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Abstract—Given d sets without intersection, the multi-set mem-
bership query problem is to decide which set an incoming item
e belongs to. Multi-set membership query is a fundamental
problem in a variety of fields of computer science, especially
computer networking. Although several approaches have been
proposed in the literature to address this problem, they cannot
achieve a high processing speed, a high accuracy, and a small
memory usage at the same time. In this paper, we propose a
novel data structure, namely Magic Cube Bloom Filter (MC-
BF), which outperforms the state-of-the-art in terms of accuracy
and query speed with a limited memory usage. The key idea of
the Magic Cube Bloom filter is that items from the same set
are stored in different Bloom filters, improving the accuracy by
the redistribution of items. The MC-BF also improves the query
speed by utilizing spatial locality. Experimental results show that
the MC-BF outperforms the state-of-the-art BUFFALO by up to
148.5 times in terms of accuracy, and up to 3.16 times in terms
of query speed. We have made the source code of our MC-BF
available on Github [1].

I. INTRODUCTION

A. Background and Motivation

Given d sets and any two of them have no intersection, a
multi-set membership query problem is to answer whether an
item e belongs to this multi-set, and if so, which one of them.
A multi-set is a collection of sets, and in each set an item
can appear only once. The multi-set membership query is a
crucial problem in computer applications and systems, such
as network packets processing [2] [3], deep packet inspection
[4], network traffic measurement [5], [6] and more [7], [8].

Multi-set membership query plays an important role in big
data processing. Next we show two typical scenarios.
Scenario 1: Designing the MAC address table of a switch.
There is a MAC address table in every switch. When forward-
ing a packet, a switch first uses a specific field (destination
MAC address) in the arriving packet’s header as the key
of this packet, and then queries the key in the MAC table.
The MAC table entries indicate the destination to which this
packet should be forwarded. Regarding the keys of packets
as the items and the forwarding table as the multi-set, the
designing of the MAC table can be considered as solving
a multi-set membership query problem. However, the MAC
table of a switch located in an enterprise or a data center
network may contain tens of thousands of entries, which
disables straightforward hash solutions whose memory usage
is saved by the linear relationship between that and the number
of entries. We have to reduce the memory usage of the MAC

table, because the fast memory size (SRAM or Block RAM
in FPGA, or caches in CPU or GPU) of the switch is limited
and too large a size will cause our data structure to be stored
in the slow memory (DRAM).
Scenario 2: Distributed web caching. The most classic solu-
tion for distributed web caching is the Summary Cache [9].
There are multiple web servers providing the same services,
and each server keeps a compact summary (a probabilistic
data structure) of the content of each of other servers. When a
server miss occurs, the server first checks all the summaries to
see whether the requested content is contained in other servers,
and then sends a query request only to those servers whose
summaries exhibit positive results. This is a typical problem of
multi-set query. Due to the importance of distributed caching,
recent works [10], [11] are still managing to enhance the
performance of web caching.

One straightforward solution is to use hash tables. However,
for a large volume of data, using a hash table is not the best
choice due to the memory inefficiency and hash collisions. One
classic method of multi-set query is to rely on Bloom filters.
Bloom filter (BF) [12], a space-efficient probabilistic data
structure, could be used to solve multi-set membership query
problems with relatively high speed and a certain error rate.
However, when sizes of sets vary drastically, the conventional
method may lead to a waste of memory or a huge loss in terms
of accuracy. In a word, to handle multi-set membership query
problems, a new data structure which has a small memory
usage, a considerably high efficiency and a much lower error
rate is strongly demanded.

The design goal of this paper is to propose a novel data
structure to handle multi-set membership queries with a small
usage of memory, a high query speed, and a much higher
accuracy, especially when sizes of sets vary drastically.

