
DDP: Distributed Network Updates in SDN
Geng Li†∗, Yichen Qian†, Chenxingyu Zhao‡, Y.Richard Yang∗, Tong Yang‡
†Tongji University, China, ∗Yale University, USA, ‡Peking University, China

Abstract—How to quickly and consistently update a network
is among the most fundamental and common challenges in
software defined networking (SDN) systems. Current approaches
heavily rely on the (logically) centralized controller to initiate
and orchestrate the network updates, resulting in long latency
of update completion. In this paper, we present DDP, a system
for fast, distributed network updates while preserving various
consistency properties. The key technique in DDP is a novel
primitive named datapath operation container (DOC), where
each DOC is encoded with an individual operation and its
dependency logic. DDP adopts the simple, but powerful DOCs to
configure the network, so that network updates can be triggered
and executed at the data plane in a distributed and local manner.
Novel algorithms are designed to compute and optimize the
DOCs for consistent updates. We implement DDP to evaluate its
performance in various update scenarios. Experimental results
show that DDP significantly improves network update speed by
up to 52.1% for the real-time updates initiated by the controller,
and further improves the speed by 55.6-61.4% for the updates
directly triggered at the data plane, such as failure recovery.

I. INTRODUCTION

Software-defined networking (SDN) is considered as a
major recent advance in networking [1], [2]. It significantly
simplifies network management and provides real-time net-
work programmability by decoupling the network control
plane from the data plane. Network updates are among the
most common data plane operations, either periodically or
triggered by local events such as failures. However, quickly
and consistently updating the distributed data plane poses
a major and common challenge in SDN systems [3], [4].
Specifically, due to asynchronous communication channels,
control messages are often received and executed by switches
in an order different from the order sent by the controller.
An inappropriate control order may violate the consistency
properties on the datapath, resulting in network anomalies,
such as blackholes, traffic loops and congestion [5]–[8].

The consistent network update problem has been widely
studied in the literature [3]–[7]. However, all of the work is
based on centralized initiation and orchestration to perform the
updates. An update can be launched only by the control plane,
where the controller decides an order in which operations
must be applied. The coordination of the distributed data
plane requires frequent communication between the controller
and switches, which slows down the update completion time,
and increases the controller’s processing load. In addition,
centralized updates rely on the control plane too heavily. When
the controller becomes a bottleneck, the network may suffer
from substantial performance and reliability degradation.

In this paper, we present Distributed Datapath (DDP), a
system for fast, distributed network updates in SDN, while
maintaining various consistency properties. DDP still benefits

from centralized intelligence at the control plane, but develops
distributed coordination abilities at the data plane. The key
technique in DDP is a simple, but powerful primitive named
datapath operation container (DOC), where each DOC is
encoded with an individual operation and its dependency logic.
For real-time updates initiated by the controller, the involved
DOCs are sent to the data plane in one shot, and the switches
can consistently execute them in a distributed manner. For
updates directly triggered by local events, the controller pre-
stores the DOCs at the data plane, and when corresponding
events happen, the updates can be locally triggered and ex-
ecuted. We further design novel algorithms to compute and
optimize the primitive DOCs for consistent updates.

We fully implement the DDP system to evaluate its perfor-
mance in various update scenarios. The results demonstrate
that compared to state-of-the-art centralized approaches (e.g.,
Dionysus [5]), DDP improves real-time network update speed
by 31.4-52.1%. Furthermore, we show that DDP can locally
initiate updates triggered by link failures, and is up to 61.4%
faster than centralized approaches to recovering routing.

II. NETWORK UPDATE AND MOTIVATION

We start by formalizing the network update problem and
then give an example to show the limitations of centralized
approaches.

A. Network Update Problem

Our focus is on flow-based traffic management application-
s [2], [5], where each flow is an aggregate of packets between
ingress and egress switches. We let C denote a network
configuration state, which is a collection of exact match rules
determining each flow’s datapath. A network update is defined
as a transition of configuration state from C to C ′. We denote
the update process as C ′ = update(C,O, e), where O = {o}
is a set of datapath operations that implement the update. Each
operation o is a modification on the data plan state, e.g., to
insert/delete/modify a flow rule at a particular switch. e is
a local event at the data plane that triggers the update, e.g.,
a link/switch failure and link congestion. Note that e is just
used for identifying the update origin. Sometimes the update
is triggered by operators or applications, and then e = ∅.

