Approaching Optimal Compression with Fast

Update for Large Scale Routing Tables

Tong Yang, Bo Yuan, Shenjiang Zhang, Ting Zhang, Ruian Duan, Yi Wang, and Bin Liu*

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract—With the fast development of Internet, the size of
routing tables in the backbone routers keeps a rapid growth in
recent years. An effective solution to control the memory
occupation of the ever-increased huge routing table is the
Forwarding Information Base (FIB) compression. Existing
optimal FIB compression algorithm ORTC suffers from high
computational complexity and poor update performance, due to
the loss of essential structure information during its compression
process. To address this problem, we present two sub-optimal
FIB compression algorithms -- EAR-fast and EAR-slow,
respectively, based on our proposed Election and Representative

(EAR) algorithm which is an optimal FIB compression algorithm.

The two suboptimal algorithms preserve the structure
information, and support fast incremental updates while
reducing computational complexity. Experiments on an 18-
month real data set show that compared with ORTC, the
proposed EAR-fast algorithm requires only 9.8% compression
time and 37.7% memory space, but supports faster update while
prolonging the recompression interval remarkably. All these
performance advantages come at a cost of merely a 1.5% loss in
compression ratio compared with the theoretical optimal ratio.

L. INTRODUCTION

Internet has maintained a rapid growth for years, leading to
a roughly 15% annual increase of the routing table size [2].
Taking the AS6447' as an example, it had only about 70K
entries in its routing table in 2000, but went beyond 400K at
the beginning of 2012 [3]. Routing tables grow so rapidly that
ISPs struggle to keep up with it. For those routers installed
years ago, if the designed capacity of the Forwarding
Information Base (FIB) is less than the current increased
routing table size, ISPs should seek a better compression
algorithm to suppress the table growth, so as to postpone the
need of replacing their infrastructures in the near future.
Making the matter worse, routing updates are also increasing
rapidly more than ever before, due to enhanced Internet
functionalities in recent years [4]. These make FIB
compression an important but challenging issue.

In [1], Draves et al. proposed ORTC algorithm to construct
an optimal routing table via two basic operations: ‘and’ and
‘union’. Actually, there exists more than one optimal routing
table, and we propose Election and Representative (EAR)
algorithm to construct a different > optimal routing table

*Corresponding author: liub@tsinghua.edu.cn.

Others: {yang-t10, yuanb03, zsj09, ting-zhangl0, dra08, yiwang09}
@mails.tsinghua.edu.cn.

Supported by NSFC (61073171, 60873250), Tsinghua University Initiative
Scientific Research Program (20121080068), the Specialized Research Fund
for the Doctoral Program of Higher Education of China (20100002110051).
978-1-4673-1298-1/12/531.00 ©2012 IEEE.

'AS6447 is a backbone router’s autonomous system number.

The compressed tries of EAR and ORTC have different structures, but their
numbers of solid nodes (prefix number) are equal.

through a different approach. Unfortunately, optimal
compression algorithms have the following two inherent
shortcomings:

a) High compression complexity. From a sociological
point of view, in order to elect the most popular candidate, all
the votes should be recorded and computed. This is obviously
time-consuming. The EAR algorithm follows a process similar
to the election procedure. Logically, EAR algorithm can be
divided into two steps: 1) election — making statistics of the
sub-trie nodes’ next-hop and electing the most prevalent one;
2) representative — deleting the winning voters (those nodes
which share the same next-hop with the most prevalent next-
hop node). Similar to the time-consuming election, EAR
suffers from high computational complexity, so does ORTC.

b) Poor wupdate performance. Incremental update
algorithm operates in the sub-trie using the corresponding
compression algorithm. Therefore, complicate compression
algorithm incurs complicate incremental update algorithm. In
addition, ORTC 1is not conducive to incremental update,
because it does not preserve the structure information”.

When designing a compression algorithm, we focus on the
following five metrics in the design space: 1) high compression
ratio®; 2) short compression time; 3) low memory cost; 4) fast
incremental update and; 5) long recompression interval (the
interval between two adjacent events of recompressing the
whole routing table). The system performance will be
optimized, only if all the above metrics are achieved.
Unfortunately, ORTC only concentrates on the compression
ratio, ignoring the others.

In order to cover the five metrics, we present two
suboptimal compression algorithms based on our proposed
EAR. The idea is originated from the election process as well.
In the election process of democratic society, it is usually time-
consuming to elect the most popular candidate, and only a few
candidates are likely to be elected as representatives. An
effective approach is to directly elect the most ‘promising’
candidate, so as to simplify the election process.

Similarly, according to our experimental tests, we discover
that EAR and ORTC often consume too much time and
memory (inefficient time and memory) only for a little increase
in compression ratio. We also find that the ‘promising’ nodes
(those nodes with shallow depth, such as node A in Figure 2(c))
are usually elected as representatives. To map the social
solution to compression algorithm, we refine EAR into two

3The details of structure information are illustrated in the second paragraph of
the Related Work in this paper.

4 Compression ratio is defined as the ratio of the number of nodes in
compressed trie to that of the original trie. For convenience, in this paper,
‘high compression ratio’ stands for a small number of compressed prefixes.

suboptimal compression algorithms, named EAR-slow and
EAR-fast, respectively. The two suboptimal algorithms directly
select the most promising candidate node as representative,
avoiding traversing the sub-trie. Their design philosophy is to
simplify the election process by eliminating the ‘inefficient’
time and memory occupation at the cost of sacrificing a very
small compression ratio. Furthermore, the EAR-slow and the
EAR-fast algorithm preserve the structure information only
using an integer variable for each node. As a result, they can

achieve a well-balanced trade-off among the above five metrics.