B. Limitations of Prior Art

BUFFALO [13] uses multiple Bloom filters to solve the
problem of multi-set membership query. It allocates a Bloom
filter for each set, and to insert an incoming item e from set i,
it inserts e into the corresponding Bloom filter. When querying
an item e′, it queries e′ in each Bloom filter and if only one
Bloom filter reports that it has e′, it returns the corresponding
set index as the result. Otherwise, it returns error as the
result. The limitations of BUFFALO are twofold. On the one
hand, since we cannot acquire the size of each set beforehand,



it is impossible to find a proper size for each Bloom filter.
Therefore, a Bloom filter may be “too large” or “too small”
for a given set, which means that after inserting all the items
from that set into the Bloom filter, the number of 1s in the
Bloom filter may be too small, indicating a waste of memory,
or too large, indicating too many collisions and a drastic drop
in accuracy. On the other hand, we cannot acquire the number
of sets beforehand, instead, we have a rough estimation about
the number (e.g., no bigger than 64). Therefore, we have
to either allocate a fixed number of Bloom filters and use
several parts of them, which will result in a waste of memory,
or dynamically allocate new Bloom filters during insertions,
which will make the total memory usage unpredictable.

C. Proposed Approach

To address the limitations of BUFFALO, we propose the
Magic Cube Bloom filter. The key idea of the Magic
Cube Bloom filter is that items from the same set can be
stored in different Bloom filters, improving the accuracy by
redistributing items. An item is “rotated” to a random place
during its insertion, and rotated back when it is queried, which
is like to shuffle and restore a magic cube. The Magic Cube
Bloom filter consists of d arrays, each of which has w bits.
Notice that in the first two versions of our Magic Cube Bloom
filter, d is equal to the number of sets to be inserted.

The first version of the Magic Cube Bloom filter,
namely MC-BF1, is associated with k hash functions,
h1(.), h2(.), ..., hk(.), whose outputs are uniformly distributed
in the range [1, w]. To insert an item e from set i, it computes
k hash functions and set Ai[h1(e)], Ai[h2(e)], ..., Ai[hk(e)] to
1. To query an item e, for each of the d sets, we denote set i
as the candidate set if Ai[h1(e)], Ai[h2(e)], ..., Ai[hk(e)] are
all set to 1. In the end, 1) if there is no candidate set, it returns
none; 2) if there is only one candidate set, it returns the set
index; 3) if there are more than one candidate sets, it returns
error.

However, all the d arrays in the MC-BF1 have fixed
and equal widths, which makes the MC-BF1 unable to
adapt to variable sizes of sets. To address this limita-
tion, MC-BF2 adds an extra hash function g(.) to com-
pute an offset for each item. Specifically, to insert an item
e from set i, it computes h1(e), h2(e), ..., hk(e) and g(e),
and set At[h1(e)], At[h2(e)], ..., At[hk(e)] to 1, where t =
1 + (i + g(e))%d. When querying an item e, for each
of the d sets, we denote set i as the candidate set if
At[h1(e)], At[h2(e)], ..., At[hk(e)] are all set to 1.

The limitation of the MC-BF2 is that a fixed d means
the number of sets need to be acquired beforehand, which
is too strong a requirement to be fulfilled in many sce-
narios. MC-BF3 makes three improvements on MC-BF2: 1)
It sets d to 64, ensuring that it can record any multi-sets
whose sizes do not exceed 64. 2) It utilizes spacial locality
to accelerate the query operation. 3) It uses k hash func-
tions g1(.), g2(.), ..., gk(.) instead of a single hash function
g(.) to compute the k offsets, increasing the randomness
and accuracy. To insert an item e from set i, it com-

putes h1(e), h2(e), ..., hk(e) and g1(e), g2(e), ..., gk(e), and
set At1 [h1(e)], At2 [h2(e)], ..., Atk [hk(e)] to 1, where tj =
1 + (i + gj(e))%64. When querying an item e, for each
of the 64 sets, we denote set i as the candidate set if
At1 [h1(e)], At2 [h2(e)], ..., Atk [hk(e)] are all 1.

