ratio of Blind Spot @ RRC00
 ratio of Blind Spot @ RRC03
 ratio of Blind Spot @ RRC05

20
12

01
01

08
49

20
12

01
01

09
39

20
12

01
01

10
29

20
12

01
01

11
19

20
12

01
01

12
09

20
12

01
01

12
59

20
12

01
01

13
49

20
12

01
01

14
39

20
12

01
01

15
29

20
12

01
01

16
19

20
12

01
01

17
09

20
12

01
01

17
59

20
12

01
01

18
49

20
12

01
01

19
39

20
12

01
01

20
29

20
12

01
01

21
19

20
12

01
01

22
09

20
12

01
01

22
59

20
12

01
01

23
49

20
12

01
02

00
39

20
12

01
02

01
29

20
12

01
02

02
19

20
12

01
02

03
09

20
12

01
02

03
59

20
12

01
02

04
49

20
12

01
02

05
39

20
12

01
02

06
29

20
12

01
02

07
19

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

si
ze

 o
f

B
lin

d
 Z

on
e

of
 L

C
 +

 B
S

time

 size of Blind Zone @ RRC 00
 size of Blind Zone @ RRC 03
 size of Blind Zone @ RRC 05

20
12

01
01

08
50

20
12

01
01

09
40

20
12

01
01

10
30

20
12

01
01

11
20

20
12

01
01

12
10

20
12

01
01

13
00

20
12

01
01

13
50

20
12

01
01

14
40

20
12

01
01

15
30

20
12

01
01

16
20

20
12

01
01

17
10

20
12

01
01

18
00

20
12

01
01

18
50

20
12

01
01

19
40

20
12

01
01

20
30

20
12

01
01

21
20

20
12

01
01

22
10

20
12

01
01

23
00

20
12

01
01

23
50

20
12

01
02

00
40

20
12

01
02

01
30

20
12

01
02

02
20

20
12

01
02

03
10

20
12

01
02

04
00

20
12

01
02

04
50

20
12

01
02

05
40

20
12

01
02

06
30

20
12

01
02

07
20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

av
er

ag
e

de
pt

h
of

 B
lin

d
Z

on
e

of
 L

C
 +

 B
S

time

 average depth of Blind Zone @ RRC00
 average depth of Blind Zone @ RRC03
 average depth of Blind Zone @ RRC05

0 10 20 30 40 50 60
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

ra
tio

 o
f s

ec
on

d
 lo

ok
u

p
o

f L
C

 +
 B

S

second

 traffic I-ratio
 traffic II-ratio
 traffic III-ratio

0 10 20 30 40 50 60
3.00

3.05

3.10

3.15

3.20

3.25

3.30
a

ve
ra

g
e

 m
e

m
or

y
a

cc
e

ss
 c

o
u

n
t

second

 # of memory access of LC-trie on TI
 # of memory access of LC-trie+BS on TI
 # of memory access of LC-trie on TII
 # of memory access of LC-trie+BS on TII
 # of memory access of LC-trie on TIII
 # of memory access of LC-trie+BS on TIII

20
12

01
01

08
49

20
12

01
01

09
39

20
12

01
01

10
29

20
12

01
01

11
19

20
12

01
01

12
09

20
12

01
01

12
59

20
12

01
01

13
49

20
12

01
01

14
39

20
12

01
01

15
29

20
12

01
01

16
19

20
12

01
01

17
09

20
12

01
01

17
59

20
12

01
01

18
49

20
12

01
01

19
39

20
12

01
01

20
29

20
12

01
01

21
19

20
12

01
01

22
09

20
12

01
01

22
59

20
12

01
01

23
49

20
12

01
02

00
39

20
12

01
02

01
29

20
12

01
02

02
19

20
12

01
02

03
09

20
12

01
02

03
59

20
12

01
02

04
49

20
12

01
02

05
39

20
12

01
02

06
29

20
12

01
02

07
19

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30 # of memory visit using LC+BS mean of # of memory visit using LC+BS
 # of memory visit using trie mean of memory visit count using trie

av
er

ag
e

m
em

or
y

vi
si

t c
ou

nt
 o

f
ea

ch
 u

pd
at

e
m

es
sa

ge

Fig. 20. Comparison of average memory
access number between LC-trie and
LC+BS over one day update.

Fig. 19. Comparison of average memory
access number between LC-trie and LC+BS
using three-interval traffic.

Fig. 18. The proportion of the second lookup to
total lookup of LC+BS over one day.