A network update can involve multiple unsynchronized
devices at the data plane, so achieving the consistency is chal-
lenging during the updates. The consistency usually implies
three properties: 1) blackhole-, 2) loop- and 3) congestion-
freedom, and the detailed definitions can be found in [5], [8].
To prevent a violation of the consistency properties in any
intermediate states from C to C ′, the datapath operations with
various dependencies are constrained in a correct processing
order. Assume an update C ′ = update(C,O, e) is given, our

DA

B

C

f1

f1'

e1: BD link down

oc: insert f1' at C

oa: modify f1 at A

ob: delete f1 at B

Fig. 1. A consistent network update example that incurs 3 rounds of
controller-to-switch communication to orderly apply the operations.

work is to quickly apply the operations O after e happens,
while in a correct order.

B. Motivation Example
Consider an example shown in Fig. 1. There is a flow f1

in the network with path ABD. Assume that the link BD
happens to be down, triggering an update from f1 to f1′

with 3 operations shown in the figure. So the update can
be expressed as C ′ = update(C, {oc, oa, ob}, e1). To ensure
consistency, the 3 operations have to be processed orderly.
oc has to be applied before oa; otherwise the flow f1′ will
encounter a blackhole at C where no matched rule exists.
Similarly, ob has to be applied after oa to avoid the blackhole
at B. The ordered processing can be solely coordinated by
the controller in centralized update approaches: the controller
sends oc to C, waits for its processing confirmation, and then
sends oa and ob by the same token. As a result, the simple
network update incurs at least 3 rounds of communication
between the controller and switches, leading to substantial
extra delays.

An insight we can extract from the example is that the 3
datapath operations will be applied at adjacent switches, and
if the switches themselves can coordinate with each other to
orderly apply the operations, the update time as well as the
controller’s processing load will be greatly reduced. Further
more, if we can pre-store the operations at the data plane, and
the link-down event can directly trigger them to apply, then
the network update will be executed in a fully local manner.
In this way, the update speed will be further improved.

III. DDP DESIGN

DDP is proposed as a system to achieve fast, distributed,
consistent updates in SDN. We first explore the dependencies
among datapath operations and local events to ensure the
consistency properties, and such dependency information is
then encapsulated in a novel primitive DOC for each operation.
DDP configures the network by the simple, but powerful prim-
itive, so that network updates can be triggered and executed
at the data plane in a distributed and local manner.

A. Operation Dependency Graph (ODG)
We first introduce the concept of an Operation Dependency

Graph (ODG) that captures the data plane dependencies. An
ODG is a directed acyclic graph (DAG) where the nodes
are the operations O and the trigger event e for an update
C ′ = update(C,O, e). The edge in an ODG reflects a timed
order in a broad sense: upstream nodes have to happen before

oo
1

o
2

e

(a) Type 1 connection (b) Type 2 connection

Fig. 2. Two types of connection in an ODG. (a) Type 1 connection:
operation o2 depends on the completion of operation o1. (b) Type 2
connection: event e can trigger operation o.

downstream nodes. There are two types of connection in an
ODG. The first type as in Fig. 2(a) denotes that o2 depends on
the completion of another operation o1, while the second type
as in Fig. 2(b) denotes that event e can trigger o to handle
this event. Note that there is no incoming edge connected to
an event e, and Type 2 connection is dispensable since e can
be ∅. An ODG well describes a network update, where Type
1 connection implies the correct order in which the operations
are applied to ensure consistency, and Type 2 connection
identifies the update trigger.
Properties of the ODG. The ODG hold several nice proper-
ties. First, the dependency is unidirectional, resulting in no
cycles in the graph. Second, the dependency relations are
transitive, e.g., if an event e can trigger both o1 and o2, and
o2 depends on o1, then e will be connected with only o1
whose child node is o2. Therefore, the ODG expresses an
optimized result of the whole dependency relations. Third,
connectivity is dispensable in the ODG. For the operations
without dependencies, they will form into isolated pieces with
no connections. Lastly, the ODGs are composable. Multiple
ODGs for different update events can be composed together, so
that the data plane can locally handle more events in DDP. The
ODG composition algorithm will be introduced in Sec. IV-B

B. Datapath Operation Container (DOC) Specification

structure DOC
{

1: operation o
2: boolean expression gate
3: operation set release
}

Fig. 3. Illustration of the primitive DOC.

