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Abstract—A graph stream is a continuous sequence of data
items, in which each item indicates an edge, including its two
endpoints and edge weight. It forms a dynamic graph that
changes with every item. Graph streams play important roles
in cyber security, social networks, cloud troubleshooting systems
and more. Due to the vast volume and high update speed of graph
streams, traditional data structures for graph storage such as the
adjacency matrix and the adjacency list are no longer sufficient.
However, prior art of graph stream summarization, like CM
sketches, gSketches, TCM and gMatrix, either supports limited
kinds of queries or suffers from poor accuracy of query results.
In this paper, we propose a novel Graph Stream Sketch (GSS for
short) to summarize the graph streams, which has linear space
cost O(|E|) (E is the edge set of the graph) and constant update
time cost (O(1)) and supports most kinds of queries over graph
streams with the controllable errors. Both theoretical analysis and
experiment results confirm the superiority of our solution with
regard to the time/space complexity and query results’ precision
compared with the state-of-the-art.

Index Terms—graph, data stream, sketch, approximate query

I. INTRODUCTION

A. Background and Motivations

In the era of big data, data streams propose some technique
challenges for existing systems. Furthermore, the traditional
data stream is modeled as a sequence of isolated items,
and the connections between the items are rarely considered.
However, in many data stream applications, the connections
often play important roles in data analysis, such as finding
malicious attacks in the network traffic data, mining news
spreading paths among the social network. In these cases
the data is organized as graph streams. A graph stream is
an unbounded sequence of items, in which each item is a
vector with at least three fields (denoted by ((s, d), w)), where
(s, d) represents an edge between nodes s and d, and w is the
edge weight. These data items together form a dynamic graph
that changes continuously, and we call it streaming graph for
convenience. Below we discuss three examples to demonstrate
the usefulness of streaming graph problems.
Use case 1: Network traffic. The network traffic can be seen
as a large dynamic graph, where each edge indicates the
communication between two IP addresses. With the arrival
of packets in the network, the network traffic graph changes
rapidly and constantly. In the network traffic graph, various
kinds of queries are needed, like performing node queries to
find malicious attackers, or subgraph queries to locate certain
topology structures in the dynamic networks.

Use case 2: Social networks. In a social network, the in-
teractions among the users can form a graph. The edges
between different nodes may be weighted by the frequencies of
interactions. In such a graph, queries like finding the potential
friends of a user and tracking the spreading path of a piece of

news are often needed.
Use case 3: Troubleshooting in data centers. Cloud systems

may need to analyze communication log stream to perform
real time troubleshooting. In this situation the graph stream is
the sequence of communication log entries where each entry
is a description of a communication from a source machine
to a destination machine. In such a graph, we may perform
traversal queries to find out if massages created by a certain
application on a source machine can reach a destination ma-
chine, or perform edge queries to find the detailed information
of a communication log.

These streaming graphs are very large and change fast. For
example, in Twitter, there are about 100 million user login
data, with 500 million tweets posted per day. For another
example, in large ISP or data centers []1], there could be mil-
lions of packets every second in each link. The large volume
and high dynamicity make it hard to store the graph streams
efficiently with traditional data structures like adjacency lists
or adjacency matrices. In the context of graph streams, there
are two requirements for designing a new data structure : (1)
the linear space cost (2) the constant update time. To meet
these two requirements, we can either apply approximated
query data structures for data streams, like the CM sketch [2],
the CU sketch [3]] and other sketches [4], [5], or use specialized
graph summarization techniques such as gSketches [6]], TCM
[7] and gMatrix [8]]. However, existing solutions either support
limited query types or have poor query accuracy. For example,
CM sketches and gSketches fail to answer queries involved
with topology like reachability queries, successor queries and
so on. Though TCM and gMatrix can support these queries,
they have poor accuracy. More details about the related work
are given in Section [l In this paper, we design a novel
data structure-Graph Stream Sketch (GSS for short), which
can support most kinds of queries over streaming graphs with
controllable errors in query results. Both theoretical analysis
and experiment results show that the accuracy of our method
outperforms state-of-the-art by orders of magnitudes.

B. Our Solution

In this paper we propose GSS, which is an approximate

query data structure for graph streams with linear memory



usage, high update speed, high accuracy and supports most
kinds of graph queries and algorithms like [9]-[11]. GSS can
also be used in exiting distributed graph systems [12]-[15]

Like TCM, GSS uses a hash function H (-) to compress the
streaming graph G into a smaller graph G5, which is named
a graph sketch. Each node v in G is mapped into a hash
value H(v). Nodes with the same hash value are combined
into one node in G, and the edges connected to them are
also aggregated. An example of the graph stream and the
graph sketch can be referred in Figure[l| and Figure[2] The
compression rate can be controlled by the size of the value
range of H(-), which we represent with M. The higher the
compression rate is, the lower the accuracy is.

Different from TCM which uses an adjacency matrix to
store the graph sketch G}, GSS uses a novel data structure
to store it. This data structure is specially designed for sparse
graphs and stores a much bigger graph sketch with the same
space. As the graph is sparse, the number of nodes is large, but
each node is connected to few edges. Therefore, different from
adjacency matrix which stores edges with the same source
node / destination node in one row / column, we store edges
with different source nodes / destination nodes in one row /
column, and distinguish them with fingerprints. Each edge in
the graph sketch is mapped to a bucket in the matrix depending
on its endpoints, and marked with a fingerprint pair. If the
mapped bucket is already occupied by other edges, we store
this edge in a buffer B, which is composed of adjacency lists.
With a m X m matrix we can represent a graph sketch with at
most m X F' nodes, where F' is the size of the value range of the
fingerprint (for example, a 16-bit fingerprint has F' = 65536).
On the other hand, the adjacency matrix can only store a graph
sketch with at most m nodes. With a much larger graph sketch,
the accuracy is also much higher compared to TCM.

