Coloring Embedder: a Memory Efficient Data
Structure for Answering Multi-set Query

Tong Yang'!, Dongsheng Yang', Jie Jiang, Siang Gaof, Bin Cuif*, Lei Shi®, Xiaoming Lif
Department of Computer Science, Peking University, China
National Engineering Laboratory for Big Data Analysis Technology and Application (PKU), China
$Institute of Software, CAS, China

Abstract—Multi-set query is a fundamental issue in data
science. When the sizes of multi-sets are large, exact matching
methods like hash tables need too much memory, and they cannot
achieve high query speed. Bloom filters are recently used to
handle big data query, but they cannot achieve high accuracy
when the memory space is tight. In this paper, we propose a new
data structure named coloring embedder, which is fast, accurate
as well as memory efficient. The insight is to first map elements to
a high dimensional space to almost eliminate hashing collisions,
and then use a dimensional reduction representation, which is
similar to coloring a graph, to save memory. Theoretical proofs
and experimental results show that compared to the state-of-the-
art, the error rate of the coloring embedder is thousands of times
smaller even with much less memory usage, and the query speed
of the coloring embedder is about 2 times faster. The source code
of coloring embedder is released on Github.

I. INTRODUCTION
A. Background and Motivation

Given k sets &1, Sy ...S; with no intersection and an
element e from one of those sets, multi-set query is to query
which set e belongs to. The formal definition is as follow.
Multiset query: U is the universe of elements, i.e., U =
{e1,ea,...€;..., e }, Where e; can be a string, an integer, or an
IP address. U can be divided into s disjoint sets S1, S3, ..., Ss,
such that Vi, 5,5;NS; =0, and S; US, U...US; =U. The
membership of e is defined as a function f : U — {1, 2, ..., s},
such that f(e) = i if e € S;, where i is also defined as the
set ID of e. For any element e € U, the multi-set query is
to retrieve its set ID, which is denoted as f(e). Our goal is
to design an algorithm for multi-set query, which encodes f
into a data structure D, and answer queries based on D. If
the answer f(e) for querying e is unequal to f(e), we say
this query incurs an error. In practice, small error is often
acceptable, especially in big data scenarios.

Multi-set query is a fundamental problem in computer
science. It is involved in many applications, including indexing
in data centers [35], distributed file system [5], database
indexing [5], data duplication [28], network packets processing
[11], [43], [41], and network traffic measurement [12], [39].
Below we give two typical use cases.

Use Case 1: Distributed caching. The most classic distributed
caching is the Summary Cache [20]. There are multiple proxy

Co-primary authors: Tong Yang {yangtongemail @gmail.com} and Dong-
sheng Yang {yangds@pku.edu.cn}

caches, and each proxy keeps a compact summary of the cache
content of every other proxy cache. When a cache miss occurs,
it first checks all the summaries to see if the request might be
hit in other caches, and then sends a query message only to
those proxies whose summaries show positive results. This is
a typical multi-set query problem. Due to the significance of
distributed caching, recent works [44], [46] are still optimizing
the performance.

Use Case 2: MAC table query. In data centers, for each
incoming packet, the switch needs to query the MAC table
to find the outgoing port to forward the packet. A query on a
MALC table can be seen as a multi-set query. Each MAC table
entry includes a key (MAC address) and a value (port). In a
typical MAC table [2], there are around ten thousand entries
and tens of ports, while a switch often has limited memory, so
it is challenging to support queries at high line-rate [43]. For
this challenge, many solutions [43], [33] sacrifice the query
accuracy, which means a query may get wrong answer (error).
In the case of MAC tables, such errors are allowed, but may
incur high time penalty.

Above all, the key metrics of multi-set query are query
speed, error rate, and memory usage. High query speed is
critical to catch up with the high throughput of query requests.
Low error rate is highly desired because the time penalty of
error is high. Small memory usage is also important, because
cache is usually small, and data structures should be small
enough to fit into the cache to achieve fast access speed. Prior
works often focus on improving one or two of these three
metrics. The design goal of this paper is to optimize all the
three metrics at the same time.

B. Prior Arts and Limitations

There are mainly two kinds of solutions for multi-set query:
hash table based solutions and Bloom filter based solutions.

Using a hash table is a straightforward solution for the
multi-set query problem. We just use elements as keys and
the set IDs as the values, and then we can build a hash
table for these key-value pairs. Hash table based solutions
are accurate but not memory efficient. Traditional hash table
based solutions [30] achieve O(1) query speed at the cost
of large memory usage, and unbounded query time due to
hash collisions. Perfect hashing based solutions [10], [14]
sacrifice insertion speed for query speed. They have bounded
query time. However, they hardly support fast dynamic update.

Another notable hashing scheme is called cuckoo hashing [31].
It achieves fast query speed using relatively small memory and
supports slow updating.

A Bloom filter [8] is a compact data structure for member-
ship query problem. It can achieve fast and constant query
speed using very small memory, at the cost of sacrificing
query accuracy. Many prior work [12], [29], [38], [40] focus
on using Bloom filters for multi-set query problem. However,
they suffer from a relatively high error rate because of hashing
collisions. When an element is fully overlapped with other
elements in a Bloom filter, a false positive happens.

In summary, the above two kinds of solutions cannot achieve
the design goal of this paper.

C. Proposed Approach

Towards the design goal, we propose a novel data structure,
named the coloring embedder, which can achieve fast query
speed, small memory usage, and almost no error at the same
time. Similar to hash table based solutions and Bloom filter
based solutions, our coloring embedder is also based on
hashing. Before introducing our solution, let us first consider
the following scenario: given m elements, we randomly map
these elements to n = cm buckets. In this paper, a bucket
means a unit in the memory that can store only one element.
An element cannot be represented by its bucket if this bucket
contains more than one element, and we call such case a
collision. It is obvious that many collisions will occur when
c = 1. To reduce the number of collisions to a considerable
level only by hashing, ¢ has to be very large.

The design principle of the coloring embedder is to almost
eliminate collisions without increasing memory overhead.
There are two challenges to design such a data structure: one is
how to map the elements to eliminate collisions, and the other
is how to use small memory to store the mapping results. To
handle the above challenges, we propose two key techniques.
The first one is hyper mapping, and the second one is coloring
embedding. We first map all elements to a high dimensional
space to almost eliminate hashing collisions, and then we
perform dimensional reduction to embed the high dimension
space into a low dimension space. We use the terminology
of the graph to explain our algorithm. Suppose there are m
elements, we first map them to an empty graph with ¢m nodes
and (cm/2)? edge slots, where c is recommended to be 2.2.
Each element is mapped to an edge slot to build an edge, and
the set ID is recorded on the edge. Then we embed the graph
with (cm/2)? edge slots into a node vector with ¢m nodes,
while keeping the recorded set IDs of all elements accurate.

