
Pyramid Sketch: a Sketch Framework for Frequency
Estimation of Data Streams

Tong Yang1,2, Yang Zhou1, Hao Jin1, Shigang Chen3, Xiaoming Li1

1Department of Computer Science and Technology, Peking University, China
2Collaborative Innovation Center of High Performance Computing, NUDT, Changsha, China

3Department of Computer & Information of Science & Engineering, University of Florida, USA
Email: yangtongemail@gmail.com, zhou.yang@pku.edu.cn,
jin.hao@pku.edu.cn, sgchen@cise.ufl.edu, lxm@pku.edu.cn

ABSTRACT
Sketch is a probabilistic data structure, and is used to store
and query the frequency of any item in a given multiset. Due
to its high memory efficiency, it has been applied to various
fields in computer science, such as stream database, network
traffic measurement, etc. The key metrics of sketches for
data streams are accuracy, speed, and memory usage. Var-
ious sketches have been proposed, but they cannot achieve
both high accuracy and high speed using limited memory,
especially for skewed datasets. To address this issue, we
propose a sketch framework, the Pyramid sketch, which can
significantly improve accuracy as well as update and query
speed. To verify the effectiveness and efficiency of our frame-
work, we applied our framework to four typical sketches.
Extensive experimental results show that the accuracy is
improved up to 3.50 times, while the speed is improved
up to 2.10 times. We have released our source codes at
Github [1].

1. INTRODUCTION

1.1 Background and Motivation
Given a multiset, estimating the frequency of each item is

a critical problem in data stream applications. A multiset

refers to a set in which each item can appear multiple times.
In scenarios such as real-time IP traffic, graph streams, web
clicks and crawls, sensor database, and natural language pro-
cessing (NLP) [2–6], the massive data are often organized
as high-speed streams, requiring servers to record stream
information in real time. Due to the high speed of data
streams, it is often impractical to achieve accurate record-
ing and estimating of item frequencies. Therefore, estima-
tion of item frequencies by probabilistic data structures be-
comes popular and gains wide acceptances [7–9]. Sketches
are initially designed for the estimation of item frequen-
cies in data streams [10–15], and now have been applied

∗Shigang Chen is the corresponding author of this paper. This work
is partially supported by National Basic Research Program of China
(2014CB340400). This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-
nd/4.0/. For any use beyond those covered by this license, obtain permission
by emailing info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

to many more fields, such as sparse approximation in com-
pressed sensing [16], natural language processing [17, 18],
data graph [19, 20], and more [21]. Note that we mainly
focus on the sketches used for frequency estimation in this
paper.

According to our analysis of real datasets and literatures
[7, 9], the item frequencies in data streams are often highly
skewed. In other words, most items are cold (i.e., have a
low frequency), while a few items are hot (i.e., have a high
frequency). For convenience, we use hot items and cold

items to represent them in this paper. All existing sketches
use counters to store frequencies, but it is difficult to find a
proper size for the counters to fit these highly skewed data
streams. For example, the frequencies of most items are cold
(< 16), while the frequencies of a few hot items are larger
than 40,000. Given the size of memory usage, 1) if each
counter is 4 bits wide, the number of counters (C) will be
large, and the estimation of cold items will be very accurate.
Unfortunately, hot items will incur overflows of counters,
and this can hardly be acceptable in many applications. 2)
If we allocate 16 bits to each counter, the number of counters
will decrease to C/4, and the accuracy of the sketch will drop
drastically. What is worse, the frequency of the hottest item
is unknown in many applications, which makes it hard to
determine the counter size. Unfortunately, existing sketches
(CM sketches [8], CU sketches [22], Count sketches [23], and
Augmented sketches [7]) have to allocate enough bits for
each counter, thus can hardly work well in real data streams
that are highly skewed. The design goal of this paper is to
devise a framework which not only prevents counters from
overflowing without the need of knowing the frequency of the
hottest item in advance, but also can achieve high accuracy,
high update speed, and high query speed at the same time.

1.2 The Proposed Solution
In this paper, we propose a sketch framework, namely

the Pyramid sketch, as it employs a pyramid-shaped data
structure. The key idea of our Pyramid framework is to au-
tomatically enlarge the size of the corresponding counters ac-
cording to the current frequency of the incoming item, while
achieving close to 1 memory access and 1 hash computation
for each insertion. Our proposed enlarging strategy uses
geometric progression to guarantee that any practical large
frequency can be represented within bounded memory us-
age. The pivotal technique is counter-pair sharing, which
can significantly improve the accuracy.

Considering the significance of insertion speed in high-
speed data streams, we further propose another four tech-
niques: 1) word constraint, 2) word sharing, 3) one

hashing, and 4) Ostrich policy, to accelerate the inser-
tion speed, while keeping the high accuracy.

To verify the universality of our sketch framework, we
apply Pyramid to four typical sketches: CM sketches, CU
sketches, Count sketches, and A sketches. In real data
streams, we recommend using PCU sketch which represents
the CU sketch using Pyramid, as it achieves the highest ac-
curacy and highest insertion speed at the same time.

2. RELATED WORK
The issue of estimation of the item frequency in a multiset

is a fundamental problem in databases. The solutions can be
divided into the following three categories: sketches, Bloom
filter variants, and counter variants.

Sketches: Typical sketches include CM sketches [8], CU
sketches [22], Count sketches [23], Augmented sketches [7],
and more [24, 25]. A comprehensive survey about sketch
algorithms is provided in the literature [9]. A CM sketch
[8] consists of d arrays, A1...Ad, and each array consists
of w counters. There are d hash functions, h1(.) . . . hd(.)
(1 6 h(.) 6 w). When inserting an item e, the CM sketch in-
crements all the d mapped counters1 A1[h1(e)]. . . Ad[hd(e)]
by 1. When querying an item e, the CM sketch reports
the minimal one among the d mapped counters. The CU
sketch [22] is similar to the CM sketch except that it only
increments the smallest counter(s)2 among the d mapped
counters for each insertion. The Count sketch [23] is also
similar to the CM sketch except that each array is associated
with two hash functions. The Augmented sketch targets at
improving accuracy by using one additional filter to dynam-
ically capture hot items, suffering from complexities, slow
update and query speed. The A sketch adds an additional
filter (which is actually a queue with k items) to an exist-
ing sketch T . The A sketch is very accurate only for those
items in the filter. The authors focus on querying the hot
items by using query sets sampled from the whole multiset.
That is why their experimental results of the A sketch signif-
icantly outperform the CM sketch. Among these sketches,
the CU sketch [22] achieves the highest accuracy when us-
ing the same amount of memory. Unfortunately, all these
sketches have three shortcomings for skewed datasets: 1) not
accurate enough; 2) requiring multiple memory accesses and
hash computations for each insertion; 3) requiring to know
the approximate frequency of the hottest item in advance.

Bloom filter variants: The second kind of solutions is
based on Bloom filter [26]. A standard Bloom filter can tell
whether an item belongs to a set or not, but cannot estimate
its frequency. Counting Bloom filters (CBF) [27] can be used
to estimate the frequency of items in a multiset. CBF is
quite similar to the CM sketches, except that CBF uses only
one array. Several improvements based on CBF have been
proposed, such as the Spectral Bloom Filter (SBF) [28], the
Dynamic Count Filter (DCF) [29] and the Shifting Bloom
filter [30,31], and they all can store frequencies of items.

Counter variants: Two typical algorithms are the counter
braids [32] and Random Counters [2]. Counter braids can

1For convenience, we call them d mapped counters.
2We use counter(s) because there may be multiple smallest
counters.

report the frequencies of all items one time by post process-
ing. It needs to know the IDs of all distinct items. The
authors of Counter braids also admit that it cannot support
instant point query [32]. The estimation method in Random
Counters [2] is called CSM. It can achieve fast update speed
at the cost of accuracy.

Summary: Although there are various algorithms for
frequency estimation of multisets, no existing sketch can
achieve high accuracy and one memory access per insertion,
especially for skewed datasets.