Particularly we have the following contributions:

e We propose two sub-optimal algorithms based on EAR:

EAR-fast and EAR-slow, which preserve the structure
information attached in a single compressed trie to
reduce the need for secondary storage’, achieving long
recompression interval while approaching the optimal
compression ratio.

e The proposed incremental update algorithms avoid
traversing the sub-trie, thus simplifying the operations,
leading to a faster update speed.

The remaining parts of this paper are organized as follows.
Section II surveys the related work. Section III presents EAR
algorithm and its two derived suboptimal compression
algorithms. Section IV elaborates on our fast incremental
update algorithms. Extensive evaluation and the analysis over a
large-scale real data set are conducted in Section V, and finally
we conclude this paper in Section VI.

II. RELATED WORK

IRTF RRG [8] and IETF [9] have been working on the
routing scalability problem for years. Generally speaking, there
are two categories of solutions: the first category is Map-and-
Encap [10-15], which requires changing the routing
architecture and protocols; the second is FIB compression,
which is a local solution and needs no change to the existing
routing protocols. Our algorithms belong to the latter one,
and the representative papers in this category are [1], [5-7],
[16-17].

Trie-based algorithms are commonly used in FIB
compression, given its fast search speed and high update
performance [18]. The pioneer effort ORTC [1] worked on the
routing table and achieved optimal compression ratio. Its idea
is to traverse the entire sub-trie and select the most prevalent
next-hop nodes using two operations: ‘and’ and ‘union’.
However, traversing the entire sub-trie incurs long time. In
addition, ORTC does not preserve the structure information,
i.e., the relationships among the original trie nodes, and breaks
the original trie structure by creating many new nodes and
deleting many existing nodes. Consequently, it leads to
probability of some wrong update operation, such as ‘delete a
node which does not exist’ and ‘change a node without next
hop’. In order to purse the update function, ORTC has to add
additional data structures (secondary storage) to help remember
the structure information. Therefore, in [5], Yaoqing Liu et al.
added incremental update algorithm to ORTC by constructing
three additional tries to save the structure information.
Coordinating multiple data structures incurs complexity.

It is worthy to mention that the source code of ORTC
(named as ORTC-Draves in the rest of the paper for easy

5The details of second storage are illustrated in paragraph 2 of Related Work.

quoting) is inefficient and incomplete, and fails to cover the
case of NULL root node. To conduct a fair comparison, we re-
implement ORTC algorithm, named ORTC-Perfect, which has
both a better compression ratio and a lower computation (CPU
and memory) requirement than those of ORTC-Draves. We
also find that the update algorithm of ORTC-Draves’, which
was implemented in [5] using four tries, consumes too much
memory with redundancy and inefficiency, so we re-implement
the incremental update algorithm based on ORTC-Perfect
using two tries, which is much more efficient and is considered
a new version for a more accurate comparison.

In [6], Xin Zhao et al. proposed an algorithm (which is
called 4-level algorithm in this paper), enabling a flexible
choice for users, but it has some shortcomings: 1) the third and
the fourth level compression can only deal with non-routable
space case. The non-routable packets, which should be dropped
given no next-hop found, are forwarded anyway. We call this
phenomena roaming garbage in this paper. Our test on real
traffic trace shows that the proportion of the roaming garbage
traffic could be up to 0.31% and it covers 0.38% of the overall
IP address space; 2) the 4-level algorithm probably triggers the
‘routing table fluctuation’ problem, which will be illustrated in
Section IV.B.3. In [16], a patent technology (we call it patent
algorithm in this paper) proposed a compression algorithm,
which is simple and fast, but with poor compression ratio. In
[17], the binary trie was changed into the trigeminal trie, which
corresponds to the three-state properties of TCAM. Therefore,
a better compression ratio might be achieved. However, it is
limited to be used in TCAM only, which is an expensive
solution. What is worse, the update messages could induce
domino effect. Thus the algorithm is difficult to apply,
especially in current situation with frequent updates. To gain
better compression ratio, Qing Li et al. proposed an algorithm
by adopting suboptimal routing [7]. This could potentially
cause serious traffic congestion and the update performance is
quite questionable. Based on our initial investigation, it can
hardly guarantee an O(1) updating complexity [21].

Our work is also based on the trie, but with two major
improvements: 1) when manipulating the trie structure for
achieving compression, we keep the structure information; 2)
we do not traverse the whole trie to get the most prevalent node,
but directly elect the most promising one instead, thus saving
the compression time. To the best of our knowledge, this is the
first effort on balancing a multi-dimensional system
optimization for the routing table compression issue and our
approach strikes a good trade-off among compression ratio,
compression time, memory cost, fast incremental update, as
well as recompression interval.

III. COMPRESSION ALGORITHMS

A. Terms and Definitions

TABLE L TERMS AND DEFINITIONS.

Terms Definitions

Oldport the next-hop of a prefix in FIB before compression

Newport the next-hop of a prefix in FIB after compression

Insertport Fhe ngxt-hop of an update message in the operation of
insertion and changing

Oldport/Newport the next—hops of a prefix in FIB before and after
compression

Default-oldport the next-hop of the nearest and non-empty ancestor
node before compression

Default-newport the next-hop of the r}earest and non-empty ancestor
node after compression

The above terms will be used in this paper, and their
meanings are given in Table 1.

As shown in Figure 1, every node has a pair of next-hops:
Oldport/Newport. Newport is represented by the shape. For
convenience, three next-hops are introduced: solid ellipse, solid
rectangle, and solid triangle, representing the Newport of 1, 2,

and 3, respectively. For example, the shape of 4 is triangle,
pointing its Newport is 3. Oldport is represented by the number

in the node (such as 1 in m), and the hollow node (such as [2])
suggests that its Newport is 0 (There is no prefix in the node

after compression). For example, @ represented by 1/2,
indicating its Oldport is 1, and Newport is 2; is represented
by 2/0, indicating its Oldport is 2, and Newport is 0.