In GSS, the memory cost and the update speed are greatly
influenced by the size of the buffer B. As the buffer takes
additional memory, and the update speed in an adjacency list
is linear with its size. In order to restrict its size, we propose a
technique called square hashing. In this technique each edge is
mapped to multiple buckets, and stored in the first empty one
among them. This enlarges the chance that an edge finds an
empty bucket. Besides, a few nodes in a sparse graph may still
have very high degrees. If one node emits a lot of edges, these
edges have high probability to evict each other when stored
in one row. To solve this problem, In square hashing edges
with source node v are no longer mapped to one row, but r
rows, sharing memory with other source nodes. The higher
degree a node has, the more buckets it may take. It is similar
in the view of columns and destination nodes. This helps to
ease the congestion brought by the skewness in node degrees.
Experiments show that after this modification the buffer only
stores less than 0.01% of the edges in the graph stream.

The key contributions of this paper are as follows:
1) We propose GSS, a novel data structure for graph stream

summarization. It has small memory usage, high update
speed, and supports most kinds of queries for graphs.

Moreover, it uses a combination of fingerprints and hash
addresses to achieve very high accuracy.

2) We propose a technique called square hashing. It helps
to decrease the buffer size in GSS, which improves
update speed and reduces memory cost. It also eases
the influence brought by the skewness in node degrees.

3) We define 3 graph query primitives and give details
about how GSS supports them. Almost all algorithms
for graphs can be implemented with these primitives.

4) We carry out theoretical analysis and extensive experi-
ments to evaluate the performance of GSS, which show
that when using 1/256 memory size of the state-of-the-
art graph summarization algorithm, our algorithm still
significantly outperforms it for most queries.

II. RELATED WORK

In this part we give a brief introduction about the related
works. The prior arts of graph stream summarization can be
divided into two kinds. The first kind is composed of counter
arrays, and stores each data item in these arrays independently,
ignoring the connections between different items. They only
support queries for edge weights, but do not support any
queries involved with topology of the graph. This kind includes
CM sketches [2]], CU sketches [3]], gSketches [[6] and so on.
The second kind supports multiple queries in the streaming
graph, but suffers from poor accuracy. This kind includes TCM
[7] and gMatrix [8]. Due to space limitation, in this section
we focus on the second kind which is more relevant to GSS.

TCM [7] is the state-of-the-art for graph stream summa-
rization. It is composed of an adjacency matrix that stores the
compression of the streaming graph. It uses a hash function
H(-) to compress the streaming graph G = (V,E) into a
smaller graph sketch G,. For each node v in G, TCM maps it
to node H(v) in G},. For each edge e = s,d in G, TCM maps
it to edge H(s), H(d) in Gy,. The weight of an edge in G, is
an aggregation of the weights of all edges mapped to it. A hash
table that stores pairs of the hash value and the original ID can
be built to retrieve the original node ID for some queries. Then
TCM uses an adjacency matrix to represent the graph sketch.
If we represent the size of the value range of H(-) with M,
we need to build an M x M adjacency matrix. Each bucket in
the matrix contains a counter. The weight of edge H (s), H(d
in the graph sketch is added to the counter in the bucket in
row H(s), column H(d). When the memory is sufficient, we
can also build multiple sketches with different hash functions,
and report the most accurate value in queries.

In order to satisfy the demand on memory usage, the size
of the adjacency matrix, M x M has to be within O(|E|),
which means M < |V| for a sparse streaming graph where
% is usually within 10. This means the graph sketch G}, is
usually much smaller than G, a lot of nodes and edges will
be aggregated. As a result, the accuracy of TCM is poor.

The gMatrix [§] is a variant of TCM. Its structure is similar
to TCM. But it uses reversible hash functions to generate graph
sketches. It also extends TCM to more queries like edge heavy
hitters and so on. However, different from the accurate hash



tables, the reversible hash functions introduce additional errors
in the reverse procedure. Therefore the accuracy of gMatrix is
no better than TCM, sometimes even worse.

There are some graph algorithms for statistic graph com-
pression [[16]—[[18] or specific queries in graph stream pro-
cessing [[19]-[21]]. However, they are either not suitable for
high dynamic graph streams or too limited in functions. We
do not introduce them in detail due to space limit.

ITI. PROBLEM DEFINITION

Definition 1: Graph Stream: A graph stream is an
unbounded timing evolving sequence of items S =
{e1, ea,e€3......e, }, where each item e; = (s, d; t;w) indicates
a directed edgd| from node s to node d, with wight w. The
timepoint ¢; is also referred as the timestamp of e;. Thus, the
edge streaming sequence S forms a dynamic directed graph
G = (V,E) that changes with the arrival of every item e;,
where V' and E denote the set of nodes and the set of edges
in the graph, respectively. We call G a streaming graph for
convenience. N

In a graph stream S, an edge s, d may appear multiple times
with different timestamps. The weight of such an edge in
the streaming graph G is SUM of all edge weights sharing
the same endpoints. The weight w can be either positive or
negative. An item with w < 0 means deleting a former item.

Example 1: An example of the graph stream, S, and the
corresponding streaming graph G are both shown in Figure.
Each node has an ID that uniquely identifies itself. If an
edge appears multiple times, its weights are added up as stated
above.

In practice, G is usually a large, sparse and high speed
dynamic graph. The large volume and high dynamicity make
it hard to store graph streams using traditional data structures
such as adjacency lists and adjacency matrices. The large space
cost of O(|V'|?) rules out the possibility of using the adjacency
matrix to represent a large sparse graph. On the other hand, the
adjacency list has O(|F|) memory cost, which is acceptable,
but the time cost of inserting an edge is O(|V]), which is
unacceptable due to the high speed of the graph stream.

The goal of our study is to design a linear space cost
data structure with efficient query and update algorithms over
high speed graph streams. To meet that goal, we allow some
approximate query results but with small and controllable
errors. However, traditional graph stream summarization ap-
proaches either cannot answer graph topology queries such as
reachability queries (such as CM sketches [2] and gSketches
[6]]) or fail to provide accurate query results (such as TCM [[7]
and gMatrix [8]]). Therefore, in this paper, we design a novel
graph stream summarization strategy.

In order to give a definition of the graph stream summa-
rization problem, First we define the graph sketch as follows:

Definition 2: Graph Sketch: a graph sketch of G = (V, E)
is a samller graph Gj, = (Vj, Ep,) where |V,| < |V| and
|En| < |E|. A map function H () is lﬁd to map each node
in V to a node in V}, and edge e = s,d in E is mapped to

The approach in this paper can be easily extended to handle undirected graphs.

edge H(s), H(d) in Ej. The weight of an edge in Ej, is the
SUM of the weights of all edges mapped to it.

