SSS: An Accurate and Fast Algorithm for Finding
Top-k£ Hot Items in Data Streams

Junzhi Gong*, Deyu Tian*, Dongsheng Yang*, Tong Yang*', Tuo Dai*, Bin Cui*, Xiaoming Li*
*Department of Computer Science, Peking University, China
fCollaborative Innovation Center of High Performance Computing, NUDT, China

Abstract—Finding top-k hot items in a data stream is a critical
problem in big data management. It can benefit various kinds
of applications, such as data mining, databases, network traffic
measurement, security, efc. However, as the speed of data streams
become increasingly large, it becomes more and more challenging
to design an accurate and fast algorithm for this problem. There
are several existing algorithms, including Space-Saving, Frequent,
Lossy counting, with Space-Saving being the most widely used
among them. Unfortunately, all these existing algorithms cannot
achieve high memory efficiency and high accuracy at the same
time. In this paper, we propose an enhanced algorithm based
on Space-Saving, named Scoreboard Space-Saving (SSS), which
not only achieves much higher accuracy, but also works at fast
and constant speed. The key idea of SSS is to predict whether
each incoming item is a hot item or not by scoring. Experimental
results show that SSS algorithm achieves up to 62.4 times higher
accuracy than Space-Saving. The source code of SSS is available
at GitHub [1].

Index Terms—Data Structures, Finding Top-k Items, Space-
Saving

I. INTRODUCTION
A. Background and Motivation

Finding top-k hot items? is a critical problem in big data
management. It can benefit various kinds of applications,
such as data mining [2]-[4], databases [5], network traffic
measurement [6]-[8], security [9], and more [10]-[15]. For
example, in order to achieve load balance [6] in the datacenter
network, the administrators need to find the largest flows
(elephant flows) in the network traffic. For another example, in
order to find the closest friends in the social network platform
[13], the service providers need to find those people who have
the most interactions with each user.

In many real data streams, the distribution of items’ fre-
quencies is highly skewed [16]-[20]. In other words, most
items have a small frequency, while only a few items have a
large frequency, and we call them cold items and hot items,
respectively.

*Corresponding author: Tong Yang (Email: yang.tong@pku.edu.cn). This
work was done by Junzhi Gong, Yang Zhou, and Dongsheng Yang under the
guidance of their mentor: Tong Yang.

This work is partially supported by Primary Research & Development Plan
of China (2016YFB1000304), National Basic Research Program of China
(2014CB340400), NSFC (61472009, 61672061), the Open Project Funding
of CAS Key Lab of Network Data Science and Technology, Institute of
Computing Technology, Chinese Academy of Sciences.

2 A hot item in a data stream refers to an item with a large frequency, while
the frequency of an item refers to the number of times this item occurs in the
data stream.

Finding top-k hot items is a challenging issue, although
this problem has been studied for years [19]-[25]. Due to the
vast size and high speed of data streams, it is very difficult
to accurately record the information of each item. Therefore,
approximate solutions gain wide acceptance. Sampling is one
of the most widely used solution, but the accuracy is quite low.
To enhance accuracy, the state-of-the-art algorithms process
each item in data streams. Because of the high speed of data
streams, these algorithms should achieve a fast and constant
update speed. Due to the high latency of the slow memory
such as DRAM (Dynamic RAM), the algorithms should not
access the slow memory, but only access the fast memory such
as SRAM (Static RAM) [26] whose size is tight. However,
these algorithms cannot achieve high accuracy when memory
is tight.

B. Limitation of Prior Art

Traditional solutions for finding top-k hot items can be
divided into two categories: sketch-based and counter-based.
1) Sketch-based solutions use sketches® (e.g., the Count-min
sketch [18], or the Count sketch [21]) to record frequencies of
all items, and use a min-heap to report top-k hot items. The
limitation of these algorithms is that they record information
of all cold items. Such information is useless and harmful for
finding top-k items, and requires additional memory usage. 2)
Counter-based solutions include Space-Saving [27], Frequent
[28], [29], Lossy counting [30], etc. The key idea of these
solutions is to treat each incoming item e; as a hot item —
assign e; with a very large frequency, and then insert e; with
its large frequency into the top-k data structure (e.g., Space-
Saving uses the Stream-Summary as the top-k data structure).
As time goes by, it gradually expels cold items out of the top-k
data structure with a certain probability. However, in real data
streams, most items are cold items, and processing so many
cold items not only incurs extra overhead, but also causes
significant inaccuracy for the ranking and frequency estimation
of top-k items. In summary, both types of solutions do not
handle cold items elegantly, and thus they cannot achieve high
accuracy in real data streams. The design goal of this paper
is to separate hot items from cold items in real data streams,
so as to achieve high accuracy in finding top-k items.

