

*Corresponding author: liub@tsinghua.edu.cn.
Others: yangtongemail@gmail.com, zhangting_825@yahoo.cn, zhangshenjiang
@gmail.com. Supported by NSFC (61073171, 60873250), Tsinghua University
Initiative Scienti�c Research Program, the Specialized Research Fund for the
Doctoral Program of Higher Education of China (20100002110051).

Constructing Optimal Non-overlap Routing Tables
Tong Yang, Ting Zhang, Shenjiang Zhang and Bin Liu*

Dept. of Computer Science and Technology, Tsinghua University, Beijing China

Abstract—The size of routing tables has been growing rapidly,
while the link transmission speed of Internet backbone has
increased up to 100Gbps commercially and towards 400Gbps
Ethernet for laboratory experiments. In order to alleviate the
pressure from both the huge large routing table and very high
interface speed, ISPs are trying to find ways to compress the
table while striving to design a more powerful lookup engine. To
address this issue, we propose an algorithm, named Optimal
Non-overlap Routing Table Constructor (ONRTC), to compute
an equivalent routing table with a minimal number of prefixes
under the constraint that all the prefixes are not overlapped.
Experimental evaluations show that, for large backbone routing
tables, the ONRTC algorithm requires only about 71% of the
original number of prefixes. We release ONRTC’s source code in
[10].

I. INTRODUCTION
Internet has maintained a rapid growth for years, which

brings two main issues: a) due to a roughly 15% [1] increase
per year of routing table size, ISPs struggle to suppress the
table growth, so as to further postpone the requirement for
upgrading the infrastructure; b) to handle hundreds of gigabit-
per-second traffic, the backbone routers must be able to
forward hundreds of millions of packets per second, thus
bringing huge pressure to routing lookup.

Current solutions to address these issues can be divided into
two categories: the first category only strives to solve the
routing table growth problem, while the second only focus on
the routing lookup. ORTC [2] and 4-level [3] algorithm etc.,
belong to the first category, while the [4-8] belong to the
second.

An ideal goal is to achieve both the good routing table
compression and the fast packet lookup. To achieve this, a big
obstacle lies in the prefix overlap, due to the introduction of
CIDR. Prefix overlap refers to some prefixes are a part of
others. This brings many difficulties when operating routing
lookup, especially when TCAM-based solution is adopted. A
detailed analyze is given in the following.

1) Layout in TCAM: Ternary Content Addressable
Memories (TCAMs) [6] are fully associative memories that
allow a “don’t care” state to be stored in each memory cell in
addition to 0s and 1s. One TCAM access can finish one
routing lookup operation. Due to the overlap, prefixes must be
ordered by the prefixes length when being stored in TCAM
chips. Meanwhile, a priority encoder is indispensible.

2) Handling Update: when updates occur, due to the
prefix overlap, many prefixes might need to move, which is
called domino effect in this paper. Although some algorithms
manage to resist this kind of domino effect, but redundancy
will be introduced.

3) Power Consumption: the main shortcoming of TCAM
is its high power consumption. Partitioning the routing table
and fitting them into TCAM’s buckets is an effective solution
to save power. Because only one partition of TCAM works for
each packet lookup, thus the power consumption can be
significantly reduced. There are several partition algorithms,
such as ID-bit partition [6, 7] and sub-tree partition [8]. ID-bit
partition cannot split the table evenly. Sub-tree partition works
better, but it will introduce redundancy.

If the prefix overlap is eliminated, these issues of TCAM-
based scheme can be well addressed: 1) prefixes can be stored
in TCAM arbitrarily; 2) the priority encoder in TCAM is no
longer needed. This not only reduces hardware cost, but also
decreases the TCAM lookup latency; 3) domino effect will be
avoided; 4) TCAM partition can be strictly even without
redundancy.

Therefore, overlap elimination is very important. There are
several approaches to reduce or eliminate overlap, such as [4]
and [5]. In [4], the routing table is divided into two parts: the
overlapping part and the non-overlapping part. This approach
can only reduce the number of overlapped prefixes, but cannot
totally avoid the overlap. As far as we know, only the leaf-
pushing algorithm proposed in [5] can totally eliminate the
prefix overlap. Unfortunately, leaf-pushing algorithm causes
routing table expanding too much to be tolerant.