B. An Example of EAR

EAR and its two suboptimal algorithms all follow a process
that is similar to the election of a democratic society. Each
node has a next-hop, while each candidate has a vote. Actually,
any candidate’s next-hop has the opportunity to be selected as
representative. All the nodes which share the same next-hop
with the representative can be deleted. Therefore, in order to
achieve optimal compression (meaning that the compressed
routing table has the minimal number of prefixes), the most
popular next-hop should be chosen, in other words, should be
elected as representative. This is the rationale of EAR.

(a) trie I

(b) trie IT

(c) trie III
An example of EAR.

(d) trie IV
Figure 1.

We give an intuitive example for the EAR algorithm in
Figure 1. Figure 1(a) is original trie, and Figure 1(b) is the trie
after leaf-pushing (this technique was proposed by Srinivasan
et al. in [19]), which is a preparation of election; Figure 1(c) is
the trie after representative, and Figure 1(d) is the trie after
representative, which is also the ultimate result of EAR. In
contrast, traditional algorithms (such as ORTC, 4-level) do not
preserve Oldport and the hollow leaf nodes (such as B and D in
Figure 1(d)), causing missing structure information.

Election: Node A, B, C, and D are four ‘candidate’ nodes,
participating in election. Obviously, hop 2 (rectangle B and D)
should be elected as representative, thus node E is set to 1/2.

Representative: Node E executes its right of representative:
set the Newport of its supporters (node B and D) to 0. It means
that node B and D are set to 2/0. In other words, the Newport
of the winning voters (node B and D) is set to 0.

In this example, the original prefix number is 5 (only the
solid nodes are needed to be counted®), and the compressed
prefix number is 3, thus the compression ratio is 3/5.

This is the process of Election And Representative (EAR).
Different from traditional algorithms, EAR completely
preserves the trie structure information using Oldport/Newport.
The overhead is just an integer for each node, which is very
small. The significance of trie structure information is
highlighted during the update process. For instance, given an

SBecause the routing table size usually means the prefix number, which is
equal to the solid node number in the Trie.

update message: withdraw 11* (see Figure 1), it means node D
should be deleted. However, traditional algorithms will find
that D does not exist. To guarantee the correctness of update,
additional complicate work should be finished, such as a serial
of operations in the original trie. In contrast, EAR just needs to
set D to 0/1, remarkably reducing time and space.

C. Compression Algorithm

EAR and its two suboptimal algorithms all consist of two
basic operations, named ‘election’ and ‘representative’.

1) Election and Representative

‘Representative’ operation is executed after a successful
‘election’ operation. Those nodes participating in elections,
must satisfy the following requirements: they must be 1) solid
and hollow; 2) siblings (if a node has no sibling node, a
substitute must be created with the next-hop of 0/Default-
oldport); 3) elected representatives (if not, the point must be
traced to a leaf node in the sub-trie rooted at the unelected node,
then recursive election should be done step by step).

Election: Two or more nodes elect their common ancestor
node, under the constraint that no solid node appears in the
path from the candidate nodes to their common ancestor node.
The most prevalent next-hop will be elected as representative,
and the common ancestor’s next-hop will be replaced by the
most prevalent next-hop. If there is more than one prevalent
next-hop, election fails. In this case, the common ancestor’s
next-hop will be set to 0, and then the common ancestor will
participate in the next round of election.

Representative: After a successful election, the common
ancestor will exercise the right of being a representative: the
Newport of its supporters (those candidates which share the
same next-hop with the representative’s) is set to 0. In other
words, after representative, the Newport of all the winning
voters will be set to 0.

2) Atomic Equivalent Models of EAR Algorithm

TABLE IL NODE’S ATTRIBUTES.

single-node attributes (Category 1) two-node atm;))“ LIS
the first the second
attribute attribute
solid hollow has got no share the same | with different
brother | brother hop hops

As shown in Table II, in order to cover all the possible
situations, candidate nodes’ attributes are classified into two
categories. According to these attributes, all atomic election
models can be enumerated.

Category 1: Single-node election. In this case, a candidate
node has no brother. If the node is solid, model 1 emerges. If
the node is hollow, model 2 emerges.

Model 1: As shown in Figure 2(a), node A has no brother.
According to the requirements of the election, at least two
nodes are needed, so node B is created with 0/Default-oldport.

Model 2: As shown in Figure 2(b), the election and
representative process is similar to model 1.

Category 2: According to the two-node attributes, four
models emerge.

Model 3: As shown in Figure 2(c), A is solid and B is
hollow. Node A and the sub-trie rooted at node B participate in
the election. The most prevalent next-hop will be elected.

Model 4: As shown in Figure 2(d), both A and B are
hollow. The two sub-tries rooted at node A and B participate in
the election. As same as Model 3, the most prevalent next-hop
will be elected.

Model 5: As shown in Figure 2(¢), both A and B are solid,
and have the same Newport, so the common Newport is elected
as the Newport of node C.

Model 6: As shown in Figure 2(f), both A and B are solid,
but have different Newports. In this case, just set C’s Newport
to 0.

3 3 O
A .("\. T
o o tm o B "o

(a) Model 1 (b) Model 2 (c) Model 3

(0

A B
@ @ A B a A B
(d) Model 4 (e) Model 5 (f) Model 6

Figure 2. EAR’s atomic equivalent models.

These six models have covered all the election situations.
In order to achieve optimal, a second election should be
conducted to elect any one of the most prevalent next-hop for
the failed election. In this way, a trie can be compressed into an
optimal one.