To enable distributed and local network updates in DDP, we
propose a novel primitive named DOC. The DOC is a structure
as shown in Fig. 3, including 3 members as follows.
• o is an ordinary datapath operation.
• gate is the condition to apply o, represented by a Boolean

expression of o’s parent nodes in the ODG.
• release is a set of operations that depend on o, i.e., the

set of o’s child nodes in the ODG.
Semantics. The semantics of DOC execution is simple. For
each DOC d, 1) the inside operation d.o is not applied until the
gate logic d.gate is fully satisfied; 2) After d.o is applied, all
operations in d.release will be notified. The Boolean expres-
sion in gate consists of either a single operation or several
operations joined by the Boolean operators AND (&) and OR
(‖). For example, if the execution of operation o1 depends on

the completion of both o2 and o3, then d1.gate = o2&o3,
and d2.release = d3.release = o1. The content in gate
and release of each DOC is computed by the algorithm in
Sec. IV-A.

In the DDP system, the SDN controller adopts DOCs to
configure the data plane, rather than directly sending opera-
tions as in traditional SDN. The switches then coordinate with
each other to execute the update at right time.

C. Execution Behaviors

In DDP, we define two types of execution behaviors at the
data plane for every DOC: Push and Pull.
• Push: Upon a DOC is executed at the data plane (i.e., the

inside o is applied in the switch), it will send Push messages
to the DOCs of all release operations. Hence the direction
of Push is downward along with the ODG.

• Pull: Upon a DOC is received at the data plane, a Pull
message will be sent to the DOC of every operation in its
gate. So the Pull direction is upward. In addition, a DOC
also has responsibility to Push back after receiving a Pull.

Correctness. The two behaviors guarantee the safety and
liveness of distributed execution in DDP. The correctness
intuition is that DOCs will be eventually executed as planned
in the ODG regardless of arriving order. Suppose there are
two operations with a dependency o1 → o2, which means o1
should be applied before o2. The SDN controller sends out d1
and d2 at the same time. Case 1: d2 arrives at the data plane
first. According to the semantics, o2 will not be applied until
d1 arrives at the data plane and sends d2 a Push after execution.
Case 2: d1 arrives first. Then it is executed immediately and
sends d2 a Push which is useless because d2 has yet to arrive.
When d2 arrives, it will Pull d1 to Push back again, so that o2
can be applied. In summary, Push and Pull are complementary
to each other, and with the two behaviors, all operations will
be consistently applied in a correct order. The detailed proof
of the correctness can be found in our technical report [9].

D. Examples

Now we use the example in Fig. 1 to see how the network
update is executed in DDP.
Real-time update. Assume after detecting the link-down event
e1, the SDN controller decides to update f1 to f1′. In this
case, e = ∅ because the update is initiated by the controller.
Fig. 4(a) illustrates the ODG and all the DOCs involved in
this real-time update. The 3 DOCs are sent to the data plane
in one shot. First, dc is executed upon arriving at C owing
to the empty gate which is satisfied naturally. Then, a Push
message is sent to da to apply oa at A. Lastly, B can apply ob
after receiving the Push message from da. Compared with the
centralized update which incurs 3 round-trip delays between
the remote controller and the switches, DDP needs only 2
one-way delays between adjacent switches (for coordination),
therefore reduces the update completion time.
Local update. DDP can perform the update even better by pre-
sending the DOCs da, db and dc as shown in Fig. 4(b) to A,
B and C respectively. Because of their non-empty gates, the
three operations will not take effect on the datapath at first. But
when link BD is down, and C detects this event e1 (we assume

operation gate release

dc oc: insert f1' oa

da oa: modify f1 oc ob

db ob: delete f1 oa

oc oa ob

ODG

(a) Real-time update

operation gate release

dc oc: insert f1' e1 oa
da oa: modify f1 oc ob
db ob: delete f1 oa

oc oa ob

ODG

e1

(b) Local update

Fig. 4. Illustration of the ODGs and DOCs for the example in Fig. 1.
(a) Real-time update which is initiated by the controller. (b) Local
update which is directly triggered at the data plane.