We propose ONRTC algorithm, which constructs optimal
non-overlap routing tables. Specifically, we achieve the
following major contributions:

• We propose ONRTC algorithm as well as its
incremental update algorithm.

• Extensive experiments on twelve real backbone routing
tables and an 18-month long real update data are
conducted to evaluate the performance of ONRTC.

The remaining parts of this paper are organized as follows.
Section II surveys the related work. Section III presents
ONRTC algorithm and Section IV illustrates its fast
incremental update algorithm. The mechanism of routing
lookup based on TCAM is described in Section V. Section VI
conducts extensive experiments over a large real data set, and
finally we conclude our paper in Section VII.

II. RELATED WORK
As mentioned above, two problems are involved in this

paper: 1) routing table scalability; 2) fast routing lookup.
Some solutions focused on the routing table scalability

problem by using Forwarding Information Base (FIB)
compression. Draves et al. proposed the most famous ORTC
algorithm [2] to construct optimal IP routing tables. In [3], Xin
Zhao et al. presented 4-level algorithm at the cost of changing
the forwarding behavior of routers.

IEEE ICC 2012 - Next-Generation Networking Symposium

978-1-4577-2053-6/12/$31.00 ©2012 IEEE 2884

With respect to routing lookup, TCAM has been widely
used, and the typical papers are CoolCAMs [6], Kai’s TCAM-
parallel lookup algorithm [7] and Dong’s TCAM-cache
algorithm [8]. But these solutions do not eliminate overlap,
thus face a lot of challenges during the TCAM lookup and
update, such as redundancy introduction, domino effect, etc.

Therefore, if overlap is eliminated, the performance of
TCAM-based solution will be significantly improved. In [4],
the routing table is divided into two parts: the overlapping part
and the non-overlapping part. This approach can only reduce
overlap. The controlled prefix expansion algorithm [5]
proposed a disjoint tree by using leaf-pushing. However, its
massive new born prefixes make it impractical to the current
routers and have to control the prefix expansion, which doesn’t
eliminate overlap totally. Therefore, we proposed ONRTC to
construct optimal non-overlap routing tables.

III. ONRTC ALGORITHM

A. Terms and Definitions
The following terms will be used in this paper, so their

definitions are given in Table I.
TABLE I. TERMS AND DEFINITIONS

Terms Definitions
FIB size the number of FIB entries
Oldport the next hop of an entry in FIB before compressed
Newport the next hop of an entry in FIB after compressed

Insertport the next hop of the update message in the operation of
insertion and changing

Default-oldport the next hop of the nearest and non-empty ancestor
node before compressed

Oldport/Newport the next hop of a prefix in FIB before and after
compression

As shown in Figure 1, each node has two next hops:
Oldport/Newport. Newport is represented by the shape,
Oldport is represented by the number in the node (such as 0 in

), and the hollow node (such as) means that its Newport
is 0. For convenience, three next hops are introduced: solid
ellipse, solid rectangle, and solid triangle, representing the
Newport of 1, 2, and 3, respectively. For example, the shape of

 is triangle, so its Newport is 3; is represented by 0/0,
indicating its Oldport is 0, and Newport is 0.

B. ONRTC Algorithm
1) An Example

a) The original trie b) the compress trie compressed by ONRTC

Figure 1. An example of ONRTC.

In order to make a clear picture of ONRTC algorithm, an
example is given in Figure 1. Figure 1(a) is the original trie,
and Figure 1(b) is the compressed trie. In this paper,
compression means the number of solid node (FIB size)
decreases, because usually only solid nodes needs to be stored
in fast memory. This example shows FIB size of the
compressed trie by ONRTC is 5, while the original is 7.

ONRTC algorithm derives from Election and
Representative (EAR) algorithm, which is proposed in [10].
Although EAR algorithm produces the minimal Routing Tables,
it doesn’t eliminate overlap. Under the constraint of Non-
overlap, EAR is evolved into ONRTC. Both EAR and ONRTC
follow a process which is similar to the election process of the
democratic society. Each node owns a next hop, while each
candidate has a vote. Actually, any candidate’s next hop can be
selected as representative. However, all the nodes which own
the same next hop with the representative can be deleted.
Therefore, in order to achieve optimal compression, the most
popular next hop should be chosen, in other words, should be
elected as representative. This is the rationale of EAR and
ONRTC.

