
Diamond Sketch: Accurate Per-flow Measurement
for Real IP Streams

Tong Yang∗, Siang Gao∗, Zhouyi Sun∗, Yufei Wang∗, Yulong Shen†, Xiaoming Li∗
∗Department of Computer Science, Peking University, China †Xidian University, China

Abstract—Existing sketches often have low memory efficiencies
when performing per-flow measurement tasks on skewed IP
streams. In this paper, we propose Diamond Sketch, a novel
sketch that dynamically assigns an appropriate number of atom
sketches to each flow on demand, improving the accuracy
considerably while keeping a comparable speed.

I. INTRODUCTION

Per-flow measurement is a critical issue in computer net-
works. It provides information for anomaly detection, capacity
planning, accounting and billing, and service provision [1],
[2]. One fundamental problem in per-flow measurement is to
estimate the flow size, which is the number of packets in each
flow. A flow is often identified by a certain combination of
fields in the five-tuple in the packet’s header: source IP ad-
dress, destination IP address, source port number, destination
port number, and protocol type. Real network flows have two
characteristics: high-speed and non-uniform distribution. On
the one hand, the speed of network traffic is so high that it
is very hard to make a precise record of sizes of flows [3].
On the other hand, the sizes of network flows are usually
non-uniformly distributed [4]. A small part of flows have very
large sizes (called elephant flows) while most flows have small
sizes (called mice flows). A typical distribution of this kind of
network traffic is Zipfian [5], and network traffic following
Zipfian distribution are called skewed traffic.

Due to the high speed of network traffic, approximately
recording and estimating data with sketches has gained popu-
larity [4], [6]–[9]. Sketches are probabilistic data structures,
and can achieve small memory footprints, high accuracy,
and fast speeds of insertion and query. Unfortunately, most
existing sketches cannot work well on skewed network traffic.
Conventional sketches (such as CM [10], CU [11], Count
[12], CSM [13] sketches) use counters that are of the same
size to store the number of packets. Elephant flows are often
considered to be more important than mice flows, thus the
counters need to be large enough to represent the largest size
of the elephant flows. However, the large quantity of mice
flows means that most counters will just represent a small
value, and the higher bits in these counters are all 0, leading
to a waste of memory.

Co-primary Authors: Tong Yang and Siang Gao.
This work is supported by Primary Research & Development Plan of China

(2016YFB1000304), National Basic Research Program of China (973 Pro-
gram, 2014CB340405), NSFC (61672061), the OpenProject Funding of CAS
Key Lab of Network Data Science and Technology, Institute of Computing
Technology, Chinese Academy of Sciences.

In this paper, we propose a new sketch, namely the Diamond
sketch, as it takes on a diamond shape. The key idea of
Diamond is to assign atom sketches to flows on demand.
Specifically, an appropriate number of atom sketches are
assigned dynamically and automatically to record the sizes of
elephant and mice flows, thus optimizing memory efficiency.
For mice flows, we use only one or two atom sketches to
record their sizes. For elephant flows, we dynamically increase
the number of atom sketches to record their sizes.

II. THE DIAMOND SKETCH

A. Data Structure

L1

······

L2

······

Ld

······

······

LD

······

LC

······

I1

I2

Id

D

C

Increment Part

Carry Part

Deletion Part

Fig. 1. Data structure of the Diamond Sketch.

As shown in Figure 1, a Diamond Sketch consists of three
parts: increment part, carry part, and deletion part. Increment
part together with carry part records the size of each flow
that has been inserted. It consists of d atom sketches, where
we denote the ith atom sketch with Ii. Each atom sketch Ii
is composed of Li counters, and each counter contains w1

bits. We denote the jth counter of the ith atom sketch with
Ii[j]. {L1, L2, ..., Ld} is a decreasing sequence of numbers.
Carry part records the overflow depth1 of each flow. It is an
atom sketch composed of LC counters, each of which contains
w2 bits (2w2 > d is a requisite). We denote this atom sketch
with C, and the jth counter with C[j]. Deletion part is used
to support deletions. It is an atom sketch composed of LD
counters, each of which contains w3 bits. We denote this atom
sketch with D, and the jth counter with D[j].

1Suppose a flow causes overflows in atom sketch I1 and I2 when being
inserted, and is successfully inserted into I3 without overflows, then the
deepest sketch this flow has reached is I3, and 3 is called the overflow depth.



Each atom sketch Ii, C, and D is associated with k1, k2,
and k3 hash functions, whose output is uniformly distributed
in the range [1, Li], [1, LC ], and [1, LD]. And we denote the
jth hash function with hi

j(.), h
C
j (.), and hD

j (.), respectively.

B. Operations

The insertion of a packet with flow ID e requires up-
date in first the increment part and second the carry part.
We compute the k1 hash functions of the first atom sketch
I1 and increment the smallest one(s) of the k1 counters
I1[h

1
1(e)], I1[h

1
2(e)], ..., I1[h

1
k1
(e)] (we call them k1 mapped

counters for short) by 1. If more than one counters have
the smallest value, we increment them all by 1. If all the
k1 counters hold the value 2w1 − 1, which is the largest
number that w1 bits can represent, then incrementing them
by 1 will result in overflows. When the k1 mapped counters
in Ii overflow, the following steps need to be taken: 1) Set
the values of all k1 mapped counters to 0; 2) Increment the
smallest one(s) of the k1 mapped counters of Ii+1 by 1; 3) If
all the k1 mapped counters in Ii+1 overflow, repeat step 1 and
2 until the termination condition is satisfied, and we record
the overflow depth dep. There are two termination conditions:
there is no overflow in Ii (1 6 i 6 d) (we set dep to i) or
the last atom sketch Id overflows (we set dep to d); 4) For
each of the k2 mapped counters in C, if its value is less than
dep−1, we set its value to dep−1; otherwise, we do nothing.