3A sketch is a probabilistic data structure to store the frequency of items
in a multiset.

C. Proposed Approach

In this paper, we propose a novel algorithm based on Space-
Saving, named the Scoreboard Space-Saving (SSS), which
achieves higher accuracy than existing algorithms. Besides
using the Stream-Summary, the SSS algorithm adds a tiny
queue and a Scoreboard. The key idea of SSS is inserting
only the hot items into Stream-Summary instead of inserting
all items. Using the queue and the Scoreboard, we can monitor
recent incoming items, and compute each incoming item a
score according to the information in the queue and the
Scoreboard. The score indicates whether an item is a hot item
or not. The queue can be quite short, which usually occupies
less than 10% memory usage of the Stream-Summary. The
Scoreboard can be any kinds of data structures, as long as it
is capable of approximately recording frequencies of items in
a multiset. We recommend using the Counting Bloom filter
(CBF) [31] as the Scoreboard, because it is memory efficient
and supports both insertion and deletion operations. More
details are provided in Section II-A.

We briefly introduce how SSS works as follows. We divide

all items into three types: cold items, potential hot items, and
hot items. We also set two score thresholds (B and &) to
determine which type each item belongs to. For each item, we
first compute its score S from the Scoreboard. If S > £, the
item is a hot item, and we insert it into the Stream-Summary.
If B<S <&, theitem is a potential hot item, and we increase
its score in the Scoreboard. If S < B, then the item is a cold
item, and we not only increase its score in the Scoreboard,
but also insert it into the tiny queue to give it a chance to
accumulate. Once it is expelled from the queue, if its score is
still smaller than /3, then it fails to accumulate, and its recorded
information in the queue and the Scoreboard will be removed.
Otherwise, it becomes a potential hot item, and we keep its
score unchanged. In this way, we keep the Stream-Summary
unaffected by the cold items, and also we do not need much
memory to record the cold items.
Key technique challenge: The key technique challenge of
SSS is how to set appropriate thresholds. With more and
more items arriving, the frequency, rank of top-k hot items
are changing. Therefore, thresholds should be dynamically ad-
justed to achieve accurate classifications. To address this issue,
we assume that the data stream obeys Zipfian distribution [32],
[33], use history data to learn the parameters of the distribution
by a machine learning program, and set thresholds based on
the distribution function.

D. Key Contributions

1) First, we propose an enhanced algorithm based on
Space-Saving, named Scoreboard Space-Saving (SSS),
which achieves higher accuracy compared to the state-
of-the-art and works at fast insertion speed.

2) Second, we make mathematical analysis and conduc-
t a series of experiments. The experimental results
show that SSS outperforms the state-of-the-art algorithm
(Space-Saving).

II. BACKGROUND AND RELATED WORK

A. Counting Bloom Filter

A Counting Bloom filter (CBF) consists of an array B
with w counters, and it is associated with ¢ hash functions
91(.);92(.) ... g:(.). When inserting an item e, it first computes
the ¢ hash functions and maps e to k corresponding counters
Blg1(e)%w], Blga(e)%w] . .. Blg:(e)%w]. Then it increments
these t counters by 1. When querying an item e, it just
reports the minimum value of the ¢ mapped counters. Note
that the CBF does not suffer from under-estimation errors. The
structure of the CBF is shown in Figure 1. The CBF is usually
very memory efficient so that it can record the frequencies for
many items with small memory usage.

+1
i +1

[ofefrfsfofu]u]ofs]ofofz]1]

Fig. 1. The structure of the Counting Bloom filter.

B. Existing algorithms

In this section, we present the details of existing algorithms.
Existing algorithms for finding top-k hot items can be divided
into two categories: sketch-based algorithms and counter-
based algorithms. Sketch-based algorithms use a sketch (such
as the Count sketch [21] or the Count-min sketch [18]) and a
min-heap. Given an incoming item e;, if it has already been
recorded in the min-heap, they increment the corresponding
frequency by 1. If not, e; will be inserted into the sketch, and
at the same time the sketch reports an estimated value §; for
e;. If §; is larger than the frequency of the item at the root
node of the min-heap, they make a swap: expelling the item
at the root node of the min-heap into the sketch, and insert
< e;,8; > into the root node; otherwise, the insertion ends.