3) Atomic Equivalent Models of EAR-slow Algorithm

As mentioned above, we refine EAR to EAR-slow and
EAR-fast, respectively, by directly electing the most promising
candidate node, so as to reduce the computational complexity.
EAR-slow is a bridge to EAR-fast, and experimental results
show that its sacrificed compression ratio is only 0.7%,
compared with ORTC-Perfect.

The differences between EAR and EAR-slow lie in Model
3 and Model 4. Let us focus on the Model 3 in Figure 2. The
two models include the sub-trie rooted at B, thus this election
costs too much time. However, there are only two election
results: A is elected or no node is elected. Therefore, Model 3
is changed into Model 3’ (see Figure 3(a)): if the Newport of A
does not appear in the sub-trie rooted at B, election fails and
node C is set as Oldport/0; otherwise, node C’s Newport is set
to A’s Newport.

AB
AB o = - CA\ A
Ah% @A Beg AB

(a) Model 3’ (b) Model 4’

Figure 3. EAR-slow’s atomic equivalent models.

Similarly, the model 4 (see Figure 2(d)) needs to traverse
two sub-tries. However, it probably occurs that no node is
elected. Therefore, Model 4 is changed into Model 4’ (see
Figure 3(b)): the two sub-tries rooted at node A and B
participate in the election. In this model, just set C’s Newport
to 0. In addition, the second election is avoided, thus only one
post-order traversal is needed, so does EAR-fast.

4) Atomic Equivalent Models of EAR-fast Algorithm
ORTC, EAR and EAR-slow algorithm all create many new

additional nodes, wasting too much time, and breaking the trie
structure. The rationale of EAR-fast is to keep the original trie
structure unchanged during compression based on EAR-slow.
In this way, no node is needed to be created, so as to accelerate
compression and support fast incremental update. The cost is
merely a 1.5% loss in compression ratio.

The differences between EAR-fast and EAR-slow lie in the
first two models. As shown in Figure 3, node A has no brother,
so A’s brother is created with 0/Default-oldport. Then node A
and its brother participate in election. In order to maintain the
trie structure, so whatever the Newport of A’s brother is, A’s
brother is elected by EAR-fast. At this moment, there are two
situations: firstly, B’s Newport is 0, then set B’s Newport to
Default-oldport, this is the model 1’ (see Figure 3(a)); secondly,
B’s Newport is nonzero, no change occurs, this is the model 2’
(see Figure 3(b)).

\\BI::> \\\B % |:“> %
27 [2 A
(a) Model 1° (b) Model 2°

Figure 4. EAR-fast’s atomic equivalent models.

The above statement seems complicated, just to give a
detailed and deep comprehension of the two models. Actually,
as same as EAR-slow, EAR-fast only needs one post-order
traversal. Because no new node is created, the compression
speed can be greatly improved. The pseudo code of EAR-fast
algorithm is shown below, and that of EAR-slow algorithm is
similar and thus omitted.

Algorithm 1 EAR-fast compression algorithm

FUNCTION compress_subopt_fast(p)
call compress_subopt_fast(l)
call compress subopt_fast(r)
switch()
{/* d_new represents Default-newport */
case: only ris empty
rep(l,d_new)
case: only | is empty
rep(l,d_new)
/*the following cases: both | and r are not empty */
10: case: 1.Newport=r.Newport
11: p-Newport<—1Newport
12: case: only l.Newport is 0
13: if call rep(l,r.Newport)>0 then p.Newport<—r.Newport
14: else p.Newport<—0
15: case: only r.Newport is 0
16: if call rep(r,l. Newport)>0 then p.Newport<—1Newport
17: else p.Newport<—0
18: default: p.Newport<—0
19: }
END FUNCTION
FUNCTION rep(p, port) /*the function of representative®/
20: if p-Newport=0 then return rep(l,port)+rep(r,port)
21: else if p.Newport=port then
22: p-Newport<0
23: return true
24: else return false
END FUNCTION

VRN H LN

5) Mathmatical Proof of the Equivalent Models
To guarantee the correctness of the ten (six EAR’s models,
two EAR-slow’s models, and two EAR-fast’s models)
equivalent models, we derived mathematical proofs. Due to
space limitation, the details are left in [21].

6) Computational Complexity
Here the computational complexities of EAR-slow, EAR-
fast and ORTC are computed. The related terms and definitions
are shown in Table III.

TABLE III. TERMS AND DEFINITIONS
[Terms [Definitions Terms |Definitions
n the number of all the nodes d the time cost of visiting a node
m the number of the missing nodes |e the time cost of creating a new node
c the number of the router ports r the space cost of a trie node
K the space cost of a next-hop node |f the time cost of comparing two
numbers

Because EAR-fast and EAR-slow traverse the trie once,
their time complexities are both O(n). EAR-fast does not create
missing node, while EAR-slow does, so the space complexity
of EAR-fast is O(n), and that of EAR-slow is O(n+m).
ORTC’s complexity is computed below:

a) Time complexity.

T(pass1l) =(n+m)*d+m=xe

T(pass2) = YJjti«j+f = SJyhisjf=cxf«(n+m)

T(pass3) = Ymixd =Y ixd =+/cxd * (n+m)

T(ORTC) = T(pass 1)+ T(pass 2) + T(pass 3)
=(n+m)xd+mx*e+cxfx(n+m)
++cxd*(n+m)

T(ORTC) =0(n+m)xd+m=xe+cx*f*(n+m)
+Vcxd* (n+m)) =0(c*(n+m))

b) Space complexity.

S(pass1) = (n+m) *r

S(pass2) = (n+m)*r + LM ixr = (n+m)xr+ T Rixr
=m+m)*r+vJex(m+m)*r
=@(c+1)*(m+m)*r

S(pass 3) = S(pass 1)

S(ORTC) = max {S(pass 1),S(pass 1),S(pass 1)}
= S(pass2)=(c+1)*(n+m)*r

O(ORTC) = 0((We+ 1) *(n+m) *1) = 0(c * (n+m))

In summary, the computational complexities of the three
algorithms are shown in Table IV.

