LOOQOP: Layer-based Overlay and Optimized
Polymerization for Multiple Virtual Tables

Zhian Mi*, Tong Yang*, Jianyuan Lu*, Hao Wu*, Yi Wang*, Tian Pan*, Haoyu Song’ and Bin Liu*
*Tsinghua National Laboratory for Information Science and Technology

*Department of Computer Science and Technology, Tsinghua University, China THuawei Technologies, USA

{mzaort, yangtongemail, thlujy, wuhao.thu, pig020623, platinum127, Imyujie } @ gmail.com, hs1@arl.wustl.edu

Abstract—Network virtualization allows multiple virtual
routers to coexist in the same physical router but offer inde-
pendent routing services. Each virtual router needs to perform
millions of lookups and thousands of updates per second to meet
the requirements of high-speed Internet. The coexistence of these
virtual routers intensifies scalability challenges to the routing
lookup scheme: Can it scale well in storage, lookup speed and
update performance as the number of virtual routers increases?
In this paper, we propose Layer-based Overlay and Optimized
Polymerization (LOOP) which has favorable scalability regardless
of the number of virtual routers. Experiments on the general-
purpose CPU show that LOOP achieves efficient storage, fast
lookup, and fast incremental update. It compacts 18 FIBs with
about 7M prefixes in total to only 4.6MB. One single thread can
perform about 50M lookups per second on real-world traces.
LOOP allows an update thread to run in parallel with lookup
threads and barely interrupt them, and pure update testing
indicates it can perform about 1M updates per second. One of
the key advantages of LOOP is that it supports inserting and
deleting virtual routers incrementally so it is ideal for fast and
dynamic configuration of virtual networks.

I. INTRODUCTION

Network virtualization [1] allows multiple logically isolat-
ed virtual networks to coexist on the same underlying physical
substrate. Network virtualization abstracts physical network
resources as virtual nodes and virtual links, which form virtual
topologies. A physical router typically acts as multiple virtual
routers in different virtual topologies. These coexistent virtual
routers need to offer independent forwarding services based
on their own virtual tables, i.e. Forwarding Information Bases
(FIBs). Each virtual network is assigned a Virtual network ID
(VID), so a router uses two fields (DIP, VID) in an IP packet
as keys to find its forwarding port.

Virtual routing lookup schemes for multiple FIBs have
great impacts on virtual network performance. They face
the following challenges: i) Limited Storage Resource. As
the number of FIBs and the size of each FIB increase, the
storage increases accordingly. The limited storage resource in
a router’s line-card cannot afford the linear scaling. ii) Wire-
speed Lookup Requirement. Lookups need to run at wire-speed
for high-speed Internet. As a result, the storage occupied by
lookup data structures needs to be small enough to fit into
caches. iii) Fast Incremental Update Support. Due to the high

This work is supported by 863 project (2013AA013502), NSFC (61073171,
61202489), the Specialized Research Fund for the Doctoral Program of
Higher Education of China (20100002110051), Tsinghua University Initiative
Scientific Research Program (20121080068). Corresponding Author: Bin Liu.

978-1-4799-1270-4/13/$31.00 (©2013 IEEE

frequency of route updates to all the FIBs aggregately, the
router must support fast incremental update.

While these common challenges have been deeply re-
searched in recent literatures, two additional issues remain
poorly addressed: iv) Incremental FIB Insertion and Deletion.
Network management, such as planned maintenance and new
service deployment, may require dynamic creation and release
of virtual routers [3]. Consequently, a routing lookup scheme
needs to support incremental FIB insertion and deletion. When
a FIB is inserted or deleted, the process should limit its impact
on lookup operations. v) Scalability on the number of FIBs.
Routing lookup schemes should scale to support hundreds of
FIBs with sub-linear increase of storage. A real example comes
from Juniper’s NS5400 [5], which claims to support up to 503
virtual routers.

In addition, practical schemes should pay extra attention
to system cost and flexibility. Hardware-based solutions can
be faster than software-based solutions but often incur higher
system cost and reduce flexibility. By far, most algorithm-
based routing lookup schemes for virtual routers are built on
prefix trie structure, e.g. Trie Overlap [2], Bitmap-assisted
Trie [9], Trie Braiding [7], Multiroot [8], and even TCAM-
based scheme [10]. These schemes merge all the FIBs into a
shared prefix trie and transform the merged trie for storage
compaction and small search depth. Every node in the merged
trie stores an array of next-hops. However, the transformations
often complicate incremental update and incremental FIB
insertion and deletion.

In this paper, we propose Layer-based Overlay and Opti-
mized Polymerization (LOOP), a software-based virtual rout-
ing lookup scheme that tackles these challenges. In the work,
we take a different approach to merge multiple FIBs into the
consolidated data structure. Instead of using the merged trie
as the base data structure, we first compress the prefix trie of
each individual FIB into bitmaps and lookup tables, and then
merge the bitmaps and lookup tables of all the FIBs together. In
conclusion, we made the following major contributions in this
paper: 1) LOOP takes advantage of the next-hop redundancy
in each FIB and the similarity among FIBs thus adopts bitmap
technique for compaction. It achieves good scalability in
storage, lookup speed and update performance as the number
of FIBs increases. 2) LOOP inherently facilitates incremental
FIB insertion and deletion to support dynamic configuration
of virtual networks, and its time overhead is relatively steady
regardless of the number of the current existing FIBs. 3) LOOP
splits bitmap into groups and adopts group regeneration and
replacement to support fast update.

Experimental results using real-world data from [16]-[18]
show that LOOP tackles the above challenges. LOOP can
compact 18 FIBs with about 7 million prefixes in total to
4.6MB lookup data structure, indicating each prefix occupies
0.673 bytes in average. Even though both the number of
FIBs and the number of prefixes in each FIB have been
increasing, the storage overhead presents a lazy growth trend
because the average storage consumed by each prefix is also
in decline. LOOP consumes 13~48 CPU cycles per lookup
when cache hits; For real-world traces, one single thread can
perform about 50 million lookups per second. Update thread
can run in parallel with lookup threads and barely interrupt
them, and pure update testing indicates it can perform about
IM updates per second. Moreover, LOOP supports inserting
and deleting FIBs incrementally for dynamic configuration of
virtual networks.

The rest of the paper is organized as follows. Section II
presents a comprehensive review of the related work. Next,
Section III details the data structure construction and algorithm
design, and a novel bridge will be built to effectively support
multiple FIBs in virtual routers. We follow this with system im-
plementation and performance evaluation in Section IV and V,
respectively. Finally, we make conclusions in Section VI.

II. RELATED WORK

We advocate the use of software-based schemes for vir-
tual routing lookup. In this section we comprehensively ana-
lyze various existing schemes, mainly focusing on trie-based
schemes, to give an overview of the state of arts.

The existing algorithm-based schemes for virtual routing
lookup are mostly built on prefix trie structure. The structure
is suitable for RAM-based, FPGA-based, and TCAM-based
implementation platform. Lots of efforts have been done along
this line [2], [7]-[9].