Traditional counter-based algorithms include Frequent [28],
[29], Lossy counting [30], Space-Saving [27], etc., with Space-
Saving being the most well-known of them. The key data
structure of Space-Saving is called Stream-Summary, a com-
bined data structure of a hash table and a min-heap. To
improve accuracy, the Stream-Summary structure in Space-
Saving stores m (m >> k) hot items and their frequencies,
and only reports the largest k items. The main benefit of
Stream-Summary is that it can search and update an item
in O(1) time, and can also find the item with the smallest
frequency in Stream-Summary in O(1) time. The specific
implementation of Stream-Summary is an ordered linked list
with m buckets (Due to space limitations, details are omitted).
The insertion process of Space-Saving is as follows: 1) If the
incoming item e; is in the Stream-Summary, it increments the
corresponding frequency; 2) Otherwise, it locates and deletes
the item with the smallest frequency §,,;,. Then, it inserts
< €4y Smin + 1 >. Therefore, it considers that the frequency
of each new item is higher than the current smallest frequency
in Stream-Summary.

In summary, both two kinds of algorithms cannot handle
cold items elegantly, and those cold items in data streams can
significantly reduce the accuracy.

III. THE SCOREBOARD SPACE-SAVING ALGORITHM

A. Rationale

To overcome the shortcomings of the Space-Saving algorith-
m, we propose an enhanced algorithm based on Space-Saving,
named Scoreboard Space-Saving (SSS). The key idea of SSS is
inserting only the hot items into Stream-Summary instead of
inserting all items. SSS uses a queue and a Scoreboard as a
classifier to identify whether an incoming item is likely to be
a hot item. The Scoreboard can be any kinds of data structure
as long as it can approximately store the frequencies of items
in a multiset. In this paper, we use the Counting Bloom filter
(CBF) as the Scoreboard, because it achieves high accuracy
and high memory efficiency.

Here we briefly introduce how the queue and the Scoreboard
help to identify hot items. We divide all the items into three
types: cold items, potential hot items and hot items. Moreover,
we use the Scoreboard to maintain a score for each item, and
also set two threshold values to identify which type an item
belongs to. For each incoming item, we first get its score from
the Scoreboard and judge which kind of item it belongs to.
We insert hot items into Stream-Summary, and insert other
items into the Scoreboard. For cold items, we also insert them
into the queue to give them a chance to accumulate. When
an item is expelled from the queue after a period of time,
if it is still a cold item, i.e., the item fails to accumulate,
then its score is deleted from the Scoreboard. Otherwise, its
score is unchanged. As a result, cold items are only passers-
by in the Scoreboard. Therefore, the Scoreboard can be very
memory efficient because it only holds hot items and potential
hot items, which account for a very small part of all items in
real data streams.

B. Definitions

Here we introduce some useful definitions which help to
illustrate our algorithm in detail.
Score S: For convenience, we use S, to denote the score of
item e. When we use the CBF as the Scoreboard, S, represents
the estimate frequency of item e in the CBF.
Elephant value £: The elephant value is used to identify
whether an item is a hot item. When S, > £, we treat e as a
hot item.
Base value B: The base value is used to identify whether an
item is a potential hot item (items with a huge probability of
being a hot item in the future). When B < S, < &, we treat
e as a potential hot item.

C. Insertion and Query Process

In this part, we present the insertion and query processes
of SSS (see pseudo-code in Algorithm 1). First, we introduce
the insertion process of SSS in detail. Assume that there is
an incoming item e. We first check whether e is already in
Stream-Summary. If so, we directly increment the frequency
of e in Stream-Summary. Otherwise, we then get the score of e

(S.) from the Scoreboard, and we perform different operations
depending on S, (See Figure 2).

Case 1: If S, > &, then e is thought to be a hot item.
Therefore, we replaces e,,;, With e in Stream-Summary, and
then increments its size by 1. Here e,,;, represents the item
with minimum frequency in Stream-Summary.

Case 2: If B < S, < &, we treat e as a potential hot item.
Then we insert e into the Scoreboard to increase its score, and
we do not push e into the queue.

Case 3: If S, < B5, then e is thought to be a cold item. Then
we not only insert it into the Scoreboard to increase its score,
but also push e into the queue.

When inserting an item into the queue, we also expel the
item in the head of the queue (assume that the item is e’).
Moreover, we get the score of e’ (S./), and also perform
different operations on it depending on its score.

Case 1: If S, > B, then we regard €’ as a hot item or a
potential hot item. We do not delete it from the Scoreboard in
this case.

Case 2: If S, < B, then ¢’ is thought as a cold item. We then
delete it from the Scoreboard to decrease its score to remove
the influence of cold items.

Next, we introduce the query process of SSS. The query

process can be divided into two steps: flushing and reporting.
Flushing: Before querying the top-k hot items, we first expel
all items out of the queue, and use the same algorithm
mentioned above to handle them.
Reporting: We simply report the first £k items with the largest
frequencies in the Stream-Summary structure. Moreover, we
add & to the frequency of each item, because these items are
not inserted into Stream-Summary when its score is smaller
than £.

Algorithm 1: The insertion process of SSS.