TABLE IV. COMPUTATIONAL COMPLEXITY
ORTC EAR-slow EAR-fast
Time complexity | O(c * (n +m)) O(n+m) 0(n)
Space complexity | O(v/c * (n +m)) O(n+m) 0(n)

IV. FAST INCREMENTAL UPDATE ALGORITHM

A. Updating Metrics While Applying FIB Compression

When an update message arrives, incremental update runs
in partial range as fast as possible, and redundancy is allowed.
Then how to evaluate the performance of incremental update?
Two metrics are defined: TTF and recompression interval.

Time-to-fresh (TTF) means the average computing time to
update an update message. It indicates a router’s sensitivity to
the changes of its network. The smaller the TTF is, the more
sensitive the router is. When no compression algorithm is
adopted, TTF is minimal, and is regarded as the ground-truth.
Furthermore, TTF-ratio is defined as TTF/ground-truth.

During the recompression of routing table, routing lookup
cannot be conducted based on the newest FIB. The computing
time of recompressing the trie is called the ‘recompression
time’, and the period between the two adjacent events of
recompressing the whole routing table is called ‘recompression
interval’. Our goal is short recompression time, i.e., long
recompression interval.

With regard to TTF, in order to achieve fast update, we
should confine the scope of updates, and visit as few nodes as
possible. All the algorithms in this paper are confined in the
sub-trie rooted at the updating node. Updating a sub-trie is
equivalent to compressing a sub-trie. Therefore, the faster
compression algorithm runs, the faster update algorithm works.
It is clear that EAR-fast is the fastest, followed by EAR-slow
and then ORTC-Perfect. This conclusion is consistent with the
subsequent experimental results.

With regard to the second metric, the intuition is that the
better the compression ratio is, the longer the recompression
interval will be. However, the recompression interval of our
two suboptimal algorithms is longer than that of ORTC, the
reason is as follows: recompression interval is mainly
determined by the changes degree of the structure information
mentioned previously, which largely affects the increase of the
incremental updated nodes.

EAR-fast

ORTC—Perfect

Original Trie EAR-slow

Vithdraw D
Announce B:1

Figure 5. The update process of the three algorithms.

To be clearer, an example is given in Figure 5. The four
tries above the dotted line are the original trie and compression
results of the three compression algorithms. It can be seen that
ORTC-Perfect changes the trie structure most, followed by
EAR-slow, and EAR-fast does not change the trie structure at
all. Suppose two update messages arrive: withdraw D and
announce B:1. The incremental update results of the three
algorithms are shown under the dotted line of Figure 5. After
update, the solid node numbers of ORTC, EAR-slow and EAR-
fast are 5, 3 and 2, respectively. This example suggests that, for
the increase speed of solid nodes, EAR-fast is the slowest,
followed by EAR-slow and then ORTC-Perfect. This
conclusion is also consistent with the subsequent experimental
results.

B. Update Algorithm

1) Theorems

Generally, each update message, which changes the RIB,
changes the FIB. However, by compression algorithm, some
update messages change RIB, but do not change FIB as long as
the RIBs are equivalent before and after compression.
Therefore, we can reduce the update interruption. The best
choice is to set some judgments in advance. But it is not an
easy task, because careless judgments will cause wrong results.
For this purpose, several theorems and deductions are given to
guarantee the correctness of the judgments.

We first define some items: 1) non-party: for example, in
Figure 2(a), the new born node B belongs to non-party. When

update occurs, the next-hop of these nodes will follow the
nearest solid ancestor’s; 2) ruling-party and out-party: as
shown in Figure 2(c), node A and B participate in election, in
the case that the Newport of A appears in B’s sub-trie, A is
elected and becomes ruling-party, and B becomes out-party.

Definition 1: Single-node update. When an update message
arrives, if zero or one node needs to change, we call it single-
node update. This is the ideal update. If no node needs change,
it is better than not using compression algorithm. Obviously,
the leaf node’s update belongs to single-node updates.

Theorem 1: When a node is going to update, if non-party’s
next-hop does not change, the election result will not change,
either. In this case, only Oldport needs to be updated. This
belongs to single-node update.

Proof: Firstly, suppose a node is updated, the premise is that
the next-hop of non-party does not change. The next-hop of
ruling-party and out-party does not change, either. Therefore,
the election result should not change. Then only the Oldport of
the update node should change, so this belongs to single-node
update.

Corollary 1 (Insertion): After the insertion operation, the
Newport of non-party changes into Insertport from Default-
oldport. Therefore, if and only if Insertport is equal to Default-
oldport, it belongs to single-node update.

Corollary 2 (Deletion): After the deletion operation, the
Newport of non-party changes into Default-oldport from
Oldport. Therefore, if and only if Oldport is equal to Default-
oldport, it belongs to single-node update.

Corollary 3 (Changing): After the changing operation, the
Newport of non-party changes into Insertport from Oldport.
But the premise of changing is that Oldport is not equal to
Insertport. Therefore, the update of a non-leaf node does not
belong to a single-node update.

2) Routing Update Operation
The premise of incremental update is that the update range
is confined in the sub-trie rooted at the update node. There are
two kinds of update messages: announcement and withdrawal,
which can be further divided into ‘insertion’, ‘changing’ and
‘deletion’ operation. Our two incremental algorithms are
divided into three steps:

a) Lookup the prefix in the trie: When an update
message arrives, update algorithms first locate the prefix in the
trie. Sometimes it does not exist: 1) if the update message type
is ‘announcement’, update algorithm must create a path to the
update node; 2) otherwise, it means deleting a node which does
not exist, algorithms end.

b) Refresh the update node: The node should be updated
according to the update operation. If it belongs to single-node
update, algorithms end; otherwise, our algorithms update the
sub-trie. This step varies with different operations.