In this paper, we propose to use the colors of the nodes to
represent the type of the edges, namely coloring embedding.
To demonstrate the working principle of coloring embedding,
we first consider a simple case where there are only two sets,
set 0 and set 1. For convenience, we name edges mapped
by elements in set 0 as positive edges, and edges mapped
by elements in set 1 as negative edges. The graph is colored
according to two coloring rules:

—— positive edge
hyper mapping | -~~~ negativeedge| coloring embedding
n; .

ns ny

Fig. 1. Hyper mapping and coloring embedding.

1) If there is a positive edge between any two nodes, those
two nodes should have different colors;

2) If there is a negative edge between any two nodes, they
should have the same color.

If all nodes can be colored according to the two rules, the
coloring embedding succeeds. Then we can answer multi-set
query only with the vector of node colors. When an element in
the sets is queried, we check the two end nodes of its mapped
edge. If the two nodes have different colors, the element is in
set 0. Otherwise, it is in set 1.

For more than two sets, we do not directly encode them in
pairs. On the contrary, we encode the set ID by bits. If there
are totally s sets, then the length of the set ID is [log(s)] bits.
As mentioned above, one graph can encode two sets, so one
graph can encode the content of one bit. Therefore, we can
create [log(s)| graphs, and each graph encodes one bit of the
binary representation of a set ID. To achieve faster query speed
and better load balancing, we further propose the shifting
coloring embedder which uses only one graph. More
details can be seen in Section IV.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss two types of prior art for
multi-set query. Then, we briefly introduce the property of
random graphs, which is related to our proposed algorithm.

A. Exact-match Data Structures

Exact-match data structures based on hash tables [30] have
no error. However, they need to store element keys in order
to resolve hash conflicts. To reduce hash collision rate while
supporting fast query and update, a large memory is needed.
Perfect hashing [18], [7] achieve little memory redundancy, but
can hardly support insertions. Another notable hashing scheme
is called cuckoo hashing [31]. It achieves fast query speed
using relatively small memory and supports slow updating. It
maps each element to two positions. If both two positions are
occupied by other elements, it expels one of those elements
to make room for the new element, and inserts the expelled
element to the other position of it. When the load factor is
high, the update could fail.

B. Probabilistic Data Structures

Probabilistic data structures for multi-set query are mostly
based on Bloom filters. [8§] A Bloom filter is a compact
data structure to represent a set, and supports approximate
membership query, i.e., answering whether an element belongs
to the set, but the answer may be wrong. A Bloom filter
consists of a bit array and k hash functions which map an
element to k bits in the array. To insert an element, k& hash
functions are computed and all the mapped k bits are set to 1.
To query an element, the Bloom filter checks the & mapped
bits and returns true if and only if all of them are 1.

To support multi-set query, a straightforward method is to
use multiple Bloom filters, each recording one set [43]. But
this method has low memory efficiency, and slow query speed
because it needs to access multiple Bloom filters. Several work
take efforts to reduce the number of Bloom filters, by letting
each Bloom filter represent a part of the encoded set IDs, such
as Bloom Tree [42], Coded Bloom filter [12], Sparsely coded
filter [29], and etc. Since the optimal length of a Bloom filter is
related to the number of elements, the memory usage of these
methods may be influenced by the distribution of set sizes,
even if the total number of elements is given. There are also
Bloom filter variances which records elements of different sets
in a single filter, such as the Combinatorial Bloom filter [22],
iSet [33], the Shifting Bloom filter [40], and more [17], [15],
[16]. They share an advantage that they are not influenced by
the distribution of set sizes.

Bloom filters are suitable for the scenario where the allowed
error rate is relatively high. If the allowed error rate is very
low (e.g., 10~%), it will need too much memory (19.13 bits per
element using 13 hash functions) to reduce the collision rate
to meet the requirement. By contrast, our algorithm has the
property that if the memory is above a rather small threshold
(2.2 bits per element using 2 hash functions), there will be
almost no error (smaller than 10~* for 10° elements) at all.
So our algorithm is more memory efficient if the required error
rate is very low.

C. Random Graph and Sharp Threshold

A random graph is generated by randomly connects m pairs
of nodes in an empty graph containing n nodes. Random
graphs have many elegant mathematical properties, a typi-
cal one is the existence of sharp threshold [45], [9]. The
sharp threshold is also called phase transition phenomenon,
which means some properties may suddenly change when
an independent variable is changed. For example, in nature,
water exists in the liquid state if the temperature is over a
threshold, and in the solid state if the temperature is under this
threshold. Similarly, it has been proved that, cycles exist in a
random graph with high probability when m/n is larger than
1, and there are no cycles with high probability when m/n
is smaller than 1 [19]. Therefore, 1 is the sharp threshold of
the existence of cycles. Many properties in random graphs
have phase transition phenomenon, e.g., the emergency of
a giant component, the diameter of the graph [19], [23],
etc. We have found that there also is a sharp threshold of

memory for successful construction of the coloring embedder.
The construction will succeed with high probability when the
memory size is larger than the threshold. This property can be
used for choosing a proper initial memory size for a coloring
embedder.

III. THE COLORING EMBEDDER

In this section, we describe the design of the coloring
embedder in detail. For the ease of understanding, we first
present the coloring embedder for two-set query, and then
present two variances for multi-set query. Table I summarizes
the symbols frequently used in this paper.

TABLE I
SYMBOLS AND ABBREVIATIONS IN THIS PAPER.
Symbol Description
m # edges or # elements
n # nodes or # buckets
e an element
n/m ratio n divided by m
s # sets
h(.) hash functions
St the 157 set of elements
S~ the 279 set of elements
m4 # elements in ST or # positive edges
m_ # elements in S~ or # negative edges

A. Rationale

The key idea of the coloring embedder is to first map
all elements to a high dimensional space to avoid hashing
collisions, and then perform dimensional reduction to embed
the high dimension space into a low dimension space. There
are two steps to construct a coloring embedder, hyper mapping
and coloring embedding, as illustrated in Figure 1.

In the hyper mapping process, we first build an empty graph
with ¢m nodes, where m is the number of elements and ¢
is a constant. Then we map each element to an edge slot
randomly using hash functions. Since there are about (cm/2)?
edge slots, collisions rarely happen. We record the set IDs on
the edges. There are two sets: set 0 (ST) and set 1 (S7), so
there are two kinds of edges in the graph. The edge with set
ID 0 is named as positive edge, and the edge with set ID 1 is
named as negative edge.

In the coloring embedding process, we embed the graph
into a node vector by coloring the nodes in the graph. The
coloring rules are: 1) for each positive edge, the colors of its
two associated nodes should be different; 2) for each negative
edge, the colors of its two associated nodes should be the
same.

To balance the success rate of coloring embedding and
memory usage, we use at most four colors to color the
graph. Although a graph can be successfully colored with
higher probability if we use more than 4 colors, more bits are
required to represent the color of a node, which incurs much
more memory overhead. In addition, three colors cannot save
memory compared to four colors, because three colors also

need 2 bits to encode. Therefore, we choose to use four colors
to color the graph.

If the constructed graph has errors, we can either reconstruct
the graph using other hash functions or allow the errors to
exist because the errors are always quite few. Users can set
a maximum number of attempts for reconstruction depending
on the expected probability of having no error.

