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Abstract—With the fast development of Internet, the size of 
routing tables in the backbone routers keeps a rapid growth in 
recent years. An effective solution to control the memory 
occupation of the ever-increased huge routing table is the 
Forwarding Information Base (FIB) compression. Existing 
optimal FIB compression algorithm ORTC suffers from high 
computational complexity and poor update performance, due to 
the loss of essential structure information during its compression 
process. To address this problem, we present two sub-optimal 
FIB compression algorithms -- EAR-fast and EAR-slow, 
respectively, based on our proposed Election and Representative 
(EAR) algorithm which is an optimal FIB compression algorithm. 
The two suboptimal algorithms preserve the structure 
information, and support fast incremental updates while 
reducing computational complexity. Experiments on an 18-
month real data set show that compared with ORTC, the 
proposed EAR-fast algorithm requires only 9.8% compression 
time and 37.7% memory space, but supports faster update while 
prolonging the recompression interval remarkably. All these 
performance advantages come at a cost of merely a 1.5% loss in 
compression ratio compared with the theoretical optimal ratio. 

I. INTRODUCTION 
Internet has maintained a rapid growth for years, leading to 

a roughly 15% annual increase of the routing table size [2]. 
Taking the AS64471 as an example, it had only about 70K 
entries in its routing table in 2000, but went beyond 400K at 
the beginning of 2012 [3]. Routing tables grow so rapidly that 
ISPs struggle to keep up with it. For those routers installed 
years ago, if the designed capacity of the Forwarding 
Information Base (FIB) is less than the current increased 
routing table size, ISPs should seek a better compression 
algorithm to suppress the table growth, so as to postpone the 
need of replacing their infrastructures in the near future. 
Making the matter worse, routing updates are also increasing 
rapidly more than ever before, due to enhanced Internet 
functionalities in recent years [4]. These make FIB 
compression an important but challenging issue.  

In [1], Draves et al. proposed ORTC algorithm to construct 
an optimal routing table via two basic operations: ‘and’ and 
‘union’. Actually, there exists more than one optimal routing 
table, and we propose Election and Representative (EAR) 
algorithm to construct a different 2  optimal routing table 
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1AS6447 is a backbone router’s autonomous system number. 
2The compressed tries of EAR and ORTC have different structures, but their 
numbers of solid nodes (prefix number) are equal. 

through a different approach. Unfortunately, optimal 
compression algorithms have the following two inherent 
shortcomings: 

a) High compression complexity. From a sociological 
point of view, in order to elect the most popular candidate, all 
the votes should be recorded and computed. This is obviously 
time-consuming. The EAR algorithm follows a process similar 
to the election procedure. Logically, EAR algorithm can be 
divided into two steps: 1) election – making statistics of the 
sub-trie nodes’ next-hop and electing the most prevalent one; 
2) representative – deleting the winning voters (those nodes 
which share the same next-hop with the most prevalent next-
hop node). Similar to the time-consuming election, EAR 
suffers from high computational complexity, so does ORTC. 

b) Poor update performance. Incremental update 
algorithm operates in the sub-trie using the corresponding 
compression algorithm. Therefore, complicate compression 
algorithm incurs complicate incremental update algorithm. In 
addition, ORTC is not conducive to incremental update, 
because it does not preserve the structure information3. 

When designing a compression algorithm, we focus on the 
following five metrics in the design space: 1) high compression 
ratio4; 2) short compression time; 3) low memory cost; 4) fast 
incremental update and; 5) long recompression interval (the 
interval between two adjacent events of recompressing the 
whole routing table). The system performance will be 
optimized, only if all the above metrics are achieved. 
Unfortunately, ORTC only concentrates on the compression 
ratio, ignoring the others.  

In order to cover the five metrics, we present two 
suboptimal compression algorithms based on our proposed 
EAR. The idea is originated from the election process as well. 
In the election process of democratic society, it is usually time-
consuming to elect the most popular candidate, and only a few 
candidates are likely to be elected as representatives. An 
effective approach is to directly elect the most ‘promising’ 
candidate, so as to simplify the election process.  

Similarly, according to our experimental tests, we discover 
that EAR and ORTC often consume too much time and 
memory (inefficient time and memory) only for a little increase 
in compression ratio. We also find that the ‘promising’ nodes 
(those nodes with shallow depth, such as node A in Figure 2(c)) 
are usually elected as representatives. To map the social 
solution to compression algorithm, we refine EAR into two 
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4 Compression ratio is defined as the ratio of the number of nodes in 
compressed trie to that of the original trie. For convenience, in this paper, 
‘high compression ratio’ stands for a small number of compressed prefixes. 



 
 

suboptimal compression algorithms, named EAR-slow and 
EAR-fast, respectively. The two suboptimal algorithms directly 
select the most promising candidate node as representative, 
avoiding traversing the sub-trie. Their design philosophy is to 
simplify the election process by eliminating the ‘inefficient’ 
time and memory occupation at the cost of sacrificing a very 
small compression ratio. Furthermore, the EAR-slow and the 
EAR-fast algorithm preserve the structure information only 
using an integer variable for each node. As a result, they can 
achieve a well-balanced trade-off among the above five metrics. 

Particularly we have the following contributions: 
• We propose two sub-optimal algorithms based on EAR: 

EAR-fast and EAR-slow, which preserve the structure 
information attached in a single compressed trie to 
reduce the need for secondary storage5, achieving long 
recompression interval while approaching the optimal 
compression ratio.  

• The proposed incremental update algorithms avoid 
traversing the sub-trie, thus simplifying the operations, 
leading to a faster update speed. 