¢) Update the sub-trie: The process of updating a sub-
trie is to compress the sub-trie using the corresponding
compression algorithm. This step requires much more time
than the first two. Therefore, the faster compression algorithm
runs, the faster update algorithm works.

The pseudo code of EAR-fast update algorithm is shown
below, and that of EAR-slow update algorithm is similar and
thus omitted.

Algorithm 2 update algorithm

Lookup the prefix in the trie
swith(operation)

case “insert”:
if(Insertport=d_old)
Oldport <d_old
return;
else Oldport —d_old
Newport —d _old
call compress_subopt fast(sub-trie)
11: case “delete:

/* d_old represents Default-oldport */
/*single-node update*/

PR R

— O

12: if(Oldport=d_old) /*single-node update*/
13: Oldport <0

14: Newport<d_old

15: return;

16: else Oldport ~—0

17: call compress_subopt fast(sub-trie)
18: case “change”:

19: Oldport < Insertport

20: Newport<Insertport

21: call compress_subopt fast(sub-trie)

22: }

3) The Problem of Root Update

In the process of data mining of update packets in 18
months, we found that the root node updates for many times.
For 4-level compression algorithm, if the next-hop of the root
node is changed from empty to nonzero, 4-level is degraded to
2-level compression; similarly, it could also be upgraded to 4-
level from 2-level. This is the previously mentioned ‘routing
table fluctuation’ problem of 4-level algorithm.

The problem of root update is not mentioned before as far
as we know. The ideal objective is no change to the routing
table. For this purpose, a variable named ROOT-PORT is set in
our algorithm. If the root node’s Newport is 0, set ROOT-
PORT to -1; otherwise, set ROOT-PORT to the root node’s
Newport. During the compression, the Newport of the root
node is set as -1 regardless of the Newport of the root node.
During the update, if the type of the root update is ‘withdrawal’,
set ROOT-PORT to -1, otherwise, set ROOT-PORT to the
update message’s next-hop.

When a router conducts routing lookup and finds that the
next-hop is -1, it forwards the packet as follows: if ROOT-
PORT is -1, it just drops the packet; otherwise, forwards it to
the next-hop of ROOT-PORT. Therefore, when receiving a
root update message, our algorithm just modifies the value of
ROOT-PORT, and no additional operation is needed. In this
way, the ideal objective is achieved.

V. EXPERIMENTAL RESULT

A. Experimental Settings

1) Data Set

The data set is taken from www.ripe.net [20] at RIPE NCC,
Amsterdam, which collects default free routing updates from
peers. In order to objectively evaluate the performance of the
six compression algorithms which we choose as representatives,
the RIB packets at every 8:00 on January Ist from 2002 to
2011 are selected.

With regard to the update experiments, two data sets are
selected. Firstly, to measure TTF-ratio, the update data from
2011.01.01/08:00 to 2011.01.02/08:00 is selected. Secondly, to
evaluate the recompression interval, the update data of the
recent 18 months from 2009.12 to 2011.05, which is about 40G

bytes, is downloaded and parsed.

2) Computer Configuration

Our experiments have been conducted on a windows XP
sp3 machine with Pentium (R) Dual-Core CPU
5500@?2.80GHz and 4GB Memory.

B. Experiments on FIB Compression

To evaluate the space overhead of the six algorithms, we
plot memory cost in Figure 6. Memory cost in this paper refers
to the maximal memory overhead of the created tries during the
compression process. The results show that memory cost of
EAR-fast and the patent is the least, followed by EAR-slow
and 4-level, and ORTC-Draves needs the most memory.

—=&— ORTC-Perfect
90+ —o— EAR-slow e
—a— EAR-fast el
75 —v— Patent A
—<— ORTC-Draves d
— —»— 4-level A
< 60- s
$
2 45
g
=
L
= 304
15+
0 T T T T T T T T T 1
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year
Figure 6. Memory cost of the six algorithms.
240+ —=— ORCT-Perfect| Pm—
—o— EAR-slow - .
—A— EAR-fast /‘
2004 /
—vw— Patent / ¥
—<— ORTC-Draves //‘ i
160 —»— 4-level ,’

1201

801 =

Compression Time(millisecond)

40

0 v T v T v T v T v T v T v T v T v T v 1
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

Figure 7. Compression time of the six algorithms.

Figure 7 shows the compression time of the six algorithms.
Compression time means the computing time of a complete
compression. The results show that the patent algorithm is the
fastest, followed by EAR-fast and ORTC-Draves is the slowest.
The compression time of EAR-fast is only 9.1% of ORTC-
Draves and 9.8% of ORTC-Perfect. The compression time of
EAR-slow is 26.6% of ORTC-Draves and 28% of ORTC-
Perfect.

The compressed FIB size over the original table size is
shown in Figure 8. The top curve is the original FIB size
(which is the raw routing table size without compression), and
the other curves are the FIB size after compression by the six
compression algorithms. It can be observed that the patent
algorithm and 4-level algorithm are relatively inefficient. The

curves of EAR-fast, EAR-slow, ORTC-Draves and ORTC-
Perfect almost overlap. At 8:00 on 2011.01.01, the
uncompressed FIB size is 348804, and the compressed FIB
sizes of patent, 4-level, ORTC-Draves, EAR-fast, EAR-slow
and ORTC-Perfect algorithm are 208564, 152101, 146268,
146152, 142962, and 141037, respectively.