Fu et al. proposed Trie Overlap in [2]. It first adopts leaf
pushing [15] to ensure the correct Longest Prefix Match (LP-
M) [15] and then applies level compression [11] to transform
prefix trie into a trie node array. Trie Overlap achieves efficient
storage but fails to support incremental update. Moreover, it
is difficult to support incremental FIB insertion and deletion.
When inserting and deleting FIBs, it requires rebuilding the
entire data structure and re-downloading it to the search engine.

In [7], Trie Braiding allows swapping the left and right
children of trie nodes to increase the structural similarity
among multiple FIBs. The children rotation mechanism can
efficiently improve the storage efficiency when the FIBs are
dissimilar. Ganegedara et al. proposed Multiroot [8] which
merges the tries at the split nodes. The sub-tries rooted at
the split nodes can further be merged using Trie Overlap and
Trie Braiding. Both Trie Braiding and Multiroot suffer from
the same issues as Trie Overlap in terms of incremental update
and incremental FIB insertion and deletion.

In order to support fast incremental update, Bitmap-assisted
Trie in [9] avoids the use of leaf pushing. However, experimen-
tal results show that it requires about 11MB for the merged trie
plus 20MB for the next-hop-pointer array when the number of
FIBs is 18. In contrast, LOOP consumes only 4.6MB for all
the data structures.

TCAM-based schemes such as [10] provide deterministic
and high-speed routing lookups, but they suffer from the
excessive power consumption, high cost, and low density. And
its update performance is poor in the worst case.

Pipelined single-bit routing lookup schemes on FPGA
platform such as [12]-[14] can achieve high lookup speed by
applying pipelines. LOOP can also use pipeline for further
speedup. However, these schemes require large memory band-
width and many distributed memory blocks. Worse still, due
to the lack of node sharing, their storage size scales linearly
with the number of FIBs and the size of each FIB.

Inspired by Lulea algorithm [6], LOOP adopts bitmap
technique for data structure compaction. However, our bitmap
is different from Lulea’s in three aspects: 1) Lulea adopts leaf
pushing before building bitmap thus complicates the incremen-
tal update. Instead, our bitmap keeps the prefix trie unaltered
but effectively ensures the correct LPM. 2) LOOP splits
bitmap into groups to facilitate efficient incremental update.
3) LOOP merges the individual bitmap of each FIB to build
the consolidated data structure for multiple FIBs. In summary,
LOOP properly tackles the five key challenges mentioned in
Section I and outperforms all the existing schemes.

IIT. DATA STRUCTURE AND ALGORITHM

LOOP supports a single FIB as well as multiple FIBs. First,
we detail the data structure construction of the single FIB
scheme. Next, we build a novel Bridge between the Single
FIB scheme and the Multi-FIB scheme (BSM) across their
differences in the supporting number of FIBs. Based on BSM,
we elaborate how to insert and delete FIBs incrementally. Last,
we present the incremental update mechanism for each virtual
router. We reuse some terms in Lulea algorithm [6] that are
associated with our work and redefine some of them if needed.

Lookup data structure of LOOP stems from prefix trie.
When building the data structure, we conduct three transforma-
tions step by step: i) prefix trie to layer chunks and Forwarding
Port Arrays (FPAs); ii) FPA to bitmap and lookup table; iii)
bitmap to codewords. In the design of the transformation
process, we focus on three performance metrics: i) storage
efficiency, ii) lookup speed, and iii) fast incremental update.

A. Layer Chunk and Equivalent FPA

LOQP partitions the prefix trie into three layers. Figure 1
shows a normal partition mode [16-8-8]: Layer 1 covers trie
levels from O to 16, Layer 2 from 17 to 24, and Layer 3 from
25 to 32. The partition mode is flexible and we just use [16-
8-8] as an example to elaborate LOOP scheme.

A Layer Chunk is a small subtree confined in a layer. The
original prefix trie is therefore organized as many layer chunks
within the three layers. For a chunk that covers n trie levels,
its equivalent FPA has 2" elements. Each element stores either
the next-hop information (forwarding port) or a pointer to a
chunk in the next layer.

FPAs are built by pushing down the next-hop information
of the chunks into linear arrays. We propose an efficient
method based on FPA to ensure the correct LPM without
resorting to the inefficient leaf pushing mechanism [15]. Fig-
ure 2 illustrates the FPA construction on a four-level chunk.

»
\
‘/_ _\Layer Chunk

o FPA

]
: lr
N
devel 16— ——---—~ I O o prostength:65536-- - —--

()
J/i.\ /5.\.\ /./A\
N LN\ L P2 See |)
IO~ T T - T tength:2

— Y 1 th- V86
IREHZO0

Fig. 1: Prefix trie is organized as layer chunks in partition mode [16-8-8].
Layer chucks are represented as FPAs for lookups

Typically, each prefix covers one or more consecutive intervals
in an FPA, which means all the FPA elements in these intervals
should store the same next-hop information of this prefix. In
Figure 2, the prefix P/ covers the interval [0, 15] while the
longer prefix P2 covers the interval [4, 5]. To ensure the correct
LPM, the FPA elements in P2’s interval should store P2’s
next-hop information. When a prefix trie is traversed in level
order, the shorter prefixes are visited earlier, so that the longer
prefixes can automatically override the shorter ones if their
intervals overlap. Following this rule, P2 overrides P/ in P2’s
interval when the 3rd level is visited. Similarly, NI, PI, N2,
P1 override the original values when the 4th level is traversed.
The procedure is described in Algorithm 1 (line 1~7).

According to the partition mode, a lookup thread uses
the first 16 bits, the middle 8 bits, and the last 8 bits of
a destination IP address to access the corresponding chuck
FPAs from Layer 1 to Layer 3. It is possible to retrieve
the forwarding port and terminate the lookup at any layer.
Otherwise, the lookup thread obtains a pointer to a chunk in
the next layer to continue the search. All the FPA elements of
the chunks in the last layer (in this case, Layer 3) only store
forwarding ports.

B. Overlay Bitmap and Lookup Table

FPAs are used to represent the layer chunks to allow
efficient lookups. However, FPA contains significant horizontal
redundancy: continuous FPA elements often record the same
next-hop information. That is to say, FPA is divided into a
series of ranges and all the elements within the same range
contain the same value. In Figure 2, the FPA has Range 0~5
(the pointers to the next-layer chunks are considered special
ranges). Therefore, we transform FPA into overlay bitmap and
lookup table to compact it. Each bit in the overlay bitmap
corresponds to an FPA element. The lookup table stores FPA
elements after eliminating the horizontal redundancy.

The lookup table contains one value for each range. FPA
elements can be classified into two categories: root head (e.g.
N1, N2) and genuine head (e.g. P1, P2, P1, P1) in Figure 2.
Root head indicates the presence of a next-layer chunk. In this
case the lookup table stores a pointer to the next-layer chunk.
Genuine head means the common next-hop information of
the range. The first bit of each range in the overlay bitmap
is encoded as 1, and the other bits are encoded as 0. So
there is a fixed relationship between an overlay bitmap and its
corresponding lookup table: the Nth ‘1’ (head) in the overlay
bitmap corresponds to the Nth entry in the lookup table.