Input: An incoming item e, the Stream-Summary
structure SS, the queue ¢
if e € SS then

1

2 | SS[el++:

3 else

4 if S > £ then

5 SS.replace(emin, €);
6 L SSle] + +;

7 if S, < € && S, > B then
s | | St

9 if S. < B then

10 Se + +;

u q.push(e);

12 e’ « q.pop();

13 if S.» < B then

14 | Se——

D. Constant Base Value and Dynamic Elephant Value
Selecting an appropriate elephant value £ and a base value
B is important. The base value B is used to filter cold items

Queue

i Expelled item
Cold item coe .@ \<B?
Yes The Stream-
No Summary
<&t Structure
Hot item
Incoming
item Yes | Not hot item,
increase the .
score Cold item,
Insert decrease the
——y Delete score
Scoreboard

Fig. 2. The structure and algorithm of SSS.

and identify potential hot items in the data stream. The base
value does not need to be too large, since in real data streams,
there are usually about half of items that have a frequency of
1. But the base value should also not be too small, because
a small base value has a poor performance of filtering cold
items. In our implementation, we simply set the base value
B = 10, a number that we discover performing well in most
cases.

The elephant value £ is used to identify hot items, so it is
directly related to the performance of SSS. It is obvious that
the elephant value should be adjusted dynamically to the total
number of items N and the distribution of the data stream. For
the typical data streams in the real world, most items have a
small frequency while only a few items have a huge frequency.
The distribution of the data stream is similar to the Zipfian
distribution [32], [33], and thus we can set the elephant value
based on the Zipfian distribution. We set the elephant value
& based on a function of the total number of items N and
the number of buckets in Stream-Summary m. The function
E(N,m) is:

CN

m(L

E(N,m) =

where C and a are two constant numbers, and we set the
elephant value £ = [£(N,m)]. Note that the distribution of
the data stream can usually keep consistent, thus we can set C'
and a based on the history data stream. Therefore, we can use
a machine learning program to learn the two parameters C'
and a using a certain machine learning algorithm. Note that
the total number of items must be larger than the elephant
value, i.e., E(N,m) < N in any cases, and therefore, we have
m® > C. Here we present how we learn C' and a based on
the history data stream (see pseudo-code in Algorithm 2).
Sampling: The first step is to get items in the history data
stream. Here we can only sample the history data stream
instead of collecting all items because of the high speed of
data streams. We use o (e.g., 1% ~ 10%) to represent the
sample rate.

Exact Counting: In order to get the frequency of each
sampled item, each sampled item is inserted into a small hash
table. To be specific, in the hash table, the key is the item ID
and the value is its frequency.

Test Points: A key element of the machine learning program
is the test set. Based on the function £(N, m), the test set is
a set of three-tuple < N;,m;,&; >. To provide the test set
for the machine learning program, we need to set some test
points. Assume that the size of the history data stream is NVj,.
We split the history data stream into b blocks, and the sizes
of those b blocks are equal to each other. At the end of the
ith (1 < i < b) block, for each sampled item, we insert the
three-tuple < %,mj, s; > into the test set, where s; is the
frequency of the item and m; is its rank.

Model Selection and Learning: We use the linear regression
model [34] in the machine learning program. Then the pro-
gram learns the value C' and a, which can be used in setting
the elephant value £ for the latter data stream.

Algorithm 2: The machine learning program.

Input: Sampling rate o, the number of blocks b, the size
of the history data stream N}, the hash table T'
1 N« 0;
2 (2« @
3 for i < 1 to N, do

4 | ifi%2< =0 then

5 e; < Sample();
6 T[ei] + +;

7 N+ +;

8 | if i%%: =0 then
9 for e; € T do

mj <+ Rank(e;);
N.insert(< N,m;, T[e;] >);

10
11

12 Target Function + Function(<5);
13 < C,a >« LinearRegression(TargetFunction, §2);

14 return < C,a >;

IV. MATHEMATICAL ANALYSIS
In this part, we make mathematical analysis on SSS al-

gorithm. The analysis shows that SSS inherits some strong
guarantees from Space-Saving.

Lemma IV.1. For any item e, if the final score of e is S,
then there are totally at least S, items that are inserted into
the Scoreboard but are not inserted into Stream-Summary.

Proof. When an incoming item is inserted into Stream-
Summary, it will not be inserted into the Scoreboard. But
when the item is not inserted into Stream-Summary, it will be
inserted into the Scoreboard to increase its score. Therefore,
when the item e has a score of S, there are at least S, items
that are not inserted into Stream-Summary, but are inserted
into the Scoreboard.

L]
Theorem 1. The total number of items N in the data stream
is larger than or equal to the sum of estimate frequencies in
Stream-Summary plus E*:

N=> Ni>> §+¢&
i J

where N; represents the frequency of i*" item, 5; represents
the estimate frequency stored in the j*" bucket in Stream-
Summary, and E* represents the final elephant value.