3. PYRAMID SKETCH FRAMEWORK
In this section, we present two key techniques of our

Pyramid framework: counter-pair sharing and word

acceleration. Counter-pair sharing is used to dynamically
assign appropriate number of bits for different items with dif-
ferent frequencies. Word acceleration can achieve one mem-
ory access and one hash computation per update, so as to
significantly accelerate the update speed of sketches. We
also present one further optimization method: Ostrich pol-
icy. Note that we introduce the techniques not in isolation,
but one at a time on top of all previous techniques.

3.1 Technique I: Counter-pair Sharing
Data Structure: As shown in Figure 1, our Pyramid
framework consists of λ layers, where we represent the ith

layer with Li. Li consists of wi counters where wi+1 = wi/2
(1 6 i 6 λ − 1), and each counter contains δ bits. We rep-
resent the jth counter of the ith layer with Li[j]. The first
layer L1 is associated with d independent hash functions
hi(.) (1 6 i 6 d), whose outputs are uniformly distributed
in the range [1, w1]. The ith layer Li is associated with the
i+ 1th layer Li+1 in the following way: two adjacent coun-
ters at Li are associated with one counter at Li+1. In other
words, Li[2j − 1] and Li[2j] are associated with Li+1[j].
Li[2j − 1] and Li[2j] are defined as the sibling counters.
Li+1[j] is defined as the parent counter of Li[2j − 1] and
Li[2j]. Li[2j − 1] is defined as the left child counter of
Li+1[j], and Li[2j] is defined as the right child counter

of Li+1[j].
There are two types of counters: pure counters and

hybrid counters. The first layer L1 is composed of pure
counters, while the other layers are composed of hybrid
counters. The pure counter is only used for recording the
frequencies. In other words, all the δ bits of the pure coun-
ters are used for counting, representing a range [0, 2δ − 1].
The hybrid counter with δ bits is split into three parts: the
left flag, the counting part, the right flag. The left flag

(1 bit) indicates whether its left child counter is overflowed,
while the right flag (1 bit) indicates whether its right child
counter is overflowed. The counting part (δ−2 bits) rang-
ing from 0 to 2δ−2−1 is used for counting. For convenience,
we use Li[j].lf lag, Li[j].count, Li[j].rflag to represent the
three parts of counter Li[j].

There are following three primary operations in our Pyra-
mid framework: insertion, deletion, and query. Initially, all
the counters at all the layers are 0.

Insertion: When inserting an item e, we first compute
the d hash functions h1(e), h2(e), ..., hd(e) (1 6 h(.) 6 w1)
to locate the d mapped counters L1[h1(e)], L1[h2(e)], ...,
L1[hd(e)] at layer L1. Different sketches will perform differ-
ent incrementing operations on these d counters. During

… …

… …

...

Hybrid Counter
Pure Counter

𝐿𝐿1

𝐿𝐿2

𝐿𝐿3

...

𝐿𝐿𝑖𝑖

𝐿𝐿𝜆𝜆

parent counter

left child counter right child counter

left flag right flag
counting part

e

𝐿𝐿𝜆𝜆−1

3 11

2 10

(a)

𝐿𝐿3[𝑗𝑗′′]

𝐿𝐿2[𝑗𝑗′]

𝐿𝐿1[𝑗𝑗] 4

0 11

3 10

e

(b)

0

+ e*12 - e*1

3 11

2 10

(c)

15

0 00 0 00 0 00𝐿𝐿4[𝑗𝑗′′′]

e e
… …

Figure 1: Counter-pair sharing technique.

the incrementing process, if any of the d counters overflows,
we simply record the overflow in the parent counter. This
is called carryin.

The carryin operation is based on the following observa-
tion about practical datasets that are skewed: the number
of overflowed counters is small, and in most cases at most
one of the sibling counters overflows. Consider that L1[j]
overflows. Let its parent counter be L2[j′]. Without loss of
generality, assume L1[j] is the left child of L2[j′]. We check
L2[j′].lf lag. If the flag is off, we turn it on and increment
L2[j′].count; if the flag is on, we only increment L2[j′].count.
If L2[j′].count does not overflow, insertion ends. Otherwise,
we repeat the carryin operation at layer L2, and the op-
eration will be performed layer by layer until there is no
overflow. In this way, we dynamically assign an appropriate
number of higher-order bits to record the incoming items,
so as to minimize memory waste.

Example I: As shown in Figure 1 (a)(b), each pure counter
consists of 4 bits, so does each hybrid counter. In each
hybrid counter, the counting parts consist of 2 bits. As
shown in the figure, the value of L1[j], the three parts of
L2[j′] and L3[j′′] and L4[j′′′] are 4, < 1, 3, 1 >,< 0, 2, 1 >,<
0, 0, 0 >, respectively. Suppose L1[j] is incremented by 12,
L1[j] overflows, and the carryin operations are performed
as follows.

1) L1[j] is set to 0;
2) L2[j′].lf lag keeps on;
3) L2[j′].count is set to 0;
4) L3[j′′].rflag keeps on;
5) L3[j′′].count is incremented to 3.

Deletion: This framework supports deletions if and only if
the sketch used in our framework supports deletions, such as
the CM sketch [8], the Count sketch [23], the CSM sketch [2],
etc. To delete an item e, we first check the d mapped coun-
ters L1[h1(e)], L1[h2(e)], ..., L1[hd(e)], and perform different
deletion strategies according to the specific sketch. The op-
eration of decrementing a counter is exactly the reverse pro-
cess of incrementing a counter. Specifically, to decrement a
pure counter L1[j], if it is non-zero, we just decrement it by
1. Otherwise, we set L1[j] to the maximum value (2δ − 1),
and then decrement its parent counter recursively. Without
loss of generality, we only show the situation of only access-
ing or modifing left flags. To decrement a hybrid counter
Li[j], Li[j].lf lag must be on. There are the following three
cases. 1) If Li[j].count is larger than 1, we just decrement it
by 1. 2) If Li[j].count is 0, we just set it to 2δ−2−1, and then
decrement its parent counter recursively. 3) If Li[j].count is
1, we first set it to 0, and turn Li[j].lf lag off if the left flag
of its parent counter is off.

Example II: As shown in Figure 1 (b)(c), the param-
eters of pure counter and hybrid counters are same as
those of Example I. As shown in the figure, the value of
L1[j], the three parts of L2[j′] and L3[j′′] and L4[j′′′] are
0, < 1, 0, 1 >,< 0, 3, 1 >,< 0, 0, 0 >, respectively. Suppose
L1[j] is decremented by 1 and the deletion operations are
performed as follows.

1) L1[j] is set to 15;
2) L2[j′].lf lag keeps on, and L2[j′].count is set to 3;
3) L3[j′′].rflag keeps on, and L3[j′′].count is set to 2.

Algorithm 1: ReportVal(i, ji).

/* assume that all the child counters are the

left child counters */

1 if i==1 then
2 return L1[j1] +ReportV al(i+ 1, ji+1);

3 if Li[ji].lf lag==false then
4 return 0;

5 if Li[ji].lf lag==true && Li[ji].rflag==true then

6 return (Li[ji].count− 1)× 2δ+(i−2)×(δ−2) +
ReportV al(i+ 1, ji+1)

7 else
8 return

Li[ji].count×2δ+(i−2)×(δ−2) +ReportV al(i+ 1, ji+1)

Query: When querying an item e, we first compute d
hash functions to find the d mapped counters L1[h1(e)],
L1[h2(e)], ..., L1[hd(e)]. These d mapped counters at layer
L1 share the same array of w1 counters. Below we focus
on describing the operations of querying the first mapped
counter L1[j1] (j1 = h1(e)), and the operations for other
d − 1 counters are analogous. Let the parent counter and
the ancestor counters of L1[j1] be L2[j2], L3[j3], ..., Lλ[jλ],
respectively. Without loss of generality, we consider the case
where Li[ji] is the left child of Li+1[ji+1], for1 ≤ i < λ. Ac-
cording to Algorithm 1, we recursively assemble the counter
value top-down, layer by layer, until the left flag is off. The
result is a final reported value ReportV al(1, j1), also de-
noted as R(L1[j1]) for convenience. In line 5 − 8, if the
left flag and right flag of Li[ji] are both on, its left child
counter and right child counter must have both overflowed
at least once. Therefore, we subtract 1 from Li[ji].count, so
as to reduce the overestimation error incurred due to colli-
sion in counter-pair sharing. After obtaining the d reported
value: R(L1[h1(e)]), R(L1[h2(e)]), ...,R(L1[hd(e)]), we pro-
duce the query output based on the specific sketch under

use. For example, for CM and CU, we simply report the
minimum value of the d reported values.