The remaining parts of this paper are organized as follows. 
Section II surveys the related work. Section III presents EAR 
algorithm and its two derived suboptimal compression 
algorithms. Section IV elaborates on our fast incremental 
update algorithms. Extensive evaluation and the analysis over a 
large-scale real data set are conducted in Section V, and finally 
we conclude this paper in Section VI. 

II. RELATED WORK 
IRTF RRG [8] and IETF [9] have been working on the 

routing scalability problem for years. Generally speaking, there 
are two categories of solutions: the first category is Map-and-
Encap [10-15], which requires changing the routing 
architecture and protocols; the second is FIB compression, 
which is a local solution and needs no change to the existing 
routing protocols. Our algorithms belong to the latter oneˈ 
and the representative papers in this category are [1], [5-7], 
[16-17]. 

Trie-based algorithms are commonly used in FIB 
compression, given its fast search speed and high update 
performance [18]. The pioneer effort ORTC [1] worked on the 
routing table and achieved optimal compression ratio. Its idea 
is to traverse the entire sub-trie and select the most prevalent 
next-hop nodes using two operations: ‘and’ and ‘union’. 
However, traversing the entire sub-trie incurs long time. In 
addition, ORTC does not preserve the structure information, 
i.e., the relationships among the original trie nodes, and breaks 
the original trie structure by creating many new nodes and 
deleting many existing nodes. Consequently, it leads to 
probability of some wrong update operation, such as ‘delete a 
node which does not exist’ and ‘change a node without next 
hop’. In order to purse the update function, ORTC has to add 
additional data structures (secondary storage) to help remember 
the structure information. Therefore, in [5], Yaoqing Liu et al. 
added incremental update algorithm to ORTC by constructing 
three additional tries to save the structure information. 
Coordinating multiple data structures incurs complexity. 

It is worthy to mention that the source code of ORTC 
(named as ORTC-Draves in the rest of the paper for easy 
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quoting) is inefficient and incomplete, and fails to cover the 
case of NULL root node. To conduct a fair comparison, we re-
implement ORTC algorithm, named ORTC-Perfect, which has 
both a better compression ratio and a lower computation (CPU 
and memory) requirement than those of ORTC-Draves. We 
also find that the update algorithm of ORTC-Draves’, which 
was implemented in [5] using four tries, consumes too much 
memory with redundancy and inefficiency, so we re-implement 
the incremental update algorithm based on ORTC-Perfect 
using two tries, which is much more efficient and is considered 
a new version for a more accurate comparison. 

In [6], Xin Zhao et al. proposed an algorithm (which is 
called 4-level algorithm in this paper), enabling a flexible 
choice for users, but it has some shortcomings: 1) the third and 
the fourth level compression can only deal with non-routable 
space case. The non-routable packets, which should be dropped 
given no next-hop found, are forwarded anyway. We call this 
phenomena roaming garbage in this paper. Our test on real 
traffic trace shows that the proportion of the roaming garbage 
traffic could be up to 0.31% and it covers 0.38% of the overall 
IP address space; 2) the 4-level algorithm probably triggers the 
‘routing table fluctuation’ problem, which will be illustrated in 
Section IV.B.3. In [16], a patent technology (we call it patent 
algorithm in this paper) proposed a compression algorithm, 
which is simple and fast, but with poor compression ratio. In 
[17], the binary trie was changed into the trigeminal trie, which 
corresponds to the three-state properties of TCAM. Therefore, 
a better compression ratio might be achieved. However, it is 
limited to be used in TCAM only, which is an expensive 
solution. What is worse, the update messages could induce 
domino effect. Thus the algorithm is difficult to apply, 
especially in current situation with frequent updates. To gain 
better compression ratio, Qing Li et al. proposed an algorithm 
by adopting suboptimal routing [7]. This could potentially 
cause serious traffic congestion and the update performance is 
quite questionable. Based on our initial investigation, it can 
hardly guarantee an O(1) updating complexity [21].  

Our work is also based on the trie, but with two major 
improvements: 1) when manipulating the trie structure for 
achieving compression, we keep the structure information; 2) 
we do not traverse the whole trie to get the most prevalent node, 
but directly elect the most promising one instead, thus saving 
the compression time. To the best of our knowledge, this is the 
first effort on balancing a multi-dimensional system 
optimization for the routing table compression issue and our 
approach strikes a good trade-off among compression ratio, 
compression time, memory cost, fast incremental update, as 
well as recompression interval. 

III. COMPRESSION ALGORITHMS 

A. Terms and Definitions 
TABLE I.  TERMS AND DEFINITIONS. 

Terms Definitions 
Oldport the next-hop of a prefix in FIB before compression 
Newport the next-hop of a prefix in FIB after compression 

Insertport the next-hop of an update message in the operation of 
insertion and changing 

Oldport/Newport the next-hops of a prefix in FIB before and after 
compression 

Default-oldport the next-hop of the nearest and non-empty ancestor 
node before compression 

Default-newport the next-hop of the nearest and non-empty ancestor 
node after compression 

 



 
 

The above terms will be used in this paper, and their 
meanings are given in Table I. 

As shown in Figure 1, every node has a pair of next-hops: 
Oldport/Newport. Newport is represented by the shape. For 
convenience, three next-hops are introduced: solid ellipse, solid 
rectangle, and solid triangle, representing the Newport of 1, 2, 
and 3, respectively. For example, the shape of  is triangle, 
pointing its Newport is 3. Oldport is represented by the number 
in the node (such as 1 in ), and the hollow node (such as ) 
suggests that its Newport is 0 (There is no prefix in the node 
after compression). For example,  is represented by 1/2, 
indicating its Oldport is 1, and Newport is 2;  is represented 
by 2/0, indicating its Oldport is 2, and Newport is 0. 