Proof. An item is inserted into Stream-Summary if and only
if its score S in the Scoreboard is larger than or equal to &.
For convenience, we use 7 to represent the number of items
that are not inserted into Stream-Summary, and we call the
highest score among all items S,. We have n > S, based
on Lemma IV.1. Next we prove Theorem 1 by discussing the
relationship of Sj, and £*.

1) If S, = £*, we have:

D 8 <N-n
i

with equality if and only if no item is deleted from the
Scoreboard. Therefore, we have:

N=> Ni=> §+n=> §+&
i J J

2) If S, < &%, then no item is inserted into Stream-
Summary after £ became larger than Sj,, because the score
of all items is less than the elephant value. We use § to
represent the total number of items when £ > Sy, and use N’
to represent the total number of items when £ < Sj. Based
on the function £(N,m), we have:

, m*(Sp+1)
N = c

and we also have:
meE*

N>
C

Therefore, we have:

ma(f)* — Sh — 1)

§=N-N+1>
+ c

+1

Based on Lemma IV.1, we have:
Z 55 <N—-n-9¢
J

and we also have m® > C, then:

N=> Ni=> §+n+9¢
' j

?

> 5 +S+N-N'+1

> 5+ S+ (&

J
= Z s 5+ o O

J
Theorem 2. The minimum estimate frequency | among buck-
ets in the Stream-Summary structure is less than or equal to
L%J, where N represents the total number of items in the

data stream, and m represents the number of buckets in the
Stream-Summary structure.

Proof. 1t is obvious that the frequency stored in any bucket
of the Stream-Summary structure is larger than or equal to p
(8; =2). According to Theorem 1, we have:

N=> Ni>> §+¢&
i j
=Y Gj—w+d nté
j j
=D (& —p) +mp+ &
j

and 5; > pu, then:

N=>,8—p)—& _N-&
m = m

,LL =
and p is an integer, so we have:
N -¢&*
m

]

p< |

O
Definition IV.1. Assume that the item e has been deleted from
the Scoreboard for k. times. We define that k. is the frequency

loss of item e.
Theorem 3. For an item e with a frequency of S, if

Se—ke—E* >

then e must exist in the Stream-Summary.

Proof. When item e arrives for the last time, there are the
following two cases:

Case 1: e is in by the Stream-Summary. Then the estimated
frequency of e in the Stream-Summary is s, —k.—E*. Because
Se — Ke — E* > p, item e will never be expelled out of the
Stream-Summary.

Case 2: e is not in the Stream-Summary. Because s, — ke —
E* > pu, e is treated as a hot item. Therefore, e is inserted
into the Stream-Summary, and will never be expelled out of
the Stream-Summary.

O
Therefore, based on Theorem 2 and Theorem 3, if s, — k. —
E* > | X=£7|, then e must exist in the Stream-Summary.

m

V. EXPERIMENTAL RESULTS
In this section, we present experimental results of SSS and

Space-Saving. Space-Saving is proved to achieve higher ac-
curacy than Frequent and Lossy counting [27], so we do not
compare SSS with these two algorithms. The source code of
CSS was provided by the author [35], and is written in Java,
which is much slower than that written in C++. Therefore, we
also do not compare SSS with CSS.
A. Experimental Setup

Our experimental programs are running on a machine with
dual 6-core CPUs (24 threads, Intel Xeon CPU E5-2620
@2GHz) and a 62GB DRAM memory. The datasets used in
our experiments are real IP packets captured from our campus,
and we identify each packet with its five-tuple: source IP
address, destination IP address, source port, destination port,
and protocol type. The total number of items N is 10M, and
there are 1.1M distinct items. To evaluate the performance of
SSS and Space-Saving, we write a C++ program. To achieve
a head-to-head comparison, we guarantee that the memory
usage of SSS is no larger than that of Space-Saving.

B. Evaluate Metrics

Precision: It indicates how many estimate answers are correct.
The PRecision (PR) is defined as:

|Ek ﬂﬁk|

| Di|

PR =

where Dj, represents the set of real top-k hot items, and Dy
represents the set of estimate answers.
Average Ranking Error: The Average ranKing Error (AKE)
is defined as:

[Dkl

AKE——Z|61 Te,| (Fe; = |Di| + 1 if e; & Dy,)

where e; represents the 7" item, Te, represents the rank of e;
in Dk, and r., represents the rank of e; in Dy
Average Relative Error: The Average Relative Error (ARE)
is defined as:

[Dr|

ARFE =
|Dk| Z

where ¢; (1 < |Dk\) represents the i*" item in Dy, Se,
represents the estlmate size of e; and s., represents the real
size of e;.