Example III: As shown in Figure 1 (c), the parameters
of pure counter and hybrid counters are same as those of
Example I. As shown in the figure, the value of L1[j], the
three parts of L2[j′] and of L3[j′′] and L4[j′′′] are 15, <
1, 3, 1 >,< 0, 2, 1 >,< 0, 0, 0 >. The process of getting
R(L1[j]) is shown as follows.

1) L1[j] is 15;
2) L2[j′].lf lag is on and L2[j′].count is 3;
3) L3[j′′].rflag is on and L3[j′′].count is 2;
4) L4[j′′′].lf lag is off and the recursive operation ends;
5) The reported value is 15+(3−1)∗24+(2−0)∗26 = 175.

3.2 Technique II: Word Acceleration
Word Constraint Technique: In the word constraint
technique, we make two minor modifications: 1) we set the
counter size δ to 4 bits; 2) we confine the d mapped coun-
ters at layer L1 to a single machine word. In this way, the
average number of memory accesses per insertion or query
is significantly reduced. Let the size of a machine word be
W bits. Each machine word is comprised of W/4 counters.
Because there are w1 counters at layer L1, that translates
to 4w1/W machine words. Layer L1 is associated with d+1
hash functions hi(.) (1 6 i 6 d + 1). The first hash func-
tion is used to associate each item with a specific word Ω,
and the remaining d hash functions are used to identify d
mapped counters in the word Ω. Our word constraint tech-
nique is based on the following facts: 1) In our framework,
each counter is small (e.g., 4 bits), while a machine word is
usually 64 bits wide on many of today’s CPUs. 2) The size
of a machine word can be much larger on GPU platforms.
For example, one memory access can read up to 1024 bits
in some commodity GPUs [33].

Therefore, one machine word on CPU or GPU can typ-
ically contain a reasonably large number of small counters
used in our framework. Note that the actual operations of
insertion, deletion and query stay the same under the word
constraint.

Obviously, after using the word constraint technique, the
average numbers of memory accesses per insertion, deletion
or query are reduced to around 1/d, as all the d mapped
counters can be read/written within one memory access.
Next, we derive an upper-bound of the average number of
memory accesses for each insertion as follows. When in-
serting an item, suppose Pr(layer L1 overflows) < ρ and
Pr(layer Li+1 overflows | layer Li overflows) < σ (< 1)
(1 6 i < λ). The average number of memory accesses rep-
resented by t is determined by the following formula.

t < 1 +

∞∑
k=0

ρσk = 1 +
ρ

1− σ (1)

In our experiments of IP traces, ρ is approximate to 0.05
and σ is approximate to 0.25. Therefore, the average num-
ber of memory accesses for each insertion t is less than
1 + 0.05/(1 − 0.25) ≈ 1.07, which is consistent with our
experimental results shown in Figure 19. Note that one
can simply improve the accuracy by confining the d mapped
counters into two or more separated machine words.

On top of the Pyramid sketch with only counter-pair shar-
ing, adding the technique of word constraint helps reduce
memory accesses per insertion or query, but incurs severe

e
𝐿"

𝐿#

𝐿$

e
𝐿"

𝐿#

𝐿$
Word sharing

A machine word

Figure 2: Example of word sharing technique.

accuracy loss in the meantime. The main reason for accu-
racy loss is that after implementing the carryin operation,
the probability of collision among counters in the same ma-
chine word increases sharply at higher layers. More specifi-
cally, given an item e, its d counters at layer L1 are mapped
to one machine word, while the parent counters of these d
counters are mapped to half of a word at layer L2. The an-
cestor counters are mapped to even small ranges in a word
at higher layers, resulting in more collisions. To address this
issue, we propose a new technique as follows.

Word Sharing Technique: The methodology of this
technique is managing to make the parent counters and an-
cestor counters of the d mapped counters always fall in a
constant range (i.e., a machine word) instead of smaller and
smaller ranges, so as to reduce collisions. Specifically, our
word sharing technique works as follows: 1) Similar to the
definition of parent counter, left child counter, right child
counter, we have left child word, right child word, and
parent word, where the left child word and the right child
word are adjacent at layer Li, sharing the same parent word
at the next layer Li+1. 2) The ith counter in the left child
word and the ith counter in the right child word share the
ith counter in the parent word. In this way, the collisions
in counter-pair sharing are alleviated, and the accuracy is
significantly improved.

Example IV: In Figure 2, we set λ = 3, d = 2, and
w1 = 16. Each machine word consists of 4 counters. With-
out the word sharing technique, the d mapped counters at
layer L1 belong to a machine word, their parent counters be-
long to half of a machine word at layer L2, and their layer-3
ancestors belong to a quarter word, which is one counter in
this example. In contrast, with the word sharing technique,
the parent/ancestor counters of the d mapped counters al-
ways fall in a single machine word at each layer.

One Hashing Technique: More hash computations re-
sult in slower speeds for update and query. Ideally, only one
hash computation is performed for each insertion, deletion
or query. Towards this goal, we propose to use one hashing

technique. The idea is to split the value that a hash function
produces into several segments, and each segment is used to
locate a word or a counter, so as to reduce the hash compu-
tation. A hash function usually produces a value of 32 or 64
bits. Given a hash function with 32-bit output, we may use
the first 16 bits to locate a word in a Pyramid sketch. Sup-
pose a word is 64 bits long. Locating one of the 16 counters
in a word requires 4 hash bits. In total, we need 16 hash
bits to locate 4 counters in this word. In this way, we can
use only one hash computation to handle a Pyramid sketch
which originally requires 4 hash computations with at most
216 words at the layer L1. Similarly, we can use a hash
functions with 64-bit output to support a Pyramid sketch
(d = 4) with at most 248 words, i.e., 2048 TB memory at
the layer L1, which should be large enough for all practical
cases.

3.3 Further Optimization Method
Ostrich Policy: For sketches which need to know the
reported values of the d mapped counters during each in-
sertion (such as the CU sketch), multiple layers need to be
accessed. To reduce the number of layer accesses, we pro-
pose a novel strategy, namely Ostrich policy. The key
idea of Ostrich policy is ignoring the second and higher
layers when getting the reported values of the d mapped
counters. Here we take the CU sketch as an example. When
inserting an item e, suppose the counter(s) with the small-
est value among the d mapped counters is L1[j], we just
increment the counter L1[j] by 1. Note that the reported
value of L1[j] is not always the smallest among that of the
d mapped counters. If there are multiple smallest ones, we
perform the increment operation on all of them. Through
the Ostrich policy, the insertion speed of our framework will
be significantly improved.

One may argue that Ostrich policy could degrade the ac-
curacy a lot. Actually, our experimental results show that
Ostrich policy does help in improving the accuracy. Let us
take the CU sketch as an example to explain this counter-
intuitive phenomena. The CU sketch always increments
the smallest counter(s) by 1 for each insertion. However,
in many cases, the smallest counter(s) are already larger
than their real frequency. In such cases, incrementing the
smallest counter(s) is not the best strategy, while a new
strategy of incrementing the smallest counter(s) with high

probability often contributes to better accuracy. Ostrich
policy is one efficient implementation of this new strategy.

3.4 Advantages over Prior Art
Compared to existing sketches, our Pyramid framework

has the following advantages: 1) It is much more mem-
ory efficient because any an incoming item with different
frequency are dynamically assigned appropriate number of
bits. In other words, when using the same memory size,
our framework can achieve a much higher accuracy. 2) It
is much faster in terms of update and query speed, because
it can read or write d mapped counters in one memory ac-
cess, and only one hash computation is needed. 3) What is
more, it also addresses another shortcoming of all existing
sketches – word alignment. For example, given a multiset
with a maximum frequency of 1000, the counter size in ex-
isting sketches should be 10 bits. As a result, some counters
will traverse two bytes or two words, which will make the
read or write operations of counters inefficient. In contrast,
in our Pyramid framework, the word alignment can be per-
fectly achieved by setting the counter size δ to 4 bits.