350. Ok =— Original
—&— ORCT-Perfect]
—a— EAR-slow
300. Ok —v— EAR-fast
Patent
—»— ORTC-Draves|
. 250. 0k4 | —o— 4-level
; 4
= 200. Ok
150. Ok
100. Ok~
50. 0k T 1 T v T T T T T Tt 1T T T

—T —
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Year

Figure 8. FIB size after compression over 10 years.

0.80 —&— ORCT-Perfect]
g) — —e— EAR-slow
m 0.751 V —A— EAR-fast
% 0.70 1 ‘ —w— Patent
T YV7 —<4— ORTC-Draves
= 1 \v > 4-level
& 0.65- » v
N .
8 .
s 4
g 0.60
5 .
S 0.55-
2]
©
@ 0.50
C 4
Ke]
@ 0.45+
o .
g 0.40-
S .
035 T T T T T T T T T 1
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Year
Figure 9. Compression ratio of the six algorithms.

Finally, the compression ratios of the six algorithms are
plotted in Figure 9. Overall, the compression ratio becomes
better and better as the routing table size increases. ORTC-
Draves is optimal in 2009 and 2010, because the root nodes of
these two years are not empty. However, in 2011, the root node
is empty, and the compression ratio of ORTC-Draves is
inferior to that of EAR-fast, EAR-slow and ORTC-Perfect. On
average, the sacrificed compression ratios of EAR-slow and
EAR-fast are only 0.7% and 1.5% compared with ORTC-
Perfect.

According to the above analyses, the conclusions of
compression experiments can be drawn as follows:

e The compression ratio, time cost and memory cost of
ORTC-Perfect are all better than those of ORTC-
Draves.

e The patent algorithm is simple. Although its time and
space cost are minimal, the compression ratio is poor.

e EAR-fast and EAR-slow are superior than 4-level in
compression ratio, time and memory cost.

e The compression ratios of EAR-fast and EAR-slow are

both very close to that of ORTC-Perfect. But their time
and memory costs are much better than ORTC-Perfect.

C. Experiments of Fast Incremental Update

The two metrics for update are evaluated by two
experiments: TTF and recompression interval. The x-axis of
Figure 10~13 means the time when the update messages arrive.

For example, 201010231945 means the time of
2010.10.10/23:19:45.

1) TTF and TTF-ratio

Among the six compression algorithms, the patent

algorithm is straightforward, ORTC-Draves is not perfect, and
4-level algorithm has roaming garbage and routing table
fluctuation problem. Therefore, with regard to the incremental

update algorithm, only three algorithms are left for comparison:

ORTC-Perfect, EAR-slow and EAR-fast.

4-
—— EAR-fast
- ---EAR-slow
—— ORTC-Perfect]
34
1]
s
~
3
=
24
1 T T T T T T T T T T T T T T T T T T
D DR D D DD D DD DD QDD DD
K7 N NP e SR
S

Figure 10. TTF-ratio comparison on average.

200+

-

@

o
1

160
1401
120+
100

—#— ORTC-Perfect|
—@— EAR-fast
—A— EAR-slow
—¥— ground

Accumulated ComputionTime(millisecond)

S.A\ P O D S B)
NG (\&e‘k@\@ N RGO
DD

Figure 11. Accumulated time comparison in the statistical worst case.

Figure 10 shows the TTF-ratio of the three update
algorithms. It can be observed that the TTF-ratio of EAR-fast
ranges from 103.92% to 115.14% with a mean of 12.75%, and
the TTF-ratio of EAR-slow is between 103.92% and 123.09%
with a mean of 121.21%. In contrast, TTF-ratio of ORTC-
Perfect is between 172.74% and 386.30% with a mean of
263.68%. This is the usual case: for TTF-ratio, EAR-fast is a
little better than EAR-slow, and much better than ORTC-
Perfect.

Twenty five intervals, each lasting for one minute, are
selected as the statistical worst case, and the results are shown

in Figure 11. Y-axis represents the accumulated update time.
This figure shows the TTF of the two suboptimal algorithms
are 240.95% and 248.04% of the ground-truth, while that of
ORTC-Perfect is 6204.34% of the ground-truth. This suggests
that in the worst case, EAR-slow and EAR-fast perform much
better than ORTC with regard to incremental update.

In conclusion, with regard to TTF, EAR-fast and EAR-slow
are very close to the ground-truth, while TTF of ORTC-Perfect
is much larger than the ground-truth.

2) Recompression Interval

Suppose the FIB size is the same as the memory size on a
line card on 2009.12.01/08:00, which is regarded as the
threshold. In order to test the recompression interval of the
three update algorithms, we plot the size of the routing table
updating from 2009.12.01/08:00 to 2011.05.01/08:00. In
Figure 12, the top curve, which is called raw-fib, is the size of
raw FIB without compression. This figure shows ORTC-
Perfect recompresses 13 times while EAR-slow and EAR-fast
only 2 times in the 18 months. This indicates that although
EAR-slow and EAR-fast do not achieve the optimal
compression, the increase of FIB size is much slower than
ORTC-Perfect, for the reason that the recompression interval is
mainly determined by the changes degree of the structure
information, and ORTC-Perfect changes the structure more
than EAR-slow and EAR-fast, the detailed illustration is
provided in Section IV.A.

Given recompressing a routing table and downloading it
from RIB to FIB in a router’s line-card will take a relatively
long time (usually up to several milliseconds). During this
period, the search engine will be forced to suspend packet
lookup if without secondary backup, resulting in packet
forwarding being delayed for a while. When compression
algorithm is adopted, it is highly desirable to prolong the
recompression interval. Thus we evaluate the recompression
time over 18-month update messages in Figure 13. This figure
shows the recompression time of EAR-slow and EAR-fast
algorithm is much smaller than that of ORTC-Perfect, which
indicates shorter suspending time of routing lookup.