Average Absolute Error: The Average Absolute Error (AAE)
is defined as:

‘Sez -

| Dy |

Z 8¢, — e,

AAE =

C. Precision

In this part, we focus on the precision of SSS and the Space-
Saving (SS) algorithm. We measure the precision of both
algorithms with different k£ and different m (the number of
buckets in Stream-Summary). In the experiment of varying k,
we set m = k for SSS and set m = 2k for Space-Saving, and
k ranges from 200 to 1000. In the experiment of varying m,

we set k = 400, and we make m range from k to 2k for SSS,
and from 2k to 3k for Space-Saving. For both experiments,
we set the queue length of SSS to &, and set the width w of
the CBF to 30k.

1.0
0.9 Hl Ss
0.8 EE Sss
207
o 0.6
Z05
204
03
0.2
0.1
0.0

200 300 400 500 600 700 800 900 1000
k

Fig. 3. Precision of top-k hot items when varying k.

Precision vs. k: Our experimental results show that SSS is
[1.73, 3.83] times more accurate than Space-Saving. To be
specific, when k = 400, the precision of SSS reaches 77.25%
while that of Space-Saving is only 24.00%. As shown in Figure
3, the precision of SSS is always obviously higher than that of
Space-Saving. When varying k from 200 to 1000, the precision
of SSS is always higher than 35%, and is higher than 55% for
most cases. On the contrary, the precision of Space-Saving is
always lower than 32%. In a word, the precision of SSS is
much higher than that of Space-Saving, especially when k is
not large.

2.0:1.0 22:1.2 2.4:14 26:1.6 28:1.8 3.0:2.0
(m/k)(SS:SSS)

Fig. 4. Precision of top-k hot items when varying m.

Precision vs. m: Our experimental results show that SSS is
[2.52, 3.29] times more accurate than Space-Saving. To be
specific, as m increases, the precision of SSS exceeds 80%,
while that of the Space-Saving is only 33% when m = 3k. The
experimental results are shown in Figure 4. When increasing
m, the precision of both algorithms increases slightly, but
SSS always has a great advantage over Space-Saving.

D. Accuracy of Ranking

In this part, we focus on the average ranking error of both
two algorithms. The ranking error reveals the accuracy of the
estimate ranks of the top-k hot items. We have conducted
experiments varying k and m. We also present how the ranks
distributed by plotting a scatter diagram.
Average ranking error vs. k: Our experimental results show
that the average ranking errvor of SSS is [1.23, 2.81] times
lower than that of Space-Saving. The difference between the
average ranking error of both algorithms ranges from 33.79
to 99.38. The experimental results are shown in Figure 5. To
be specific, when k& = 300, the average ranking error of SSS is
only 46.81, while that of Space-Saving is more than 130.

Average Ranking Error

200 300 400 500 600 700 800 900 1000
k

Fig. 5. Average ranking error of top-k hot items when varying k.

S}
(=3
=1

I Ss I SSs

@
=]

Average Ranking Error
W 5
=3 (=)

(=]

2.0:1.0 22:1.2 24:14 26:1.6 28:1.8 3.0:2.0
(m/k)(SS:SSS)

Fig. 6. Average ranking error of top-k hot items when varying m.
Average ranking error vs. m: Our experimental results show
that the average ranking error of SSS is [2.39, 2.58] times
lower than that of Space-Saving. The difference between the
average ranking error of both algorithms ranges from 80.1 to
98.5. As shown in Figure 6, the average ranking error of both
algorithms decreases as m increases, because more buckets
in the Stream-Summary structure lead to higher accuracy.
Nevertheless, SSS achieves higher accuracy of ranking than
Space-Saving.

‘ X XSS + + SSS — Correct answers ‘
400 = -
+ +
+ + + +
350 ot R . vt . +++ +++>< # . =4
2 300 . X X% +++ XX + +#+*f; 4
W + 22? e
g x % toas iR =it
£ 250 X X +5 bt g FEI
x % & + + 2 s i T
£ 200 P Xy X AT x
£ X S, K N *oxx
S 150F 4% X
2 X, %ixi # @#ﬁw X x
= 100 b 0 X X x
i@r(e X x % ~ % % X
50} + e x % x *
X
K 50 100 150 200 250 300 350 400
Rank

Fig. 7. Distribution of items’ ranks of both algorithms.

Distribution of items’ ranks: Our experimental results show
that the ranks provided by SSS are more accurate than that
of Space-Saving. As shown in Figure 7, there are more points
of SSS than Space-Saving, which means that the precision of
SSS is higher. Furthermore, the points of SSS are closer to
the correct answer than Space-Saving, which shows that the
ranks given by SSS are more accurate.