B. Implementation

In this subsection, we describe the data structure and the
operations in the coloring embedder, including construction,
query, insertion, deletion, and migration.

bucket
lo1]o0(10)o1]00]10] Node Array
::;I:::nj::;j‘::jlj::;j:::n/-j\::
[01]00]10]01]00]10) nheader
‘ !
s linked fgtacency

Fig. 2. Structure of the coloring embedder.

1) Data Structure:

The coloring embedder consists of two parts: a node array
and an adjacency list. As shown in Figure 2, these two parts
can be stored separately because they are used in different
situations. Below we introduce them respectively.

TABLE 11
COLOR FOR EACH STATE OF THE BUCKET.
Bits | (0,0) [(0,1) [(1,0) [(L1)
Color Red Green Blue Yellow

1) Node Array: The node array is used to store the results of
the coloring embedding. A node array consists of n buckets,
and each bucket consists of two bits denoted by b; and bs.
Each bit can be set to O or 1, so a bucket has 4 states: (0,0),
(0,1), (1,0), and (1,1), corresponding to four colors: red, green,
blue, and yellow, respectively (see Table II). A bucket in the
node array corresponds to a node in the graph. We define
coloring a bucket as setting the values of the two bits in a
bucket. For example, if we color a bucket with green, it means
setting its first bit to 0 and its second bit to 1.

2) Adjacency List: The adjacency list is used to store the edges
of the graph during the hyper mapping process. It is composed
of n linked lists, and the header of each linked list corresponds
to a bucket in the node array. Let n; denote the i*" bucket.
If two nodes in the graph are connected by an edge, the two
corresponding buckets in the node array are logically adjacent.
The linked list of the i*" bucket stores the positions of all the
buckets that are logically adjacent with bucket n;. For each
item in the linked list, we use a flag bit to indicate whether

the edge is positive or negative. In Figure 2, positive edges are
represented by solid lines, and negative edges are represented
by dash lines. From the adjacency list in Figure 2 we can read
that ng is logically adjacent to ng with a negative edge, and
is logically adjacent to n4 with a positive edge.

2) Operations:

ny; n, N

ng
|00|00 00 00|00|00|

e

|01|00 00[01|01|00|

‘
‘
Fy’l
Lo [][]]
‘

coloring buckets

ot B e— e
R R
n, n n, ny
e; €
n; € ’ ny n) , ny
7 /
S e /e
ng ns ng ns

Fig. 3. An example of construction.

Construction: Initially, there is a node array with n buckets
and a graph with n nodes and no edge. The i*" bucket with
two bits corresponds to the it" node with four colors, and we
use n; to denote them both. For each element e in ST and S,
we compute two hash functions to map it to two nodes 1y, (¢),
Ty (e)» and we create an edge between these two nodes. If the
element is in set ST, the edge is a positive edge, otherwise it
is a negative edge. After all elements are inserted, we color
the graph to make all nodes obey the coloring rules mentioned
in Section I-C. Any coloring algorithm can be used, and we
present an algorithm named RDG in Section III-B3. If the
graph is colored successfully, we assign the value of bucket n;
with the color of node n; (1 < ¢ < n). Otherwise, we change
hash functions and repeat construction until it succeed. When
the memory size of the node array is larger than 2.2 bits per
element so that the number of nodes exceeds the threshold, the
construction will succeed in one time with high probability.
Example (Figure 3): Set ST has two elements e; and
e, and set S~ has one element ez. First, every element
is mapped to the adjacency list and three logical edges are
created. Two of the them are positive and one is negative.
The three edges are showed in the corresponding graph below
the coloring embedder. Positive edges are represented by solid
lines and negative edges are represented by dash lines. Second,
we color the nodes. As shown in the graph on the right, nq
and ns, ng and ns are colored with different colors; n, and
ns are colored with the same color. Two colors are enough to
color the graph. After that, we set the values of the buckets
in both the node array and the adjacency list according to the
color of the graph.

Query: The query process only involves the node array. When
querying an element e, we compute the two hash functions
for e and check the colors of the two mapped buckets ny, (1)
and np, (). If their colors are different, e belongs to ST.
Otherwise, e belongs to S~

Example (Figure 3): When querying element e;, we
compute hash functions and get two buckets n; and ny with
values (0,1) and (0,0), respectively. Since these two buckets
have different colors, the edge between them is a positive edge.
Thus we report that ¢; belongs to ST.

Insertion: There are two steps to insert an element e. First,
we compute the two hash functions and map e to two buckets
Np, (z) and np, (. If e belongs to ST, we add a positive edge
between the two buckets in the adjacency list; if e belongs
to S, we add a negative edge in the adjacency list. Second,
we perform the RDG updating algorithm to make all affected
buckets follow the coloring rules.

n, ny ng N5 ng

n;
[o1]oo]10]01]01]00]

r-Yoqy
| ﬁ
inserting e, R
> |
n;

€y

n, n, n;y ng N5 ng
[o1]o0]oo]o1]o1]00]

e; e

Fig. 4. An example of insertion.

Example (Figure 4): A new element e4 from ST will
be inserted. First, we map e, to two buckets and add a positive
edge between ny and ng. Second, we find out that the colors
of bucket no and n3 are both red, while their colors should be
different according to the coloring rules. Therefore, we need
to perform the RDG updating algorithm. As a result, the color
of bucket n3 changes from red to blue.

Deletion: To delete an element e, we compute two hash
functions to locate the buckets of e, and then remove the edge
between ny,, () and np, ;) from the adjacency list. That means
deleting np,, () from the linked list of ny,,) and deleting
T, (z) Trom the linked list of ny,, (). The node array does not
needed to be modified at once.

Migration: Migration means an element e changes its mem-
bership from S to S~ or vice versa. If e migrates from S™ to
S, the edge between ny,, () and ny,, () changes from positive
to negative; if e migrates from S~ to ST, the edge changes
from negative to positive. Then RDG updating algorithm is
performed to color other affected nodes.

n, n; n,

Ny N5 Ng
[01]o00]10]01]01]00]

n, n, ng n, Nng ng
[01]o0]o01]o1]o1]00]
T T

\
I_J(_I l_y_l l_l‘(_l
L0} Lns {iny
migrating e, 1
- 0|
n, ny
€ € 1
conflict 1
1
1
nl. I.”A nl. ez: I.”A
[s
€ ‘, €
ne. Ns ne. Ns
Fig. 5. An example of migration.
Example (Figure 5): Element es changes its member-

ship from ST to S~ and the edge between n3 and n;s needs
to be changed from positive to negative. As a result, we need
to change the colors of n3 and ns to make them have the
same color. The RDG updating algorithm is performed, and
the color of n3 changes from blue to green. Other buckets are
not affected in this case.

3) The RDG Coloring Algorithm:

In this section, we describe our coloring algorithm in details.
Coloring problem is a well known NP-hard problem [21],
so we cannot give a polynomial time exact algorithm. Our
coloring algorithm is named as Recursively Delete or Give up
coloring (RDG). It is an extension of the k-core decomposition
algorithm in [6]. It is an approximation algorithm and is fast
and accurate in practice.