[1 Interval
Override
Genuine Head

|:| Root Head

-
7 One-to-one Correspondence

7\ 7\

[OTT[23 145167891011 [12]13]14]15]
FPA (level 012)[P1[P1[PI[PIL[PI[P1[PI[PL[PI[PI]PI[PI[PI[P1[PI[PI]

FPA (level3) [P1[P1[P1[PI[P2][P2[PI[PL[PI[PI[PI[PI[PI[P1[P1[PI]

J N J
FPA (level 4) -Pl [Pi]P1 -PZ !I\III*PI [P1PI[PI !NIZ-PI [P1]
L
: Range 0 R:angelﬁ:f Range 3 Y : Range 5

1 I I
OverlayBitmap [1 J[OJOJOJ1Jo[1

|
Il
1]1Jofo]

0]

—

I

I

1

1JoJoJo]
Lookup Table [PI_ | P2 [NI [Pl [N2 [Pi |

Fig. 2: FPA, overlay bitmap and lookup table for a four-level chunk

Algorithm 1 construct FPA, overlay bitmap and lookup table

for an eight-level chunk.

Require: The chunk has a default port: de fault.

Ensure: The chunk’s next-hop information is pushed down into FPA.
And then FPA is compacted into an overlay bitmap and a lookup
table.

1: FPA[1..256] < default /*initialize FPA of 2% = 256 elements*/
2: for level <— 1 to 8 do

3: for each prefix node u in this level do

4: calculate the interval [start, end] p covers

5: FPA[start..end] < nextHop[u]

6: end for

7: end for

8: previous < Null

9: for i « 1 to 2° do

10: if FPA[i] = previous then

—
—_

bitmaplz] <— 0

12: else

13: bitmap[i] < 1

14: *lookup++ <— FPA[i]
15: previous < FPA[i]
16: end if

17: end for

Note that the overlay bitmap and the lookup table together
represent the FPA of a chunk. Algorithm 1 (line 8~17)
describes the procedure. For a given IP address, it always
addresses a specific bit in the bitmap. To locate the match
entry in the lookup table, all one needs to do is to count the
number of 1s ahead of this bit in the overlay bitmap.

We build overlay bitmap and lookup table as efficient
representation of FPA. This helps to improve not only stor-
age but also incremental updates in comparison with bitmap
technique used in Lulea algorithm [6]: i) Generally, overlay
bitmap contains less /s and achieves a tighter compaction.
Experimental results show overlay bitmap reduces the number
of Is by 53%~59% in comparison with Lulea bitmap using
real-world FIBs. LOOP effectively eliminates all the horizontal
redundancy. ii) To ensure the correct LPM, some schemes
require leaf pushing before building bitmaps. However, leaf
pushing complicates the incremental updates. LOOP keeps the
original prefix trie unaltered so that the overlay bitmaps can
be rebuilt easily when new updates come.

CompositeElement [0 [1T [2[3 4[5 6789 J10J11J12]13J14]15] PortMapTable
o7] 511 P> | 571 51 BE | FIBI FIB2 FIB3
< FIB 1 FPA [P1[[P1[P1[P1[pr2]lP2[[P2 [P2]P1][P1[P2[[P2][P3][P3]P3]P3 SELEE B
= FIB2 FPA [[P1[[P1 [P1 [P1 [P3[[P2][P2 [P2[P2[[P2 [[P2[[P2 [[P2[[P2 [P2[P2
= FIB 3 FPA [[P2][P2 [P2 [P2 | P3]|[P3[| P3 | P3 |[P3] P3 [PL| PL [[P4]| P4 | P4 | P4 42 [pL[P1]P2
——Range 0 CTo—2 33— 4——
FIB1Bitmap [T [0 0] 0 [T]O0JOJO[IJOJIJO]JT]O0[0]O0 |« 13551 P2[P3| P3
FIB2Bitmap [T [0 [0] 0|1 [1[0[0[0]0[0[O0O[O0O[O0][O0]O0 | 1356| P2 [P2 | P3
FIB3Bitmap | L | 0 [0] O[T [O0[O0JOJO[O[T[O[T]0O[O0][0 | 1357| P1| P2 | P3
Merged Bitmap [T [0 [0 [0 [T [T[0J0[I1[0[I[0]IT[0]0]0 2001 [P2[P2 P1
*y P e e e e 2002 [P3 [P2 | P4
Lookup Table [42 [1355 [1356 | 1357 | 2001 [2002 |
Fig. 3: BSM: MFPA and Merged Bitmap for FIB1, FIB2, FIB3
TABLE I: FIBs of 4 Virtual Routers where B; is the overlay bitmap of the ith FIB. Namely, the
merged bitmap can be obtained by simply applying logic OR
FIBI FIB2 FIB3 FIB4 0 ergations onill the overla bitm); S P ppyine o8
VID=1 VID=2 VID=3 VID=4 P y ps.
**i: Pl **:: P2 **:I P3 *::: P4 At last, the lookup table and PortM apT able are used to s-
(1)(1) 1* 113 8(1)00 12; (1)81* E’% 80(); ll;% tore the composite elements. Unlike the single FIB scheme, the
' entries in lookup table only record indices to PortM apT abl
11# P3 - [e pa | o1 p3 P y ortilapt ave,

C. A Bridge towards Multi-FIB Scheme

The Multi-FIB scheme is supposed to achieve the simi-
lar performance to the single FIB scheme regardless of the
number of FIBs. The prefix similarity among different FIBs
suggests the existence of vertical redundancy. To eliminate
such redundancy, we build a novel Bridge between the Single
FIB scheme and the Multi-FIB scheme (BSM) using bitmap
technique. The bridge makes it easy to extend the single FIB
scheme to support multiple FIBs. Figure 3 illustrates the BSM
construction for three FIBs as shown in Table I: FIBI, FIB2,
FIB3.

First we build three prefix tries for the three FIBs sep-
arately, and then push down their next-hop information into
three independent FPAs: FIBI FPA, FIB2 FPA, and FIB3 FPA.
The process is the same as that in the single FIB scheme. To
eliminate the vertical redundancy, the three FPAs are merged
vertically into a Multiplex FPA (MFPA). MFPA has the same
length as each FPA. Its ith element is the composition of the
ith elements of all the FPAs (e.g. [P1P1P2], ..., [P2P3P3],
[P2P2P3],...). Two composite elements are equal if and only
if all pairs of corresponding FPA elements are equal. For
example, the 4th composite element [P2P3P3] is not equal to
the 5th one [P2P2P3] because the 2th pair of FPA elements
P3 # P2.

Since multiple consecutive composite elements can be
equal, LOOP divides MFPA into ranges based on the equality
of adjacent composite elements and builds the merged bitmap
for compaction. The process is similar to building the overlay
bitmap in the single FIB scheme. The bit value ‘1’ in the
merged bitmap is assigned for the first composite element
of each range and the bit value ‘0’ is assigned for the other
elements. It is easy to deduce that

e))
@3]

MergedBitmap = Bitmap:|Bitmaps|...| Bitmap,,

simplified by MB = By|Bs|...|By,

while PortMapTable stores each unique existing composite
element only once. This method can significantly reduce the
memory consumption when the number of FIBs is large.