2) Election and Representative
Both ONRTC and EAR consist of two basic operations,

named “election” and “representative”. “Representative”
operation is executed after a successful “election” operation
immediately. Those nodes (candidate nodes) participating in
elections must meet the following requirements: they are 1)
solid or hollow; 2) siblings (if a node has no sibling node, a
sibling node must be created with the next hop of 0/Default-
oldport); 3) elected representatives (If not, the point must be
traced to a leaf node in the sub-tree rooted at the unelected
node, then recursive election should be done step by step).

Election: two or more nodes elect their common ancestor
node, under the constraint that no solid node appears in the
path from the candidate nodes to the common ancestor node.
The most popular node will be elected as representative, and
then the common ancestor’s next hop will be replaced by the
representative’s next hop. If the most popular node is not only
one, election fails. At this moment, the common ancestor’s
next hop will be set to zero, and then the common ancestor will
participate in the next round of election.

Representative: after a successful election, the common
ancestor node will exercise the right of representative
immediately: the Newport of its voters which own the same
next hop with representative is set to 0.

3) Atomic Equivalent Models of ONRTC Algorithm
TABLE II. NODE’SATTRIBUTES

single-node attributes (Category 1) two-node attributes
(Category 2) the first attribute the second attribute

solid hollow has got
brother

no
brother

own the
same hop

own different
hops

As shown in Table II, in order to cover all possible
situations, candidate nodes’ attributes are classified into two
categories. According to these attributes, all atomic election
models can be enumerated.

2885

Category 1: single-node election. In this case, an electing
node has no brother. If the node is solid, model 1 emerges. If
the node is hollow, model 2 emerges.

Model 1: as shown in Figure 2(a), node A has no brother.
According to the requirements of election, at least two nodes
are needed, so node B and C are created with 0/Default-oldport.
Then node D is set to Oldport/0.

Model 2: as shown in Figure 2(b), the election and
representative process is similar to model 1.

Category 2: according to the two-node attributes, four
models emerge.

Model 3: as shown in Figure 2(c), node A is solid and B is
hollow. Node A and the sub-tree rooted at node B participate in
the election. In this case, just set C to Oldport/0.

Model 4: as shown in Figure 2(d), both A and B are hollow.
The two sub-trees rooted at node A and B participate in the
election. In this case, just set C to Oldport/0.

Model 5: as shown in Figure 2(e), both A and B are solid,
and own the same Newport, so the common Newport is elected
as the Newport of node C.

Model 6: as shown in Figure 2(f), both A and B are solid,
but own different Newport. In this case, just set C’s Newport to
zero.

(a) Model1 (b) Model 2 (c) Model 3

(d) Model 4 (e) Model 5 (f) Model 6

Figure 2. ONRTC atomic equivalent models.

Any trie can be compressed fast according to these six
models, which covers all election situations. Although the
models seem to be complicated, the whole algorithm requires
only one post-order traversal, which is of high efficiency.

4) Mathmatical Proof of the Equivalent Models
To ensure the correctness of the six equivalent models, we

have finished mathematical proof. Due to space limitation, the
details are given in [10]. Because ONRTC only traverses the
trie once, its time complexity is O(n) (n is the nodes number of
the trie).

IV. FAST INCREMENTAL UPDATE ALGORITHM

A. Updating Metrics While Applying FIB Compression
When updates occur, incremental update algorithm should

run in partial range as fast as possible under the constraint of
all the prefixes are not overlapped. Then how to evaluate the
performance of incremental update algorithm? Two metrics:
Time to Fresh (TTF) and re-compression interval, are defined.

TTF refers to the average computing time of updating a
message. It indicates a router’s sensitivity to the changes of the
network. The smaller the TTF is, the more sensitive the router
will be. If no compression algorithm is adopted, TTF is
minimal, and is regarded as ground-truth.

During the process of re-compression, the router can’t
conduct routing lookup based on the newest FIB. The interval
between the two adjacent events of re-compressing the whole
routing table is called “re-compression interval”. Our objective
is to make re-compression time shorter and re-compression
interval longer.