D. Key Contributions

• We propose a novel data structure, namely Magic Cube
Bloom filter, which has a much higher accuracy and query
speed when dealing with multi-set membership queries
with a limited memory size.

• We have made mathematical analysis and carried out ex-
tensive experiments on the Magic Cube Bloom filter. Both
the theoretical and the experimental results show that our
Magic Cube Bloom filter significantly outperforms the
state-of-the-art in terms of accuracy and query speed.

II. RELATED WORK

Typical algorithms for multi-set membership query in-
clude BUFFALO [13], perfect hashing [14], Bloomtree [15],
Bloomier [16], Summary Cache [9], Coded BF [5], Combina-
torial BF [17], iSet [18], and more [19]–[21]. These algorithms
are largely based on Bloom filter.

The standard Bloom filter [12] is used to tell whether
an item belongs to a set or not. A Bloom filter is an
array consisting of w bits and is associated with k in-
dependent hash functions h1(.), h2(.), ..., hk(.), whose out-
puts are uniformly distributed in the range [1, w]. We de-
note the i-th bit of the array with A[i]. To insert an item
e, the Bloom filter computes k hash functions and set
A[h1(e)], A[h2(e)], ..., A[hk(e)] to 1. To query an item e′, it
checks whether A[h1(e

′)], A[h2(e
′)], ..., A[hk(e

′)] are all 1.
If the k positions are all 1, then it reports that e is in the
set; otherwise, it reports that e is not in the set. Obviously,
BF never reports e /∈ S if e actually belongs to S, i.e.,
it has no false negatives. However, BF may report e ∈ S
when e actually does not belong to S sometimes, i.e., it has
false positives. The false positive rate of BF is often small
enough to be accepted in practical scenarios. For muli-set
query, BUFFALO [13] assigns d Bloom filters, corresponding
to d sets respectively. To query an item e, the BUFFALO
queries it in all the d Bloom filters. If the i-th Bloom filter
reports true, then BUFFALO reports that e belongs to the i-th
set. As a result, when sizes of different sets vary drastically,
we have to allocate enough memory to hold the biggest one,
which leads to huge amount of memory waste upon relatively
smaller ones. This is intolerable as we hope the data structure
could be small enough to be stored in SRAM (static RAM),
rather than DRAM (dynamic RAM), which is significantly
slower than SRAM.

The coded BF [5] and Bloomier [16] are both based on
a binary string generated from the item’s set index (set ID).
Supposing the length of the binary string is w, the coded BF
and Bloomier allocate w and 2w BFs respectively. Supposing
the i-th bit of the string is bi, the coded BF will insert e into
i-th BF if bi equals to 1, while Bloomier will insert e into



(2bii)-th BF. They are faster than BUFFALO but using more
memory.

Combinatorial BF [17] uses one single BF along with
multiple sets of hash functions. The hash functions are used to
encode the set index. Though constant weight error correcting
codes are used for encoding, the Combinatorial BF is not
competitive either on speed or memory usage.
Other variants of BF: There are various variants of Bloom
filters, aiming to improve one aspect of the standard Bloom
filter at the cost of performance degradation in others. Typical
variants of BF include: zero-error BF [22], cuckoo filter [23],
[24], dynamic cuckoo filter [25], and more [26]–[28].

III. THE MAGIC CUBE BLOOM FILTER

In this section, we will present the details of our Magic
Cube Bloom filter (MC-BF for short). To better illustrate the
advantages of our MC-BF, before introducing the final design
(namely MC-BF3), we will first introduce two prior versions
(namely MC-BF1 and MC-BF2). This section is organized as
follows: three versions of MC-BF will be introduced, and for
each version, we will first discuss its data structure, then its
insertion and query operation. Limitations of MC-BF1 and
MC-BF2 will be discussed, and corresponding improvements
will be provided in MC-BF2 and MC-BF3.