E. Accuracy of Estimate Sizes

In this part, we focus on the accuracy of item frequencies
in the Stream-Summary structure. We mainly focus on the
following four metrics to evaluate the accuracy: 1) Absolute
error (AE) of each item e, which is defined as |, — s.|; 2)
Average absolute error (AAE); 3) Relative error (RE) of each
item, which is defined as |S. — s.|/s.; 4) Average relative
error (ARE). Because the number of buckets m is different
between the two algorithms (let m = k for SSS and m = 2k
for Space-Saving), we only focus the accuracy of the first &
items.

w08/ sss

2000 4000 6000

AE

8000 10000

Fig. 8. Empirical CDF of absolute error.

Empirical CDF of AE: Our experimental results show that
more than 90% items have an AE less than 1700 for SSS,
while for Space-Saving, there are only 2%. To be specific,
we set k& = 400 in this experiment. The results are shown in
Figure 8. As AE increases, the empirical CDF of SSS increases
significantly, while it keeps at a very low value for Space-
Saving. Furthermore, for SSS, the CDF reaches 100% when
AE reaches 5285, but for the Space-Saving, the CDF reaches
100% when AE reaches 12453. The results indicate that for
Space-Saving, most items suffer from great error, while for
SSS, the estimated frequencies of most items are accurate.

Average Absolute Error

200 300 400 500 600
k

Fig. 9. Average absolute error of top-k hot items when varying k.

Average Absolute Error: Our experimental results show that
the AAE of SSS is [5.18, 16.52] times lower than that of Space-
Saving, with different k ranging from 200 to 600. The results
of this part of the experiment are shown in Figure 9. To be
specific, the AAE of SSS is only 624.5 when k& = 500, while
for Space-Saving, the AAE is always higher than 8400.

1.0 -

0.9 /f’ — SS
08 / — s
807/
© 0.6/
§ 0.5
204
£03
0.2

0.1

)
0.0 5 10 15 20
RE

Fig. 10. Empirical CDF of relative error.

Empirical CDF of RE: Our experimental results show that
more than 90% items have an RE less than 0.69 for SSS,
while for Space-Saving, there are only 7.75%. More than 95%
items have an RE less than 1.53 for SSS, while for the Space-
Saving the percentage is only 13.25%. We also set k = 400 in
this experiment. As shown in Figure 10, as RE increases, the
empirical CDF increases significantly for SSS, and reaches
nearly 100% when RE is still smaller than 10. While for
Space-Saving, the CDF increases slowly as RE increases from
0 to 100, with a value of only 39.5% when RE reaches 20.

3090 SS

SSS

1060

Average Relative Error
% :
[=]
(=

500

600

Fig. 11. Average relative error of top-k hot items when varying k.

Average Relative Error: Our experimental results show that
the ARE of SSS is [7.5, 62.4] times lower than that of Space-
Saving, with different k varying from 200 to 600. As shown in
Figure 11, the ARE of SSS is only about 18 when k& = 500,
while for Space-Saving, the ARE is always higher than 1100.

VI. CONCLUSION

Finding top-£ hot items in data streams is a critical problem
for big data management. However, as the sizes of data streams
become increasingly large, it becomes more and more difficult
to design an accurate and fast algorithm for this problem.
There are many existing algorithms for finding top-£ hot items,
and the Space-Saving algorithm is the most well-known algo-
rithm. However, existing algorithms including Space-Saving,
cannot achieve high accuracy and high memory efficiency
at the same time. In this paper, we propose an enhanced
algorithm based on Space-Saving, named Scoreboard Space-
Saving (SSS). By using a queue and a Scoreboard, SSS achieve
higher accuracy and high memory efficiency at the same time,
and also achieves fast and constant speed. We also make
mathematical analysis and conduct a series of experiments
to compare the performance of SSS and Space-Saving. The
experimental results show that SSS achieves up to 62.4 times
higher accuracy than Space-Saving. We believe that SSS can
be applied to improve the performance of finding top-k hot
items.

REFERENCES

[1] Source code. https://github.com/AltF4Top/Scoreboard-Space-Saving.

[2] Katsiaryna Mirylenka, Graham Cormode, Themis Palpanas, and Divesh
Srivastava. Conditional heavy hitters: detecting interesting correlations
in data streams. very large data bases, 24(3):395-414, 2015.

[3] Joong Hyuk Chang and Won Suk Lee. Finding recent frequent itemsets
adaptively over online data streams. pages 487—-492, 2003.

[4] Y K Cheung and Ada Waichee Fu. Mining frequent itemsets without
support threshold: with and without item constraints. /EEE Transactions
on Knowledge and Data Engineering, 16(9):1052—-1069, 2004.

[5] Mohamed A Soliman, Thab F Ilyas, and K Chenchuan Chang. Top-k
query processing in uncertain databases. pages 896-905, 2007.