B. An Example of EAR 
EAR and its two suboptimal algorithms all follow a process 

that is similar to the election of a democratic society. Each 
node has a next-hop, while each candidate has a vote. Actually, 
any candidate’s next-hop has the opportunity to be selected as 
representative. All the nodes which share the same next-hop 
with the representative can be deleted. Therefore, in order to 
achieve optimal compression (meaning that the compressed 
routing table has the minimal number of prefixes), the most 
popular next-hop should be chosen, in other words, should be 
elected as representative. This is the rationale of EAR.  

    
(a) trie I                    (b) trie II                 (c) trie III                  (d) trie IV 

Figure 1.  An example of EAR. 

We give an intuitive example for the EAR algorithm in 
Figure 1. Figure 1(a) is original trie, and Figure 1(b) is the trie 
after leaf-pushing (this technique was proposed by Srinivasan 
et al. in [19]), which is a preparation of election; Figure 1(c) is 
the trie after representative, and Figure 1(d) is the trie after 
representative, which is also the ultimate result of EAR. In 
contrast, traditional algorithms (such as ORTC, 4-level) do not 
preserve Oldport and the hollow leaf nodes (such as B and D in 
Figure 1(d)), causing missing structure information. 

Election: Node A, B, C, and D are four ‘candidate’ nodes, 
participating in election. Obviously, hop 2 (rectangle B and D) 
should be elected as representative, thus node E is set to 1/2. 

Representative: Node E executes its right of representative: 
set the Newport of its supporters (node B and D) to 0. It means 
that node B and D are set to 2/0. In other words, the Newport 
of the winning voters (node B and D) is set to 0. 

In this example, the original prefix number is 5 (only the 
solid nodes are needed to be counted6), and the compressed 
prefix number is 3, thus the compression ratio is 3/5. 

This is the process of Election And Representative (EAR). 
Different from traditional algorithms, EAR completely 
preserves the trie structure information using Oldport/Newport. 
The overhead is just an integer for each node, which is very 
small. The significance of trie structure information is 
highlighted during the update process. For instance, given an 
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update message: withdraw 11* (see Figure 1), it means node D 
should be deleted. However, traditional algorithms will find 
that D does not exist. To guarantee the correctness of update, 
additional complicate work should be finished, such as a serial 
of operations in the original trie. In contrast, EAR just needs to 
set D to 0/1, remarkably reducing time and space. 

C. Compression Algorithm 
EAR and its two suboptimal algorithms all consist of two 

basic operations, named ‘election’ and ‘representative’. 

1) Election and Representative  
‘Representative’ operation is executed after a successful 

‘election’ operation. Those nodes participating in elections, 
must satisfy the following requirements: they must be 1) solid 
and hollow; 2) siblings (if a node has no sibling node, a 
substitute must be created with the next-hop of 0/Default-
oldport); 3) elected representatives (if not, the point must be 
traced to a leaf node in the sub-trie rooted at the unelected node, 
then recursive election should be done step by step). 

Election: Two or more nodes elect their common ancestor 
node, under the constraint that no solid node appears in the 
path from the candidate nodes to their common ancestor node. 
The most prevalent next-hop will be elected as representative, 
and the common ancestor’s next-hop will be replaced by the 
most prevalent next-hop. If there is more than one prevalent 
next-hop, election fails. In this case, the common ancestor’s 
next-hop will be set to 0, and then the common ancestor will 
participate in the next round of election. 

Representative: After a successful election, the common 
ancestor will exercise the right of being a representative: the 
Newport of its supporters (those candidates which share the 
same next-hop with the representative’s) is set to 0. In other 
words, after representative, the Newport of all the winning 
voters will be set to 0. 

2) Atomic Equivalent Models of EAR Algorithm 
TABLE II.  NODE’S ATTRIBUTES. 

single-node attributes (Category 1) two-node attributes (Category 
2) 

the first 
attribute 

the second 
attribute  

solid hollow has got 
brother 

no 
brother 

share the same 
hop 

with different 
hops 

 

As shown in Table II, in order to cover all the possible 
situations, candidate nodes’ attributes are classified into two 
categories. According to these attributes, all atomic election 
models can be enumerated. 

Category 1: Single-node election. In this case, a candidate 
node has no brother. If the node is solid, model 1 emerges. If 
the node is hollow, model 2 emerges. 

Model 1: As shown in Figure 2(a), node A has no brother. 
According to the requirements of the election, at least two 
nodes are needed, so node B is created with 0/Default-oldport. 

Model 2: As shown in Figure 2(b), the election and 
representative process is similar to model 1. 

Category 2: According to the two-node attributes, four 
models emerge. 

Model 3: As shown in Figure 2(c), A is solid and B is 
hollow. Node A and the sub-trie rooted at node B participate in 
the election. The most prevalent next-hop will be elected. 



 
 

Model 4: As shown in Figure 2(d), both A and B are 
hollow. The two sub-tries rooted at node A and B participate in 
the election. As same as Model 3, the most prevalent next-hop 
will be elected. 

Model 5: As shown in Figure 2(e), both A and B are solid, 
and have the same Newport, so the common Newport is elected 
as the Newport of node C. 

Model 6: As shown in Figure 2(f), both A and B are solid, 
but have different Newports. In this case, just set C’s Newport 
to 0. 