A. MC-BF1: Multiple Bloom Filters With Equal Widths

Rationale: The most straightforward idea to solve a multi-set
query problem is to treat it as multiple in-or-not problems. An
in-or-not problem is to tell whether an item is in a set or not
when given a single set, which can be solved with a single
Bloom filter. Suppose there are d sets without intersection.
Similar to BUFFALO [13], we need to build a Bloom filter for
each set, and query an item in the d Bloom filters to determine
which set this item is in.

Data Structure:

A1 0 1 … 1 0
A2 0 0 … 0 1

… …

Ad 1 0 … 1 1

w

bit: A2[2]

Fig. 1. Data structure of MC-BF1.

As shown in Figure 1, MC-BF1 consists of d arrays, each
of which contains w bits. The MC-BF1 is associated with
k independent hash functions, whose outputs are uniformly
distributed in the range [1, w]. Notice that the value of d is
determined by the number of sets. We represent the i-th array
with Ai, the j-th counter of the i-th array with Ai[j], and
the l-th hash function with hl(.). For simplicity’s sake, we
denote A1[i], A2[i], ..., Ad[i] as d correlated bits of position
i, h1(e), h2(e)..., hk(e) as k mapped positions of item e, and

Ai[h1(e)], Ai[h2(e)], ..., Ai[hk(e)] as k mapped bits of item e
in Ai.

Insertion: As shown in Figure 2, to insert an item e from set
i, we compute k hash functions and set the k mapped bits of
Ai (Ai[h1(e)], Ai[h2(e)], ..., Ai[hk(e)]) to 1.

Query: As shown in Figure 2, to query an item e, we compute
k hash functions. For each array Ai of the MC-BF1, we check
the k mapped bits. If the k mapped bits of Ai are all 1, then we
define set i as a candidate set for the item e. After checking all
the d arrays, we will run into one of following three situations:
1) there is no candidate set for e, and the MC-BF1 will return
none; 2) there is only one candidate set i for e, and the
MC-BF1 will return i; 3) there are more than one candidate
sets for e, and the MC-BF1 will return error. Notice that
the query of an item can have one of the three results: none,
set number i, or error. The query operation of MC-BF2 and
MC-BF3 will also return one of those three results.

Advantages and Limitations: There is no salient advantage
of MC-BF1 since it is a straightforward algorithm to deal with
multi-set query problems. The major limitation of MC-BF1 is
its inflexibility to adjust the length of each array to adapt to
various sizes of different sets. When the sizes of the sets vary
greatly, it is difficult to determine an appropriate length w for
the k arrays, since too short a length causes heavy collisions in
a large set and too long a length causes waste of memory in a
small set. Therefore, MC-BF1 only works well when sizes of
the sets are all at the same level. In the next section, MC-BF2

will be proposed to address this limitation.

B. MC-BF2: Rotate The Magic Cube - Redistribution Of
Mapped Bits

Rationale: To address the limitation of MC-BF1, we need to
break the boundaries of arrays and make a redistribution of
mapped bits. If the mapped bits of one set are strictly located
in one array, due to the fixed size of each array, too large or
small a set will make the proportion of bits set to 1 too low or
too high. Therefore, we remove the restriction and the mapped
bits of one set can be located in any of the k arrays, by adding
an offset to each mapped bits of an item.

Data Structure: The data structure of MC-BF2 is almost the
same as that of MC-BF1 except for an addition of one extra
hash function g(.).

Insertion: As shown in Figure 3, to insert an item e from
set i, we compute k hash functions and get the k mapped
locations: h1(e), ..., hk(e). Instead of setting the k mapped
bits in Ai, we compute the target array At by t = 1 +
(i + g(e))%d (which makes sure that t ∈ [1, d]), and set
At[h1(e)], At[h2(e)], At[hk(e)] to 1.