Formally, we define our graph stream summarization problem
as follows.

(@, b;ty;1)[(a, ¢ty 1) [(b, d; t5; 1) | (a, & ta; 1) |(a, i 1 1)
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Graph stream S

Streaming graph G

Fig. 1. An example of the graph stream

Definition 3: Graph Stream Summarization: Given a
streaming graph G = (V| E), the graph stream summarization
problem is to design a graph sketch G}, = (V}, E,), and the
corresponding data structure DS to represent GGj,, where the
following conditions hold:

1) There is a function H(-) that map nodes in V' to nodes

in Vh;

2) The space cost of DS is O(|E|);

3) DS changes with each new arriving data item in the

streaming graph and the time complexity of updating
DS should be O(1);

4) DS supports answering various queries over the original

streaming graph G with small and controllable errors.

In the context of streaming graphs, G changes with every
data item in the graph stream .S, which is mapped to updating
the graph sketch Gj, and conducted in data structure DS.
For every new item (s, d;t;w) in S, we map edge s,d in G
to edge H(s), H(d) in Gj, with weight w and then insert it
into Gj,. Similarly, queries over GG are also mapped to the
same kind of queries over the graph sketch Gj. In order to
support various kinds of graph queries, we first define three
graph query primitives as follows, since many kinds of graph
queries can be answered using these primitives.

Definition 4: Graph Query Primitives: Given a graph
G(V, E), the three graph query primitives are:

o Edge Query: given an edge e = (;}l, return its weight

w(e) if it exists in the graph and return —1 if not.

o 1-hop Successor Query: given a node v, return a set of
nodes that are 1-hop reachable from v, and return {—1}
if there is no such node;

o 1-hop Precursor Query: given a node v, return a set of
nodes that can reach node v in 1-hop, and return {—1}
if there is no such node.

With these primitives, we can re-construct the entire graph.
We can find all the node ID in the hash table. Then by carrying



out 1-hop successor queries or 1-hop precursor queries for
each node, we can find all the edges in the graph. The weight
of the edges can be retrieved by the edge queries. As the
graph is reconstructed, all kinds of queries and algorithms can
be supported. In fact, in many situations, it is not necessary to
re-construct the entire graph. We can just follow the specific
algorithm and use the primitives to get the information when
needed. Therefore, The data structure D.S needs to support
these 3 query primitives.

IV. GSS: BASIC VERSION

In this section, we describe a conceptually simple scheme
to help to illustrate intuition and benefit of our approach.
The full approach, presented in Section is designed with
more optimizations. As stated above, to produce a graph
stream summarization, we first need to design a graph sketch
Gy = (Wi, Ey) for the streaming graph G. Initially, we use
the same strategy as TCM to generate the graph sketch. We
choose a hash function H (-) with value range [0, M), then G},
is generated as following:

1) Inmitialization: Initially, V}, = &, and E;, = @.

2) Edge Insertion: For each edge e = (s,d) in E with
weight w, we compute hash values H(s) and H(d). If
either node with ID H(s) or H(d) is not in V}, yet, we
insert it into V3. Then we set H(e) = H(s),H(d) If
H(e) is not in Ej,, we insert H(e) into Ej and set its
weight w(H (e)) = w. If H(e) is in E}, already, we add
w to the weight.

G, is empty at the beginning and expands with every data item
in the graph stream. We can store (H(v),v) pairs with hash
tables to make this mapping procedure reversible. This needs
O|V| additional memory, as |V| < |E|, the overall memory
requirement is still within O(|E)|).
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Fig. 2. An example of the graph sketch

Example 2: A graph sketch G}, for the streaming graph G
in Figure[I] is shown in Figure 2] The value range of the hash
function H(-) is [0,32). In the example, nodes ¢ and g are
mapped to the same node with ID 5 in Gj,. In G}, the weight
of edge (2,5) is 6, which is the summary of the weight of
edge (a,c) and edge (a,g) in G.

Obviously, the size of the value range of the map function
H(-), which we represent with M, will significantly influence
the accuracy of the summarization, especially in the 1-hop

successor / precursor query primitives. In a uniform mapping
with the hash function, each node in G has the probability
ﬁ to collide with another, which means they are mapped
to the same node in Gj. When there are |V| nodes, the
probability that a node v does not collide with any other nodes
. 13\IV]-1 _lvj—t

is (1 —37) ~ e~ .Inthe 1-hop successor / precursor
queries, if v collides with others, the query result about it will
definitely have errors. Therefore we have to use a large M to
maximize this probability.

Figure [3] shows the theoretical results of the relationship
between M and the accuracy of the query primitives . The
results are computed according to analysis in Section VI-B.
(In the figure of the edge query, d; and dy means the in-degree
of the source node and the out-degree of the destination node
of the queried edge. In the figure of the 1-hop successor /
precursor query, d;, and d,,; means the in-degree and the
out-degree of the queried node, respectively). The figure shows
that we have to use a large M to achieve high accuracy in the
query primitives, which is not possible in the prior works.
According to Figure only when ITM\ > 200, the accuracy
ratio is larger than 80% in 1-hop successor / precursor queries.
When % < 1, the accuracy ratio falls down to nearly 0, which
is totally unacceptable.

Both TCM and the gMatrix resort to an adjacency matrix
to represent Gj. In this case, the matrix rank m equals to
M, i.e, the value range of the map function. To keep the
memory usage of the graph sketch within O(|E|) (Condition
2 in Definition , m must be less than VE, that means
m = M <v/E < |V| for a sparse streaming graph. According
to our theoretical analysig in Figure the query results’
accuracy is quite low in them. Our experiments in Section
also confirm the theoretical analysis.

Considering the above limitations, we design a novel data
structure for graph stream summarization, called GSS.

Definition 5: GSS: Given a streaming graph G = (V, E),
we have a hash function H(-) with value range [0, M) to map
each node v in graph G to node H(v) in graph sketch G,.
Then we use the following data structure to represent the graph
sketch Gj,:

1) GSS consists of a size m x m adjacency matrix X and
an adjacency list buffer B for left-over edges.

2) For each node H (v) in sketch graph G}, we define an
address h(v)(0 < h(v) < m) and a fingerprint f(v)EO <
f(v) < F) where M = m x F and h(v) = LHFv)j,
f(w) = HW)%F.