B will flood the link-down event), dc.gate will become true
and oc is applied accordingly. After that, da and db will also be
executed sequentially. As a result, with the powerful DOCs in
DDP, the network update can be both triggered and executed
in a fully local manner, further improving the update speed
while maintaining the consistency.

IV. ALGORITHMS

We design two algorithms in DDP: 1) computing the basic
DOCs for individual updates, and 2) an optimization for
multiple local updates by ODG composition.

A. Computing DOC

This algorithm computes the DOC of each datapath opera-
tion to ensure the consistency during an update. It takes the set
of operations O and the event e as the input and outputs the
corresponding DOCs. The algorithm consists of two steps: (1)
ODG construction, and (2) Computing gate and release.
Example. To illustrate the algorithm, we provide a real-time
update example in Fig. 5. Each link has a capacity of 10 units
and each flow has a size of 5. The old configuration includes
two flows f1 and f2 with same path ABD (labeled by dashed
lines), while the updated one includes two modified flows f1′

with path ACD, f2′ with path AED and a new flow f3′

with path ACD (solid lines). This update is initiated by the
controller, so e = ∅. We can use the 2-step algorithm in our
paper to compute the corresponding DOCs.
Step 1: ODG construction. To construct an ODG, we use
similar ideas of existing work on consistent updates [5], [8].
To ensure blackhole- and loop-freedom, ‘insert’ and ‘modify’
operations on the source switch depend on the successors
on the flow route. For example, oa1 depends on oc1, and
oa2 depends on oe2 in Fig. 5. A ‘delete’ operation on the
last switch depends on the predecessors on the route, e.g.,
oa1 → ob1 and oa2 → ob2. To ensure Congestion-freedom,
current remaining resources should be enough for a resource-
consuming operation. Otherwise this operation will depend on
resource-freeing operations on the same link to get enough
resources, e.g., oa3 (resource-consuming operation) depends
on both oa1 and oa2 (resource-freeing operations). We use the
same priority-criteria in [5] to schedule resource-consuming
operations to avoid deadlocks. Lastly, if the update is triggered
by a local event e, directional edges will be placed from e to
the root operations in the ODG.

DBA

C

E

f1

f2

f3'

f1'

f2'

ODG

oa1

oc1

oa2

oa3

oe2ob3

ob1 ob2

operation at A gate release

da1 oa1: modify f1 oc1 oa3, ob1
da2 oa2: modify f2 oe2 oa3, ob2
da3 oa3: insert f3' (oa1||oa2)

&ob3

operation at B gate release

db1 ob1: delete f1 oa1
db2 ob2: delete f2 oa2
db3 ob3: insert f3' oa3

operation at C gate release

dc1 oc1: insert f1' oa1

operation at D gate release

de2 oe2: insert f2' oa2

Step 1: ODG construction Step 2: Computing gate and release

Fig. 5. An example of the algorithm computing the basic DOCs.

Step 2: Computing gate and release. Algorithm 1 is a
function to compute the boolean logic in gate and the
operation set in release of each operation oi. The intuition
is that by constructing the ODG in Step 1, the elements in
each DOC’s gate and release are determined, while in
Step 2, logic operators are further inserted to obtain the final
Boolean expressions in gate. There is no logic operator in
release, so di.release is the operation set of oi’s children.
For gate, the parent operations not located at the same
switch as oi are responsible for blackhole- and loop-freedom.
Hence these parent operations are joined by & operators,
e.g., ob3 in da3.gate. Otherwise, we use another function
FindFeasibleScheduling to compute the logic.

Specifically, FindFeasibleScheduling is a function to find
all possible resource-freeing conditions that can make oi
scheduled. We let oi.f low− denote the set of resource-freeing
operations for oi, which are identified as the operations on the
same switch as oi. For example, oa1 and oa2 are in oa3.f low

−.
If a resource-freeing condition is enough to schedule oi, the
combination becomes a feasible plan (f). Different feasible
plans are separated by OR operators. For the example in Fig. 5,
oa1 and oa2 are two feasible scheduling planes for operation
oa3. So da3.gate includes oa1‖oa2. The details of this function
can be found in the technical report [9].