Query: As shown in Figure 3, to query an item e, first,
we compute h1(e), ..., hk(e) and g(e). Second, for each
set among d sets, we denote set i as the candidate set
if At[h1(e)], At[h2(e)], ..., At[hk(e)] are all set to 1, where
t = 1+ (i+ g(e))%d. After checking all the d sets, MC-BF2
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Fig. 2. Insertion and query of MC-BF1. Suppose k = 3 and d = 4.
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Fig. 3. Insertion and query of MC-BF2. Suppose k = 3 and d = 4.

returns one of the three results based on the number of
candidate sets, as discussed in the query operation of MC-BF1.

Advantages and Limitations: The most salient advantage of
MC-BF2 is that its accuracies of queries for different sets
are basically the same, and won’t be severely affected by the
great variation of sizes among different sets. Unfortunately,
the MC-BF2 suffers two major limitations: inflexibility to the
change of the number of sets, and loss of speed caused by
across-machine-word memory access.

On the one hand, in many scenarios, the number of sets
cannot be acquired beforehand, and only a rough estimation
(e.g., no bigger than 64) can be made. To make MC-BF2

applicable in this kind of situations, we have to set d to the
upper bound of the number of sets, which may cause potential
memory waste, or have to ask for extra memory during
insertions, which makes the total memory usage unpredictable.

On the other hand, due to the cache mechanism, if a memory
access to certain address addr is made, subsequent memory
accesses to addresses located in the same machine word of
addr will cost negligible amount of time. During queries of
the MC-BF2, the d correlated bits of a certain position are
frequently accessed at the same time. To utilize the spatial
locality of cache mechanism, we store the d correlated bits
together. In other words, we first store A1[1], A2[1], ..., Ad[1],
then A1[2], A2[2], ..., Ad[2], and so on. However, it cannot be
guaranteed that those d bits are located in the same machine
word. It is possible that the former part of bits are located
at the end of one machine word, and the latter part of bits

are located at the beginning of the next machine word. In this
case, the speed of the memory access will decrease.

In the next section, MC-BF3 will be proposed to address
these limitations.

C. MC-BF3: Fixed d and Acceleration by Spatial Locality

Rationale: To address the limitations of MC-BF2, we need
to set a fixed size of d, which should be large enough to
be applicable in most scenarios, and still keep a good spatial
locality. Therefore, we choose 64 as the size of d for two
reasons. First, in most scenarios, the size d is no larger than
64. Second, the size of a machine word is usually 64, so we
can make full use of spatial locality. Also, we use an array
of long long in C++ language to represent the MC-BF3,
to ensure that the d correlated bits are located in the same
machine word. Another improvement of MC-BF3 is that every
item has a distinctive offset for each of the mapped bits so as
to improve randomness.

Data Structure: The data structure of MC-BF3 is almost the
same as that of MC-BF2, except that d is fixed at 64, and g(.)
is replaced by k hash functions g1(.), g2(.), ..., gk(.).

Insertion: As shown in Figure 4, to insert an item e from set
i, first, we compute h1(e), h2(e), ..., hk(e) and get k mapped
locations. We also compute g1(e), g2(e), ..., gk(e) and get k
offsets. Second, for each of the k mapped locations, we
compute the target array Atj by tj = 1 + (i + gj(e))%d
(1 6 j 6 k), and set At1 [h1(e)], At2 [h2(e)], ..., Atk [hk(e)]
to 1.
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Fig. 4. Insertion and query of MC-BF3. Suppose k = 3 and d = 4.

Query: As shown in Figure 4, to query an item e, first,
we compute h1(e), h2(e), ..., hk(e) and g1(e), g2(e), ..., gk(e).
Second, for each of the 64 sets, we denote set i as the
candidate set if At1 [h1(e)], At2 [h2(e)], ..., Atk [hk(e)] are all
1, where tj = 1 + (i + gj(e))%d (1 6 j 6 k). Notice that
this process can be accelerated by bit manipulation. Finally,
MC-BF3 returns one of the three results based on the number
of candidate sets, as discussed in the query operation of
MC-BF1.