Finally, Figure 14 shows the performance of four’ selected
algorithms in six metrics: compression ratio, memory cost,
compression time, TTF on average (TTF-average), TTF in the
statistical worst case (TTF-worst case), and recompression
interval. To achieve ‘the smaller the y-axis value is, the better
the performance will be’, recompression interval is replaced by
the average number of recompression in nine months (# of
recompression). All the six metrics of ORTC-Perfect are set to
1, and those of the other algorithms are zoomed in proportion.
As can be seen from Figure 14, the compression ratios of EAR-
fast and EAR-slow are close to the optimum, and they are
much better than ORTC-Perfect in other five metrics.
Furthermore, EAR-fast has a better balanced trade-off.

"Given the compression of patent algorithm is poor, and 4-level algorithm
cannot achieve better performance than ORTC-Draves and ORTC-Perfect
algorithm but changing the forwarding behavior, thus they are ignored in this
figure.

o 35—
o
R e
%3 P
© 25— — /;ﬂ’ﬁ
o e
£ol / ——— ORICRurfect
/ raw-fib
———— EAR-slow
15 ———— EAR-fast
— - tireshod
1 T T T
0

Time Start:200912011600 End:201106292204

Figure 12. The growing stability of the FIB size with recompression over a continous time span of 18 months.

BZZ2 ORTC-Perfect
EAR-slow
B EAR-fast

Re-compress Time(microsecond)

Figure 13. Recompression time.

BE== ORTC-Draves
B ORTC-Perfect
EAR-slow

EAR-fast

Value

compression memory compression TTF-average TTF-worst #of
ratio cost time case re-compression

Metrics

Figure 14. The performance of the four algorithms in six metrics®.

VI. CONCLUSION

Aiming at supporting fast update while achieving high
compression ratio for the ever-increasing routing tables, we
have proposed two sub-optimal FIB compression algorithms,
EAR-slow and EAR-fast, which keep the structure
information, and support fast incremental updates, while
decreasing the computational complexity. In addition, the
recompression interval is remarkably prolonged, which will
minimize the impact on packet forwarding. We have released
the source codes including both our algorithms and other
compared algorithms in [21].

ACKNOWLEDGMENTS
We would like to thank Xin Zhao and Yaoqing Liu for

8 The bars for TTF-worst case have only the significance of relative
comparisons, indicating EAR-slow and EAR-fast outperform ORTC much
better in the worst case than in average.

sharing their codes with us. We would like to thank the
anonymous reviewers for their thoughtful suggestions.

(1]

(2]

(3]
(4]

(3]

(6]
(7]

(8]
[9]
[10]
(1]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

R.Draves, C.King, S.Venkatachary, and B.D.Zill. Constructing
Optimal IP Routing Tables. In Proc. IEEE INFOCOM, 1999, pp. 88—
97.

X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang, IPv4
Addre-ss Allocation and the BGP Routing Table. ACM SIGCOMM
Computer Communication Review, vol. 35, pp. 71-80, January 2005.
AS6447 BGP Routing Table Analysis. http://bgp.potaroo.net/as6447/.
D. Meyer, L. Zhang, and K. Fall. Report from the IAB Workshop on
ro-uting and addressing. Internet draft. September 2007.

Yaoqing Liu, Xin Zhao, Kyuhan Nam, Lan Wang, Beichuan Zhang.
Inc-remental Forwarding Table Aggregation. In Proc. IEEEE
GLOBECOM, 2010.

X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the Aggregatability of
Ro-uter Forwarding Tables. In Proc. IEEE INFOCOM, 2010.

Qing Li, Dan Wangy, Mingwei Xu, Jiahai Yang. On the Scalability of
Router Forwarding Tables: Nexthop-Selectable FIB Aggregation. In
Pr-oc. IEEE INFOCOM, 2011.

IRTF Routing Research Group.
http://www.irtf.org/charter?gtype=rg/&group=rrg.

IETF Global Routing Operations (GROW).
http://www.ietf.org/dyn/wg/charter/grow-charter.html.

S. Deering. The Map & Encap Scheme for Scalable IPv4 Routing
with Portable Site Prefixes. Presentation, Xerox PARC, March 1996.
R. Hinden. New Scheme for Internet Routing and Addressing
(ENCAPS) for IPNG. RFC 1955, 1996.

D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID Sep-
aration Protocol (LISP). http://tools.ietf.org/html/draft-farinacci-lisp-
12. Internet draft. March 2009.

W.Herrin. Tunneling RouteReduction Protocol (TRRP).
http://bill.herrin.us/network/trrp.html.

D. Jen, M. Meisel, D. Massey, L. Wang, B. Zhang, and L. Zhang.
APT: A Practical Tunneling Architecture for Routing Scalability.
Technical Report 080004, UCLA, 2008.

R. Whittle. Ivip (Internet Vastly Improved Plumbing) Architecture.
draft-whittle-ivip-arch-02, August 2008.

B. Cain. Auto aggregation method for IP prefix/length pairs.
http://www.patentgenius.com/patent/6401130.html. June 2002.
Heeyeol Yu. A memory- and time-efficient on-chip TCAM
minimizer for IP lookup. DATE '10 Proceedings of the Conference on
Design, Aut-omation and Test in Europe2010.

Miguel A. Ruiz-Sanchez, Ernst W. Biersack, Walid Dabbous. Survey
and Taxonomy of IP Address Lookup Algorithms. Network, IEEE.
2001

V. Srinivasan and G. Varghese. Fast Address Lookups using
Controlled Prefix Expansion. Proceedings of ACM Sigmetrics’98, pp.
1-11, June 1998.

RIPE Network Coordination Centre.
http://www.ripe.net/data-tools/stats/ris/ris-raw-data.

Routing Table Compression and Update Website.

http://s-router.cs.tsinghua.edu.cn/~yangtong/.