3) Eachedge H(s), H(d) in the graph sketch G}, is mapped
to a bucket in the row h(s), column A(d) of the matrix
X. We record [(f(s), f(d)),w] in the corresponding
bucket of the matrix, where w is the edge weight and
f(s), f(d) are fingerprints of the two endpoints.

4) Adjacency list buffer B records all left-over edges in
G'1,, whose expected positions in the matrix X have been
occupied by other previous inserted edges already.

The detailed analyses are given in Section
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to the existing one; otherwise, it means this bucket has been
occupied by other edges, and we store edge H(s), H(d ) in
the adjacency list in the buffer B. We call this kind of edges
as left-over edges.

Graph Query Primitives: The three primitives (defined in
Definition ) are all supported with our proposed data structure

Edge Query: Given an edge query e = ﬁ, we work as
follows. We check the bucket in row h(s), column h(d) in
the matrix. Let (f(s"), f(d’)) be the fingerprint pair stored at
the bucket. If (f(s'), f_(fl’ )) equals to the the fingerprint pair
(f(s), f(d)) of edge s,d, we return the weight in the bucket.
Otherwise we search the buffer B for edge H(s), H(d) using
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Fig. 4. An example of the basic version of data structure

When implementing a GSS for a graph stream, in order to
satisfy the O(]E|) memory cost requirement, we usually set
m = « xy/|E|, where « should be a constant approximate
to 1. To achieve high accuracy, we set M >> |V|. This can
be achieved by setting a large F, in other words, using long
fingerprints. When the memory is not sufficient, we can also
set smaller M with smaller m and F', but this will decrease
the accuracy.

Example 3: The basic version of GSS to store GG, in Figure
[2] is shown in Figure 4] Here we set F' = 8. The nodes in
the original streaming graph and their corresponding H (v),
f% and f(v) are shown in the table. In this example, edge
2,10 and edge m in Gy, are stored in the buffer because of
collisions with other edges.

We discuss the insertion and primitive query operations over
GSS as follows:

Edge Updating: When a new item (s,d;¢;w) comes in
the graph stream .S, we map it to an edge H(s), H(d) with
weight w in graph sketch Gj,. Then we find the bucket in
row h(s), column h(d). If the bucket is empty, we store the
fingerprints pair {f(s), f(d)) together with the edge weight w
in the bucket. If it is not empty, we compare the fingerprint
pair of this edge with the fingerprint pair (f(s’), f(d)) that is
in the bucket already. If they are same, we add the weight w

the adjacency list. If we cannot find it in the matrix X or in &e}
buffer B, we return —1, i.e. reporting that the edge e = s,d
does not exists.

1-hop Successor Query: To find the 1-hop successors of
node v, we work as follows. First, we search all buckets in row
h(v) of the matrix X. If a bucket in row h(v) and column c has
a fingerprint pair (f(v), f(vs)), we add node H(vs) = ex F+
f(vs) to the 1-hop successors set S.S. After that, we also need
to search the buffer area to find all edges with source node
H(v), and add its destination node to the 1-hop successors
set S. We return —1 if we find no result, i.e., |SS| = 0.
Otherwise, for each H (s) in successors set S\S, we obtain the
original node ID by accessing the hash table.

1-hop Precursor Query: To find the 1-hop precursors of
node v, we have the analogue operations with 1-hop Successor
Query if we switch the columns and the rows in the matrix
X. The details are omitted due to space limit.

In GSS, we store edges with different source nodes in G,
in one row of the matrix, because the graph is sparse and
each node is usually connected to very few edges. We can use
fingerprints to distinguish them. For example, edge 15,28 and
edge 10,15 are all stored in row 1, but they have different
source node fingerprints, namely 2 and 7, thus we know
exactly which nodes they are from. It is similar in columns.
Fingerprints also help us to distinguish edges when they are
mapped into the same bucket. This enables us to apply a map
function with a much larger value range, and generate a much
larger graph sketch with the same size of matrix as TCM. With



a 4 x 4 matrix as in Figure ] TCM can only support a map
function with M = 4 , and the number of nodes in the graph
sketch will be no more than 4, thus the accuracy will he much
poorer.

V. GSS: AUGMENTED ALGORITHM

As we know, GSS has two parts: a size m x m matrix X
and an adjacency list buffer B for left-over edges. Obviously,
we only need O(1) time to insert an edge into X, but linear
time O(|B]) if the edge must goto the buffer B, where |B]
represents the number of all left-over edges. Therefore |B]
influences both the memory and the time cost. In this section,
we design several solutions to reduce the size of buffer B.

A. Square Hashing

In the basic version, an edge is pushed into buffer B if
and only if its mapped position in the matrix X has been
occupied. The most intuitive solution is to find another bucket
for it. Then where to find an empty bucket? We further notice
the skewness in node degrees. In the real-world graphs, node
degrees usually follow the power law distribution. In other
words, a few nodes have very high degrees, while most nodes
have small degrees. Consider a node v that has A out-going
edges in the graph sketch G},. For a m x m adjacency matrix
X in GSS (see Definition @, there are at least A — m edges
that should be inserted into buffer B, as these A edges must be
mapped to the same row (in X') due to the same source vertex
v. These high degree nodes lead to crowed rows and result in
most left-over edges in buffer B. On the other hand, many
other rows are uncrowded. We have the same observation
for columns of matrix X. Is it possible to make use of the
unoccupied positions in uncrowded rows / columns? It is the
motivation of our first technique, called square hashing.

For each node with ID H(v) = (h(v), f(v)) in Gp, we
compute a sequence of hash addresses {h;(v)|]1 < i <
r}, (0 < hi(v) < m) for it. Edge H(s),H(d) is stored in

the first empty bucket among the r x r buckets with addresses

{(hi(s), b (@)1 <i <1 <j<r)}

where h;(s) is the row index and h;(d) is the column index.
We call these buckets mapped buckets for convenience. Note
that we consider row-first layout when selecting the first empty
bucket.

Example 4: An example of square hashing is shown in
Figure [5] The inserted edge is mapped to 9 buckets, and the
first 2 with address (hy(s),h1(d)) and (hq(s),he(d)) have
been already occupied. Therefore the edge is inserted in the
third mapped bucket. In the bucket, we store the weight,
the fingerprint pair, together with an index pair (1,3) which
indicates the position of this bucket in the mapped buckets
sequence. We will talk about the use of the index pair later.