In summary, multiple FIBs can be efficiently represented by
the merged bitmap, lookup table and PortMapTable. BSM
extends the single FIB scheme to the multi-FIB scheme in a
straightforward way and enforces their structural similarity and
algorithmic consistency. The bridge brings many benefits to
improve the system performance: a) Bitmap technique leads to
a retardant growth in storage overhead, which makes the whole
system more scalable.) Regardless of the number of FIBs,
the multi-FIB scheme requires only one more array access
than the single FIB scheme to retrieve the forwarding port.
¢) Bitmap technique makes incremental updates in the multi-
FIB scheme similar to the single FIB scheme. In conclusion,
we build a bridge to address the two challenges troubling the
multi-FIB scheme. As a result, i) the Multi-FIB scheme can
achieve the similar performance to the single FIB scheme. ii)
Router systems scale well as the number of FIBs increases.

D. Incremental Insertion/Deletion of FIBs

BSM merges N FIBs into consolidated data structures
to support parallel lookup operations for N virtual routers.
However, the dynamic creation of virtual routers brings in new
FIBs to the system and the release of virtual routers removes
some existing FIBs from the system to free up resources.
Consequently, the multi-FIB scheme demands for incremental
insertion and deletion of FIBs. BSM avoids building data
structures from scratch and supports incremental insertion and
deletion of FIBs. Next, we detail the changes to the main data
structures caused by inserting/deleting FIBs.

Insertion of FIBs: Figure 4 illustrates how to insert
FIB4 (See Table I) into the existing lookup data structures
generated by FIBI~3 (See Figure 3). The insertion pro-
cess updates current merged bitmap (MBC), current lookup
table (LTC) and current PortMapTable (PMTC) to new
merged bitmap (MBN), new lookup table (LTN) and new
PortMapTable (PMTN) incrementally.

[oJtT2]3Ta]s 678 o r0]u]12]13]14]15]

BN: Bitmap of FIB4[1][O 1| 0] 0] 0J0J0[1]0]0J0[1]0[0]0]

MBC: Current[[T [0 [0 0 1JoJoJ1JoJ1Jo]1]oJoTo]
Merged Bitmap - - - -

—
(=

—

\ - / < - Z
LTC: Current[42 [1355] 1356 [13572001 [2002]
Lookup Table @
LTN: New
Lookup Table 17 1/8 299 210 2}1 478 479

7

N / / L / l
MBN: New o T To 1] 1]0]0]1]0]1]0][1]0]0]0]
Merged Bitmap

Current PortMapTable (PMTC)

1355 [P2] P3 [P3 —bn=0,mbc=1—»{[P2P3 [P3[|P2
1356 [P2 | P2 | P3 -—bn=0.mbe=1—»{[P2 [P2 [P3[[P2
1357 [PLIP2LP3 —bn=1.mbc=1—»|P1 [P2 P3[P4

2002 [P3 [P2 [P4 —bn=1mbc=1—»P3 [P2| PA||P3)

New PortMapTable (PMTN, T
FPU of FIB4 %

°|

=

N

)
w|

| bn=1mbe=I—>{PT [P1[P2[IPT

PI] Pl [P2 H—bn=1,mbc=0—>{[P1 [PL] P2[[P2

N
|

oo

o

i
=

S|
=

P2 [P2 [P1 —bn=0,mbc=I1—»]P2[P2[PI[IPA4

g
|
)

e

1

-
N

i
|

Fig. 4: Insert FIB4 into Current Structure

TABLE II: Action Table of Inserting FIB

NO. | bn mbc mbn PortMapTable Lookup Table
0 0 0 0 - -
1 0 1 1 divide FPA modify
2 1 0 1 divide MFPA insert
3 1 1 1 extend modify

First, the prefix trie, FPA, and bitmap (BN) of FIB4 are
built. Then MBN can be obtained directly by applying logic
OR operation. From Formula (2), M BC = B;|Bz|B; where
B; is the bitmap of the 7th FIB. After inserting FIB4, M BN =
Bi|Bs|B3|BN. It can be deduced that M BN = M BC|BN.

PMTN increases one more dimension on the basis of PMTC
to store the next-hop information for the new FIB. Both FPA
and MFPA contains a series of ranges. When merging MFPA
and FPA, the inequality in FPA may divide MFPA ranges
into small ones; Reversely, the inequality in MFPA may also
divide FPA ranges. Table II lists the actions that need to build
LTN and PMTN. Based on these action rules, the process
constructs lookup entries for all the 1s in MBN and generates
PMTN entries when the port combinations are non-existent in
PMTN. 1t ignores all the Os because they do not correspond to
any lookup entries or generate a new port combination. The
following examples enumerate all the cases. i) For the Oth bit,
bn =1 and mbc = 1, so mbn = 1|1 = 1. Then the 42th entry
in PMTC is extended to be the 17th entry of PMTN. The
new dimension value of PMTN is assigned as the Oth entry in
FPA (P1). Accordingly, the first lookup entry is modified
to be 17. ii) For the 2nd bit, bn = 1 and mbc = 0 deduce
mbn = 1|0 = 1. This indicates MFPA range is divided, so
it produces PMTN entry (18) and inserts it into LTN. The
new dimension value of the entry is P2 (the 2nd entry in FPA).
iii) For the 4th bit, bn = 0 and mbc = 1, and the FPA range
is divided again. In this case, it just needs to modify the
1355th lookup entry to be 209 with a new dimension value
of P2 (the 4th entry in FPA) rather than insert a new entry,
because the corresponding lookup entry already exists.

Deletion of FIBs: Insertion of FIBs divides ranges
and increases PortMapTable dimensions. On the contrary,
deletion of FIBs merges ranges and decreases Port M apT able
dimensions. To update the lookup data structures, the deletion
process just needs to traverse the current data structures
and check whether adjacent ranges can be merged together.
Assume FIB?2 is deleted from the lookup data structures gen-
erated by FIBI~3 (See Figure 3). For Rangel and Range2,

| derive A New Dimension =
FPA of chunk N chunk N
group O | group 1 | group 2 | group 3 ST
pointer
lookup thread E—m———mr——r— array
update thread mm—. [
time
== lookup
= Action 1 group || new group
= interrupted by Action 2 and Action 3 | |Structure | | structure

Fig. 5: Split FPA into Groups

the corresponding lookup entries ([1355 : P2P3P3]) and
([1356 : P2P2P3]) will become identical when the 2nd
dimension is removed, so the two ranges can be merged
together. Consequently, the 5th bit in merged bitmap changes
to 0 and the lookup entry 1356 is removed.

In conclusion, both the insertion and deletion processes
traverse all the chunks only once to insert and delete a FIB
incrementally so that their time overhead remains constant
as the number of FIBs increases. Especially, our scheme is
capable of inserting or deleting several FIBs at the same time.

E. Split Bitmap for Incremental Update

The one-to-one correspondence between bitmap /s and
lookup entries enables fast positioning, but makes incremental
updates difficult. For example, assume prefix node P2 is
deleted in Figure 2. The 4th bit in bitmap would change
to be 0, and four lookup entries from the 2nd to the 5Sth
require moving forward by one location to preserve the correct
correspondence. This process requires interrupting the normal
lookups and the lock time can be considerable for long
bitmaps. A naive solution to avoid moving lookup entries is
to rebuild the whole data structure from scratch for every
update. Lookup threads continue to perform searches in the
old structure until the update thread finishes building and
downloading the new structure. Although this method barely
interrupts lookups, it consumes too much resource and incurs
large converging latency.