Advantages and Limitations: There are two salient ad-
vantages of MC-BF3. First, it supports the recording of an
arbitrary number of sets as long as this number does not exceed
64. Second, during one query operation, it is guaranteed that
only k times of memory accesses are needed to produce the
result, which ensures a high query speed. The major limitation
of MC-BF3 is that it cannot record multi-sets whose sizes are
larger than 64. However, this limitation can be addressed by
making a minor improvement on the MC-BF3, which will be
discussed in the next section.

D. Scalability of MC-BF3

One possible improvement that can be made to address
the limitation of MC-BF3 is to add more hash functions if
more than 64 sets need to be recorded. If the maximum
number of sizes does not exceed 128, then we use another
k hash functions gk+1(.), gk+2(.), ..., g2k(.) to compute the
offsets for items from set 65, 66, ..., 128. Specifically, during
insertions, if the items are from set 1, 2, ..., 64, we adopt
the standard insertion operation; if the items are from set
65, 66, ..., 128, we use gk+1(.), gk+2(.), ..., g2k(.) instead of
g1(.), g2(.), ..., gk(.) to compute the k corresponding offsets.
During queries, we first calculate the candidate sets among set
1, 2, ..., 64 using the standard query operation, and then use
gk+1(.), gk+2(.), ..., g2k(.) instead of g1(.), g2(.), ..., gk(.) to
calculate the candidate sets among set 65, 66, ..., 128. Finally,
we combine the two candidate sets together and return one
of the three results based on the number of candidate sets. If
the number of sets exceeds 128, then we could add more hash
functions when computing the offsets. In this way, we make
a trade-off between accuracy and scalability.

IV. MATHEMATICAL ANALYSIS

A. Assumptions

Assumptions about MC-BF3: In order to derive the formula,
some assumptions about the Magic Cube Bloom filter and the
multi-set query are necessary: the number of hash functions
is k, the length of each array is w bits, the number of arrays
is d, the number of sets is t, the i-th set (1 6 i 6 t) has ni

items and
∑t

i=1 ni = N .

Assumptions about MC-BF1: To compare the error rate
between the MC-BF1 and MC-BF3, we follow the assumptions
about multi-set query and memory usage above; hence there
are t arrays in the corresponding MC-BF1, while each array
holds wd

t bits.

Preliminaries and denotations: According to prior work [12],
the correct rate when querying a Bloom filter after n items
have been inserted into the array with m bits and k hash
functions can be evaluated as 1−(1−e−kn/w)k. Furthermore,
we denote 1− (1− e−kxt/wd) as f(x). When x equals to ni

(1 6 i 6 t), f(x) represents the correct rate when querying
i-th set in i-th array of MC-BF1. Moreover, assuming l is a
positive integer, P is a l-dimensional vector containing non-
negative numbers (p1, p2, . . . , pl), we denote

∏l
i=1 f(pi) as

F (P). In addition, set n′1 = n′2 = . . . = n′t = N
t ,PBF =

(n1, n2, . . . , nt),PMC-BF3 = (n′1, n
′
2, . . . , n

′
3). According to

the algorithm of MC-BF3, the process is equivalent to dis-
tribute all data evenly on a Bloom filter with m ·d bits; hence
the definition of PMC-BF3 is reasonable.

B. Error Classification

We can classify errors into two types: 1) item e does not
belong to any sets, but it is reported as a member of a specific
set or more than one sets, i.e. error; 2) item e only belongs
to the i-th set, but it is also reported as a member of the others,
leading to an error result. We will analyze the two types of
error respectively.

The First Type: The occurrence of the first type error is the
result of false positives when the queried item e does not
belong to any sets; thus the error rate of two structures are



E1
MC-BF1

=1−
t∏

i=1

[1− (1− e−knit/wd)k]

=1− F (PMC-BF1)

(1)

and
E1

MC-BF3
= 1− F (PMC-BF3)

respectively.
Due to the convexity of 1− F (P) and Jensen’s inequality,

we could simply draw the conclusion that

E1
MC-BF3

6 E1
MC-BF1

because of the uniform distribution of PMC-BF3
. In fact, PMCBF

is the minimum error rate under the constraints that the sum
of all items of t-dimensional vector P equals to N .