B. ODG Composition
As discussed earlier, an ODG corresponds to only one

update. If we want the data plane to locally handle
one of multiple updates C1 = update(C,O1, e1), C2 =
update(C,O2, e2), ..., we need to prepare multiple ODGs.
Here we assume one update is executed at a time, because all
of the updates are based on the current configuration C. For the
local update example in Fig. 1, if we hope the data plane can
locally handle another event e2 = AB link down, then we need
another ODG with a new set of DOCs. Different updates may
share common operations, so an ODG composition is required
to rewrite the DOCs. We let Gi denote an ODG and +© denote
the composing operator. Since the composing operator +© is
associative, i.e., (G1 +©G2) +©G3 = G1 +©(G2 +©G3), therefore

Algorithm 1 ComputeGate&Release(oi)
1: for each oj ∈ oi.children do
2: di.release← di.release ∪ oj
3: end for
4: oi.f low

− ← ∅
5: for each ok ∈ oi.parents do
6: if ok and oi at same switch then
7: oi.f low

− ← oi.f low
− ∪ ok

8: else
9: di.gate← di.gate&ok

10: end if
11: end for
12: F ← ∅
13: for each f ∈ FindFeasibleScheduling(oi.f low

−) do
14: F ← F‖f
15: end for
16: di.gate← di.gate&F

Algorithm 2 ODGComposition(G1, G2)
1: for each oi1 = oi2, oi1 ∈ G1, oi2 ∈ G2 do
2: if di1.gate 6= di2.gate then
3: di1,i2.gate← di1.gate||di2.gate

// di1,i2 is the DOC after composing
4: end if
5: if di1.release 6= di2.release then
6: di1,i2.release← di1.release ∪ di2.release
7: P1 ← oi1.parents
8: P2 ← oi2.parents
9: while P1 ⊆ P2||P2 ⊆ P1 do

// iteratively find the nearest different ancestors
10: P1 ← P1.parents
11: P2 ← P2.parents
12: end while
13: Find t1|t1 ∈ P1&t1 /∈ P2

14: Find t2|t2 ∈ P2&t2 /∈ P1

// t1, t2 is either an operation or an event
15: for each oj1 ∈ di1.release, oj2 ∈ di2.release do
16: dj1.gate← dj1.gate&t1
17: dj2.gate← dj2.gate&t2
18: end for
19: end if
20: end for

the composition of arbitrary ODGs can be derived by the
algorithm for composing two ODGs in Algorithm 2.

In the algorithm, we combine gates and releases for
the common operations in both G1 and G2. The gates are
joined by an OR (‖) operator to make sure the common
operations can be triggered in both updates. In addition, we
have to distinguish the child nodes of a common operation in
different graphs; otherwise all of them will be released after
the common operation. To cope with this, we iteratively find
the nearest different ancestors to identify the two ODGs. First,
we find P1 and P2 as the two non-containment ancestor sets
for the common operation oi1 (oi2). Then we pick out only
one item t1 (t2) as a representative for each set P1 (P2). Here
t1 and t2 are any of the elements in the ODG, i.e., either an
operation or an event. At last, we add t1 into every child’s
gate in G1, and t2 into every child’s gate in G2, with the
operator &. The rewrites of releases for t1 and t2 are omitted
for space constraints. As a result, for the example in Fig. 1,

o
1

o
3

e
1

o
4

o
2

o
3

e
1

o
4

e
2

o
6

G
1

G

o
2

o
2

o
3

e
2

o
6

G
2

o
5

o
1

o
5

Fig. 6. An example of ODG composition where G = G1 +©G2.

dc.gate = e1‖e2 after composition, so that no mater AB or
BD down, the network can locally recover routing.
Example. We give another example in Fig. 6, where G1 and
G2 are the ODGs for two local updates prepared in DDP (e1
and e2 have not happened yet). After composing, d2.gate
becomes e1‖e2, and d2.release = o3 keeps unchanged. For
o3, both the gates and releases are different in the two
ODGs, so they are rewritten as d3.gate = o2&(o1‖o5) and
d3.release = {o4, o6}. In addition, P1 = {o1, o2} and P2 =
{o2, o5} are found as the nearest non-containment ancestor
sets, and t1 = o1 and t2 = o5 are picked out to represent P1

and P2 respectively. In the end, o4 and o6 are distinguished
by d4.gate = o1&o3 and d6.gate = o3&o5.