We observe the correspondence essentially maintains a
relationship of all the lookup entries relative to the first one.
Updates trigger entry movements because their positions need
to be adjusted to maintain the correspondence. Both inserting
and deleting one lookup entry in lookup table may lead to

P3[P3|P1|Pl|PI1|PI|PI p2|p2[P2|P2 P4 | P4| P4 |PI Pl |P1|P2[P2 P1|P1|P1|PI[PI Pl [P1|PI|-
MEPA N3 N4 N1 N2
P2|P2|P3|P3|P3|P3|P3 P3(P3|P3|P3 P1|P1|P1|P2|P2|P2|P2|P2|P2 P2|P2|P2|P2|P2 P3|P3[P3| -
Cluster 0 in Group 2 Cluster 1 in Group 2 Cluster 2 in Group 2————Cluster 3 in Group 2 —> FIBI FIB?
Bitmap [1Jo[1JoJoJoJoJt[tJoJoJo[tJtJoJo[tJoJoJoJt1JoJtJiJoJoJoJoJ1iJ1JoJo[] YDt ViDes
cudewardabitset+codeword1.bitset codeword2.bitset+codeword3,hitset o 0PI T P2
k-8bitssk-8bits N s
Code Codeword bitset |before e
Words 10100001] 0 [10001100] 3 [10001011] 6 [00001100] 10 | | s2[pP2|P3
Look K-2bits-%30bits % 3| P4 | P1
ngle“p [=01p=0] off N3] 02 [2N4] o | 04 [INI] 04 [2N2 [O [- | Lookup Enuy[¢ | p £ 4P m

Fig. 6: Building Group Structure for the 2nd group of chunk N

the cascading entry movements. To mitigate the effect, we
split the whole FPA into smaller equal-sized groups and build
separated group structures for them. Now the whole data
structure consists of a list of independent group structures. In
this way, the update thread requires rebuilding and replacing
just the affected group structures, and leaves the other group
structures untouched. Figure 5 illustrates that FPA of the chunk
N is split into 4 groups to build group structures. When an
update comes, it performs three actions: 1) rebuild the affected
group structure, 2) download the updated group structure to
line card, and 3) modify the pointer. Action 1 is the most time
consuming but it works in parallel with the normal lookup
thread with the old data structure. Action 2 and Action 3
would interrupt lookup thread to finalize the update but they
consume negligible time. Before modifying the pointer, the
lookup thread still searches in the old structure. After that, it
switches to the updated structure. The update converging time
and the search interruption time are both significantly reduced.

Optimization 1 in Update: There are three kinds
of updates: announcement (add prefixes), withdrawal (remove
prefixes) and path change (modify next-hop of prefixes). When
an update meets three constraints:)it belongs to announce-
ment or path change, i¢) the length of prefixes updated is 24,
and 44¢) the prefix node is a leaf, the update thread can rebuild
group structure based on a mirror copy of the current group
structure. BGP update reports [4] show more than 80% updates
are for announcement or path change and the prefix length
is 24. Hence, the update thread can significantly improve the
average update performance.

IV. SYSTEM IMPLEMENTATION

In Section III, a prefix trie can be represented as three
equivalent forms: layer chunk, MFPA, and bitmap/lookup
table. We combine these forms into the final data structure
for storage and speed tradeoff.

In our demonstration, we partition a prefix trie into layer
chunks with mode [16-8-8] and transform them into MFPAs.
Layer 1 has only one 16-level-high chunk and its MFPA has
216 = 65536 elements. The other chunks in Layer 2 and
Layer 3 are all 8 level high and each of them has 2% = 256
MFPA elements. To build independent group structures, we
split each MFPA into groups, with each containing 64 MFPA
elements (i.e. group size = 64). Therefore Layer 1 chunk
has 297°P1 = 1024 groups and Layer 2 and 3 chunks have
29roup2 — 99rourd — 4 groups each. The IP address can be
partitioned into three bit groups, groupl, group2, and group3,
which can be used to locate the target group structure directly.

k—10—k—6—k——k—3—k 53—k 23—k 3
IP Address| _groupl [bitl group2 [cluster2| bit2 | group3 [cluster3| bit3
F—16 (Layer 1 Chunk)—} 8 (Layer 2 Chunk) 8 (Layer 3 Chunk)—
[43898¢5¢] [0100001110 [001001 [10 [001 [100 01 o1 [100
k-4bits)

group pointer group structure

g

g% 270™ group 8 lookup entries
S~ =1]

N |

IndexTable

3
¥}
K—957—

sparse chunk structure

0™ group 8 code words
}? group 4 lookup entries _|—> length =2 | default p=1
g group =2 [o—] 10111000 [0 [=0, p=2
5 group 101 4| =0,p=3
N [
k—32bits—| k——32bits k—8 bits—k3%—21 bits—)
group pointers group structure sparse chunk
of one chunk of one chunk structure of one chunk

Fig. 7: Lookup Data Structure

In Figure 6, a lookup entry consists of ¢ (2 bits) and p (30
bits), occupying a total of 4 bytes. There are three entry types:
i) t = 0, p stores an index to PortMapTable. 17) t = 1, p
stores a pointer to a next-layer chunk. iiz) ¢ = 2, p stores a
pointer to a sparse chunk which will be described later. We
build group structures as follows:

i) Group structure in Layer 1 stores 64 lookup entries
corresponding to 64 MFPA elements in a group without any
compression. Because Layer 1 has only one chunk and all
lookups need to search from Layer 1, we sacrifice a little extra
storage for fast lookups.

ii) For the group in Layer 2 and Layer 3, we use the
bitmap/lookup table to build group structure. Figure 6 illus-
trates how to build the 2nd group structure of the chunk N.
Each group (64 MFPA elements) has 2°/*5*¢"2 — § clusters and
each cluster contains 2°*? = 8 elements. Eight codewords
record the information of the bitmap of the group and the
lookup table stores a list of lookup entries. One codeword
occupies 2 bytes and stores 8 bits in the bitmap. The total 8
codewords correspond to 8 clusters one by one. The upper
8 bits (bitset) of codeword store the 8 bits of the bitmap in
the cluster and the lower 8 bits (before) record the number
of 1s ahead of this cluster in the group. In the example group,
[10100001, 0], [10001100, 3] and [10001011, 6] are the first
three codewords. The number “3” in the 2nd codeword is
the number of 1s in the 1Ist codeword.bitset, “10100001;
The number “6” in the 3rd codeword is the total number
of 1s in the first two codeword.bitsets, “10100001” and

“10001100”. The 8-bit bitset has 2% possible combinations.
To facilitate counting the number of /s in each cluster, a
28 x 4bits = 128bytes IndexTable is used to record the
number of 1s for each combination. For example, the 38th
(00100110) item in IndexT able is 3 and the 20th (00010100)
item is 2. We use an example to illustrate how we use
IndexTable to calculate the number of Is up to any bit
location. To calculate the number of Is in the first 5 bits of
“10100001”, we right shift the string by 8 — 5 = 3 bits and
get the new string “00010100” = 20, so the 20th entry in the
IndexTable stores the result (which is 2). Using codewords
and IndexTable, we first retrieve codeword.before of the
cluster to get the number of Is ahead of the cluster, and
then count the number of 1s ahead of the given location in
the cluster. Therefore, a lookup thread can count the number
of 1s ahead of a certain location in bitmap and retrieve the
corresponding lookup entry quickly through computing rather
than sequential searching.