4. MATHEMATICAL ANALYSES
In this section, we derive the correct rate and error

bound when applying Pyramid framework to the CM sketch.
We call the CM sketch after using this framework the
PCM sketch. Similarly, we have PCU, PC, PA.

4.1 Proof of No Under-estimation Error
In this subsection, we prove that PCM sketch has no under-

estimation error. Under-estimation error means that the
querying value is smaller than the real frequency. According
to the implementation of Pyramid sketch framework, there
will always be a layer where the overflow will not occur in
practice. Through following steps, we will prove that if no

overflow occurs at layer Ln (1 6 n 6 λ), the PCM sketch has
no under-estimation error.

Step 1: Suppose n = 1. According to the implementation
of our framework, layer L1 performs exactly the same as the
CM sketch if no overflow occurs at Layer L1. Since the CM
sketch has no under-estimation error [8], the PCM sketch
also has no under-estimation in this case.

Step 2: Suppose n = k − 1 (k > 2). The PCM sketch has
no under-estimation error.

Step 3: Suppose n = k. For one certain counter Lk−1[j] at
layer Lk−1, its actual value is determined by Lk−1[j].count,
and the number of overflows which is recorded in the count-
ing part of its parent counter Lk[j′]. However, the sib-
ling counter of Lk−1[j] may also contribute to Lk[j′].count.
Thus, the actual number of overflows of Lk−1[j] is no larger
than Lk[j′].count. In this way, if we recover the value of
Lk−1[j] according to the Lk[j′].count, the value we get will
be no less than the actual value of Lk−1[j] before the over-
flow. Assuming the counting part of counters at layer Lk−1

to be large enough, the PCM sketch will not overflow at layer
Lk−1, with the counting part of Lk−1[j] no less than the ac-
tual value. Therefore, in this case, the PCM sketch has no
under-estimation error.

According to the above three steps, it can be concluded
that the PCM sketch has no under-estimation error.

4.2 Correct Rate of the PCM sketch
Given a multiset with N distinct items, we build a

PCM sketch. Let Ni
3 (1 6 i 6 λ) denote the number of

distinct items whose corresponding mapped d counters’ car-
ryin operations stop exactly at layer Li. Without loss of
generality, we simply assume that the d mapped counters’
carryin operations all stop at the same layer.

Let P acci denote the probability that one arbitrary counter
corresponding with one arbitrary item stores the accurate
value at layer Li. P acci equals to the probability that no
collision happens in one certain counter at layer Li:

P acci =

(
wi − 1

wi

)(Φi×N−1)×d

×
(
W/δ − 1

W/δ

)d−1

=

(
1− 2i−1

w1

)(Φi×N−1)×d

×
(

1− δ

W

)d−1

(1 6 i 6 λ)

(2)where

Φi =


∑λ
k=iNk

N
(1 6 i 6 λ)

0 (i = λ+ 1)

(3)

and Φi − Φi+1 = Ni/N (1 6 i 6 λ).
Let P denote the expectation of the probability that one

arbitrary counter at layer L1 reports the accurate result. We
calculate every portions of this probability layer by layer and
report the average value using the weight of Ni:

P =

∑λ
k=1

[
Nk ×

∏k
l=1 P

acc
l

]
N

=

λ∑
k=1

[
(Φk − Φk+1)×

k∏
l=1

P accl

]
(4)

Let Cr denote the correct rate of the estimation for one
arbitrary item. This item suffers from an over-estimation

3Ni can be derived through the dataset’s specific distribu-
tion or obtained by experiments.

error only in the condition that there are collisions in all the
d mapped counters, thus we get:

Cr = 1− (1− P)d (5)

For the same multiset, we build a CM sketch comprised
of d arrays: A1...Ad, each of which consists of w counters.

Let P
′

denote the expectation of the probability that one
arbitrary counter at one arbitrary array Ai (1 6 i 6 d)
reports the accurate result. We have:

P
′

=

(
1− 1

w

)N−1

(6)

Let C
′
r denote the correct rate of the estimation for one ar-

bitrary item in this CM sketch. Analogous to the derivation
of the PCM sketch, we get:

C
′
r = 1−

(
1− P

′)d
(7)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Memory size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
or

re
ct

ra
te

Empirical PCM

Theoretical PCM

Empirical CM
Theoretical CM

Figure 3: Comparison of empirical and theoretical
correct rate with different memory sizes on one real
IP trace.

Figure 3 plots the empirical and theoretical correct rates
of the CM and PCM sketch, on one real IP trace which will be
mentioned in the Section 5.1. It shows that the theoretical
results are consistent with the empirical results for both the
CM and PCM sketch. As the memory size becomes larger,
the theoretical correct rates of the PCM sketch get closer
to the empirical result. This is because the randomicity of
hash values can be guaranteed with large enough mapping
space. Besides, we observe that the PCM sketch always sig-
nificantly outperforms the CM sketch in terms of the correct
rate empirically and theoretically.

4.3 Error Bound of the PCM sketch
Theorem 1. For an arbitrary item ei, let f̂i denote its

estimated frequency and fi denote its real frequency. Let N
denote the number of distinct items and V denote the sum
of all items’ real frequency, i.e., V =

∑N
k=1 fi. The Φi is

defined in Formula 3. Give a small variable ε, we have the

following guarantee with probability at least 1−
(
∆
ε

)d
(∆ is

a constant relying on N,Φi, w1, d,W and δ):

f̂i 6 fi + ε× V (8)

Proof. Every layers Li (2 6 i 6 λ) in the PCM sketch
can be considered to correspond with d virtual hash func-
tions hi1(.), hi2(.) . . . hid(.) (1 6 h(.) 6 wi), which are deter-
mined by the initial d hash functions at the first layer L1 and
the carryin operation. Note that in this section, we call the
initial d hash functions h1

1(.), h1
2(.) . . . h1

d(.) (1 6 h(.) 6 w1).

We define an indicator variable Ii,j,k,l, which is 1 if
hlj(ei) = hlj(ek), and 0 otherwise. Due to the independent
hash functions, the expectation of this indicator variable can
be derived as follows:

E (Ii,j,k,l) =
1

wl
× Φl ×N × d− d
Φl ×N × d− 1

+
1

W/δ
× d− 1

Φl ×N × d− 1

(1 6 l 6 λ)

For convenience, let El denote E (Ii,j,k,l), and let βl denote

2δ+(δ−2)×(l−2)). We define the variable Xi,j as follows:

Xi,j =(Φ1 − Φ2)×
N∑
k=1

(fk × Ii,j,k,1) +

λ∑
l=2

[
(Φl − Φl+1)×

N∑
k=1

(
fk
βl
× Ii,j,k,l × βl

)]

=

λ∑
l=1

[
(Φl − Φl+1)×

N∑
k=1

(fk × Ii,j,k,l)

]

Obviously, it can be guaranteed that Xi,j is a non-negative
variable. Xi,j reflects the expectation of the error caused by
the collisions happening at all the layers when querying one
arbitrary counter at layer L1. In other words, we have:

R(L1[h1
j (ei)]) = fi +Xi,j (9)

The expectation of Xi,j is calculated as follows.

E (Xi,j) = E

{
λ∑
l=1

[
(Φl − Φl+1)×

N∑
k=1

(fk × Ii,j,k,l)

]}

=

λ∑
l=1

[
(Φl − Φl+1)×

N∑
k=1

(fk × E(Ii,j,k,l))

]

=

λ∑
l=1

[
(Φl − Φl+1)× El ×

N∑
k=1

fk

]

=

λ∑
l=1

[(Φl − Φl+1)× El × V]

= V ×
λ∑
l=1

[(Φl − Φl+1)× El]

= V ×∆

Where ∆ denotes
∑λ
l=1 [(Φl − Φl+1)× El]). Thus, we get:

V =
E(Xi,j)

∆
(10)

Then, by the Markov inequality, we get:

Pr
[
f̂i > fi + ε× V

]
= Pr

[
∀j . R(L1[h1

j (ei)]) > fi + ε× V
]

= Pr [∀j . fi +Xi,j > fi + ε× V]

= Pr [∀j . Xi,j > ε× V]

= Pr

[
∀j . Xi,j > ε× E(Xi,j)

∆

]
= Pr

[
∀j .