For incremental update, one important issue is worth being
mentioned here. In order to achieve fast update, we need to
confine the update scope, and visit as few nodes as possible.
Unlike ORTC and 4-level algorithm, the update scope of
ONRTC is not easy to confine. The constraint of non-overlap
makes the scope can hardly be the sub-tree rooted at the update
node. If the update node has an ancestor node whose Oldport is
not NULL, then the scope should be the sub-tree rooted at the
nearest ancestor. Otherwise, just update the sub-tree rooted at
the update node. Updating a sub-tree is equivalent to
compressing a sub-tree. Therefore, the faster the compression
algorithm runs, the faster the update algorithm runs.

B. Update Algorithm
There are two kinds of update messages: announcement

and withdrawal, which can be further divided into “insertion”,
“changing” and “deletion” operation. ONRTC’s incremental
algorithm is divided into three steps:

1) Lookup the Prefix in the Trie
When an update message arrives, update algorithm firstly

locates the prefix in the trie. Sometimes the prefix doesn’t exist.
In this case, if the type of updating message is “announcement”,
update algorithm must create a path to the update node; and if
its type is “withdrawal”, it means to delete a node which
doesn’t exist, so algorithm ends. In this step, the NOT NULL
ancestor node should be recorded if it exists.

2) Refresh the Update Node
After located in the trie, the update node should be

refreshed according to the update operation.
3) Update the Subtree

The process of updating a sub-tree is compressing the sub-
tree with ONRTC. This step spends much more time than the
first two. Therefore, the faster the compression algorithm runs,
the faster the update algorithm runs.

V. LOOKUP BASED ON TCAM
Because of the so many advantages which ONRTC brings,

our TCAM scheme is divided into the following three steps:
1) Step 1: Even Partition. After compression, suppose the

number of prefixes is M, and TCAM is divided into N buckets.
Our scheme traverses the trie recursively from the root node in
inorder or preorder, and groups the prefixes with the number
of M/N. In this way, all prefixes are divided into N parts
evenly.

2) Step II: after even partition, just put the prefixes in
every bucket arbitrarily.

3) Step III: Set N-1 Registers.
When looking up a prefix, in order to locate the

corresponding bucket, every bucket needs two registers which

2886

store the boundary points. Therefore, N buckets means N-1
registers.

Through the above three steps, the power consumption is
only 1/N of the original TCAM. When updates occur, as
mentioned above, domino effect never happens. The update
process is divided into two steps:

1) Step1: Update the Trie
This update process is illustrated in detail above, and it is

simple and fast.

2) Step II: Update the TCAM
The update of TCAM is very simple. During an insertion

operation, a prefix will be compared with the boundary points
and be copied to any empty place of the corresponding bucket.
With respect to changing and deletion operation, just locate the
corresponding bucket, and update the corresponding prefix.

VI. EVALUATION OF ONRTC ALGORITHM

A. Experimental Settings
1) Data Set

The routing tables are taken from www.ripe.net [9] at RIPE
NCC, which collects default free routing updates from peers. In
order to evaluate the performance of ONRTC algorithm in an
objective and complete way, the RIB packets at 8:00 on August
8 in 2011 from 12 routers are selected (There are 16 routers’
tables available in www.ripe.net, but other four routers don’t
update to present). In addition, the routing tables of rrc01 over
recent 12 months are also selected to evaluate ONRTC
algorithm. Table III shows these routers’ locations.

TABLE III. LOCATIONS OF ROUTERS

ID Location ID Location
rrc00 RIPE NCC, Amsterdam rrc11 New York (NY), USA
rrc01 LINX, London rrc12 Frankfurt, Germany
rrc03 AMS-IX, Amsterdam rrc13 Moscow, Russia
rrc04 CIXP, Geneva rrc14 Palo Alto, USA
rrc05 VIX, Vienna rrc15 Sao Paulo, Brazil
rrc06 Otemachi, Japan rrc16 Miami, USA
rrc07 Stockholm, Sweden

With regard to the update experiments, two group of data
set are selected. Firstly, in order to measure TTF, the update
data from 2011.01.01/08:00 to 2011.01.02/08:00 is selected.
Secondly, in order to test the re-compression interval, the
update data over the recent 18 months from 2009.12 to 2011.05,
which is about 40GBytes, is downloaded and parsed.

With regard to the partition experiment, the routing tables
at 8:00 on August 8 in 2011 from rrc01, rrc03, and rrc04, are
selected to evaluate the three partition algorithms.