Before going to the algorithm details, we introduce a well
known term in graph theory — k-core [24][34][13]: The k-core
is the maximum subgraph in which the degree of every node
is equal or larger than k. Our RDG algorithm is based on
the observation that the graph will be quickly and successfully
colored with k colors if there is no k-core in the graph.

For convenience, we use CSG to represent Connected
SubGraph. Our RDG coloring algorithm is divided into the
following steps:

1) For every pair of nodes directly connected by negative
edges, we merge those two nodes to a single node. After that,
the graph only contains positive edges. An empty stack is built
to record deleted nodes.

2) If all CSGs in the graph have been deleted, go to step
5. Otherwise, for each CSG; that is still not deleted yet, we
compare its number of nodes Nggq, with the predefined
threshold 6. If Neosa, < 6, go to step 3; If Neosa, > 0, go
to step 4. Typically, we set 6 to 16.

3) The incoming CSG is small, so we simply use a depth-
first method to color it. If the coloring succeeds, we delete the

CSG and return to step 2. Otherwise, we report that the graph
cannot be colored with four colors and the algorithm ends.

4) For the incoming CSG, if there is no node with degrees
less than 4, we report that there is a 4-core and the algorithm
terminates. Otherwise, we push all the nodes with degress less
than 4 into the stack and delete them from the CSG. After that
we return to step 2.

5) We pop all nodes from the stack, and color them one by
one. The algorithm ends.

Proof of correctness: Here we prove that if the algorithm
reaches the 5 step, the graph can be colored correctly. If
coloring a node ng leads to conflicts in the the 5" step,
there must be more than 4 neighbors of ng already colored.
However, when ng is pushed into the stack, it has less than
4 neighbors remaining in the graph. Therefore, when ng is
popped, it also has less than 4 neighbors. As a result, we
can safely draw the conclusion that all nodes can be colored
successfully without conflicts.

Complexity Analysis: In our RDG algorithm, each node en-
ters the stack at most once. The time complexity of processing
each node is related to the number of edges the node has. For
each edge, it is connected to two nodes so it is processed
at most twice. Therefore, the overall time complexity of the
construction is O(n + m). We have to store all nodes and
edges, along with a stack with at most n elements for k-core
decomposition, so the space complexity is O(n + m).

4) RDG Updating algorithm:

Updating refers to inserting or deleting an element into or
from ST or S~ . For the updating of the coloring embedder, we
propose a method named RDN (Recursively Delete Neighbor):
When a node n; needs to change its color, if there is no
candidate color for it, we involve all its neighbors into the
modification and they make up a subgraph. We attempt to
color that subgraph using the RDG algorithm. If the RDG
algorithm fails, the neighbors of nodes in the above subgraph
are all involved into the subgraph. This process is carried on
recursively until a success. If the subgraph cannot be expanded
and cannot be colored, a 4-core is found and the RDG updating
algorithm fails.

C. Coloring Embedders for More Than Two Sets

To classify more than 2 sets, we propose two solutions. The
first one is to apply a coding method and a one memory access
scheme to organize multiple coloring embedders together. The
second one is to use one large coloring embedder associated
with multiple groups of hash functions, and those groups of
hash functions are generated by shifting an original group of
hash functions.

1) Coded Representation of Sets:

A coded coloring embedder is implemented by multiple
coloring embedders. Suppose there are s sets, with IDs ranging
from 1 to s. The IDs can be converted to binary codes,
with maximum length log[s]. To record the membership of
an element, we can record each bit of the set ID binary
code with a coloring embedder. This task can be handled

by totally log[s] coloring embedders. If the i* bit is 1, the
it" coloring embedder records the element with a positive
edge. Otherwise, it records the element with a negative edge.
The log[s| coloring embedders are together called the coded
coloring embedder.

Next, we use the One Memory Access Technique to further
optimize the query speed of the coded coloring embedder. In
the above implementation, the number of memory accesses of
a coded coloring embedder is as log[s] many as a single color-
ing embedder, which slows down the speed of query, insertion
and deletion. To address this problem, we reorganize the layout
of the log[s] embedders. All embedders are separated into
single bits and the corresponding bits are put together. The i*"
bits of each embedder are now in a word, so the binary code of
one element can be fetched with only two memory accesses.
By using this technique, the coded coloring embedder can
work almost as fast as a single coloring embedder.

2) The Shifting Coloring Embedder:

The above coded coloring classifier with one memory access
technique can represent more than 2 sets and reduce the num-
ber of memory access to 2. However, it uses many coloring
classifiers and they suffer from load balancing problem. To
address this issue, we propose the Shifting coloring
embedder, which shares the similar idea with Shifting
Bloom filters [40].

Sy: 000 ~— Positive edge
S;: 001 ~— Negative edge
S,: 010 hy(e) hy(e)

S, 111

[T [E-[TT]

Node Array

Fig. 6. Shifting coloring embedder.

Given s sets with set ID: 0, 1, 2, ..., s — 1, we build one
shifting coloring embedder. There is only one graph, and log, s
edges are inserted in the graph for each element. We use
an example in Figure 6 to show how the shifting coloring
embedder works. In this example, there are 8 sets, which
means s = 8 and log, s = 3. We assign a code for each
set: the code of S; is ¢ in the binary format. For example,
the code of S5 is 101. When inserting an element e which
belongs to set S5, we compute hi(e) and ho(e), and locate
2logy s = 6 buckets: np, (e)s M, (e)+1> Thy(e)+2> AN Ty (e)s
Ny (e)+1s Tha(e)+2- Because e € S5 and the code of S5 is 101.
The first bit of this code is 1, it corresponds to a positive edge,
we build a positive edge between ny,, () and nyp, (). It means
that the colors of ny,, () and ny, () need to be different. The
second bit of this code is 0, we build an negative edge, and the
colors of 1y, (¢)+1 and 7y, ()41 need to be the same. Similarly,
the colors of np,, (¢) 42 and 1y, ()42 need to be different. When
log, s is smaller than the length of a machine word, we can
answer multi-set query with only two memory accesses. Also,
there is no load balancing problem because there is only one
data structure to hold all elements.

IV. ANALYSIS

Two types of errors can occur in our algorithm, which
are collision error and color error. Next, we will calculate
the expectation of the number of collision errors and the
probability that no collision error happens. Then, we will
analyze the condition that no coloring error happens. We
suppose that there are n buckets in the node array of our data
structure, m elements in S*, and m_ elements in S™.

A. Collision error

When two edges of different types overlap, a collision error
happens. The formal definition is as follow.

Collision error: Given a graph G, a negative connected
component is defined as two or more nodes connected by
only negative edges. For each negative connected component
N, if there are two nodes nj,ny € N~ which are directly
connected by a positive edge, a collision error happens.