           
(a) Model 1                        (b) Model 2                    (c) Model 3 

         
(d) Model 4                       (e) Model 5                              (f) Model 6 

Figure 2.  EAR’s atomic equivalent models. 

These six models have covered all the election situations. 
In order to achieve optimal, a second election should be 
conducted to elect any one of the most prevalent next-hop for 
the failed election. In this way, a trie can be compressed into an 
optimal one.  

3) Atomic Equivalent Models of EAR-slow Algorithm 
As mentioned above, we refine EAR to EAR-slow and 

EAR-fast, respectively, by directly electing the most promising 
candidate node, so as to reduce the computational complexity. 
EAR-slow is a bridge to EAR-fast, and experimental results 
show that its sacrificed compression ratio is only 0.7%, 
compared with ORTC-Perfect. 

The differences between EAR and EAR-slow lie in Model 
3 and Model 4. Let us focus on the Model 3 in Figure 2. The 
two models include the sub-trie rooted at B, thus this election 
costs too much time. However, there are only two election 
results: A is elected or no node is elected. Therefore, Model 3 
is changed into Model 3’ (see Figure 3(a)): if the Newport of A 
does not appear in the sub-trie rooted at B, election fails and 
node C is set as Oldport/0; otherwise, node C’s Newport is set 
to A’s Newport. 

        
(a) Model 3’                                         (b) Model 4’ 

Figure 3.  EAR-slow’s atomic equivalent models. 

Similarly, the model 4 (see Figure 2(d)) needs to traverse 
two sub-tries. However, it probably occurs that no node is 
elected. Therefore, Model 4 is changed into Model 4’ (see 
Figure 3(b)): the two sub-tries rooted at node A and B 
participate in the election. In this model, just set C’s Newport 
to 0. In addition, the second election is avoided, thus only one 
post-order traversal is needed, so does EAR-fast.  

4) Atomic Equivalent Models of EAR-fast Algorithm 
ORTC, EAR and EAR-slow algorithm all create many new 

additional nodes, wasting too much time, and breaking the trie 
structure. The rationale of EAR-fast is to keep the original trie 
structure unchanged during compression based on EAR-slow. 
In this way, no node is needed to be created, so as to accelerate 
compression and support fast incremental update. The cost is 
merely a 1.5% loss in compression ratio. 

The differences between EAR-fast and EAR-slow lie in the 
first two models. As shown in Figure 3, node A has no brother, 
so A’s brother is created with 0/Default-oldport. Then node A 
and its brother participate in election. In order to maintain the 
trie structure, so whatever the Newport of A’s brother is, A’s 
brother is elected by EAR-fast. At this moment, there are two 
situations: firstly, B’s Newport is 0, then set B’s Newport to 
Default-oldport, this is the model 1’ (see Figure 3(a)); secondly, 
B’s Newport is nonzero, no change occurs, this is the model 2’ 
(see Figure 3(b)). 

                    
(a) Model 1’                                        (b) Model 2’ 

Figure 4.  EAR-fast’s atomic equivalent models. 

The above statement seems complicated, just to give a 
detailed and deep comprehension of the two models. Actually, 
as same as EAR-slow, EAR-fast only needs one post-order 
traversal. Because no new node is created, the compression 
speed can be greatly improved. The pseudo code of EAR-fast 
algorithm is shown below, and that of EAR-slow algorithm is 
similar and thus omitted. 

 

Algorithm 1 EAR-fast compression algorithm 
FUNCTION compress_subopt_fast(p) 
1:    call compress_subopt_fast(l) 
2:    call compress_subopt_fast(r) 
3:    switch() 
4:    {/* d_new represents Default-newport */ 
5:    case:  only r is empty 
6:              rep(l,d_new) 
7:    case:  only l is empty 
8:              rep(l,d_new) 
9:    /*the following cases: both l and r are not empty */ 
10:  case:  l.Newport=r.Newport 
11:            p.Newportĕl.Newport 
12:  case:  only l.Newport is 0 
13:            if call rep(l,r.Newport)>0 then p.Newportĕr.Newport 
14:            else p.Newportĕ0 
15:  case:  only r.Newport is 0 
16:            if call rep(r,l.Newport)>0 then p.Newportĕl.Newport 
17:            else p.Newportĕ0 
18:  default:    p.Newportĕ0 
19:  } 
END FUNCTION 
FUNCTION rep(p, port)                /*the function of representative*/ 
20:  if        p.Newport=0 then return rep(l,port)+rep(r,port) 
21:  else if p.Newport=port then  
22:            p.Newportĕ0 
23:            return true 
24:  else    return false 
END FUNCTION 

 
5) Mathmatical Proof of the Equivalent Models 

To guarantee the correctness of the ten (six EAR’s models, 
two EAR-slow’s models, and two EAR-fast’s models) 
equivalent models, we derived mathematical proofs. Due to 
space limitation, the details are left in [21].  



 
 

6) Computational Complexity 
Here the computational complexities of EAR-slow, EAR-

fast and ORTC are computed. The related terms and definitions 
are shown in Table III. 