Optimization 2 in Storage: Many chunks in
Layer 2 and Layer 3 contain only a few prefixes. When the
number of prefixes is less than a predefined value K (e.g. K
= 3 in our demonstration), the chunk is denoted as a sparse
chunk and can be represented in a special way. In Figure 7,
a sparse chunk records a number, a default and an array of
special entries. The number indicates the number of special
entries. The default records the default next-hop information
of the chunk. Every special entry contains prefix, shift, t, and
p. For example, the prefix (0101%*** P4) can be represented
as ([prefixz: 00000101], [shift: 4], [¢t: 0], and [p: 3]). When
an IP address comes, a lookup thread first right shifts the IP
address by shift and then makes a comparison against prefix
for match. For example, [01101101] >> 4 # [00000101], so
the address [01101101] does not match the special entry. The
address [01011100] would match because [01011100] >> 4 =
[00000101]. Since ¢ = 0, p stores an index to PortMapT able
(p occupies 19 bits here). Special entries are arranged in a non-
descending order by shift to ensure the correct LPM. When
a lookup thread searches the special entries in order, the first
match will be the longest match so the next-hop information or
a pointer to the next-layer chunk can be retrieved. If there is no
match for all the special entries, default will return as the index
to PortMapTable. When a lookup thread accesses a sparse
chunk, the time overhead varies depending on the number of
special entries. The worst-case scenario occurs when a sparse
chunk contains K special entries and the match fails after
searching all of them. In practice, K needs to be set to a
small value for fast lookup.

Figure 7 describes the lookup procedure. A lookup starts
from Layer 1 chunk and searches down to the next-layer
chunks until the next-hop information is found. Assume a
lookup thread will search an IP address [0x43898C5C] and
VID = 1. It first extracts groupl ([0100001110] = 270) and
bitl ([001001] = 9) from the IP address directly and then
accesses the 9th lookup entry in the 270th group structure
of Layer 1 chunk. The lookup thread gets a pointer to the
chunk N in Layer 2. The chunk is not sparse, so it obtains
group2 = “10”7 = 2, cluster2 = “001” = 1 and bit2 =
“100” = 4” from the IP address. Then group2 and cluster2
together locate the 1st codeword [10001100, 3] in “Group 2”.
The codeword.be fore = 3 indicates the number of 1s ahead
of the cluster. IndexT able[codeword.bitset >> (7 — bit2)]

stores the number of 1s ahead of the target location within the
cluster. Since 3 + IndexTable[“10001”] = 5, the 5th lookup
entry in the lookup table is retrieved (which is N4). The lookup
thread continues to access the Layer 3 chunk in the same way
as the layer 2 chunk. Because the type of N4 is 2, the lookup
thread gets a pointer to a sparse chunk structure. The sparse
chunk contains 2 special entries and the 2nd entry matches the
last 8 address bits [01010000]. The lookup thread then access
PortMapTable using (index = 3, VID = 1) to get the result
(which is P4).

V. PERFORMANCE EVALUATION
A. Experimental Setup

To evaluate LOOP in real-world environments, all the data
(route tables, update packages, and IP packet traces) are down-
loaded from Router Views Archive Project [16], RIPE Network
Coordination Center [17], and CAIDA equinix-sanjose [18].
Figure 8 shows the core parameters of these experimental
data sets: table names (FIB names), the numbers of prefixes
and next-hops in each FIB, and the length distribution of
updated prefixes. Our CPU specification is Intel(R) Xeon(R)
CPU ES5520 quad core processor (2.26GHz) and each of the
cores has an L1 and L2 cache (4x256KB), and an additional
8MB of shared L3 cache. Our software build environment is
visual C++ 2010 (64 Bits).

In the section, we compare LOOP with several existing
schemes: Merged Trie, Trie Overlap [2], Trie Braiding [7],
and Bitmap-assisted Trie [9]. In our implementations, we adopt
PortMapTable structure for all these schemes to store their
next-hop arrays. We choose the partition mode [16-8-8] and
group size = 64 for LOOP unless stated otherwise.

10.6

5 .
The label is the number [] gqulmx
regon
1410 L_of next-hops los [ISCg

(prefix length [1, 71) 0.0%
40.4| (prefix length [8, 14]) 2.1%
(prefix length [25, 32]) 0.06%

0.3

0.2

of Prefixes (K)
Percentage

0.1

9-6
v

Updated Prefix Length

SYDNEYS

Fig. 8: Experimental Data Sets: FIBs and updated prefixes (Jan, 2012)

B. Storage

LOOP’s storage size is Sioop = Sfiz + Spme, Where
Stiz is the total size of pointers, lookup entries, codewords,
sparse chunks and IndexTable, and S, is the size of
PortMapTable. Figure 9 shows the growth trends of S¢;z,
Spmt, and Sjoep as the number of FIBs increases. Number of
FIBs N means the first N FIBs in Figure 8 are used for the
virtual routers. Sy;, is determined by the storage size of all
sparse chunks (sp) and the numbers of pointers (p : 4bytes),
codewords (cw : 2bytes), and lookup entries (e : 4bytes)
(i.e. Spiz = DX 4d+cwx2+ex4+sp+ 128). All the

Storage (MB)

20

Number of FIBs

Fig. 9: Growth Trends of Sf;z, Spmt and Sjo0p

parameters (p, cw, e, sp) are positively correlated to the number
of chunks but the number increases moderately thanks to the
prefix similarity among FIBs. As a result, S¢;, grows slowly
as the number of FIBs increases.

The main storage growth attributes to Spme. Spme =
t x fg x 1 where t is the number of PortMapTable entries,
fq is the number of FIBs (i.e. the number of virtual routers)
and / byte can support up to 256 next-hops. As the number
of FIBs increases, ¢ grows fast and fq enlarges linearly. Sy,
contributes 32.66% of Sj,o, When Number of FIBs N = 18.
Spme Will further contribute larger percentage of Sj,0p; mean-
while the information redundancy of PortMapTable is also
on the rise. Based on this observation, we can also employ
bitmap technique to compress PortMapTable. In Figure 9,
Spmt2 is the size of PortMapT able after bitmap compression.
When Number of FIBs N = 18, Sp,,+2 is about 50% of Spy+.
With even larger number of FIBs, PortMapTable contains
more entries but also contains more information redundancy,
SO Spme2 grows much slower than S,

Figure 10 shows the storage comparison among several
schemes. Bitmap-assisted Trie stores a bitmap in each node so
its trie structure is smaller than Merged Trie. However, it needs
a next-hop-pointer table to store the next-hop information,
which is about 20MB When Number of FIBs N = 18. Leaf
pushing generates more prefix nodes thus increases the storage
size of Merged Trie. Compared with Merged Trie, LOOP’s
storage is about 3~4 times smaller. LOOP partitions a prefix
trie into three layers and employs bitmap compression. In con-
trast, Trie Overlap adopts level compression but partitions the
prefix trie into more layers. Hence, LOOP’s storage overhead
is about 20% less than Trie Overlap. Trie Braiding is used to
reduce the number of nodes in Merged Trie by transforming
the dissimilar prefix tries for different FIBs. It is a technique to
preprocess prefix tries for other trie-based schemes. However,
the tables we downloaded present strong prefix similarity, so
Trie Braiding does not help to reduce the storage.