1) Simple Cases:

The analysis begins with the simplest case of collision error:
a positive edge overlaps with a negative edge. To discuss the
worst case, we suppose that there are m_, non-overlapped
positive edges and m_ non-overlapped negative edges in the
graph. The probability that a negative edge collides with any
positive edge is m/(5) = 2m4./[n(n— 1)]. To calculate the
upper bound [25], [27], [26] of the expectation of the number
of collision errors, we can directly sum up the probability of
collisions for all negative edges because they follow a binomial
distribution.

mim_ 2mym_
(%) n(n—1)

Given a negative edge, the probability that it does not
collide with any positive edge is 1 — my/ (g) Collisions
are independent events for each negative edge because we
suppose they do not overlap with each other, so we can apply
the multiplication principle to get the lower bound of the
probability that there is no collision error.

m— 2 m_—
P(no collision) = [1 — e ~ (10t
(3) n?

2

2m Ty Xz M= 2m m_
=(1- ~e n?

2

E(collision) <

(D

2) General Cases:

In this section, we analyze a more complex situation of
collision error: two nodes are indirectly connected by a list of
continuous negative edges, and are at the same time directly
connected by a positive edge. For convenience, we name the
list of continuous negative edges as an equivalent negative
edge. To calculate the expectation of the number of collision

error, we need to count the number of equivalent negative
edges, which is denoted as m/ .

Our analysis begins with deriving the number of equivalent
negative edges formed by two negative edges between three
nodes. Given three nodes, the probability that two of them are
directly connected by a negative edge is 2 x 2m_. And the
probability that another pair of nodes is also directly connected
by a negative edge is % X %(m_ —1). So the probability that
three nodes are connected by two negative edges is

12m_(m_ —1)
nd

For all the n nodes, the expectation of the number of equivalent
negative edges formed by three nodes is then calculated by the

following equation.
12m% (m\ 2m?
I _ — ~ —
m gy = = (3>~ ")

The number of equivalent negative edges formed by four or
more nodes can be similarly derived. Given any v nodes, the
probability that they are connected by v — 1 negative edges is

ol (2m_\"""

2 \ n?
The number of equivalent negative edges formed by v nodes
is the product of that value and (7).

20 2ylm*~1 /n 2u=2yv =t
m’_@):()% 4)

n2'u72 v nv72

From equation 4, we can find that the number of equivalent
negative edges is approximate to a geometric progression when
the value of v increases. We only show the case that n is larger
than 2m_. Other cases can be deduced similarly.

L, 2 om?
ml=) My ® Y =2 o om’
v=3 v=3

n>2m_

4)

To get the final result of the expectation of the number of
collisions and the probability that no collision happens, the
m_ In the simplified equation 1 and 2 is replaced by m_ +
m'_. n is required to be larger than 2m_ in practice. The
reason is that if n is smaller than 2m_, the graph can hardly

be colored successfully.

2 —)/ 2 _
E(collision) < me(m— + m-) = 4
n(n —1) (n—1)(n—2m_)
2m g m (6)
2 ’ PR i —
P(no collision) ~ e M m—Aml) _ T)
(N

Let n/m ratio be the quotient of n divided by m.
According to equation 6 and 7, the expectation of the number
of collision errors and the probability that no collision error
happens are not influenced by the graph size when n/m
ratio is fixed. When n/m ratio is larger than 1.1, which
means each element uses more than 1.1 x 2 = 2.2 bits, the
expectation of the number of collision errors is less than 5 no

matter how many elements there are, and the probability that
no collision error happens is larger than 50%.

B. Color error

When the graph is dense, 4 colors may be not enough
to make all edges in the graph meet the coloring rule. For
example, suppose there are 5 nodes in the graph and each
pair of nodes is connected by a positive edge, then 5 different
colors are required to make all pairs of nodes have different
colors to meet the coloring rule. The formal definition of color
error is as follows.

Color error: The graph cannot be colored successfully with
four colors by the RDG coloring algorithm.

In our RDG coloring algorithm, we give up coloring if we
find a 4-core in the graph. As a result, color error happens
when there is a 4-core. Theories about k-cores in random
graphs are established in [32].

1) If £ > 3 and n is large, with high probability, there is a
giant k-core when m is larger than c¢xn/2 and there is no
k-core when m is smaller than cxn/2.

2) ¢, =k + Vklogk + O(logk).

According to [32], ¢4 is calculated to be 5.14. The
n/m ratio threshold for color error is equal to 2/c4. There-
fore, when there is no negative edge in our graph, the
n/m ratio threshold is 0.389. When there are negative edges,
our graph is not a random graph and thus the results in [32]
do not apply. From the perspective of coloring, negative edges
combine many nodes into a large single node because those
nodes must have the same color. The large single node has
many neighbors, and thus the subgraph containing that node
can be very dense, leading to a higher probability of the
emergence of a 4-core. As a result, n/m ratio threshold
becomes larger when the percentage of negative edges is
higher. In the worst case, when the negative edges account for
50% of all edges, the n/m ratio threshold is 1.10 according
to our experiments. In conclusion, we need no more than
1.10 x 2 =2.20 bits per element to build a coloring embedder
to ensure that no color error happens.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

1) Datasets:

We use three real datasets and generate plenty of synthetic
datasets for experiments. The statistics of the real datasets are
shown in Table III.

MACTable: This dataset is drawn from the MAC table file
in [2]. For each entry in the MAC table, we use the line
number as the key, and use the type field (static or dynamic)
to determine the set.

MachineLearning: This dataset is drawn from a dataset of
classification task of the machine learning [4]. We use the
training set as our dataset. For each entry in the training set,
we use the line number as the key, and the label as the class.

DBLP: This dataset is drawn from DBLP[1]. We use the key
attribute as our key. We use the records of articles as ST and
the records of inproceedings as S~

TABLE I
STATISTICS OF THE REAL DATASETS.
items mT m- S~ ratio
MACTable 3664 3144 520 0.1419
MachineLearning | 912969 | 472605 | 440364 0.4823
DBLP 823132 | 623212 | 199920 0.2429

Synthetic dataset: We generate random strings as keys of
elements in a dataset. We use synthetic datasets because our
data structure have to be examined when the percentage of S™
is continuously changing, while real world datasets have fixed
percentage of S—. We argue that for data structures using hash
functions, including the coloring embedder, real datasets and
synthetic datasets have no difference. The experiments in the
next section also prove this fact.

2) The State-of-the-art Implementation:

To compare our data structure with the state-of-the-art, we
implement three Bloom filter based data structures used for
multi-set query. The first one is the Multiple Bloom filter [43].
The Multiple Bloom filter simply assembles the Bloom filters,
each one representing one of the sets. This model is called
MultiBF in short. The second data structure is the Coded
Bloom filter [12], denoted as CodedBF. It is a typical variance
of Bloom filter using multiple filters. It converts set IDs to
binary codes and stores the code in the Bloom filters. The third
one is the shifting Bloom filter [40], denoted as ShiftBF. It is
a typical variance of Bloom filter using a single filter. ShiftBF
uses the offset of bits to represent the set ID. To make those
data structures comparable with ours, we allocate 2.5 times as
much memory for those three data structures as the coloring
embedder. The source code of coloring embedder is released
on Github [3].