The following issue is how to generate a good hash address
sequence {h;(v)|]1 < i < r} for a vertex v. There are two
requirements:

Independent: For two nodes v; and vy, we use P to represent
the probability that V1 < i < r h;(v1) = h;(vs). Then

h,(d) hzfd) hy(d)
1 !

\ Fingerprint < f(s), f(d) >
hy(s) [ \ [ { ) Ilndex I <1,3>
hy(s)— [0 | 0]
hy(s) O | O @

\ | Mapped Bucket ([l Occupied Bucket (| Empty Bucket

Fig. 5. The square hashing

we have P = [[_, Pr(h;(vi) = h;(v2)). In other words,
the randomness of each address in the sequence will not be
influenced by others. This requirement will help to maximize
the chance that an edge finds an empty bucket among the r x r
mapped buckets.

Reversible: Given a bucket in row R and column C' and the
content in it, we are able to recover the representation of the
edge e in the graph sketch Gj: H(s), H(d), where e is the
edge in that bucket. This property is needed in the 1-hop
successor query and the 1-hop precursor query. As in these
queries, we need to check the potential buckets to see if they
contain edges connected to the queried node v and retrieve the
other end point in each qualified bucket.

To meet the above requirements, we propose to use linear
congruence method [22]] to generate a sequence of r random
values {¢;(v)|1 < i < r} with f(v) as seeds. We call this se-
quence the linear congruential (LR) sequence for convenience.
The linear congruence method is as following: select a timer
a, small prime b and a module p, then

{ql(w = (a x f(v) +0)%p

1
¢i(v) = (a x gi—1(v) +b)%p, (2 <i <) M

By choosing a, b and p carefully, we can make sure the
cycle of the sequence we generate is much larger than 7, and
there will be no repetitive numbers in the sequence [22]]. Then
we generate a sequence of hash addresses as following:

{hi()[hi(v) = (h(v) + qi(v))%m, 1 <i <7} (2)

When storing edge H(s), H (d) in the matrix, besides stor-
ing the pair of fingerprints and the edge weight, we also store
an index pair (is,74), supposing that the bucket that contains
this room has an address (h;,(s), h;,(d)). As the length of
the sequence, r, is small, the length of each index will be less
than 4 bits. Therefore storing such a pair will cost little.

Note that the hash sequence {¢;(v)|1 < i < r} generated
by the linear congruence method are both independent and
reversible. The independence property has been proved in [8]].
We show how to recover the original hash value H (v) based on
the f(v), h;(v) and the index 7 as follows. First, we compute
the LR sequence {g¢;(v)} with f(v) following equation
Second we use the equation (h(v) + ¢;(v))%m = h;(v) to



compute the original hash address h(v). As h(v) < m, the
equation has unique solution. At last we use H(v) = h(v) X
F + f(v) to compute H(v). Given a bucket in the matrix, the
fingerprint pair (f(s), f(d)) and the index pair (is,%4) are all
stored in it, and we have h;_(s) = R, h;,(d) = C, where R
and C' are the row index and the column index of the bucket in
the matrix, respectively. Therefore we can retrieve both H (s)
and H(d) as above.

Node a b c d e f a
H(v) 2 15 | 5 28 | 10 | 18 5
<h(v), f(v)> |<0, 2>|<1, 7>|<0, 5>|<3, 4>|<1,2>| (2,2) | (0,5)

) (L0} (3.2} | (0,3} ] (2.1} ] (2.1} ] 13,2} | {0,3}
0 52 (L1Q)
1250116 22/ 12 @ 2212 Q2711 @)
2 42 1L 0@27(L2 @42 23@) css
3 22012@1.41LDQ@

0 1 2 3
Matrix

Empty Buffer —
{ f(s), f(d) ‘ Fingerprint Pair @ Edge Weight (:'s:'AJ Index Pair

Fig. 6. An example of the modified version of data structure

Example 5: An example of the modified version is shown in
Figure. [6] In the matrix we stored G}, in Figure. 2] which is a
graph sketch of G in Figure[I] In this example we set ' = 8,
m = 4, r = 2, and the equation in the linger congruence
method is

@1(v) = (5 % f(v) + 3)%8

gi(v) = (5 X qg—1(v) +3)%8,(2<i<r) )

Compared to the basic version, in the modified version all
edges are stored in the matrix, and the number of memory
accesses we need to find an edge in the matrix is within 22 =
4. In fact in the example we only need one memory access to
find most edges, and 2 for a few ones.

In the following, we illustrate the four basic operators in
this data structure GSS.

Edge Updating: When a new item (s, d, ¢t; w) comes in the
graph stream S, we map it to edge H(s), H (d) in the graph
sketch G}, with weight w. Then we compute two hash address
sequences {h;(s)} and {h;(d)} and check the r* mapped
buckets with addresses {(h;(s),h;(d))|1 <i<r1<j<r}
one by one. For a bucket in row h;_(s) and column h;,(d),
if it is empty, we store the fingerprint pair (f(s), f(d)) and
the index pair (is,44) and weights w in it, and end the
procedure. If it is not empty, we check the fingerprint pair
(f(s"), f(d'")) and the index pair (i,4/,) stored in the bucket.
If the fingerprint pair and the index pair are all equal to the
corresponding pairs of the new inserted edge H(s), H(d), we
add w to the weights in it, and end the procedure. Otherwise
it means this bucket has been occupied by other edges and we
consider other hash addresses following the hash sequence. If
all r2 buckets have been occupied, we store edge H(s), H(d
with weight w in the buffer B, like the basic version of GSS.

Graph Query Primitives: The three graph query primitives
are supported in the modified data structure as, follows:

Edge Query: When querying an edge e = s, d, we map it to
edge H(s), H(d) in the graph sketch, and use the same square
hashing method to find the r? mapped buckets and check them
one by one. Once we find a bucket in row h;_(s) and column
h;,(d) which contains the fingerprint pair (f(s), f(d)) and
the index pair (is,14), we return its weight as the result. If we
find no results in the 72 buckets, we search the buffer for edge
H(s),H (d) and return its weights. If we still can not find it,
we return —1.