Figure 11 shows the impact of partition modes on storage.
For different partition modes, the storage overheads are almost
the same when their total levels of Layer 1 and Layer 2 are
equal. We choose the partition mode [16-8-8] for efficient
storage and memory alignment. In LOOP, all the 18 FIBs with
about 7M prefixes in total are compacted to about 4.6MB. This

—=— Merged Trie —®— Merged Trie with leaf pushing
—A— Trie Braiding —v— Trie Overlap —— LOOP [16-8-8]
20 —<— Bitmap: isted Trie (excluding next-hop-pointer array)
~ 154
[aa]
<
S
® 10
el
)
5
O T " T " T " T " T " T " T " T " T
0 2 4 6 8 10 12 14 16 18 20
Number of FIBs
Fig. 10: Storage Comparison
—m— LOOP[16-8-8] —®— LOOP[17-7-8] LOOP[17-8-7]
74 —v— LOOP[18-6-8] LOOP[18-7-7] —4— LOOP[18-8-6]
<4 . /<
6 4 -
g’ : ¥
g] « ¥
~ 44 = =
[—§=
o
©
5 34 —
n = b
2
14
0

10 12 14 16 18 20
Number of FIBs

Fig. 11: Storage Overhead using different partition mode

translates to just 0.673B per prefix in average. Even if both
the number of FIBs and the number of prefixes in each FIB
keep growing, the storage of LOOP presents a retardant growth
trend because the average storage consumed by each prefix is
also in decline.

C. Lookup

LOQP partitions a prefix trie into three layers and searches
from Layer 1 down to Layer 3. A lookup thread may get and
return the next-hop information in any layer. A lookup thread
requires two memory accesses for one group pointer and one
lookup entry in Layer 1. When a Layer 2 chunk is not sparse,
it consumes four memory accesses for one group pointer, one
codeword, one lookup entry, and IndexTable. Otherwise, it
accesses a sparse chunk structure of at most 16 bytes, requiring
at most two memory accesses in a 64-bit system. Layer 3
is the same as Layer 2. Therefore, a lookup thread requires
2,4~6@2+2~2+4,and 6 ~ 104 +2 ~6+4)
memory accesses to get the final lookup entry when it returns
in Layer 1, Layer 2, and Layer 3, respectively. The final lookup
entry stores an index to PortMapT able, so it requires another
memory access to get the forwarding port.

When sparse limit K = 3, there are 41 possible cases of
lookup instruction streams (Layer 1: 1, Layer 2: 14+2x K41 =
8, Layer 3: (1 + K) x 8 = 32). For a given IP address,
a lookup thread executes one of the 41 instruction streams.

—a— Merged Trie —e— Merged Trie (leaf pushing)
—#— Trie Overlap —v— LOOP

\V\v—/‘k\v/v—‘Fﬂp,‘r,qy\

v Ty T
-

A F S S W S N W -

M Lookups per Second

0 L T
0 2 4 6 8 0 12 14 16 18 20
Number of FIBs

Fig. 12: Lookup Speed of Software Schemes

As the instruction streams are deterministic, cache behavior
strongly impacts lookup speed. Tracing all the 41 instruction
streams, our experiment shows that LOOP requires 13~48
CPU cycles per lookup when cache hits. Most of lookups
get the next-hop information in Layer 2 and consume 23~30
CPU cycles. Figure 12 shows the lookup speed when packet
traces in [18] are fed in. In Merged Trie, a lookup thread
searches from level 1 down to a leaf node. Merged Trie with
leaf pushing avoids backtracking and increases lookup speed
slightly. Merged Trie has a large search depth and requires too
many memory accesses. Bitmap-assisted Trie based on pure
software and basic Trie Braiding are both slower than Merged
Trie because of extra bit operations. Typically, Bitmap-assisted
Trie uses pipeline technique for speedup and Trie Braiding
combines with other schemes to improve both storage and
lookup performance. LOOP can perform about S0M lookups
per second, which is about 4~5 times faster than Merged
Trie. LOOP and Trie Overlap constrain the search depth
of lookup thread by using layer chunks and by using level
compression, respectively. Generally, Trie Overlap requires
more search depths than LOOP. Compared with Trie Overlap,
LOOP increases the lookup speed by about 15%.

D. Update

We use two metrics to evaluate an update algorithm. One
is Dead Time, which represents the update induced interrupt
period during which the normal lookups are prohibited. The
other is Execution Time, which represents the time consumed
by the update algorithm itself to update data structure. The
former is crucial for router QoS (Quality of Service) because
longer Dead Time leads to more packets buffering in queue
and even causes packet loss. The latter has direct impact on
the network state convergence time.

The update performance of LOOP relates to the number
N of group structures and the number M of sparse chunks
changed by the updated prefix. In LOOP, Execution Time is
the time to rebuild N group structures and M sparse chunks,
and Dead Time is the time to download the new structure
to line card and modify N + M pointers. Since most of
updated prefixes are distributed in Layer 2 chunks and Layer 3
chunks, NV and M are small. We explore Execution Time and
Dead Time separately using real-world FIBs and their update

TABLE III: Dead Time: Distribution of the Number of Modified Pointers

Modified Pointers (N + M) 1 2 >3

Oregon (group size = 64) 98.34% 0.65% 1.01%
Equinix (group size = 64) 98.94% 0.53% 0.53%
Isc (group size = 64) 99.81% 0.12% 0.07%

TABLE IV: Group size affects storage and update

Group Size 32 64 128
Bytes per prefix 5449 4713 4356
Cycles per update | 1313 1732 2533

packages. The experiment shows that our update mechanism
barely interrupts lookups.

Execution Time: Figure 13 shows Execution Time one
by one for thousands of updated prefixes in Jan 1, 2012.
On average, each updated prefix consumes 1732 cycles in
Oregon, 1390 cycles in Equinix, and 1473 cycles in Isc,
respectively. To rebuild group structure, Execution Time ranges
from 750 to 3000 cycles, depending on prefix distribution in
the group. The number can drop down to about several hundred
cycles when an updated prefix satisfies the three constraints
of Optimization 1. It takes less time to rebuild sparse
chunk than to rebuild group structure. There are some updated
prefixes that change several group structures or sparse chunks
so they cause spikes of Execution Time as shown in Figure 13.

Dead Time: Table III shows the distribution of the number
of modified pointers (N + M) by updated prefixes. More
than 98% updated prefixes change only one group structure
or sparse chunk, which means N =1 and M =0,0or N =0
and M = 1. Generally, a sparse chunk occupies at most 16
bytes and the group structure of Layer 2 and Layer 3 occupies
about 60~150 bytes. Therefore, in most cases the Dead Time
is extremely short.