TABLE III.  TERMS AND DEFINITIONS 

Terms Definitions Terms Definitions 
n the number of all the nodes  d the time cost of visiting a node 
m the number of the missing nodes e the time cost of creating a new node 
c the number of the router ports r the space cost of a trie node 

s the space cost of a next-hop node f the time cost of comparing two 
numbers 

 

Because EAR-fast and EAR-slow traverse the trie once, 
their time complexities are both O(n). EAR-fast does not create 
missing node, while EAR-slow does, so the space complexity 
of EAR-fast is O(n), and that of EAR-slow is O(n+m). 
ORTC’s complexity is computed below: 

a) Time complexity. 
ܶሺ�����ͳሻ �ൌ ሺ݊ ൅ ݉ሻ כ ݀ ൅݉ כ ݁��
ܶሺݏݏܽ݌�ʹሻ ൌ σ ݅ כ ݆ כ ݂௠ା௡

௜ǡ௝ஸ௖ ൌ �σ ݅ כ ݆ כ ݂௠ା௡
௜ǡ௝ୀ௖ ൌ ܿ כ ݂ כ ሺ݊ ൅ ݉ሻ��

ܶሺݏݏܽ݌�͵ሻ ൌ �σ ݅ כ ݀௠ା௡
௜ஸ௖ ൌ σ ݅ כ ݀௠ା௡

௜ୀ௖ ൌ ξܿ כ ݀ כ ሺ݊ ൅݉ሻ��
ܶሺܱܴܶܥሻ �ൌ ܶሺ�����ͳሻ ൅ ܶሺݏݏܽ݌�ʹሻ ൅ ܶሺݏݏܽ݌�͵ሻ��

��������������������������������ൌ ሺ݊ ൅ ݉ሻ כ ݀ ൅݉ כ ݁ ൅ ܿ כ ݂ כ ሺ݊ ൅ ݉ሻ��
��������������������൅�ξܿ כ ݀ כ ሺ݊ ൅ ݉ሻ��
ܶሺܱܴܶܥሻ �ൌ ܱሺሺ݊ ൅ ݉ሻ כ ݀ ൅݉ כ ݁ ൅ ܿ כ ݂ כ ሺ݊ ൅ ݉ሻ��
��������������������൅ξܿ כ ݀ כ ሺ݊ ൅ ݉ሻሻ ൌ ܱሺܿ כ ሺ݊ ൅݉ሻሻ��

b) Space complexity. 
ܵሺݏݏܽ݌�ͳሻ ൌ ሺ݊ ൅݉ሻ כ ��ݎ
ܵሺݏݏܽ݌�ʹሻ ൌ ሺ݊ ൅݉ሻ כ ݎ ൅ σ ݅ כ ௠ା௡ݎ

௜ஸ௖ ൌ ሺ݊ ൅ ݉ሻ כ ݎ ൅�σ ݅ כ ௠ା௡ݎ
௜ୀξ௖ ��

��������������������ൌ ሺ݊ ൅݉ሻ כ ݎ ൅ ξܿ כ ሺ݊ ൅݉ሻ כ ��ݎ
��������������������ൌ ሺξܿ ൅ ͳሻ כ ሺ݊ ൅ ݉ሻ כ ��ݎ
ܵሺݏݏܽ݌�͵ሻ ൌ ܵሺݏݏܽ݌�ͳሻ��
ܵሺܱܴܶܥሻ �ൌ �ͳሻǡݏݏܽ݌�ሼܵሺݔܽ݉ ܵሺݏݏܽ݌�ͳሻǡ ܵሺݏݏܽ݌�ͳሻሽ��
��������������������ൌ �ܵሺݏݏܽ݌�ʹሻ ൌ ሺξܿ ൅ ͳሻ כ ሺ݊ ൅ ݉ሻ כ ��ݎ
ܱሺܱܴܶܥሻ ൌ ܱሺሺξܿ ൅ ͳሻ כ ሺ݊ ൅ ݉ሻ כ ሻݎ ൌ �ܱሺξܿ כ ሺ݊ ൅ ݉ሻሻ��

In summary, the computational complexities of the three 
algorithms are shown in Table IV. 

TABLE IV.  COMPUTATIONAL COMPLEXITY 

 ORTC EAR-slow EAR-fast 
Time complexity ܱሺܿ כ ሺ݊ ൅݉ሻሻ� ܱሺ݊ ൅݉ሻ ܱሺ݊ሻ 
Space complexity ܱሺξܿ כ ሺ݊ ൅݉ሻሻ� ܱሺ݊ ൅݉ሻ ܱሺ݊ሻ 

IV. FAST INCREMENTAL UPDATE ALGORITHM 

A. Updating Metrics While Applying FIB Compression 
When an update message arrives, incremental update runs 

in partial range as fast as possible, and redundancy is allowed. 
Then how to evaluate the performance of incremental update? 
Two metrics are defined: TTF and recompression interval.  

Time-to-fresh (TTF) means the average computing time to 
update an update message. It indicates a router’s sensitivity to 
the changes of its network. The smaller the TTF is, the more 
sensitive the router is. When no compression algorithm is 
adopted, TTF is minimal, and is regarded as the ground-truth. 
Furthermore, TTF-ratio is defined as TTF/ground-truth. 

During the recompression of routing table, routing lookup 
cannot be conducted based on the newest FIB. The computing 
time of recompressing the trie is called the ‘recompression 
time’, and the period between the two adjacent events of 
recompressing the whole routing table is called ‘recompression 
interval’. Our goal is short recompression time, i.e., long 
recompression interval. 

With regard to TTF, in order to achieve fast update, we 
should confine the scope of updates, and visit as few nodes as 
possible. All the algorithms in this paper are confined in the 
sub-trie rooted at the updating node. Updating a sub-trie is 
equivalent to compressing a sub-trie. Therefore, the faster 
compression algorithm runs, the faster update algorithm works. 
It is clear that EAR-fast is the fastest, followed by EAR-slow 
and then ORTC-Perfect. This conclusion is consistent with the 
subsequent experimental results.  