2) Computer Configuration
Our experiments have been done on a windows XP sp3

machine with Pentium (R) Dual-Core CPU 5500@2.80GHz
and 4G Memory.

B. Experiments on FIB Compression
The compressed FIB size and the original table size are

shown in Figure 3 and Figure 4. Figure 3 shows the
compression results of 12 routers, while Figure 4 shows the
compression results of the recent 12 months on rrc01.

In Figure 3, the taller histogram is the original FIB size, the
lower histogram is the FIB size after compression by ONRTC

algorithm, and the curve is the compression time of ONRTC
algorithm, and the unit is microsecond. It can be observed that
all compressed routing tables are about 70% of the original
tables, and the compression time is 39 milliseconds. Similar
with Figure 3, Figure 4 shows the FIB size and compression
time over the recent 12 months on rrc01, and the result is
similar.

Figure 3. FIB size before and after compression and compression time on 12

routers.

Figure 4. FIB size and compression time over 12 months on rrc01.

Figure 5. Compression ratio over 12 routers.

The compression ratios of 12 routers are shown in Figure 5.
Compression ratio is defined as the ratio of the nodes number
in compressed trie to that of the original trie. Results show that

rrc01 rrc03 rrc04 rrc05 rrc06 rrc07 rrc11 rrc12 rrc13 rrc14 rrc15 rrc16
0

100k

200k

300k

400k

co
m

pr
es

si
on

 ti
m

e
(m

ill
is

ec
on

d)

FI
B

 s
iz

e

Router ID

 # of original nodes
 # of compressed nodes
 compression time(millisecond)

37

38

39

40

41

42

20
10

.1

20
10

.11

20
10

.12

20
11

.01

20
11

.02

20
11

.03

20
11

.04

20
11

.05

20
11

.06

20
11

.07

20
11

.08

20
11

.09

200.0k

250.0k

300.0k

350.0k

400.0k

co
m

pr
es

si
on

 ti
m

e
(m

illi
se

co
nd

)

FI
B

 s
iz

e

Time

 # of original nodes
 # of compressed nodes
 compression time(millisecond)

34

35

36

37

38

39

rrc01 rrc03 rrc04 rrc05 rrc06 rrc07 rrc11 rrc12 rrc13 rrc14 rrc15 rrc16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
m

pr
es

si
on

 ra
tio

Router ID

 compression ratio
 average ratio

2887

the compression ratios are between 0.7232 and 0.6934 with a
mean of 0.7077.

C. Experiments of Fast Incremental FIB Updating
The x-axis of Figure 6 and 7 means the time when the

update messages arrive. For example, 201010231945 means
the time of 2010.10.10/23:19:45. The two update metrics (TTF
and re-compression interval) are evaluated by the following
two experiments.

1) Experiment I: Update Experiment over a Day

Figure 6. TTF comparison between ONRTC and groud-truth.

Figure 6 shows TTF of ONRTC and ground-truth from
2011.01.01/08:00 to 2011.01.02/08:00. It can be observed that
TTF of ONRTC is a little bigger than ground-truth. TTF of
ONRTC ranges from 0.2621 microseconds to 0.4642
microseconds with a mean of 0.2864 microseconds. It means
that ONRTC algorithm can handle 3.49 million updates per
second in average on a common computer. According to our
data mining results, even in the worst case, the updates
messages of the backbone routers are only 35K per second at
most. Therefore, the update algorithm of ONRTC is fast
enough to handle the current updates.

2) Experiment II: Update Experiment over 18 Months

Figure 7. The growing stability of the FIB size with re-compression over a

continous time span of 18 months.

Suppose the FIB size is just the same as the memory size
on a line card on 2009.12.01/08:00, which is considered as the
threshold. In order to evaluate the re-compression interval of
ONRTC update algorithm, we plot the size of the routing table
from 2009.12.01/08:00 to 2011.05.01/08:00. In Figure 7, the
top curve, which is called raw-fib, is the FIB size without
compression. This figure shows ONRTC re-compresses 409
times in the 18 months. It means routers only need re-compress
once in 1.32 days in average, which costs about 30
microseconds, and this is an easy task for a router.