The group size impacts both storage and update perfor-
mance. A smaller group size leads to faster updates but results
in larger storage. With different group size of 32, 64, and 128,
Table IV lists the storage overhead and update speed with a
single Oregon FIB to exemplify the effect of group size. It
shows that the storage decreases by 13.5% and the update
speed slows down by 31% as the group size doubles from 32
to 64. When the group size doubles again, the storage further
reduces by 7.6% but the update speed also decreases sharply
by 46%. For performance and storage tradeoff, we choose
group size = 64.

Among these schemes, Merged Trie has the fastest update
speed. After leaf pushing, incremental update becomes more
difficult. Trie Braiding and Trie Overlap optimize the data
structure globally using tree isomorphism and level com-
pression techniques, respectively. A local update may break
the global optimization. Moreover, Trie Overlap employs leaf
pushing before level compression, so its update becomes more
complex. By contrast, LOOP can perform 1.3 ~ 1.6 million
updates per second. The incremental update thread runs in
parallel with the lookup threads and barely interrupts the
normal lookups. In conclusion, LOOP exhibits the favorable
incremental update capability and performance.

Isc

0

10000 20000 30000 40000 50000 0

5000 10000 15000 20000 25000

Fig. 13: Execution Time: Update Prefixes in Oregon, Equinix, and Isc One by One

—— Oregon
354 9 35
304 304
< 25 254
3
E 20 20
O 15 15|
E 104 104
o
5 5
07 T T T T T 07 T
0 15000 30000 45000 60000 0
9000
8000 - —=— Build Time: f(n) N
—e— Insertion Time: h(n) “
7000 1 —4— Deletion Time: g(n) P 4
L
6000 - -
/I /.
™ 5000 /
E, .
5 4000 1 o
€ g
iZ 3000 .
P
2000 n
II/
e
1000 |
o 0000900009090
0 ;APAFA—— ~A—
T T

0 2 4 6 8 10 12 14 16 18 20
Number of FIBs (n)

Fig. 14: Time Overhead of Inserting and Deleting FIBs

E. Incremental Insertion/Deletion of FIBs

LOQP inherently supports building lookup data structure
incrementally without needing to merge all the FIBs from
scratch. Similarly, Merged Trie can also support incremental
insertion and deletion of FIBs if it reserves space in each node.
By contrast, Trie Overlap requires loading all the FIBs and
building all the data structure from scratch. In Figure 14, the
f(n) is the time overhead to build the data structure for the
first n FIBs in Figure 8. Assume the current data structure
supports the first n + 1 FIBs. The g(n) is the time overhead
to delete the (n + 1)th FIB and generate data structure for the
first n FIBs. Likewise, the h(n) is the time overhead to insert
the nth FIB incrementally into the data structure of the first
n — 1 FIBs. Both g(n) and h(n) scale well as the number of
FIBs increases. This feature will make a big difference when
hundreds of virtual routers coexist in the same physical router.

VI. CONCLUSIONS

In this paper, we have proposed LOOP, an innovative P
routing lookup scheme, which supports a single FIB and mul-
tiple FIBs. The multi-FIB scheme can achieve the close perfor-
mance to that of the single FIB scheme. LOOP scales well in
storage, lookup speed, and update performance as the number
of FIBs increases. Overlay bitmap avoids transforming prefix
trie and efficiently eliminates information redundancy of next-
hops. In addition, LOOP inherently facilitates incremental in-
sertion and deletion of FIBs to support dynamic configuration
of virtual networks. Our update mechanism splits the whole

bitmap into fine-grained groups and adopts group regeneration
and replacement to reduce update converging time and the
search interruption time, which not only benefits incremental
updates but also effectively supports parallel lookup and update
operations. Experiments on real-world FIBs demonstrate that
LOOQOP achieves high lookup speed, fast incremental update
with low cost, compact storage, and good storage scalability.

REFERENCES

[1] N.M. M. Chowdhury, and R. Boutaba. A survey of network virtualization.
Computer Networks, 862-876, 2010.

[2] J. Fu, and J. Rexford. Efficient IP-Address Lookup with a Shared
Forwarding Table for Multiple Virtual Routers. In Proc. ACM CoNEXT,
2008.

[3] Yi Wang, E. Keller, B. Biskeborn, Jacobus. Merwe, and J. Rexford.
Virtual Routers on the Move: Live Router Migration as a Network-
Management Primitive. In Proc. ACM SIGCOMM, 231-242, 2008.

[4] BGP Routing Table Analysis Reports (AS65000). [Online] Available:
http://bgp.potaroo.net/.

[5] NetScreen Series (NS5400). [Online] Available: www.juniper.net/us/en/
products-services/security/netscreen/ns5400/.

[6] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding
tables for fast routing lookups. In Proc. ACM SIGCOMM, 3-14, 1997.

[71 H. Song, M. Kodialam, F. Hao, and T. V. Lakshman. Building scalable
virtual routers with trie braiding. In Proc. IEEE INFOCOM, 2010.

[8] T. Ganegedara, W. Jiang, and V. Prasanna. Multiroot: Towards memory-
effcient router virtualization. In Proc. IEEE ICC, 1-5, 2011.

[9]1 L. Luo, G. Xie, K. Salamatian, S. Uhlig, L. Mathy, and Y. Xie. A Trie
Merging Approach with Incremental Updates for Virtual Routers. In
Proc. IEEE INFOCOM, 1246-1254, 2013.

[10] L. Luo, G. Xie, S. Uhlig, L. Mathy, K. Salamatian, and Y. Xie. Towards
TCAM-based Scalable Virtual Routers. In Proc. ACM CoNEXT, 2012.

[11] S. Nilsson, and G. Karlsson. IP-Address Lookup Using LC-Tries. IEEE
JSAC, 17(6):1083-92, June 1999.

[12] G. Lu, Y. Shi, C. Guo, and Y. Zhang. CAFE: A Configurable pAcket
Forwarding Engine for Data Center Networks. In Proc. ACM SIGCOMM
Workshop on Programmable Routers for the Extensible Services of
Tomorrow, 25-30, 2009.

[13] M. B. Anwer, and N. Feamster. Building a Fast, Virtualized Data Plane
with Programmable Hardware. In Proc. ACM SIGCOMM Workshop on
Virtualized Infrastructure Systems and Architectures, 2009.

[14] M. B. Anwer, M. Motiwala, M. Tariq, and N. Feamster. SwitchBlade:
A platform for rapid deployment of network protocols on programmable
hardware. In Proc. ACM SIGCOMM, 183-194, 2010.

[15] V. Srinivasan, and G. Varghese. Fast Address Lookups Using Controlled
Prefix Expansion. ACM Trans. Computer Systems, October 1999.

[16] University of Oregon Route Views Archive Project. [Online] Available:
http://archive.routeviews.org/.

[17] RIPE NCC: RIPE Network Coordination Centre. [Online] Available:
http://www.ripe.net/.

[18] CAIDA Anonymized Internet Trace. [Online] Available: http://www.
caida.org/data/monitors/passive-equinix-sanjose.xml.