With regard to the second metric, the intuition is that the 
better the compression ratio is, the longer the recompression 
interval will be. However, the recompression interval of our 
two suboptimal algorithms is longer than that of ORTC, the 
reason is as follows: recompression interval is mainly 
determined by the changes degree of the structure information 
mentioned previously, which largely affects the increase of the 
incremental updated nodes. 

 
Figure 5.  The update process of the three algorithms. 

To be clearer, an example is given in Figure 5. The four 
tries above the dotted line are the original trie and compression 
results of the three compression algorithms. It can be seen that 
ORTC-Perfect changes the trie structure most, followed by 
EAR-slow, and EAR-fast does not change the trie structure at 
all. Suppose two update messages arrive: withdraw D and 
announce B:1. The incremental update results of the three 
algorithms are shown under the dotted line of Figure 5. After 
update, the solid node numbers of ORTC, EAR-slow and EAR-
fast are 5, 3 and 2, respectively. This example suggests that, for 
the increase speed of solid nodes, EAR-fast is the slowest, 
followed by EAR-slow and then ORTC-Perfect. This 
conclusion is also consistent with the subsequent experimental 
results. 

B. Update Algorithm 
1) Theorems 

Generally, each update message, which changes the RIB, 
changes the FIB. However, by compression algorithm, some 
update messages change RIB, but do not change FIB as long as 
the RIBs are equivalent before and after compression. 
Therefore, we can reduce the update interruption. The best 
choice is to set some judgments in advance. But it is not an 
easy task, because careless judgments will cause wrong results. 
For this purpose, several theorems and deductions are given to 
guarantee the correctness of the judgments. 

We first define some items: 1) non-party: for example, in 
Figure 2(a), the new born node B belongs to non-party. When 



 
 

update occurs, the next-hop of these nodes will follow the 
nearest solid ancestor’s; 2) ruling-party and out-party: as 
shown in Figure 2(c), node A and B participate in election, in 
the case that the Newport of A appears in B’s sub-trie, A is 
elected and becomes ruling-party, and B becomes out-party. 

Definition 1: Single-node update. When an update message 
arrives, if zero or one node needs to change, we call it single-
node update. This is the ideal update. If no node needs change, 
it is better than not using compression algorithm. Obviously, 
the leaf node’s update belongs to single-node updates.  

Theorem 1: When a node is going to update, if non-party’s 
next-hop does not change, the election result will not change, 
either. In this case, only Oldport needs to be updated. This 
belongs to single-node update. 

Proof: Firstly, suppose a node is updated, the premise is that 
the next-hop of non-party does not change. The next-hop of 
ruling-party and out-party does not change, either. Therefore, 
the election result should not change. Then only the Oldport of 
the update node should change, so this belongs to single-node 
update. 

Corollary 1 (Insertion): After the insertion operation, the 
Newport of non-party changes into Insertport from Default-
oldport. Therefore, if and only if Insertport is equal to Default-
oldport, it belongs to single-node update. 

Corollary 2 (Deletion): After the deletion operation, the 
Newport of non-party changes into Default-oldport from 
Oldport. Therefore, if and only if Oldport is equal to Default-
oldport, it belongs to single-node update. 

Corollary 3 (Changing): After the changing operation, the 
Newport of non-party changes into Insertport from Oldport. 
But the premise of changing is that Oldport is not equal to 
Insertport. Therefore, the update of a non-leaf node does not 
belong to a single-node update. 

2) Routing Update Operation 
The premise of incremental update is that the update range 

is confined in the sub-trie rooted at the update node. There are 
two kinds of update messages: announcement and withdrawal, 
which can be further divided into ‘insertion’, ‘changing’ and 
‘deletion’ operation. Our two incremental algorithms are 
divided into three steps: 

a) Lookup the prefix in the trie: When an update 
message arrives, update algorithms first locate the prefix in the 
trie. Sometimes it does not exist: 1) if the update message type 
is ‘announcement’, update algorithm must create a path to the 
update node; 2) otherwise, it means deleting a node which does 
not exist, algorithms end. 

b) Refresh the update node: The node should be updated 
according to the update operation. If it belongs to single-node 
update, algorithms end; otherwise, our algorithms update the 
sub-trie. This step varies with different operations.  

c) Update the sub-trie: The process of updating a sub-
trie is to compress the sub-trie using the corresponding 
compression algorithm. This step requires much more time 
than the first two. Therefore, the faster compression algorithm 
runs, the faster update algorithm works. 

The pseudo code of EAR-fast update algorithm is shown 
below, and that of EAR-slow update algorithm is similar and 
thus omitted. 

Algorithm 2 update algorithm 
1:    Lookup the prefix in the trie 
2:    swith(operation) 
3:    { 
4:     case  “insert”:                        /* d_old represents Default-oldport */ 
5:              if(Insertport=d_old)     /*single-node update*/ 
6:                       Oldport  ĕd_old 
7:                       return; 
8:              else   Oldport  ĕd_old�
9:                       Newport ĕd_old 
10:                     call compress_subopt_fast(sub-trie) 
11:   case “delete”: 
12:            if(Oldport= d_old)       /*single-node update*/ 
13:                     Oldport  ĕ0 
14:                     Newportĕd_old 
15:                     return; 
16:            else Oldport  ĕ0 
17:                     call compress_subopt_fast(sub-trie) 
18:   case “change”: 
19:            Oldport  ĕInsertport 
20:            NewportĕInsertport 
21:            call compress_subopt_fast(sub-trie) 
22:  } 

 

3) The Problem of Root Update 
In the process of data mining of update packets in 18 

months, we found that the root node updates for many times. 
For 4-level compression algorithm, if the next-hop of the root 
node is changed from empty to nonzero, 4-level is degraded to 
2-level compression; similarly, it could also be upgraded to 4-
level from 2-level. This is the previously mentioned ‘routing 
table fluctuation’ problem of 4-level algorithm. 