1-hop Successor Query: to find the 1-hop successors of node
v, we map it to node H(v) in Gj. Then we compute its hash
address sequence according to H(v), and check the r rows
with index h;(v),(1 < ¢ < r). If a bucket in row h;_(v),
column C contains fingerprint pair ((f(v), f(x)) and index
pair (is,iq) where f(x) is any integer in range [0, F') and
iq is any integer in range [1,7], we use f(x), iq and C' to
compute H(x) as stated above. Then we add H(x) to the 1-
hop successor set SS. After searching the r rows, we also
need to check the buffer to see if there are any edges with
source node H(v) and add their destination nodes to S.S. We
return —1 if we find no result, otherwise we obtain the original
node ID from 5SS by accessing the hash table (H (v), v).

1-hop Precursor Query: to answer an 1-hop precursor query,
we have the analogue operations with 1-hop Successor Query
if we switch the columns and the rows in the matrix X. The
details are omitted due to space limit.

After applying square hashing, the edges with source node
H(v) in G}, are on longer stored in a single row, but spread
over r rows with addresses h;(v),(1 < ¢ < r). Similarly,
edges with destination node H (v) are stored in the r different
columns. These rows or columns are shared by the edges
with different source nodes or destination nodes. The higher
degree a node has, the more buckets its edges may take. This
eases the congestion brought by the skewness in node degrees.
Moreover, as each bucket has multiple mapped buckets, it has
higher probability to find an empty one. Obviously, square
hashing will reduce the number of left-over edges.

B. Further Improvements

There are some other improvements which can be imple-
mented to GSS.

1) Mapped Buckets Sampling: In the modified version of
GSS, each edge has r2 mapped buckets. We usually set r to
integers from 4 to 16. When the skewness of node degrees
is serious, r can be larger. If we check all the r2 buckets
when inserting an edge, it will be time consuming. To improve
the updating speed, which is very important for graph stream
summarization, we can use a sampling technique to decrease
the time cost. Instead of check all the 72 buckets, we select
k buckets as a sample from the mapped buckets, we call
these buckets candidate buckets for short. For each edge we
only check these k buckets in updating and queries, and the
operations are the same as above. The method to select these
k buckets for an edge e is also a linear congruence method.



We add the fingerprint of the source node and the destination
node of e to get a seed seed(e), then we compute a k length
sequence as

q1(e) = (a x seed(e) + b)%p @
gi(e) = (a x gi—1(e) +b)%p, (2 < i < k)
where a, b and p are the same integers used above. We choose
the k buckets with address

{(h{q@J%T(S)’h(qi(e>%r)(d))1 <i< k} 5)

{hi(s)} and {h;(d)} are the hash address sequence of the
source node and the destination node, respectively.

2) Multiple Rooms: When the memory is sufficient, we do
not need to use multiple matrices to increase accuracy as TCM,
because the accuracy is already very high. Instead, in order to
further decrease the buffer size, we can separate each bucket
in the matrix into [ segments, and each segments contains an
edge, including the weight, the fingerprint pair and the index
pair. We call each segment a room for convenience. When
performing the basic operators, we use the same process as
above to find the buckets we need to check, and search all the
rooms in them to find qualified edges or empty rooms.

However, when the rooms in each bucket are stored sepa-
rately, the speed will probably decrease. Because we can not
fetch the [ rooms in one memory access in most cases, and
multiple memory accesses increase the time cost. As shown in
Figure. |7} we separate the bucket into 3 area: the index area,
the fingerprint area, and the weight area. Each area contains the
corresponding parts of the / rooms. When we check this bucket
to find certain edges, we can first check all the index pairs.
If we find a matched index pair, we check the corresponding
fingerprint pair, and if the fingerprint pair is also matched, we
fetch the corresponding weight. If we do not find any matched
index pair, we can just move on and do not need to check the
fingerprint pairs any more. As the index pairs are very small,
usually no more than 1 byte, we can fetch all the index pairs
in one memory access. This will omit a lot of unnecessary
memory accesses.

G
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Fig. 7. Bucket Separation

VI. ANALYSIS
A. Memory and Time Cost Analysis

As stated above, GSS has O(| E|) memory cost and constant
update speed. The memory cost of GSS is O(|E,|+|B]), to be
precise, where | E},| is the number of edges in the graph sketch
Gy, and |B| is the size of buffer. When we use a hash table
to store the original ID, additional O(]V'|) memory is needed,
but the overall memory cost is still O(|E|). The update time
cost is O(k + %|B ), where k is the number of sampled
buckets and is a small constant. When an edge is stored in the
matrix, we only need to check at most k& candidate buckets,
which takes O(k) time. Each edge has probability % to be
stored in the buffer. When it is stored in the buffer, the update
takes additional O(|B]) time, as the buffer is an adjacency list.
In implementations the buffer stores 0 edges in most cases,
which will be shown in Section (We also carry out
theoretical analysis about the buffer size, which can be seen
in the technical report [23]]. We omit it here because of space
limitation). Therefore |‘Eih|‘|B\ is also a small constant. When
it is necessary to store the ID of nodes in applications, one
insertion to the hash table is needed, which also takes constant
time. Overall, the update time cost is O(1).

The time cost of queries is based on the algorithms we use.
We consider the time cost of the primitives as an evaluation.
The time cost of the edge query primitive is the same as the
update, and the time cost of the 1-hop successor query and
1-hop precursor query is O(rm + |B|), where m is the side
length of the matrix and r is the length of the hash address
sequence.

B. Accuracy Analysis

In this part we evaluate the accuracy of GSS. Before we
analyze the probability of errors, we first propose the following
theorem:

Theorem I: The storage of the graph sketch G}, in the data
structure of GSS is accurate. Which means for any edge e; =
H(sl),H(dﬂ and ex = H(s2), H(dz) in G}, the weights of
them will be added up if and only if H(s1) = H(s2), H(dy) =
H(ds).

The proof of the theorem can be referred in the technical
report [23]. This theorem means we only need to consider
the procedure of mapping G to G, as all errors happen in
this procedure. We use P to represent the probability of the
following event:

Definition 6: Edge Collision: An edge collision means that
given an edge e, there is at least one ¢’ in G and ¢’ # e which
satisfies H(e) = H(e') in the graph sketch Gj,.