3) Experimental Setups:

We use general-purposed CPU to run all experiments,
because we do not have FPGA or ASIC environment. We
conduct all experiments on a standard off-the-shelf computer
equipped with two 6-core Intel(R) Xeon(R) E5-2620 CPUs
@2.00GHz and 62GB RAM running Ubuntu 16.04. For each
core, the L1 data cache is 64KB and the L2 cache is 256KB.

B. Experiments on Two Sets

In this section, we conduct experiments on two-set query,
which is the foundation of multi-set query. We use real
datasets and synthetic datasets to comprehensively evaluate
performance of hyper mapping and coloring embedding, and
measure the throughput of construction, query and insertion.

1) Coloring Embedding:

First, we show that there is a sharp threshold for successful
coloring embedding. Then, we test the condition of successful
coloring embedding when the percentage of S™ varies.

Successful coloring rate vs. n/m ratio (Figure 8): The
experimental results show that there is a sharp threshold of

n/m ratio for the success rate of coloring embedding. In this
experiment, we test the success rate against the n/m ratio
on all three real datasets. For each real dataset, with the
same percentage of S~, we generate synthetic datasets of
different sizes, varies from 103 to 10%. The results are shown
in Figure 8. As the n/m ratio increases, there is an almost-
zero success rate when the n/m ratio is below the threshold, a
similar surge when the n/m ratio is passing the threshold, and
an almost-one success rate when the n/m ratio is above the
threshold. The thresholds are 0.52, 1.07, and 0.66 for datasets
of MACTable, MachineLearning, and DBLP, respectively. The
threshold of synthetic datasets is the same with that of real
datasets [37], [36], [47]. The larger the datasets are, the sharper
the threshold is. The threshold for different real datasets are
different, because the percentage of S~ is different. MACTable
dataset has the smallest n/m ratio threshold because it has
the smallest percentage of S~. There is no sharp threshold
for small datasets in Figure 8(b), because they have different
properties from large datasets.

w

=2 Synthetic MachineLearning
[=]
£ | e MACTable < DBLP]
g2
k=]
>
S
g
21
=
10 20 30 40 50 60

Negative edge percentage (%)
Fig. 7. Memory needed vs. percentage of S—.

Memory needed vs. Percentage of S~ (Figure 7): The
experimental results show that the memory needed for coloring
embedding increases when the percentage of S~ increases.
We measure the memory usage (bits per element) in the
condition that the successful coloring rate is above 99%.
The three real datasets are displayed as points in the figure,
while the synthetic datasets are displayed as a line. When
the percentages of S~ is around 13%, the memory needed
is below I bit per element.

When the percentages of S~ is around 50%, which is the
worst case of our algorithm, the memory needed is 2.2m bits,
where m is the number of elements. When the memory size
is larger than 2.2 bits per element, the graph is sparse enough
so that there is no 4-core and thus can be colored successfully
with 4 colors. 2.2 bits per element is always enough for all
kinds of datasets because when the percentages of S is larger
than 50%, we can simply exchange S~ with ST.

2) Hyper Mapping:

In this part, we evaluate the number and probability of
edge collisions during hyper mapping under different settings
of n/m ratio and the percentage of S~. We use synthetic
datasets with sizes from 103 to 10°. By default, the percentage

of 8~ is 50%, and the n/m ratio is 1.1, which is the threshold
of successful coloring.

Number of collisions vs. n/m ratio (Figure 9(a)): The
experimental results show that the average number of colli-

sions decreases when the n/m ratio increases. Specifically,
when the n/m ratio is 1.4, the expectations of the number
of collisions of all datasets are 1. The number of collisions is
not influenced by dataset sizes when the n/m ratio is above
1.15. The experimental results fit well with the theory.

Probability of collisions vs. n/m ratio (Figure 9(b)): The
experimental results show that the probability that collisions
happen decreases when n/m ratio increases. The probability
that collisions happen is not influenced by the set size. When
the n/m ratio is 1.3, the probability that collision happens is
about 75%. And when the n/m ratio is 1.5, the probability
is 50%. The experimental results fit well with the theory.

Number of collisions vs. Percentage of ST (Figure 9(c)):
The experimental results show that the number of collisions
decreases when percentage of ST increases. In this experi-
ment, we change the percentage of ST from 45% to 100%,
and fix the n/m ratio to 1.1. From Figure 9(c) we can see
that when ST accounts for more than 50%, there are less than
2 collisions for datasets of all sizes. When there is no negative
edge, there is no collision. The experimental results fit well
with the theory.

Probability of collisions vs. Percentage of S* (Figure
9(d)): The experimental results show that the probability that
collisions happen decreases when percentage of ST increases.
The probability is almost not influenced by the size of datasets.
It decreases almost linearly from about 90% to 0% when per-
centage of ST increases from 50% to 100%. The experimental
results fit well with the theory.

3) Throughput of Construction, Insertion and Query:

Throughput of construction vs. Dataset size (Figure 10(a)):
The experimental results show that the throughput of construc-
tion decreases slightly when the order of magnitude of dataset
size increases. In this experiment, the percentage of each of
the two sets is fixed to 50%. The memory usage is 2.21 bits
per element, which is the memory threshold for successful
coloring. When the size of datasets increases from 103 to 107,
the construction speed falls from around 1.6 million operations
per second (MOPS) to around 0.4 MOPS.

Throughput of query vs. Dataset size (Figure 10(b)): The
experimental results show that our coloring embedder has up
to 90 MOPS query speed. In this experiment, we use the same
settings with the previous one. Figure 10(b) shows that the
query speed of the coloring embedder is 90 MOPS when the
dataset size is 102, and is 35 MOPS when the size is 10°.

Throughput of insertion vs. Dataset size (Figure 11): The
experimental results show that the throughput of insertion
is high when the load rate is below a threshold. In this
experiment we first construct an empty coloring embedder
using 2.21 x 10° bits, and then insert 10° elements into it.
Figure 11(a) shows that when we insert less than 65% elements
into the coloring embedder, few nodes are affected by the RDG
updating algorithm. In contrast, when we insert more than 65%
elements, tens of thousand nodes need to be recolored. Figure

1.0 ———— 1.0 N —— TTIaT
{LE) m= IO: % m=103 LE) —A— m= IO:
£05 m= 10" $05 m=10* :£05 —o— m=10
8 . m=10° aw m=10° g+ +— m=10°
5:; Real m% m=10° % Real
Real
0.0{ »oesom as 0.0 2% 0.0] ooe00eemuninenss
0.9 1.0 1.1 1.2 1.3 1.8 1.9 2.0 2.1 2.2 2.3 1.0 1.1 1.2 1.3 14 1.5 1.6
Bits per element Bits per element Bits per element
(a) MACTable (b) MachineLearning (c) DBLP
Fig. 8. Successful coloring rate vs. n/m ratio.
s 107 £1.0
£ — =10 m =100 2 m=10° m=10°
Z 10! m=10* Theory § m=10* Theory
3 5 m=10°
s 100 °0.5
’Q'é)m*‘ = s AL
z | 2 00 R
2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 = 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00
Bits per element Bits per element
(a) Number (b) Probability
» £1.0
§7'5 — m=10 — m=10° £ — m=10° m=10°
= 50 — m=10* Theory § m=10* Theory
S 5. s s
% m=10 “20'5 m= 10
525 = N
<} —
g 2
= —— - S
Z0.0 — £0.0
50 60 70 80 90 100 50 60 70 80 90 100
Positive edge percentage (%) Positive edge percentage (%)
(c) Number (d) Probability

Fig. 9. Number and probability of edge collisions.

o

S G
=N %
S S

o

153
B
S

%)
S

Build speed (MOPS)
=) =}
o 3

-~
7
A
o
=
s
9
o
L
2.
&
o
o
3
<o

o
=3
=]

10* 10° 100 107

Dataset size

10°

10° 10* 10° 10° 107

Dataset size

(a) construction speed (b) query speed

Fig. 10. Construction and query speed.