The problem of root update is not mentioned before as far 
as we know. The ideal objective is no change to the routing 
table. For this purpose, a variable named ROOT-PORT is set in 
our algorithm. If the root node’s Newport is 0, set ROOT-
PORT to -1; otherwise, set ROOT-PORT to the root node’s 
Newport. During the compression, the Newport of the root 
node is set as -1 regardless of the Newport of the root node. 
During the update, if the type of the root update is ‘withdrawal’, 
set ROOT-PORT to -1, otherwise, set ROOT-PORT to the 
update message’s next-hop. 

When a router conducts routing lookup and finds that the 
next-hop is -1, it forwards the packet as follows: if ROOT-
PORT is -1, it just drops the packet; otherwise, forwards it to 
the next-hop of ROOT-PORT. Therefore, when receiving a 
root update message, our algorithm just modifies the value of 
ROOT-PORT, and no additional operation is needed. In this 
way, the ideal objective is achieved. 

V. EXPERIMENTAL RESULT  

A. Experimental Settings 
1) Data Set 

The data set is taken from www.ripe.net [20] at RIPE NCC, 
Amsterdam, which collects default free routing updates from 
peers. In order to objectively evaluate the performance of the 
six compression algorithms which we choose as representatives, 
the RIB packets at every 8:00 on January 1st from 2002 to 
2011 are selected.  

With regard to the update experiments, two data sets are 
selected. Firstly, to measure TTF-ratio, the update data from 
2011.01.01/08:00 to 2011.01.02/08:00 is selected. Secondly, to 
evaluate the recompression interval, the update data of the 
recent 18 months from 2009.12 to 2011.05, which is about 40G 



 
 

bytes, is downloaded and parsed.  

2) Computer Configuration 
Our experiments have been conducted on a windows XP 

sp3 machine with Pentium (R) Dual-Core CPU 
5500@2.80GHz and 4GB Memory.  

B. Experiments on FIB Compression 
To evaluate the space overhead of the six algorithms, we 

plot memory cost in Figure 6. Memory cost in this paper refers 
to the maximal memory overhead of the created tries during the 
compression process. The results show that memory cost of 
EAR-fast and the patent is the least, followed by EAR-slow 
and 4-level, and ORTC-Draves needs the most memory. 

 
Figure 6.  Memory cost of the six algorithms. 

 

Figure 7.  Compression time of the six algorithms. 

Figure 7 shows the compression time of the six algorithms. 
Compression time means the computing time of a complete 
compression. The results show that the patent algorithm is the 
fastest, followed by EAR-fast and ORTC-Draves is the slowest. 
The compression time of EAR-fast is only 9.1% of ORTC-
Draves and 9.8% of ORTC-Perfect. The compression time of 
EAR-slow is 26.6% of ORTC-Draves and 28% of ORTC-
Perfect. 

The compressed FIB size over the original table size is 
shown in Figure 8. The top curve is the original FIB size 
(which is the raw routing table size without compression), and 
the other curves are the FIB size after compression by the six 
compression algorithms. It can be observed that the patent 
algorithm and 4-level algorithm are relatively inefficient. The 

curves of EAR-fast, EAR-slow, ORTC-Draves and ORTC-
Perfect almost overlap. At 8:00 on 2011.01.01, the 
uncompressed FIB size is 348804, and the compressed FIB 
sizes of patent, 4-level, ORTC-Draves, EAR-fast, EAR-slow 
and ORTC-Perfect algorithm are 208564, 152101, 146268, 
146152, 142962, and 141037, respectively. 

 
Figure 8.  FIB size after compression over 10 years. 

 
Figure 9.  Compression ratio of the six algorithms. 

Finally, the compression ratios of the six algorithms are 
plotted in Figure 9. Overall, the compression ratio becomes 
better and better as the routing table size increases. ORTC-
Draves is optimal in 2009 and 2010, because the root nodes of 
these two years are not empty. However, in 2011, the root node 
is empty, and the compression ratio of ORTC-Draves is 
inferior to that of EAR-fast, EAR-slow and ORTC-Perfect. On 
average, the sacrificed compression ratios of EAR-slow and 
EAR-fast are only 0.7% and 1.5% compared with ORTC-
Perfect. 

According to the above analyses, the conclusions of 
compression experiments can be drawn as follows: 

• The compression ratio, time cost and memory cost of 
ORTC-Perfect are all better than those of ORTC-
Draves. 

• The patent algorithm is simple. Although its time and 
space cost are minimal, the compression ratio is poor.  

• EAR-fast and EAR-slow are superior than 4-level in 
compression ratio, time and memory cost.  

• The compression ratios of EAR-fast and EAR-slow are 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

15

30

45

60

75

90

M
em

or
y 

C
os

t(M
B

)

Year

 ORTC-Perfect
 EAR-slow
 EAR-fast
 Patent
 ORTC-Draves
 4-layers4-level  

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

40

80

120

160

200

240

C
om

pr
es

si
on

 T
im

e(
m

ill
is

ec
on

d)

Year

 ORCT-Perfect
 EAR-slow
 EAR-fast
 Patent
 ORTC-Draves
 4-layers

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
C

om
pr

es
si

on
 R

at
io

(C
om

pr
es

se
d 

FI
B

/F
IB

)

Year

 ORCT-Perfect
 EAR-slow
 EAR-fast
 Patent
 ORTC-Draves
 4-layers



 
 

both very close to that of ORTC-Perfect. But their time 
and memory costs are much better than ORTC-Perfect. 