Weset P =1 —P, and P is the main component of the error
rate of all the 3 graph query primitives. In the edge query, P is
just the correct rate. In the 1-hop successor query for a node v,
the correct rate is P!V1=?, where |V| is the number of nodes
in G, and d is the out-degree of the queried node. Because we
will get a correct answer if and only if for each v’ in G which
is not a 1-hop successor of v, (v, v") does not collide with any
existing edges, and there are totally |V| — d such nodes as v’.



The 1-hop precursor query is similar. Therefore, we need to
compute P to evaluate the accuracy of GSS.

C. Collision Rate

Now we show the probability that an edge e suffers from
edge collision, P. For e = s,d in G, we assume there are D
edges with source node s or destination node d in G besides
e, and there are totally |E| edges in G. We represent the size
of the value range of the map function H(-) with M.

Then we have

_|E[+(M—-1)xD

P=e a2 (6)

And P =1— P. For an edge not adjacent to e, it will collide
with e when both its source node and destination node collide
with the corresponding node of e, which probability is ﬁ
For an edge adjacent to e, the collision probability increases
to ﬁ as one node is already the same. P is the probability
that none edge collide with e, which can be computed by
multiplication of probabilities. Detailed derivation is shown in
the technical report [23]]. In GSS we have M = m x F', where
m is the length of the matrix, and F' is the maximum size
of the fingerprints. On the other hand, in TCM the accuracy
analysis is the same as GSS, but we have M = m. This lead
to the difference on accuracy.

VII. EXPERIMENTAL EVALUATION

In this section, we show our experimental studies of GSS.
We compare GSS with TCM on the three graph query prim-
itives: edge query , 1-hop successor query, 1-hop precur-
SOr query and two compound queries, node queries
(VIL-E) and reachability queries (VII-F). We also evaluate the
size of buffer (VII-G)and update speed of GSS (VII-H). Then
we further compare GSS with the state-of-the-art task specific
algorithms on triangle counting and subgraph matching

All experiments are performed on a server with dual 6-
core CPUs (Intel Xeon CPU E5-2620 @2.0 GHz, 24 threads)
and 62 GB DRAM memory, running Ubuntu. All algorithms
including GSS and TCM are implemented in C++.

A. Data Sets

We choose three real world data sets. Details of three data
sets are described as follows:

1)web-NotreDame| The first data set is a web graph col-
lected from the University of Notre Dame. Nodes represent
web pages and directed edges represent hyperlinks between
pages. The data set contains 325729 nodes and 1497134 edges.
We use the Zipfian distribution to generate weights for the
edges in the data set, and insert the edges into the data
structure one by one to simulate the procedure of real-world
incremental updating. 2)lkml-reply| The second data set is a
collection of communication records in the network of the
Linux kernel mailing list. It contains 63399 email addresses
(nodes) and 1096440 communication records (edges). Each
edge is weighted by its frequency in the data set, and has

http://snap.stanford.edu/data/web-NotreDame.html
http://konect.uni-koblenz.de/networks/lkml-reply

a timestamp indicating the communication time. We feed the
data items to the data structure according to their timestamps to
simulate a graph stream. 3)networkflow. The third data set is
a collection of network packets downloaded from a backbone
router. It contains 445440480 communication records (edges)
concerning 2601005 different IP addresses (nodes). Each edge
is weighted by its frequency in the data set, and has a
timestamp indicating the communication time. We feed the
data items to the data structure according to their timestamps
to simulate a graph stream.

The function we use to cumulate the edge weights is addi-
tion. In this case, TCM and GSS only have over-estimations.
The codes are open sourced]

B. Metrics

In this part we give a definition of the metrics we use in
experiments.

Average Relative Error (ARE): ARE measures the accu-
racy of the reported weights in edge queries and node queries.
Given a query g, the relative error is defined as:

£(a)

f(q)

f(q) and f(q) are the real answer and the estimated value of
g. When giving a query set, the average relative error (ARE)
is measured by averaging the relative errors over all queries
int it. A more accuracy data structure will have smaller ARFE.

Average Precision: We use average precision as the eval-
uation metric in 1-hop successor queries and 1-hop precursor
queries. Given such a query ¢, we use SS to represent the
accurate set of 1-hop successors / precursors of the queried
node v, and S to represent the set we get by ¢. As TCM
and GSS have only false positives, which means 5SS C SAS,
we define the precision of ¢ as:

RE(q) =

_ 55|
|55

Precision(q)

Average precision of a query set is the average value of the
precision of all queries in it. A more accuracy data structure
will have higher Average Precision

True Negative Recall: It measures the accuracy of the
reachability query. Because connectives of all edges are kept,
there is no false negatives in TCM and GSS, which means
if we can travel to d from s in the streaming graph, the
query result of these data structures will be definitely yes.
Therefore in experiments we use reachability query sets ) =
{¢1,92, ..., qr} Where Vq; € Q, source node s and destination
node d in g; are unreachable. True negative recall is defined
as the number of queries reported as unreachable divided by
the number of all queries in Q.

Buffer Percentage: It measures buffer size of GSS. Buffer
percentage is defined as the number of edges in the buffer
divided by the total number of edges in the graph stream.

https://github.com/Puppy95/Graph-Stream-Sketch



C. Experiments settings

In experiments, we implement two kinds of GSS with
different fingerprint sizes: 12 bits and 16 bits, and vary the
matrix size. We use fsize to represent the fingerprint size by
short. We apply all improvements to GSS, and the parameters
are as follows. Each bucket in the matrix contains [ = 2 rooms.
The length of the address sequences is = 16, and the number
of candidate buckets for each edge is k = 16. As for TC'M,
we apply 4 graph sketches to improve its accuracy, and allow
it to use larger memory, because otherwise the gap between it
and GSS will be so huge that we can hardly compare them in
one figure. In edge query primitives, we allow TCM to use 8
times memory, and in other queries we implement it with 256
times memory, as its accuracy is too poor in these queries (in
networkflow, we implement it with 16 times memory because
of the limitation of the memory of the server). This ratio is
the memory used by all the 4 sketches in TCM divided by
the memory used by GSS with 16 bit fingerprints. When the
size of GSS varies, the size of matrix in TCM also varies
correspondingly to keep the ratio unchanged.