V. PERFORMANCE EVALUATION

We fully implement the DDP system with 3000+ lines of
Python code to evaluate its performance in various update sce-
narios. Experimental results show that DDP can significantly
speed up network updates.

A. Experimental Methodology

We conduct all experiments on real topologies consisting of
Open vSwitches in both WAN and data center scenarios. For
WAN, we choose 5 topologies from the Topology Zoo [10]
that interconnect O(30) sites with link capacities between 10
and 100 Gbps. For data center, we emulate a 3-tier datacenter
network topology with O(60) switches, where each edge link
is of 10Gbps capacity, and aggregated link is of 100Gbps
capacity. A custom software agent is running on each switch
to coordinate with each other and create execution logs. The
communication protocol between the controller and the agents
is implemented by an extension version of OpenFlow, and
the communication between the agents is via UDP messages.
In our experiments, we compare DDP against a Centralized
update system based on Dionysus [5].

B. Experimental Results

Real-time updates. We measure the update completion time
of 30 real-time updates in both WAN and data center scenarios.
We break down the overall time by the amount of computation
at the controller and the execution at the data plane. First,
Fig. 7 shows that computing the updates is not a bottleneck in
both schemes, and the DDP system requires a little longer
computation time than Centralized because the scheduling
plans are pre-computed and encoded in the DOCs.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 perc. 90 perc. 99 perc.

DDP Centralized Computation ""

U
p

d
a
te

 T
im

e
 (

s
)

(a) WAN (b) Data center

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 perc. 90 perc. 99 perc.

0

0.2

0.4

0.6

0.8

50 perc. 90 perc. 99 perc.

U
p

d
a
te

 T
im

e
 (

s
)

Fig. 7. Update completion time, broken down by the amount of
computation and execution.

0 1 2 3 4 5 6
Coordination distance

0

0.2

0.4

0.6

0.8

1

C
D

F

WAN
Data center

Fig. 8. CDFs of the coordination distance between DOCs, specified
by the hop-count of switches between d.o and d.release (if any),
e.g., the distance between da1 (da2) and da3 in Fig. 5 is 0.

From Fig. 7, we can observe that DDP achieves a much
lower execution time than Centralized. This major gain is
from the distributed manner of update execution in DDP.
Centralized approach relies on the controller to orchestrating
the updates, so the coordinating time is a sum of many-
round of communication between the controller and switches.
However in DDP, switches directly coordinate with each other
at the data plane, therefore reducing the total execution time.
From the CDFs shown in Fig. 8, we can see most of the
coordination in DDP is within the same switch (up to 18.4%)
or between adjacent switches (up to 43.0%), so it’s more
efficient for switches to coordinate with each other rather than
communicating with the remote controller.

Overall, as shown in Fig. 7, DDP outperforms Centralized
in real-time updates under both WAN and data center settings.
For WAN, DDP is 46.4%, 49.1%, and 52.1% faster than
Centralized in the 50th, 90th, and 99th percentile, respectively.
For data center, the corresponding numbers are 31.4%, 33.7%,
and 36.4% faster than Centralized,. The WAN topologies are
more complex than the data center ones, resulting in longer
completion time.
Local updates. We conduct another experiment to show the
benefit of DDP in local updates. We choose one configuration
in each WAN topology, and pre-compute the DOCs for any
link-down events. For simplicity, we consider only 1-failure
case. The ODG Composition algorithm in Sec. IV-B is used
to compute the final DOCs, and the DOC number is reduced
by 60.3% after composition. In the experiment, we randomly
fail one link and measure the recovery time for all re-routable
flows in both approaches. In Centralized approach, the link-

0

100

200

300

400

500

50 perc. 90 perc. 99 perc.

DDP

Centralized

""

R
e

c
o

v
e

ry
 T

im
e

 (
m

s
)

Fig. 9. Recovery time from a random link failure.

down event has to be reported to the controller, who will then
compute new routes to update the network. But in DDP, when
the link-down event happens, pre-stored DOCs are locally
trigged at the data plane and directly take effect to recover
the routing. Note that the consistency properties are preserved
during all updates. As shown in Fig. 9, DDP is 55.6%, 58.2%,
and 61.4% faster than Centralized in the 50th, 90th, and
99th percentile, respectively. By locally initiating the updates
at the data plane, DDP avoids reporting time and real-time
computation time at the controller, therefore speeds up the
updates further more.