C. Experiments of Fast Incremental Update 
The two metrics for update are evaluated by two 

experiments: TTF and recompression interval. The x-axis of 
Figure 10~13 means the time when the update messages arrive. 
For example, 201010231945 means the time of 
2010.10.10/23:19:45. 

1) TTF and TTF-ratio 
Among the six compression algorithms, the patent 

algorithm is straightforward, ORTC-Draves is not perfect, and 
4-level algorithm has roaming garbage and routing table 
fluctuation problem. Therefore, with regard to the incremental 
update algorithm, only three algorithms are left for comparison: 
ORTC-Perfect, EAR-slow and EAR-fast.  

 
Figure 10.  TTF-ratio comparison on average. 

 
Figure 11.  Accumulated time comparison in the statistical worst case. 

Figure 10 shows the TTF-ratio of the three update 
algorithms. It can be observed that the TTF-ratio of EAR-fast 
ranges from 103.92% to 115.14% with a mean of 12.75%, and 
the TTF-ratio of EAR-slow is between 103.92% and 123.09% 
with a mean of 121.21%. In contrast, TTF-ratio of ORTC-
Perfect is between 172.74% and 386.30% with a mean of 
263.68%. This is the usual case: for TTF-ratio, EAR-fast is a 
little better than EAR-slow, and much better than ORTC-
Perfect. 

Twenty five intervals, each lasting for one minute, are 
selected as the statistical worst case, and the results are shown 

in Figure 11. Y-axis represents the accumulated update time. 
This figure shows the TTF of the two suboptimal algorithms 
are 240.95% and 248.04% of the ground-truth, while that of 
ORTC-Perfect is 6204.34% of the ground-truth. This suggests 
that in the worst case, EAR-slow and EAR-fast perform much 
better than ORTC with regard to incremental update. 

In conclusion, with regard to TTF, EAR-fast and EAR-slow 
are very close to the ground-truth, while TTF of ORTC-Perfect 
is much larger than the ground-truth. 

2) Recompression Interval 
Suppose the FIB size is the same as the memory size on a 

line card on 2009.12.01/08:00, which is regarded as the 
threshold. In order to test the recompression interval of the 
three update algorithms, we plot the size of the routing table 
updating from 2009.12.01/08:00 to 2011.05.01/08:00. In 
Figure 12, the top curve, which is called raw-fib, is the size of 
raw FIB without compression. This figure shows ORTC-
Perfect recompresses 13 times while EAR-slow and EAR-fast 
only 2 times in the 18 months. This indicates that although 
EAR-slow and EAR-fast do not achieve the optimal 
compression, the increase of FIB size is much slower than 
ORTC-Perfect, for the reason that the recompression interval is 
mainly determined by the changes degree of the structure 
information, and ORTC-Perfect changes the structure more 
than EAR-slow and EAR-fast, the detailed illustration is 
provided in Section IV.A.  

Given recompressing a routing table and downloading it 
from RIB to FIB in a router’s line-card will take a relatively 
long time (usually up to several milliseconds). During this 
period, the search engine will be forced to suspend packet 
lookup if without secondary backup, resulting in packet 
forwarding being delayed for a while. When compression 
algorithm is adopted, it is highly desirable to prolong the 
recompression interval. Thus we evaluate the recompression 
time over 18-month update messages in Figure 13. This figure 
shows the recompression time of EAR-slow and EAR-fast 
algorithm is much smaller than that of ORTC-Perfect, which 
indicates shorter suspending time of routing lookup. 

Finally, Figure 14 shows the performance of four7 selected 
algorithms in six metrics: compression ratio, memory cost, 
compression time, TTF on average (TTF-average), TTF in the 
statistical worst case (TTF-worst case), and recompression 
interval. To achieve ‘the smaller the y-axis value is, the better 
the performance will be’, recompression interval is replaced by 
the average number of recompression in nine months (# of 
recompression). All the six metrics of ORTC-Perfect are set to 
1, and those of the other algorithms are zoomed in proportion. 
As can be seen from Figure 14, the compression ratios of EAR-
fast and EAR-slow are close to the optimum, and they are 
much better than ORTC-Perfect in other five metrics. 
Furthermore, EAR-fast has a better balanced trade-off. 

                                                           
7Given the compression of patent algorithm is poor, and 4-level algorithm 
cannot achieve better performance than ORTC-Draves and ORTC-Perfect 
algorithm but changing the forwarding behavior, thus they are ignored in this 
figure. 
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Figure 12.  The growing stability of the FIB size with recompression over a continous time span of 18 months. 

 
Figure 13.  Recompression time. 

 
Figure 14.  The performance of the four algorithms in six metrics8. 

VI. CONCLUSION 
Aiming at supporting fast update while achieving high 

compression ratio for the ever-increasing routing tables, we 
have proposed two sub-optimal FIB compression algorithms, 
EAR-slow and EAR-fast, which keep the structure 
information, and support fast incremental updates, while 
decreasing the computational complexity. In addition, the 
recompression interval is remarkably prolonged, which will 
minimize the impact on packet forwarding. We have released 
the source codes including both our algorithms and other 
compared algorithms in [21]. 
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