D. Experiments on query primitives

In this section, we evaluate the performance of GSS in the
3 basic graph query primitives: the edge query, the 1-hop
precursor query and the 1-hop successor query. Figure [§]
Figure O and Figure [I0] show that ARE of edge queries and
average precision of 1-hop precursor / successor queries for
the data sets web-NotreDame, lkml-reply and networkflow, re-
spectively. To reduce random error introduced by the selection
of the data sample [24]], the edge query set contains all edges in
the graph stream, and the 1-hop precursor / successor query set
contains all nodes in the graph stream. The results tell us that
GSS performs much better in supporting these query primitives
than TCM, especially in the 1-hop precursor / successor query
primitives. In both GSS and TCM, the ARE decreases, and the
precision increases with the growth of the width of the matrix.
This trend is not significant in GSS as the accuracy is high and
there are no errors in most experiments. Also, when the length
of fingerprint becomes longer, the accuracy of GSS increases.

E. Experiments on Node Query

In this section, we evaluate the performance of GSS in
estimating the accuracy of node query. A node query for a
node v is to compute the summary of the weights of all
edges with source node v. For each dataset, node query set
contains all nodes in the graph stream. Figure shows the
ARE of node queries in data sets web-NotreDame, lkml-reply
and networkflow, respectively. The figure shows that although
we unfairly fix the ratio of memory used by TCM and GSS,
GSS still can achieve better performance than TCM.

FE. Experiments on Reachability Query

In this section, we evaluate the performance of GSS in
supporting reachability queries. Each reachability query set Q)
contains 100 unreachable pairs of nodes which are randomly

generated from the graph. Figure [12] shows the true negative
recall of reachability query for the data sets web-NotreDame,
Ikml-reply and networkflow, respectively. From the figure we
can see that the accuracy of GSS is much higher than TCM
even when TCM uses much larger memory. The gap varies
with the size of the graph. Along with increasing the memory
and the length of the fingerprint [25], GSS can achieve better
performance. We can also see that the accuracy of TCM is so
poor that it can barely support this query.

G. Experiments on Buffer Size

In this section, we evaluate the buffer size of GSS. Figure
shows the buffer percentage for networkflow. Results of
other data sets can be found in the technical report [23]]. The
four curves in the figure represent 1)GSS with 1 room in
each bucket and no square hashing. 2) GSS with 2 rooms
in each bucket and no square hashing. 3) GSS with 1 room in
each bucket and square hashing. 4) GSS with 2 rooms in each
bucket and square hashing. The x-label, w, is the side length of
the matrix for the schemes with 2 rooms in each bucket. When
GSS has 1 room in each bucket, the width of the matrix is 2°-°
times larger to make the memory unchanged. The above results
show that the decrement in buffer size brought by using square
hashing and multiple rooms is significant, especially the square
hashing. The results also show that the buffer percentage in
the fully improved GSS (2 rooms each bucket, with square
hashing) becomes 0 in most experiments when the matrix
size is close to |E|. In this case, the overhead brought by
the insertion failure in the matrix is nearly O.

H. Experiment on update speed

In this section we evaluate the update speed of GSS. We
compare the update speed of GSS, TCM and adjacency lists,
the result is shown in Table[[] The adjacency list is accelerated
using a map that records the position of the list for each node.
Because the update speed changes little with the matrix size,
we only show the average speed here. The fingerprint size
is 16-bit. TCM is still implemented with the same settings as
above experiments. In each data set we insert all the edges into
the data structure, repeat this procedure 100 times and calcu-
late the average speed. The unit we use is Million Insertions
per Second (Mips). From the table we can see that the speed
of GSS is similar to TCM, because though more memory
accesses are needed, GSS computes less hash functions. Both
of them are much higher than the adjacency list. We also show
the speed of GSS without candidate bucket sampling. We can
see that the speed without candidate sampling is lower than
the full optimized one. The gap is not very large because most
edges find empty bucket in few searches.

1. Experiment on Other Compound Queries

We compare GSS with state-of-the-art task specific algo-
rithms on triangle counting and subgraph matching in this
Section. We compare GSS with TRIEST [26] in triangle
counting with the same memory. We use relative error between
the reported results and the true value as evaluation metrics.
TRIEST does not support multiple edges. Therefore we unique
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TABLE I
UPDATE SPEED (MIPS)
Data Structure web- Ikml-reply networkflow
NotreDame
GSS 2.2887 2.61057 2.40976
GSS(no sampling) | 2.1245 2.49191 2.32015
TCM 2.10417 2.5498 2.07403
Adjacency Lists 0.578596 0.3384 0.52147

the edges in the dataset for it. The results are shown in Figure
[T4] The results show that they achieve similarly high accuracy
with relative error less than 1%. We compare GSS with SJ-tree
in subgraph matching. As SJ-tree is an accurate algorithm,
we set GSS to % of its memory. We use VF2 algorithm when
querying in GSS, other algorithms can also be used. We use
networkflow and search for subgraphs in windows of the data
stream. The edges in the graph are labeled by the ports and
the protocol. We carry out experiment on 5 window sizes, and
for each window size, we randomly select 5 windows in the

stream. In each window, we generate 4 kinds of subgraphs
with 6, 9, 12 and 15 edges and 5 instances in each kind by
random walk. We use the correct rate as evaluation metrics,
which means the percentage of correct matches in the 100
matches for each window size. Experimental results are shown
in Figure We can see that GSS has nearly 100% correct
rate. It should be noted that both TRIEST an SJ-tree have a
much lower throughput (less than 2 x 10° edges per second)
in order to achieve continuous query on specific problem.
While GSS summarizes the graph with much higher speed
(over 2 x 10° edges per second), supporting various kinds
of queries, but needs additional processing in queries. The
time complexity of queries depending on the algorithm we
use. Technically, they are designed for different application
scenarios. We carry out this experiment only to show the
capability of GSS in supporting these compound queries.
VIII. CONCLUSION

Graph stream summarization is a problem rising in many

fields. However, as far as we know, there are no prior work
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that can support most kinds of queries with high accuracy.
In this paper, we propose graph stream summarization data
structure Graph Stream Sketch (GSS). It has O(|E|) memory
usage where |E| is the number of edges in the graph stream,
and O(1) update speed. It supports most queries based on
graphs and has accuracy which is higher than state-of-the-art
by magnitudes. Both mathematical analysis and experiment
results confirm the superiority of our work.
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