Xi,j
E(Xi,j)

>
ε

∆

]
6

{
E

[
Xi,j

E(Xi,j)

]
/
ε

∆

}d
=

(
∆

ε

)d

(11)

Using the same notations employed in the Theorem 1, we
transform the error bound of the CM sketch given by the
literature [8] into the following form:

Theorem 2. Give a small variable ε, we have the follow-

ing guarantee with probability at least 1−
(

1/w
ε

)d
(w is the

number of counters of each array in the CM sketch):

f̂i 6 fi + ε× V (12)

Figure 4 plots the empirical and theoretical guaranteed
probabilities of the CM and PCM sketch, on the synthetic
dataset with skewness of 0.0 which will be mentioned in
the Section 5.1. It shows the error bound of PCM sketch
is much better than that of the CM sketch. We use the
synthetic dataset with skewness of 0.0 to evaluate the worst
case performance (see Figure 9 and 10) of sketches, verifying
the bounds of CM and PCM. Note that in Figure 9 and 10,
the AAE equals to the average f̂i − fi of all distinct items.

0 5 10 15 20 25 30 35 40
ε×V

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
ua

ra
nt

ee
d

pr
ob

ab
ili

ty

Empirical PCM

Theoretical PCM

Empirical CM
Theoretical CM

Figure 4: Comparison of empirical and theoretical
error bound on one synthetic dataset with skewness
0.0.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
Datasets: We use three kinds of datasets as follows.

1) Real IP-Trace Streams: We obtain the real IP

traces from the main gateway at our campus. The IP traces
consist of flows, and each flow is identified by its five-tuple:
source IP address, destination IP address, source port, des-
tination port, and protocol type. The estimation of item

frequency corresponds to the estimation of number of pack-
ets in a flow. We divide 10M*10 packets into 10 datasets,
and build a sketch with 1MB memory for each dataset. Each
dataset includes around 1M flows. The flow characteristics
in these datasets are similar. Take the first dataset as an
example. The flow size ranges from 1 to 25,429 with a mean
of 9.27 and a variance of 11,361. Note that 41.8% flows only
have one packet. The length of items in each experimental
dataset is 22 ∼ 46 bytes.

2) Real-Life Transactional Dataset: We downloaded
this dataset from the website [34]. This dataset is built from
a spidered collection of web html documents. It generates
from each document a distinct transaction containing the set
of all the distinct terms (items) appearing within the docu-
ment itself. Since this raw dataset is very large, we use the
first 16M items and estimate the frequency of each distinct
items. For this transactional dataset with 16M items, it con-
tains 598,688 distinct items. The frequency ranges from 1
to 75,457, with a mean of 29.29 and a variance of 202,826.

3) Synthetic Datasets: We generate 11 stream
datasets following the Zipf [35] distribution with the fixed
total frequency of items (10M) but different skewnesses
(from 0.0 to 1.0 with a step of 0.1) and different numbers of
distinct items. The larger the skewness is, the more skewed
this dataset is. The main part of our generator’s source
codes come from a performance testing tool named Web
Polygraph [36]. The maximum frequency of items in each
dataset is 28 ∼ 21423. The length of items in each dataset
is all 13 bytes.

Implementation: We have implemented the sketches of
CM [8], CU [22], C [23] and A [7] in C++. We apply our
Pyramid framework to these sketches, and the results are
denoted as PCM, PCU, PC, and PA. For PCM, PC and PA, we
apply the proposed techniques of counter-pair sharing and
word acceleration (including word constraint, word sharing,
and one hashing). For the PCU sketch, we additionally apply
the Ostrich policy, which is only suitable for CU. The hash
functions used in the sketches are implemented from the
32-bit or 64-bit Bob Hash (obtained from the open source
website [37]) with different initial seeds. For the sketches
of CM and CU, we set the number of arrays to 4 and use
4 32-bit Bob Hashes. For the C sketch, we set the number
of arrays to 4 and use 8 32-bit Bob Hashes4. For the A
sketch, we set its filter size to 32 items as the original paper
[7] recommends. For the CM sketch contained in the A
sketch, we set the number of arrays to 4 and use 4 32-bit
Bob Hashes. For all the above four sketches, we set the
counter size to 16 bits in the experiments with the IP traces
and synthetic datasets, and to 24 bits in the experiments
with the transactional dataset, so as to accommodate the
maximal frequency of items. For the sketches of PCM, PCU,
PC and PA, we set the number d of mapped counters to 4,
the counter size δ to 4 bits, and the machine word sizeW to
64 bits. For each of these Pyramid sketches, we use 1 64-bit
Bob hashes. In all our experiments with different sketches,
we allocate the same amount of memory, 1 MB, by default
unless specified otherwise. We allow the A sketch to use
a small amount of additional memory for its filter, which
is ≈ 0.4KB and negligible when comparing with the total
memory. Hence, the real memory allocation for A is 1MB +

4As mentioned before, in C, each array is associated with 2
hash functions.

0.4KB. The number of counters in each experiment can be
easily calculated through the allocated memory size and the
counter size in the sketch under use. All the implementation
source code is made available at Github [1].

Computation Platform: We performed all the experi-
ments on a machine with 12-core CPUs (24 threads, Intel
Xeon CPU E5-2620 @2 GHz) and 62 GB total DRAM mem-
ory. CPU has three levels of cache memory: two 32KB L1
caches (one is a data cache and the other is an instruction
cache) for each core, one 256KB L2 cache for each core, and
one 15MB L3 cache shared by all cores.

5.2 Metrics
Average Absolute Error (AAE): AAE is defined as
1
|Ψ |
∑
ei∈Ψ |fi − f̂i|, where fi is the real frequency of item

ei, f̂i is the estimated frequency, and the Ψ is the query set.
For the query set, the authors of the A sketch [7] use a sam-
pled set of the whole multiset, mainly focusing on querying
the hot items. Without knowing the details of the sampling
method used by the A sketch paper [7], we focus on the whole
dataset by querying each distinct item only once. That is the
reason why the A sketch is only a little better than the CM
sketch in terms of accuracy in the following experiments.
To guarantee that our experiments are conducted head-to-
head, we have released the related source codes and datasets
at Github [1].

Average Relative Error (ARE): ARE is defined as
1
|Ψ |
∑
ei∈Ψ |fi − f̂i|/fi, where the meaning of each notation

is the same as that in AAE. We explain the reason why
AAE and ARE are sometimes larger than anticipated in the
experiments. When a sketch uses compact memory (e.g.,
1 MB) to process massive data streams (e.g., 10M items),
significant over-estimations of cold items will become com-
mon [38]. Take the real IP traces for example. About 41.8%
flows in these data streams only have one packet, while large
flows have more than 10,000 packets. When a flow with one
packet is estimated as 101, the absolute and relative errors
will be both 100. This will make AAE and ARE much larger
than anticipated.

The Average Number of Memory Accesses: The num-
ber of memory access is critical when implementing sketches
on hardware, such as FPGA and ASIC. Therefore, we mea-
sure the average number of memory access of insertion, dele-
tion and query for all sketches.

Throughput: We perform the insertion and query opera-
tions on CPU platform and calculate the throughput using
mega-instructions per second (Mips). All the experiments
are repeated 100 times to minimize accidental deviations.