D. Experiment of TCAM Partition
Figure 8 shows the partition results among three algorithms:

Kai’s partition algorithm, Dong’s sub-tree partition algorithm
and ours. This experiment are finished in the 12 routers, only 2
routers’ results are shown here, because the results are similar
and there are not enough space. It can be seen that Kai’s
algorithm cannon split the prefixes evenly, and Dong’s
algorithm split the prefixes evenly at the cost of some
redundancy. In contrast, ONRTC algorithm splits the prefixes
strictly evenly without redundancy, and puts much fewer
prefixes in one bucket than Kai’s and Dong’s. If more parts are
split, Kai’s algorithm and Dong’s algorithm will introduce
more redundancy (see Figure 6 in [8]), while our algorithm still
introduces no redundancy.

Figure 8. partition comparison among three algorithms.

VII. CONCLUSION
In this paper we have presented ONRTC algorithm to

construct optimal non-overlap routing tables. Experiments on
twelve real backbone routing tables show that ONRTC can
achieve 71% compression ratio in average.

REFERENCES
[1] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang, IPv4 Addre-

ss Allocation and the BGP Routing Table. ACM SIGCOMM Computer
Communication Review, vol. 35, pp. 71–80, January 2005.

[2] R.Draves, C.King, S.Venkatachary, and B.D.Zill. Constructing Optimal
IP Routing Tables. In Proc. IEEE INFOCOM, 1999.

[3] X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the Aggregatability of
Router Forwarding Tables. In Proc. IEEE INFOCOM, 2010.

[4] Bin Zhang, Jiahai Yang, Jianping Wu, Qi Li, Donghong Qin. An
Ef�cient Parallel TCAM Scheme for the Forwarding Engine of the
Next-generation Router. In Proc. IFIP/IEEE IM, 2011.

[5] V. Srinivasan and G. Varghese, Fast IP lookups using controlled pre�x
expansion, ACM TOCS, vol. 17, pp. 1–40, Feb. 1999.

[6] F. Zane, G. Narlikar, A. Basu, CoolCAMs: Power-Efficient TCAMs for
Forwarding Engines, In Proc. INFOCOM, 2003.

[7] Zheng, K., Hu, C., Lu, H., Liu, B.: A TCAM-based distributed parallel
IP lookup scheme and performance analysis. IEEE/ACM Trans. Netw.
14, 863–875, 2006.

[8] Lin, D., Zhang, Y., Hu, C., Liu, B., Zhang, X., Pao, D.: Route Table
Partitioning and Load Balancing for Parallel Searching with TCAMs. In
Proc. IPDPS, 2007.

[9] RIPE Network Coordination Centre. http://www.ripe.net/data-tools/stats/
ris/ris-raw-data.

[10] Routing Table Compression and Update Website.
http://s-router.cs.tsinghua.edu.cn/~yangtong

20
11

01
01

 16
50

20
11

01
01

 17
40

20
11

01
01

 18
30

20
11

01
01

 19
20

20
11

01
01

 20
10

20
11

01
01

 21
00

20
11

01
01

 21
50

20
11

01
01

 22
40

20
11

01
01

 23
30

20
11

01
02

 00
20

20
11

01
02

 01
10

20
11

01
02

 02
00

20
11

01
02

 02
50

20
11

01
02

 03
40

20
11

01
02

 04
30

20
11

01
02

 05
20

20
11

01
02

 06
10

20
11

01
02

 07
00

20
11

01
02

 07
50

20
11

01
02

 08
40

20
11

01
02

 09
30

20
11

01
02

 10
20

20
11

01
02

 11
10

20
11

01
02

 12
00

20
11

01
02

 12
50

20
11

01
02

 13
40

20
11

01
02

 14
30

20
11

01
02

 15
20

0.1

0.2

0.3

0.4

0.5

TT
F(

m
ic

ro
se

co
nd

)

Time

 ONRTC
 ground

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

Fi
b

Si
ze

 ×

 1
00

00
0

ONRTC
raw-fib
threshold

×100000
Time Start: 200912011600 End: 201105292204

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10.0k

12.0k

14.0k

16.0k

18.0k

20.0k

22.0k

24.0k

26.0k

 Kai's on rrc03
 Dong's on rrc03
 ONRTC's on rrc03

 Kai's on rrc01
 Dong's on rrc01
 ONRTC's on rrc01

Va
lu

e

 Partition ID

2888

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