The deletion operation is not requisite in per-flow measure-
ment, but can be added if needed in other scenarios. To delete
a packet e, the Diamond Sketch only updates its deletion part.
We check the k3 mapped counters of D, and if all the k3
counters are 2w3 − 1, which is the biggest number that w3

bits can represent, we do nothing; otherwise, we increment
the smallest one(s) among the k3 counters by 1.

To query the size of a flow with ID e, we need to check the
status of all the three parts. 1) We check the carry part. Specifi-
cally, we compute the k2 hash functions of C and get the small-
est value vC among C[hC

1 (e)], C[hC
2 (e)], ..., C[hC

k2
(e)]. 2) We

check the increment part. Let dep = 1+vC . We need to check
dep atom sketches I1, I2, ..., Idep. For each atom sketch Ii, we
compute k1 hash functions and get the smallest value Vi of
those k1 mapped counters Ii[h

i
1(e)], Ii[h

i
2(e)], ..., Ii[h

i
k1
(e)].

Once all dep smallest values have been calculated, the query
result determined by increment part and carry part is computed
by the following formula: Vinsert =

∑dep
i=1 Vi · (2w1)i−1. 3)

We check the deletion part. Specifically, we compute the k3
hash functions of D and return the smallest value (Vdelete)
among D[hD

1 (e)], D[hD
2 (e)], ..., D[hD

k3
(e)]. 4) We compute

Vinsert − Vdelete as the query result.

III. EVALUATION

We use real IP trace streams as experimental datasets, which
are captured by the main gateway of our campus. We compare
Diamond Sketch with CU [11], CM [10], Augmented [14],
Count [12], and CSM [13] sketches. The metrics used are
absolute error (AE) and relative error (RE).

0 1 2 3 4 5 6 7 8
AE

0.0

0.5

1.0

1.5

C
D

F

CSM
CM

A
C

CU
Dia

(a) Absolute Error CDF.

0.0 0.2 0.4 0.6 0.8 1.0
RE

0.00

0.25

0.50

0.75

1.00

C
D

F

CSM
CM

A
C

CU
Dia

(b) Relative Error CDF.

Fig. 2. AE-CDF and RE-CDF on IP streams. Dia stands for Diamond sketch.

As shown in Fig. 2, the percentage of flows whose AE is
no bigger than 1 of our Diamond sketch is 43.39%, which is
124.23, 2018.3, 1823.25, 5.3, and 12.5 times higher than the
corresponding percentages of CSM, CM, A, C, CU sketches,
respectively; the percentage of flows whose RE is less than 1.0
of our Diamond sketch is 62.46%, which is 24.6, 9.29, 9.29,
3.02, and 4.91 times higher than the corresponding percentages
of CSM, CM, A, C, CU sketches, respectively. The results
show that the performance of Diamond is far better than other
sketches in terms of accuracy.

REFERENCES

[1] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy counting:
an efficient algorithm for finding heavy hitters,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 1, pp. 5–5, 2008.

[2] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a spread estimator in small
memory,” in Proc. IEEE INFOCOM 2009.

[3] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: a better netflow for
data centers,” in Proc. USENIX NSDI, 2016.

[4] G. Cormode, “Sketch techniques for approximate query processing,”
Synposes for Approximate Query Processing: Samples, Histograms,
Wavelets and Sketches, Foundations and Trends in Databases. NOW
publishers, 2011.

[5] D. M. Powers, “Applications and explanations of zipf’s law,” in Proceed-
ings of the joint conferences on new methods in language processing and
computational natural language learning. Association for Computa-
tional Linguistics, 1998, pp. 151–160.

[6] T. Yang, A. X. Liu, M. Shahzad, D. Yang, Q. Fu, G. Xie, and X. Li,
“A shifting framework for set queries,” IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 3116–3131, 2017.

[7] T. Yang, A. X. Liu, M. Shahzad, Y. Zhong, Q. Fu, Z. Li, G. Xie, and
X. Li, “A shifting bloom filter framework for set queries,” Proceedings
of the VLDB Endowment, vol. 9, no. 5, pp. 408–419, 2016.

[8] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: A sketch
framework for frequency estimation of data streams,” Proceedings of the
VLDB Endowment, vol. 10, no. 11, pp. 1442–1453, 2017.

[9] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig,
“Cold filter: A meta-framework for faster and more accurate stream
processing,” in Proc. SIGMOD, 2018.

[10] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[11] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp. 270–
313, 2003.

[12] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693–703.

[13] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Networking
(TON), vol. 20, no. 5, pp. 1622–1634, 2012.

[14] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in Proc. ACM SIGMOD, 2016, pp. 1449–
1463.