The Second Type: The occurrence of the second type error is
also the result of false positives, but when the queried item e
only belongs to one specific set [29]–[31]; thus the error rate
when the queried item belongs to i-th set is

E2
MC-BF1

(i) = 1−
∏
j 6=i

[1− (1− e−knjt/wd)k]

= 1− F (PMC-BF1)

f(ni)

(2)

and
E2

MC-BF3
(i) = 1− F (PMC-BF3

)

f(n′i)
.

According to law of total probability, we have

E2
MC-BF1

=

t∑
i=1

ni

N

[
1− F (PMC-BF1

)

f(ni)

]

= 1− F (PMC-BF1
)

N

t∑
i=1

ni

f(ni)
.

(3)

For a vector P = (p1, p2, . . . , pl), define

G(P) = 1− F (P)∑l
i=1 pi

l∑
i=1

pi
f(pi)

,

then

E2
MC-BF1

= G(PMC-BF1), E
2
MC-BF3

= G(PMC-BF3).

Fortunately, because of convexity of G, we can obtain the
result

E2
MC-BF3

6 E2
MC-BF1

in the same way.

C. Summary

In summary, when using the same size of memory, both
types of error of MC-BF are lower than those of BF, as well
as BUFFALO. Moreover, according to the convexity of two
functions, the more the sizes of sets fluctuate, the more our
algorithm can outperform the standard Bloom filter.

V. PERFORMANCE EVALUATION

A. Metrics

The performance of the Bloom filter is usually evaluated
by accuracy and speed given a fixed memory. The accuracy
is often measured by Error Rate, and the speed is often
measured by Throughput.

Error Rate (ER): There are two types of errors: 1) An item
is from set i but the query result is not i (the result is another
set, or none, or error); 2) An item does not belong to any
of the sets but the query result is not none. We denote the
former type of error rate with ERin, and the latter type of
error rate with ERout. Let S be the query set, Se be the set
of items whose query result generates a certain type of error.
Then the error rate can be calculated as:

ER =
| Se |
| S |

Throughput: Let n be the total number of certain operations
(insertions or queries) executed on a MC-BF, and t be the total
execution time in nanosecond. The throughput is calculated as

Throughput =
n · 1000

t
Mops

where Mops is the abbreviation of Million Operations per
Second.

B. Experimental Setup

Datasets: We use the MAC address tables acquired from the
Stanford backbone as our experimental datasets, which can be
acquired from [32]. Those MAC address tables are a collection
of key-value pairs, where each key is a MAC address and
each value is a destination port ID [33]–[35]. We preprocess
those MAC address tables to make sure there is no intersection
between any of the two sets. There are approximately 27000
distinct key-value pairs after preprocessing.

To evaluate the performance of our MC-BF, first we insert
all the key-value pairs into the MC-BF. Suppose the total
number of key-value pairs is n, and then we query those n
MAC addresses in the MC-BF. Since those n MAC addresses
all belong to this multi-set, we can calculate the ERin. Then,
we generate other 50 · n MAC addresses that are not in this
multi-set, query them in the MC-BF, and calculate the ERout.

Parameter Setting: We allocate 64KB memory for the MC-
BF and the BUFFALO. As for the BUFFALO, according to the
optimal formula of the Bloom filter [12], # of hash functions
needed can be calculated as:

k =
m

n
ln 2 (4)

where m represents the memory size in bit, n represents the
total number of items. The result is k = 13. However, since
we do not know the distribution of the multi-set beforehand,
we vary k from 2 to 13, and compare the performance between
MC-BF and BUFFALO every time the k is increased by 1.