%
4
o

o
o
=)

IS

e
)

Throughput (MOPS)
=)
=

Affected node (x10%)

o
o

0 20 40 60

Load rate (%)

80 100 0 20 40 60

Load rate (%)

(a) number of affected nodes (b) throughput

Fig. 11. Insertion speed vs. Load rate.
11(b) shows that the insertion speed decreases gradually when

we insert less than 65% elements, and drops sharply when we
insert more than 65% elements.

C. Experiments on Multi-sets

In this section, we compare shifting coloring embedder with
Bloom filter variances on multi-set query. We use synthesis
datasets to test the worst case of our coloring embedder (each
sets has the same size). First we fix the number of sets to 16
and vary the dataset size from 103 to 10%. Then we fix the
set size to 10% and vary the number of sets from 2 to 16.
When comparing error number and query speed, the Bloom
filter variances use 2.5 times memory as much as the shifting
coloring embedder to achieve an comparable accuracy for
plotting.

Throughput of query vs. Dataset size (Figure 12): The
experimental results show that our shifting coloring embedder
has faster query speed compared with the state-of-the-art
for 16-set query. The query speed of the shifting coloring
embedder is around 80 MOPS when there are 103 elements.
And the query speed drops to 30 MOPS when the number
of elements increases to 10°. The query speed of other data
structures is always less than 40 MOPS.

Number of errors vs. Dataset size (Figure 13): The ex-
perimental results show that our shifting coloring embedder
has fewer errors compared with the state-of-the-art for 16-set
query. The number of errors of the shifting coloring embedder
is around 5, not influenced by the size of datasets. On the
contrary, the number of errors of Bloom filter variances is

proportional to the dataset size, and are larger than the shifting
coloring embedder when there are more than 10k elements.

Memory vs. dataset size (Figure 14): The experimental
results show that the shifting coloring embedder uses the least
memory for different dataset sizes. The number of sets is fixed
to 16 and the number of errors is limited under 10. When
varying the dataset size from 103 to 109, CodedBf, MultiBF,
ShiftBF and our algorithm uses 24.0 to 51.6, 14.8 to 29.8, 14.8
to 29.8 and 11.2 to 8.8 bits per element memory, respectively.

_ EEE CodedBF BN MultiBF B ShiftBF B Our Algo
g

@]

2 60

5

£

£ 40

=

g

220,

=

0

54 103 10 10°

Dataset size

Fig. 12. Query Speed vs. Dataset size.

EE CodedBF BN MultiBF B ShiftBF s Our Algo

Error number

10° 10*] 100
Dataset size

Fig. 13. Number of errors vs. Dataset size.

=N
S

B CodedBF
BN MultiBF

BN ShiftBF
BN Our Algo

IS
S

Bits per element
w
(=]

10* 10°
Dataset size

Fig. 14. Memory vs. Dataset size.

Throughput of query vs. Number of sets (Figure 15): The
experimental results show that the shifting coloring embedder
has the fastest query speed for different number of sets. We
change the number of sets from 2 to 16 and test query speed
on 10% elements. The query speed of the shifting coloring
embedder is around 35 MOPS, and is almost not influenced by
set number thanks to the shifting technique. On the contrary,
the query speed of Bloom filter variances drops steadily, and is
lower than the query speed of the shifting coloring embedder
when there are more than 2 sets.

Number of error vs. Number of sets (Figure 16): The
experimental results show that the shifting coloring embedder
has the fewest errors for different number of sets. Bloom
filters have 10* to 10? times more errors than the shifting
coloring embedder. When the number of sets changes, the
number of errors of the shifting coloring embedder is not
influenced, staying below 10. The number of errors of MultiBF
and ShiftBF decreases when set number increases, because the

size of a single filter becomes larger for them. However, they
always have thousands of errors.

Memory vs. Number of sets (Figure 17): The experimental
results show that the shifting coloring embedder uses the least
memory when varying the number of sets. The dataset size is
fixed to 10 and number of errors is limited under 10. When
varying the number of sets from 2 to 16, CodedBf, MultiBF,
ShiftBF and our algorithm uses 11.5 to 51.6, 24.7 to 29.8, 24.8
to 29.8 and 2.2 to 8.8 bits per element memory, respectively.
Our algorithm saves up to 90% memory.

EEl CodedBF BN MultiBF B ShiftBF

B Our Algo

53 -
f=3 (=]

Query throughput (MOPS)
=)

Number of sets

Fig. 15. Query Speed vs. Number of sets.

Hl CodedBF B MultiBF B ShiftBF B Our Algo

=) =)
2 :

Error number

A

Number of sets

Fig. 16. Number of errors vs. Number of sets.

=
S

Il CodedBF
BN MultiBF

BN ShiftBF
BN Our Algo

IS
S

)
S

Bits per element

o

2 4 8 16
Number of sets

Fig. 17. Memory vs. Number of sets.

VI. CONCLUSION

In this paper, we propose a novel data structure named
coloring embedder. The coloring embedder is used for two-
set query, and a shifting model is designed for the coloring
embedder to support multi-set query. Experimental results
show that our coloring embedder can achieve up to 10* times
smaller error rate than the state-of-the-art, even with only 40%
memory of the latter. Specifically, it has less than 5 errors on
data sets containing 107 elements with only 2.2log s bits per
element memory in the worst case, where s is the number
of sets. In addition, the coloring embedder achieves about 2
times faster query speed than the state-of-the-art because it
always requires only 2 memory accesses for each query. The
source code of coloring embedder is released on Github [3].
We believe that the insight of hyper mapping and coloring
embedding can be applied to design more data structures.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for
their thoughtful suggestions. This work is partially sup-
ported by Primary Research & Development Plan of
China (2018YFB1004403, 2016YFB1000304), and NSFC
(61672061).

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

dblp: computer science bibliography.
http://dblp.org/xml/release/dblp-2017-09-03.xml.gz.

Hassel library. https://bitbucket.org/peymank/hassel-public.

The source code of coloring embedder.
https://github.com/4colorclassifier/4colorclassifier.

Youtube comedy slam preference data data set.
https://archive.ics.uci.edu/ml/datasets/ YouTube+Comedy+Slam
+Preference+Data.