5.3 Effects of Different Techniques
We have proposed five techniques: counter-pair sharing

(T1), word constraint (T2), word sharing (T3), one hashing
(T4), and Ostrich policy (T5). We use P1∼i

CU (1 6 i 6 5) to
denote the PCU sketch with the first i techniques: T1,T2, ...,
Ti. Similar notations are introduced for other sketches as
P1∼i

CM , P1∼i
C , and P1∼i

A (1 6 i 6 4); note that Ostrich policy
does not apply to these sketches. In later subsections, we
will abbreviate P1∼4

CM to PCM, P1∼5
CU to PCU, P1∼4

C to PC, and
P1∼4

A to PA.
The experimental performance of the CU sketch in terms

of accuracy and speed under the five techniques are shown in
Figure 5, 6 and 7. We have the following five observations:

1) The counter-pair sharing technique (T1) significantly re-
duces AAE and ARE, and slightly degrades the speeds of
both insertion and query. 2) The word constraint technique
(T2) significantly reduces memory accesses per insertion or
query, slightly lowers the throughput of both insertion and
query, and incurs severe accuracy loss. Lower throughput
is caused by extra hash computation for locating a machine
word. 3) The word sharing technique (T3) overcomes the
main shortcoming of the word constraint, improving the ac-
curacy without impact on the insertion and query speeds.
4) The one hashing technique (T4) improves the speeds of
insertion and query, while not affecting the accuracy. 5) The
Ostrich policy technique (T5) significantly improves the in-
sertion speed, slightly improve the accuracy, and does not
affect the query speed. Note that without using Ostrich pol-
icy, P1∼i

CU (1 6 i 6 4) always have to access multiple layers
to know the reported values of the d mapped counters dur-
ing each insertion. Therefore, P1∼i

CU (1 6 i 6 4) need more
memory accesses per query than the final version P1∼5

CU .

5.4 Accuracy
We apply the Pyramid framework to four typical sketches:

the CM, CU, C, and A sketch, and find that PCU achieves
the highest accuracy. Therefore, we recommend using the
PCU sketch in the application of data streams, and in most
experiments, we compare the PCU sketch with the above
typical sketches. Note that in each of the parameter set-
tings, the proposed Pyramid framework always improves the
accuracies of CM, CU, C, and A. The positive impact of us-
ing Pyramid is demonstrated in Figure 8 and 12. In this
section, we mainly use the PCU sketch as an example to
show the benefits of our Pyramid framework under varied
parameter settings.

5.4.1 AAE (Average Absolute Error)
Our experimental results show that the AAEs of the CM,

CU, C, and A sketch are 3.01, 2.02, 1.26 and 3.14 times
higher than the AAEs of these sketches using our frame-
work. Figure 8 plots the AAEs of different sketches on the
transactional dataset. Since the C sketch needs to record the
negative numbers during updates, we use one fifth of total
memory to serve as the positive or negative markers. Those
markers are accessed only when overflows happen during up-
dates. For the C sketch, when we still confine the d mapped
counters within only one machine word, the PC sketch im-
proves the accuracy only a little because of word constraint.
To make a better trade-off, we confine the d mapped coun-
ters within two separated machine words, compensating for
the accuracy loss caused by word acceleration. Note that
for the PCM, PCU, and PA sketch, we still use one word
constraint.

Our experimental results show that on different IP traces,
the AAEs of the CM, CU, C, and A sketch are 4.74, 2.50,
2.89 and 4.73 times higher than the AAE of the PCU sketch.
Figure 9 plots the AAEs of different sketches on different
IP traces. The reason why the A sketch has the similar
accuracy to the CM sketch is explained in Section 5.2.

Our experimental results show that on skewed datasets,
the AAEs of the CM, CU, C, and A sketch are 4.75, 2.31,
3.67 and 4.75 times higher than the AAE of the PCU sketch.
Figure 10 plots the AAEs of different sketches on different
datasets with the skewness increasing from 0.0 to 1.0 with
a step of 0.1.

CU P1∼1
CU P1∼2

CU P1∼3
CU P1∼4

CU P1∼5
CU

Different Optimization Methods

0

2

4

6

8

10

A
A

E
&

A
R

E
AAE
ARE

Figure 5: Comparison of AAE &
ARE with different optimization
methods on one real IP trace.

CU P1∼1
CU P1∼2

CU P1∼3
CU P1∼4

CU P1∼5
CU

Different Optimization Methods

0

3

6

9

12

15

A
ve

ra
ge

#
of

m
em

or
y

ac
ce

ss

Ins.
Que.

Figure 6: Comparison of average
memory accesses with different
optimization methods on one real
IP trace.

CU P1∼1
CU P1∼2

CU P1∼3
CU P1∼4

CU P1∼5
CU

Different Optimization Methods

0

2

4

6

8

Th
ro

ug
hp

ut
(M

ip
s) Ins.

Que.

Figure 7: Comparison of through-
put with different optimization
methods on one real IP trace.

CM CU C A
Different sketches

0

4

8

12

16

A
A

E

Original version
Pyramid version

Figure 8: AAE comparison on the
transactional dataset.

1 2 3 4 5 6 7 8 9 10
Dataset ID

0

5

10

15

20

25

A
A

E

CM CU C A PCU

Figure 9: AAE comparison on dif-
ferent real IP traces.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skewness

0

10

20

30

40

50

A
A

E

CM
CU
C
A
PCU

Figure 10: AAE comparison on
synthetic datasets with different
skewnesses.

0 2 4 6 8 10 12 14 16 18 20
Deletion percentage (%)

0

3

6

9

12

15

18

A
A

E

CM
PCM

Figure 11: AAE comparison dur-
ing deletions on one real IP trace.

CM CU C A
Different sketches

0

3

6

9

12

A
R

E

Original version
Pyramid version

Figure 12: ARE comparison on the
transactional dataset.

1 2 3 4 5 6 7 8 9 10
Dataset ID

0

3

6

9

12

15

A
R

E

CM CU C A PCU

Figure 13: ARE comparison on dif-
ferent real IP traces.

Our experimental results show that during the process we
delete items up to 20%, the AAE of the CM sketch is 2.39
times higher than the AAE of the PCM sketch. Figure 11
plots the AAEs of the CM and PCM sketch at a deletion
percentage increasing from 0 to 20 by 2. We first insert 10
MB items into each sketch, then delete a specific percentage
of items and calculate the AAEs of those distinct items with
nonzero real frequency after each deletion.

5.4.2 ARE (Average Relative Error)
Our experimental results show that the AREs of the CM,

CU, C, and A sketch are 3.31, 2.78, 1.79 and 3.50 times
higher than the AREs of these sketches using our frame-
work. Figure 12 plots the AREs of different sketches on the
transactional dataset.

Our experimental results show that on different IP traces,
the AREs of the CM, CU, C, and A are 4.24, 2.50, 2.42 and
4.24 times higher than the ARE of the PCU sketch. Figure
13 plots the AREs of different sketches on different IP traces.

Our experimental results show that on skewed datasets,
the AREs of the CM, CU, C, and A sketch are 5.02, 2.83,
3.26 and 5.02 times higher than the ARE of the PCU sketch.
Figure 14 plots the AREs of different sketches on different
datasets with the skewness increasing from 0.0 to 1.0 by a
step of 0.1.

Our experimental results show that during the process we
delete items up to 20%, the ARE of the CM sketch is 2.48
times higher than the ARE of the PCM sketch. Figure 15
plots the AREs of the CM and PCM sketch at a deletion
percentage increasing from 0 to 20 by 2.

5.4.3 Experiments on Memory Size and Word Size
As mentioned above, PCU achieves the best accuracy,

therefore, we mainly compare PCU with the four typical
sketches by varying the memory size or word size.

Our experimental results show that on different mem-
ory sizes, the AAEs of the CM, CU, C, and A sketch are
4.52, 2.43, 2.31 and 4.52 times higher than the AAE of
the PCU sketch. Figure 16 plots the AAEs of different
sketches on different memory sizes increasing from 0.50MB
to 2.00MB with a step of 0.25MB.

Our experimental results show that on different mem-
ory sizes, the AREs of the CM, CU, C, and A sketch are
4.28, 2.48, 2.19 and 4.28 times higher than the ARE of
the PCU sketch. Figure 17 plots the AREs of different
sketches on different memory sizes increasing from 0.50MB
to 2.00MB with a step of 0.25MB.