VI. RELATED WORK

De-centralized update. ez-Segway is proposed to address the
network update problem in a de-centralized manner, where
switches receive partial knowledge of the network from the
controller and conduct distributed computing to execute the
update [8]. DDP’s improvement over it is a much more
powerful primitive DOC, leading to much lower overhead
and computation complexity at switches, while enabling local
updates. A timed update is another decentralized approach that
uses synchronized clocks to coordinate the update [11]–[13].
However, due to imprecise clock synchronization and time
prediction, the consistency and efficiency of network updates
are not guaranteed as in DDP. Our primitive DOC can have a
wide range of extension, e.g., the Boolean expression in gate
may support time variant in the future work.
Local Recovery. Prior art on failure recovery in SDN relies on
Openflow local fast failover mechanisms [14]–[16]. The con-
troller pre-installs backup rules (tunnels) in switches’ group
tables, so that the backups can be immediately activated upon
a link failure. DDP transforms the backup rules into compact
pending DOCs, therefore saves the scarce table resources
without performance loss. In addition, this line of work deals
with only link-down events, whereas DDP is capable of
handling any happenings that can be detected by switches,
such as link congestion or unbalanced load. Our novelty lies
in allowing local events to directly trigger the network-wide
update, which to our knowledge has not been done before.

VII. CONCLUSION

This paper presents DDP, a system for fast, distributed,
consistent network updates in SDN. The configuration in DDP
is based on a novel primitive named DOC. The DOCs can
be executed by the switches following the dependencies a-
mong different datapath operations, while achieving data plane
consistency. We also design two algorithms to compute and

optimize the primitive DOCs respectively. Evaluation results
show that DDP significantly improves network update speed
in various update scenarios. Developing some high-level APIs
in DDP to automatically generate the DOCs will be the next
step of this research.

ACKNOWLEDGMENT

This research was supported in part by NSFC #61701347,
NSFC #61702373, NSFC #61672385 and NSFC #61672061;
NSF grant #1440745, CC*IIE Integration: Dynamically Op-
timizing Research Data Workflow with a Software Defined
Science Network; Google Research Award, SDN Program-
ming Using Just Minimal Abstractions. This research was also
sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-16-
3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon. Tong Yang is the corresponding
author of this paper.

REFERENCES

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[3] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks, 2013, p. 20.

[4] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” ACM SIGCOMM Computer Com-
munication Review, vol. 42, no. 4, pp. 323–334, 2012.

[5] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in ACM SIGCOMM CCR, vol. 44, no. 4, 2014, pp. 539–550.

[6] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zupdate: Updating data center networks with zero loss,” in ACM
SIGCOMM CCR, vol. 43, no. 4, 2013, pp. 411–422.

[7] K.-T. Förster, R. Mahajan, and R. Wattenhofer, “Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes,” in IFIP Networking Conference, 2016, pp. 1–9.

[8] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized consistent
updates in sdn,” in Proceedings of the SOSR, 2017, pp. 21–33.

[9] “Anoymous Technical Report,” https://github.com/technical-report-
2018/ICDCS2018.

[10] “The Internet Topology Zoo,” http://www.topology-zoo.org.
[11] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”

in Proceedings of the 1st ACM SIGCOMM SOSR, 2015, p. 21.
[12] J. Zheng, G. Chen, S. Schmid, H. Dai, J. Wu, and Q. Ni, “Scheduling

congestion-and loop-free network update in timed sdns,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 11, 2017.

[13] J. Zheng, G. Chen, S. Schmid, H. Dai, and J. Wu, “Chronus: Consistent
data plane updates in timed sdns,” in Distributed Computing Systems
(ICDCS), IEEE 37th International Conference on, 2017, pp. 319–327.

[14] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “We’ve got you covered:
Failure recovery with backup tunnels in traffic engineering,” in Network
Protocols (ICNP), International Conference on, 2016, pp. 1–10.

[15] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with
sdn local fast failover,” in International Conference On Principles Of
Distributed Systems, 2013, pp. 68–82.

[16] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms,”
in Proceedings of HotSDN, 2014, pp. 121–126.