M. K. Aguilera, W. M. Golab, and M. A. Shah. A practical scalable
distributed b-tree. Proceedings of the VLDB Endowment, 1(1):598-609,
2008.

V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decompo-
sition of networks. Computer Science, 1(6):34-37, 2003.

D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger. Hash, displace,
and compress. Lecture Notes in Computer Science, 5757:682-693, 2009.
B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

B. Bollobs, S. Janson, and O. Riordan. The phase transition in
inhomogeneous random graphs. Random Structures & Algorithms,
31(1):3-122, 2010.

F. C. Botelho, Y. Kohayakawa, and N. Ziviani. A Practical Minimal
Perfect Hashing Method. Springer Berlin Heidelberg, 2005.

W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R. P. Luijten.
Technologies and building blocks for fast packet forwarding. IEEE
Communications Magazine, 39(1):70-77, 2001.

F. Chang, W.-c. Feng, and K. Li. Approximate caches for packet
classification. In INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, volume 4, pages
2196-2207. IEEE, 2004.

J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core decomposition
in massive networks. In IEEE International Conference on Data
Engineering, pages 51-62, 2011.

Z. J. Czech, G. Havas, and B. S. Majewski. An optimal algorithm
for generating minimal perfect hash functions. Information Processing
Letters, 43(5):257-264, 1992.

H. Dai, L. Meng, and A. X. Liu. Finding persistent items in distributed,
datasets. In Proc. IEEE INFOCOM, 2018.

H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong. Finding persistent items
in data streams. Proceedings of the VLDB Endowment, 10(4):289-300,
2016.

H. Dai, Y. Zhong, A. X. Liu, W. Wang, and M. Li. Noisy bloom filters
for multi-set membership testing. In Proc. ACM SIGMETRICS, pages
139-151, 2016.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. A. D. Heide, H. Rohn-
ert, and R. E. Tarjan. Dynamic perfect hashing: upper and lower bounds.
In Foundations of Computer Science, 1988., Symposium on, pages 524—
531, 1988.

R. Durrett. Random graph dynamics, volume 200. Cambridge university
press Cambridge, 2007.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM ToN, 8(3):281-293,
2000.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to NP-Completeness. W. H. Freeman, 1979.

F. Hao, M. Kodialam, T. V. Lakshman, and H. Song. Fast dynamic
multiple-set membership testing using combinatorial bloom filters.
IEEE/ACM Transactions on Networking, 20(1):295-304, 2012.

S. Janson and M. J. Luczak. A simple solution to the k -core problem.
Random Structures & Algorithms, 30(1-2):5062, 2007.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo. K-core decom-
position of large networks on a single pc. Proceedings of the VLDB
Endowment, 9(1):13-23, 2015.

Z. Li, B. Chang, S. Wang, A. Liu, F. Zeng, and G. Luo. Dynamic
compressive wide-band spectrum sensing based on channel energy
reconstruction in cognitive internet of things. IEEE Transactions on
Industrial Informatics, 2018.

Z.Li, Y. Liu, A. Liu, S. Wang, and H. Liu. Minimizing convergecast time
and energy consumption in green internet of things. IEEE Transactions
on Emerging Topics in Computing, 2018.

Z.Li, F. Xiao, S. Wang, T. Pei, and J. Li. Achievable rate maximization
for cognitive hybrid satellite-terrestrial networks with af-relays. IEEE
Journal on Selected Areas in Communications, 36(2):304-313, 2018.
G. Lu, Y. J. Nam, and D. H. Du. Bloomstore: Bloom-filter based
memory-efficient key-value store for indexing of data deduplication on
flash. In Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pages 1-11. IEEE, 2012.

Y. Lu, B. Prabhakar, and F. Bonomi. Bloom filters: Design innovations
and novel applications. (1):201-206, 2005.

W. D. Maurer and T. G. Lewis. Hash table methods. ACM Computing
Surveys (CSUR), 7(1):5-19, 1975.

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122-144, 2004.

B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k
-core in a random graph. Journal of Combinatorial Theory, 67(1):111—
151, 1996.

Y. Qiao, S. Chen, Z. Mo, and M. Yoon. When bloom filters are no
longer compact: Multi-set membership lookup for network applications.
IEEE/ACM Transactions on Networking, 24(6):3326-3339, 2016.

A. E. Saryce, B. Gedik, G. Jacques-Silva, K. L. Wu, and mit V. atalyrek.
Incremental k -core decomposition: algorithms and evaluation. VLDB
Journal, 25(3):425-447, 2016.

S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu. Efficient b-tree based indexing
for cloud data processing. Proceedings of the VLDB Endowment, 3(1-
2):1207-1218, 2010.

F. Xiao, L. Chen, C. Sha, L. Sun, R. Wang, A. X. Liu, and F. Ahmed.
Noise tolerant localization for sensor networks. IEEE/ACM Transactions
on Networking, 26(4):1701-1714, 2018.

F. Xiao, Z. Wang, N. Ye, R. Wang, and X.-Y. Li. One more tag enables
fine-grained rfid localization and tracking. IEEE/ACM Transactions on
Networking (TON), 26(1):161-174, 2018.

D. Yang, D. Tian, J. Gong, S. Gao, T. Yang, and X. Li. Difference bloom
filter: A probabilistic structure for multi-set membership query. In /JEEE
International Conference on Communications, pages 1-6, 2017.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and
S. Uhlig. Elastic sketch: Adaptive and fast network-wide measurements.
In Proc. ACM SIGCOMM 2018, pages 561-575.

T. Yang, A. X. Liu, M. Shahzad, and et al. A shifting bloom filter
framework for set queries. Proceedings of the VLDB Endowment,
9(5):408-419, 2016.

T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy. Guarantee
ip lookup performance with fib explosion. In Proc. ACM SIGCOMM
2014, volume 44, pages 39-50.

M. K. Yoon, J. W. Son, and S. H. Shin. Bloom tree: A search tree based
on bloom filters for multiple-set membership testing. In INFOCOM,
2014 Proceedings IEEE, pages 1429-1437, 2014.

M. Yu, A. Fabrikant, and J. Rexford. Buffalo: bloom filter forwarding
architecture for large organizations. In ACM Conference on Emerging
NETWORKING Experiments and Technology, CONEXT 2009, Rome,
Italy, December, pages 313-324, 2009.

V. Zakhary, D. Agrawal, and A. E. Abbadi. Caching at the web scale.
Proceedings of the VLDB Endowment, 10(12):2002-2005, 2017.

L. Zdeborov and F. Krzakaa. Phase transitions in the coloring of random
graphs. Physical Review E Statistical Nonlinear & Soft Matter Physics,
76(3 Pt 1):031131, 2007.

K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang. Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores. Proceedings of the VLDB Endowment, 8(11):1226-1237, 2015.
H. Zhu, F. Xiao, L. Sun, R. Wang, and P. Yang. R-ttwd: Robust
device-free through-the-wall detection of moving human with wifi. IEEE
Journal on Selected Areas in Communications, 35(5):1090-1103, 2017.