Our experimental results show that as the word size in-
creases from 64 bits to 1024 bits, the AAE of the PCU sketch
decreases from 3.72 to 2.60 and the ARE of the PCU sketch

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skewness

0

2

4

6

8

10

A
R

E
CM CU C A PCU

Figure 14: ARE comparison on
synthetic datasets with different
skewnesses.

0 2 4 6 8 10 12 14 16 18 20
Deletion percentage (%)

0

2

4

6

8

10

A
R

E

CM
PCM

Figure 15: ARE comparison during
deletions on one real IP trace.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Size (MB)

0

9

18

27

36

45

A
A

E

CM
CU
C
A
PCU

Figure 16: AAE comparison with
different memory sizes on one real
IP trace.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Size (MB)

0

6

12

18

24

30

A
R

E

CM
CU
C
A
PCU

Figure 17: ARE comparison with
different memory sizes on one real
IP trace.

64 128 256 512 1024
Word Size (bits)

0

1

2

3

4

A
R

E
&

A
A

E

AAE
ARE

Figure 18: AAE & ARE of
PCU with different word sizes on
one real IP trace.

1 2 3 4 5 6 7 8 9 10
Dataset ID

0

1

2

3

4

5

6

Av
er

ag
e

#
m

em
or

y
ac

ce
ss

(in
s.)

CM CU C A PCU

Figure 19: Comparison of average
memory accesses for each inser-
tion on different real IP traces.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skewness

0

1

2

3

4

5

6

Av
er

ag
e

#
m

em
or

y
ac

ce
ss

(in
s.)

CM CU C A PCU

Figure 20: Comparison of average
memory accesses for each inser-
tion on synthetic datasets with dif-
ferent skewnesses.

1 2 3 4 5 6 7 8 9 10
Dataset ID

0

1

2

3

4

5

6

Av
er

ag
e

#
m

em
or

y
ac

ce
ss

(q
ue

.)

CM CU C A PCU

Figure 21: Comparison of average
memory accesses for each query
on different real IP traces.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skewness

0

1

2

3

4

5

6

Av
er

ag
e

#
m

em
or

y
ac

ce
ss

(q
ue

.)

CM CU C A PCU

Figure 22: Comparison of average
memory accesses for each query
on synthetic datasets with different
skewnesses.

decreases from 2.37 to 1.73. Figure 18 plots the AREs and
AAEs of the PCU sketch on different word sizes multiplying
from 64 bits to 1024 bits by 2.

5.5 Speed
We have conducted extensive experiments on speed of the

CM, CU, C, and A sketch, and results show that after using
the Pyramid framework, the update and query speed of all
the sketches are significantly improved. Note that in each
of the parameter settings, the Pyramid framework always
improves the speeds of CM, CU, C, and A. In this section,
we only present the results of PCU.

5.5.1 The Average Number of Memory Access
In this section, when conducting the statistics for the A

sketch, we do not include its number of memory access
caused by searching in its filter, while searching the filter
probably takes more time than querying the sketch part.

Insertion: Our experimental results show that the CM, CU,
C, A and PCU sketch need about 4, 4, 4, 3.80 and 1.05
average memory accesses for insertion, respectively. Fig-
ure 19 plots average numbers of memory access of different
sketches on different real IP traces during insertions. For

the PCU sketch, the average number is quartered from that
of the other sketches by the word constraint method.

Our experimental results show that average numbers of
memory access of the CM, CU, C sketch for each insertion
keep unchanged (equal to 4), while that of the A sketch is
4.00 ∼ 3.79 (with a mean of 3.90) and that of the PCU sketch
is 1.01 ∼ 1.06 (with a mean of 1.04). Figure 20 plots aver-
age numbers of memory access of different sketches for each
insertion on the synthetic datasets with different skewnesses.

Query: Our experimental results show that the CM, CU, C,
A and PCU sketch need about in average 4, 4, 4, 4.00 and
2.85 memory accesses for each query, respectively. Figure 21
plots average numbers of memory access of different sketches
for each query on different real IP traces. We observe that
the average number of memory access of the PCU sketch for
each query exceeds 2, owing to the corresponding flags check
at the second layer L2 for each query.

Our experimental results show that the average numbers of
memory access of the CM, CU, C sketch for each query keep
unchanged (equal to 4), while that of the A sketch is about
4.00 and that of the PCU sketch is 2.89 ∼ 2.79 (with a mean
of 2.84). Figure 22 plots average numbers of memory access
of different sketches for each query on the synthetic datasets

1 2 3 4 5 6 7 8 9 10
Dataset ID

0

1

2

3

4

5

6
Av

er
ag

e
#

m
em

or
y

ac
ce

ss
(d

el
.)

CM PCM

Figure 23: Comparison of average
memory accesses for each dele-
tion on different real IP traces.

1 2 3 4 5 6 7 8 9 10
Dataset ID

0

2

4

6

8

10

In
se

rt
io

n
th

ro
ug

hp
ut

(M
ip

s)

CM CU C A PCU

Figure 24: Comparison of inser-
tion throughput on different real
IP traces.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skewness

0

2

4

6

8

10

In
se

rt
io

n
th

ro
ug

hp
ut

(M
ip

s)

CM CU C A PCU

Figure 25: Comparison of insertion
throughput on synthetic datasets
with different skewnesses.

1 2 3 4 5 6 7 8 9 10
Dataset ID

0
1
2
3
4
5
6
7
8

Q
ue

ry
th

ro
ug

hp
ut

(M
ip

s)

CM CU C A PCU

Figure 26: Comparison of query
throughput on different real IP
traces.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skewness

0
1
2
3
4
5
6
7
8

Q
ue

ry
th

ro
ug

hp
ut

(M
ip

s)

CM CU C A PCU

Figure 27: Comparison of query
throughput on synthetic datasets
with different skewnesses.

1 2 3 4 5 6 7 8 9 10
Dataset ID

0

2

4

6

8

10

12

D
el

et
io

n
th

ro
ug

hp
ut

(M
ip

s)

CM PCM

Figure 28: Comparison of dele-
tion throughput on different real
IP traces.

with different skewnesses. We observe that the PCU sketch
performs better on more skewed datasets for query.

Deletion: Our experimental results show that the CM and
PCM sketch need about in average 4 and 1.26 memory ac-
cesses for each deletion, respectively. Figure 23 plots aver-
age numbers of memory access of different sketches for each
deletion on different IP traces. For the CU sketch, it does
not support deletion. For the C and A sketch, their average
numbers of memory access for each deletion are similar to
that of the CM sketch because they have almost the same
structure. We observe that the PCM sketch considerably
outperforms the CM sketch for deletion.

5.5.2 Throughput
Insertion: Our experimental results show that the insertion
throughput of the PCU sketch is about 1.97, 2.10, 3.32 and
3.82 times higher than those of the CM, CU, C and A sketch.
Figure 24 plots the insertion throughput of different sketches
on different real IP traces. We observe that the PCU sketch
always outperforms the other sketches, and at least twice
insertion speed.

Our experimental results show that the insertion through-
put of the PCU sketch is about 1.83, 198, 2.61 and 3.85 times
higher than those of the CM, CU, C and A sketch on the
datasets with different skewnesses during insertions. Figure
25 plots the insertion throughput of different sketches on
synthetic datasets with different skewnesses.

Query: Our experimental results show that the query
throughput of the PCU sketch is about 1.50, 1.50, 2.82 and
2.51 times higher than those of the CM, CU, C and A sketch.
Figure 26 plots the query throughput of different sketches
on different real IP traces.

Our experimental results show that the query throughput
of the PCU sketch is about 1,33, 1.33, 2.24 and 2.25 times
higher than those of the CM, CU, C and A sketch on the
datasets with different skewnesses. Figure 27 plots the query

throughput of different sketches on synthetic datasets with
different skewnesses.

Deletion: Our experimental results show that the deletion
throughput of the PCM sketch is about 2.73 times higher than
that of the CM sketch. Figure 28 plots the deletion through-
put of different sketches on different real IP traces. We
observe that the PCM sketch considerably outperforms the
CM sketch for deletion.