Implementation: We use C++ as our programming language
to implement the MC-BF and the BUFFALO. We use BOB
Hash as our hash function which is acquired from an open
source website [36]. The source code is available on GitHub
[1].

Computation Platform: We perform all the experiments on
a machine with 4-core CPUs (8 threads, Intel Core i7 @2.6
GHz) and 8 GB total DRAM memory. CPU has three levels
of cache memory: two 32KB (where 1KB = 210 bytes) L1
caches for each core, one 256KB L2 cache for each core, and
one 6MB (where 1MB = 220 bytes) L3 cache shared by all
cores.

C. Accuracy

In this section, we compare the performance between the
MC-BF and the BUFFALO in terms of accuracy, and present
the results in terms of error rate.
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Fig. 5. ERin vs. # of hash functions

ERin vs. # of hash functions: Our experimental results,
reported in Figure 5, show that as # of hash functions increases
from 2 to 13, the ERin of the BUFFALO increases from 0.8 to
around 1.0 and the ERin of the MC-BF decreases from 0.47
to almost 0. The ERin of the MC-BF is [1.74, 148.5] times
smaller than that of the BUFFALO as # of hash functions
increases from 2 to 13.
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Fig. 6. ERout vs. # of hash functions

ERout vs. # of hash functions: Our experimental results,
reported in Figure 6, show that as # of hash functions increases
from 2 to 13, the ERout of the BUFFALO increases from
0.96 to 1.0 and the ERout of the MC-BF decreases from 0.47
to around 0. The ERout of the MC-BF is [2.05, 149.7] times
smaller than that of the BUFFALO as # of hash functions
increases from 2 to 13.

D. Speed

In this section, we compare the performance between the
MC-BF and the BUFFALO in terms of speed, and present the
results in terms of insertion throughput and query throughput.

We use k to represent # of hash functions in the experimental
figures due to space limitation.
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Fig. 7. Insertion throughput vs. # of insertions when k = 2

Insertion throughput vs. # of insertions when k = 2: Our
experimental results, reported in Figure 7, show that when #
of hash functions is fixed at 2, as # of insertions increases
from 0.3K to 2.7K, the insertion throughput of the MC-BF is
comparable to that of the BUFFALO.
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Fig. 8. Insertion throughput vs. # of insertions when k = 13

Insertion throughput vs. # of insertions when k = 13: Our
experimental results, reported in Figure 8, show that when #
of hash functions is fixed at 13, as # of insertions increases
from 0.3K to 2.7K, the insertion throughput of the MC-BF is
comparable to that of the BUFFALO.
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Fig. 9. Query throughput vs. # of queries when k = 2

Query throughput vs. # of insertions when k = 2: Our
experimental results, reported in Figure 9, show that when
# of hash functions is fixed at 2, as # of queries increases
from 0.3K to 2.7K, the query throughput of the MC-BF is
[1.45, 1.53] times higher than that of the BUFFALO.

Query throughput vs. # of insertions when k = 13: Our
experimental results, reported in Figure 10, show that when
# of hash functions is fixed at 13, as # of queries increases
from 0.3K to 2.7K, the query throughput of the MC-BF is
[3.14, 3.16] times higher than that of the BUFFALO.
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Fig. 10. Query throughput vs. # of queries when k = 13

VI. CONCLUSION

Multi-set membership query is a crucial problem in many
scenarios of big data application. In this paper, we propose
a novel data structure, namely Magic Cube Bloom filter
(MC-BF), for multi-set membership query. Compared to prior
art, the Magic Cube Bloom filter is much more accurate
when sizes of sets vary greatly, and its query speed is much
higher. The key technique of the MC-BF is to redistribute
items from different sets to offset the unevenness brought by
various sizes. We have compared our MC-BF with BUFFALO,
and experimental results show that our MC-BF outperforms
BUFFALO by up to 148.5 times in terms of accuracy, and up
to 3.16 times in terms of query speed. The source code of our
algorithm is available on GitHub [1].
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