[6] Gero Dittmann and Andreas Herkersdorf. Network processor load
balancing for high-speed links. Proc. of the 2002 Int. Symp. on
Performance Evaluation of Computer and Telecommunication Systems,
735, 2002.

[7]1 S L Johnsson and Chingtien Ho. Optimum broadcasting and personal-
ized communication in hypercubes. IEEE Transactions on Computers,
38(9):1249-1268, 1989.

[8] Robert T Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin
Zhang, Peter A Dinda, Mingyang Kao, and Gokhan Memik. Reversible
sketches: enabling monitoring and analysis over high-speed data streams.
IEEEACM Transactions on Networking, 15(5):1059-1072, 2007.

[91 Yu Zhang, Binxing Fang, and Yongzheng Zhang. Identifying heavy
hitters in high-speed network monitoring. Science in China Series F:
Information Sciences, 53(3):659-676, 2010.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

(35]

Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Pan,
and Balaji Prabhakar. Af-qcn: Approximate fairness with quantized
congestion notification for multi-tenanted data centers. pages 58-65,
2010.

Joong Hyuk Chang and Won Suk Lee. A sliding window method for
finding recently frequent itemsets over online data streams. Journal of
Information Science and Engineering, 20(4):753-762, 2004.
Chihhsiang Lin, Dingying Chiu, Yihung Wu, and Arbee L P Chen.
Mining frequent itemsets from data streams with a time-sensitive sliding
window. pages 68—79, 2005.

Nuno Homem and Joao Paulo Carvalho. Finding top-k elements in data
streams. Information Sciences, 180(24):4958-4974, 2010.

Tong Yang, Alex X Liu, Muhammad Shahzad, Dongsheng Yang,
Qiaobin Fu, Gaogang Xie, and Xiaoming Li. A shifting framework for
set queries. IEEE/ACM Transactions on Networking, 25(5):3116-3131,
2017.

Tong Yang, Alex X Liu, Muhammad Shahzad, Yuankun Zhong, Qiaobin
Fu, Zi Li, Gaogang Xie, and Xiaoming Li. A shifting bloom filter
framework for set queries. Proceedings of the VLDB Endowment,
9(5):408-419, 2016.

Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch:
Faster and more accurate stream processing. In Proc. SIGMOD 2016.
Graham Cormode. Sketch techniques for approximate query processing.
Foundations and Trends in Databases. NOW publishers, 2011.

Graham Cormode and S Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58-75, 2005.

Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li.
Pyramid sketch: A sketch framework for frequency estimation of data
streams. Proceedings of the VLDB Endowment, 10(11):1442-1453,
2017.

Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li,
and Steve Uhlig. Cold filter: A meta-framework for faster and more
accurate stream processing. Proc. SIGMOD 2018.

Moses Charikar, Kevin Chen, and Martin Farachcolton. Finding frequent
items in data streams. international colloquium on automata, languages
and programming, 312(1):693-703, 2002.

Graham Cormode and S Muthukrishnan. What’s hot and what’s not:
tracking most frequent items dynamically. symposium on principles of
database systems, 30(1):249-278, 2003.

Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple
algorithm for finding frequent elements in streams and bags. ACM
Transactions on Database Systems, 28(1):51-55, 2003.

Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and Carsten
Lund. Online identification of hierarchical heavy hitters: algorithms,
evaluation, and applications. pages 101-114, 2004.

Chao Wang, Qing Zhao, and Chennee Chuah. Group testing under
sum observations for heavy hitter detection. information theory and
applications, pages 149-153, 2015.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: a
better netflow for data centers. pages 311-324, 2016.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient
computation of frequent and top-k elements in data streams. inferna-
tional conference on database theory, pages 398—412, 2005.

Erik Demaine, Alejandro Lépez-Ortiz, and J Munro. Frequency estima-
tion of internet packet streams with limited space. AlgorithmsESA 2002,
pages 11-20, 2002.

Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple
algorithm for finding frequent elements in streams and bags. ACM
TODS, 28(1):51-55, 2003.

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency
counts over data streams. In Proc. VLDB, pages 346-357, 2002.

Li Fan, Pei Cao, Jussara M Almeida, and Andrei Broder. Summary
cache: a scalable wide-area web cache sharing protocol. [EEEACM
Transactions on Networking, 8(3):281-293, 2000.

David MW Powers. Applications and explanations of Zipf’s law. In
Proc. EMNLP-CoNLL. Association for Computational Linguistics, 1998.
Graham Cormode and S Muthukrishnan. Summarizing and mining
skewed data streams. In Proceedings of the 2005 SIAM International
Conference on Data Mining, pages 44-55. SIAM, 2005.

Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.
Introduction to linear regression analysis. John Wiley & Sons, 2015.
Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy
hitters in streams and sliding windows. In Proc. IEEE INFOCOM, 2016.