6. CONCLUSION
Sketches have been applied to various fields. In this pa-

per, we propose a sketch framework - the Pyramid sketch,
to significantly improve the update speed and accuracy. We
applied our framework to four typical sketches: the CM,
CU, Count, and Augmented sketch. Experimental results
show that our framework significantly improves both accu-
racy and speed. We believe our framework can be applied to
many more sketches. All related source codes are released
at Github [1].

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers
for their thoughtful suggestions. This work is par-
tially supported by Primary Research & Development
Plan of China (2016YFB1000304), NSFC (61472009,
61672061), NSF (STC-1562485), SHENZHEN Research
Project JCYJ20160330095313861, the Open Project Fund-
ing of CAS Key Lab of Network Data Science and Technol-
ogy, Institute of Computing Technology, Chinese Academy
of Sciences, and Special Fund for strategic pilot technology
Chinese Academy of Sciences (XDA06010302).

7. REFERENCES
[1] Source codes of Pyramid sketch and related sketches.

https://github.com/zhouyangpkuer/Pyramid_

Sketch_Framework.

[2] Tao Li, Shigang Chen, and Yibei Ling. Per-flow traffic
measurement through randomized counter sharing.
IEEE/ACM Transactions on Networking,
20(5):1622–1634, 2012.

[3] George Kollios, John W Byers, and et al. Robust
aggregation in sensor networks. IEEE Data Eng.
Bull., 28(1):26–32, 2005.

[4] Peixiang Zhao, Charu C Aggarwal, and Min Wang.
gsketch: on query estimation in graph streams. Proc.
VLDB, 2011.

[5] Amit Goyal, Daume, Hal Iii, and Graham Cormode.
Sketch algorithms for estimating point queries in nlp.
In Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, 2012.

[6] Graham Cormode, Theodore Johnson, Flip Korn,
S Muthukrishnan, Oliver Spatscheck, and Divesh
Srivastava. Holistic udafs at streaming speeds. In
Proc. ACM SIGMOD, pages 35–46. ACM, 2004.

[7] Pratanu Roy, Arijit Khan, and Gustavo Alonso.
Augmented sketch: Faster and more accurate stream
processing.

[8] Graham Cormode and S Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[9] Graham Cormode. Sketch techniques for approximate
query processing. Foundations and Trends in
Databases. NOW publishers, 2011.

[10] Charu C Aggarwal and S Yu Philip. On classification
of high-cardinality data streams. In SDM, volume 10,
pages 802–813. SIAM, 2010.

[11] Aiyou Chen, Yu Jin, Jin Cao, and Li Erran Li.
Tracking long duration flows in network traffic. In
Proc. IEEE INFOCOM, 2010.

[12] Graham Cormode and Minos Garofalakis. Sketching
streams through the net: Distributed approximate
query tracking. In Proc. VLDB, 2005.

[13] Graham Cormode and Marios Hadjieleftheriou.
Finding frequent items in data streams. Proceedings of
the VLDB Endowment, 1(2):1530–1541, 2008.

[14] Zaoxing Liu, Antonis Manousis, and et al. One sketch
to rule them all: Rethinking network flow monitoring
with univmon. In Proc. ACM SIGCOMM, 2016.

[15] Dina Thomas, Rajesh Bordawekar, and et al. On
efficient query processing of stream counts on the cell
processor. In Proc. IEEE ICDE, 2009.

[16] Anna C Gilbert, Martin J Strauss, Joel A Tropp, and
Roman Vershynin. One sketch for all: fast algorithms
for compressed sensing. In Proc. ACM STOC, 2007.

[17] David Talbot and Miles Osborne. Smoothed bloom
filter language models: Tera-scale lms on the cheap. In
EMNLP-CoNLL, pages 468–476, 2007.

[18] Benjamin Van Durme and Ashwin Lall. Probabilistic
counting with randomized storage. In IJCAI, pages
1574–1579, 2009.

[19] Neoklis Polyzotis, Minos Garofalakis, and Yannis
Ioannidis. Approximate xml query answers. In Proc.
ACM SIGMOD, 2004.

[20] Joshua Spiegel and Neoklis Polyzotis. Graph-based
synopses for relational selectivity estimation. In Proc.
ACM SIGMOD, 2006.

[21] Andrea Pietracaprina, Matteo Riondato, Eli Upfal,
and Fabio Vandin. Mining top-k frequent itemsets
through progressive sampling. Data Mining and
Knowledge Discovery, 21(2):310–326, 2010.

[22] Cristian Estan and George Varghese. New directions
in traffic measurement and accounting. ACM
SIGMCOMM CCR, 32(4), 2002.

[23] Moses Charikar, Kevin Chen, and Martin
Farach-Colton. Finding frequent items in data
streams. In Automata, Languages and Programming.
Springer, 2002.

[24] Tong Yang, Lingtong Liu, Yibo Yan, Muhammad
Shahzad, Yulong Shen, Xiaoming Li, Bin Cui, and
Gaogang Xie. Sf-sketch: A fast, accurate, and memory
efficient data structure to store frequencies of data
items. In Proc. IEEE ICDE, 2017.

[25] Yang Zhou, Peng Liu, Hao Jin, Tong Yang, and
Xiaoming Li. One memory access sketch: a more
accurate and faster sketch for per-flow measurement.
IEEE Globecom, 2017.

[26] Burton H Bloom. Space/time trade-offs in hash
coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

[27] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z
Broder. Summary cache: a scalable wide-area web
cache sharing protocol. IEEE/ACM ToN, 2000.

[28] Saar Cohen and Yossi Matias. Spectral bloom filters.
In Proc. ACM SIGMOD, pages 241–252, 2003.

[29] Josep Aguilar-Saborit, Pedro Trancoso, Victor
Muntes-Mulero, and Josep-Lluis Larriba-Pey.
Dynamic count filters. ACM SIGMOD Record, 2006.

[30] Tong Yang, Alex X. Liu, Muhammad Shahzad,
Yuankun Zhong, Qiaobin Fu, Zi Li, Gaogang Xie, and
Xiaoming Li. A shifting bloom filter framework for set
queries. Proceedings of the Vldb Endowment,
9(5):408–419, 2016.

[31] Tong Yang, Alex X. Liu, Muhammad Shahzad,
Dongsheng Yang, Yuankun Zhong, Qiaobin Fu, Zi Li,
Gaogang Xie, and Xiaoming Li. A shifting framework
for set queries. IEEE/ACM Transaction on
Networking (ToN), 2017.

[32] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang
Dharmapurikar, and Abdul Kabbani. Counter braids:
a novel counter architecture for per-flow measurement.
In Proc. ACM SIGMETRICS, 2008.

[33] Cuda toolkit documentation. http://docs.nvidia.
com/cuda/cuda-c-best-practices-guide/index.

html#coalesced-access-to-global-memory.

[34] Real-life transactional dataset.
http://fimi.ua.ac.be/data/.

[35] David MW Powers. Applications and explanations of
Zipf’s law. In Proc. EMNLP-CoNLL. Association for
Computational Linguistics, 1998.

[36] Alex Rousskov and Duane Wessels. High-performance
benchmarking with web polygraph. Software: Practice
and Experience, 34(2):187–211, 2004.

[37] Hash website.
http://burtleburtle.net/bob/hash/evahash.html.

https://github.com/zhouyangpkuer/Pyramid_Sketch_Framework
https://github.com/zhouyangpkuer/Pyramid_Sketch_Framework
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
http://fimi.ua.ac.be/data/
http://burtleburtle.net/bob/hash/evahash.html

	Introduction
	Background and Motivation
	The Proposed Solution

	Related Work
	Pyramid Sketch Framework
	Technique I: Counter-pair Sharing
	Technique II: Word Acceleration
	Further Optimization Method
	Advantages over Prior Art

	Mathematical Analyses
	Proof of No Under-estimation Error
	Correct Rate of the PCM sketch
	Error Bound of the PCM sketch

	Performance Evaluation
	Experimental Setup
	Metrics
	Effects of Different Techniques
	Accuracy
	AAE (Average Absolute Error)
	ARE (Average Relative Error)
	Experiments on Memory Size and Word Size

	Speed
	The Average Number of Memory Access
	Throughput

	Conclusion
	References

