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Abstract 1—Bloom Filter is a widely used data structure in 
computer science. It enables memory efficient and fast set 
membership queries. Bloom filter-based solutions have been 
proposed in the past decade for lookup in forwarding tables of 
backbone routers [2]. However, the main shortcomings of using 
Bloom Filters for lookup lie in the absence of support for deletion 
operations that are needed to update the forwarding tables. 
Counting Bloom Filter supporting deletion has therefore to be 
used, increasing significantly the memory requirement. 
Moreover, Counting Bloom Filter suffers from both false positive 
and false negative. In this paper, we propose to solve the issue 
with deletion of Bloom Filters by using a Withdrawal To 
annOuncement (WTO) mapping that replaces withdrawal with 
announcements, transforming deletions into additions or record 
changes. Experimental evaluation show that the proposed 
techniques improve largely the performance of Bloom Filter used 
for forwarding lookup and open way for the use of Bloom Filters 
in real operational settings. 

I. INTRODUCTION 
Bloom Filter (BF) data structures have been applied to a 

large set of applications in computer science [5][6][7]. Bloom 
Filters are used for fast and memory efficient set membership 
queries. In the past decade, applications of these structures to 
networking problems have been proposed.  

In order to increase lookup speed and reduce its cost and 
power consumption, Dharmapurikar et al. [2] proposed the 
Prefix Bloom Filter (PBF) structure that uses on-chip Bloom 
Filter to represent the trie2 used to find the longest matched 
prefix. The evaluation shows that in average about 1.003 off-
chip memory accesses is needed for any single lookup, faster 
than TCAM in average but with larger worst case complexity. 
PBF only uses SRAM and achieved therefore lower cost and 
lower power consumption. However, any lookup solution has 

1 This work is supported by NSFC (61202489), and the National Science & 
Technology Pillar Program No.2012BAH01B03, and the Instrument Develop-
ing Project of CAS under Grant No.YZ201229. 
2 Trie is a tree-like data structure allowing the organization of prefixes on a 
digital basis by using the bits of prefixes to direct the branching, an excellent 
survey of trie-based lookup solutions are provided in [1]. 
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to deal with updates that are frequent in the current operational 
network. Unfortunately, Bloom Filter cannot support deletion 
operations that are needed to do updates. Therefore, they have 
to be replaced with Counting Bloom Filter (CBF) that uses a k 
bits counter to replace each bit of Bloom Filter array, i.e., 
supporting deletion operations CBFes entails k times more 
memory. This can prevent CBFs to be stored in on-chip FPGA 
memory. Moreover, in addition to false positive that is 
common in BFs, CBF can suffer from false negatives 
happening when a counter overflows [4]. False negative results 
in wrong lookups that are not acceptable for ISPs.  

Nonetheless, while deletion operations are problematic for 
Bloom Filters, insertion operations are natural. We propose in 
this paper the Withdrawal To annOuncement (WTO) mapping 
that transforms withdrawal messages to announcement 
messages, that have the same effect on the forwarding 
behaviour of the routing table. The technique is motivated by 
the fact that when a prefix is withdrawn in a forwarding or 
routing table, it always has a shorter less specific prefix that 
has a default next-hop. The idea of WTO mapping is therefore 
to transform a prefix deletion message into a prefix insertion 
(or change) with the next-hop set to the next-hop of the closest 
ancestor prefix node. We present the details of WTO mapping 
in Section IV. As most of update and withdrawals happen in 
the leaves, WTO mapping achieves excellent performances.  

II. WTO ALGORITHM

First we give some conclusions of Bloom Filter and 
Counting Bloom Filter: 
 Bloom Filter supports insertion operations and 

membership query, but cannot support deletion operations. 
 Bloom Filter has false positive, but no false negative. 
 Counting Bloom Filter uses a counter in place of a bit of 

Bloom Filter, hence can support deletion operations. 
 Counting Bloom Filter has both false positive and false 

negative. 
In order to support incremental update, PBF adopts 

Counting Bloom Filter, then two problems arise: 
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 If a counter in the Counting Bloom Filter costs x bits, then 
x times memory is needed as compared with Bloom Filter. 
Therefore, Counting Bloom Filter is probably too large to 
be held in on-chip memory. 

 Counting Bloom Filter has false negative. When false 
negative occurs, PBF algorithm probably returns a 
mistaken next-hop. 
Actually, the above two problems can be solved if there is 

no withdrawal message, but we cannot just ignore the 
withdrawal messages. 

Deletions are needed when withdrawal messages happen. A 
withdrawal message means that the announced prefix and its 
next-hop should be deleted from routing table, e.g., let’s 
assume that the prefix1011*:4 has to withdraw. Now, if a 
packet with destination address IP 10110* arrives, to which 
egress should it be forwarded? In practice, there are always 
shorter prefixes matching the IP, like 101*, 10* and *, in the 
routing table. So in this example, the withdrawal message just 
changes the longest matched prefix from 1011* to 101*. 
Therefore, in place of deleting the prefix 1011*, one can just 
change its next-hop to the next-hop of prefix 101*. By doing 
this the forwarding behavior of the routing table will change. 
Nonetheless, we have just transformed the withdrawal 
messages into an announcement messages and suppress the 
need for a deletion operation in Bloom Filters. This example 
illustrates the rationale of Withdrawal To annOuncement 
(WTO) mapping algorithm. WTO algorithm aims at changing 
withdrawal message into announcement one while keeping the 
forwarding behavior of routers unchanged.   

By eliminating the need for deletion, WTO algorithm 
enables to simply use a Bloom Filter instead of the Counting 
Bloom Filter.  

The WTO mapping algorithm works as follows. It seeks a 
way to convert withdrawal messages to announcement 
messages by changing the next-hop of the prefix to be deleted 
to its nearest ancestor’s next-hop in the trie. For instance, as 
shown in Figure 1, node A, B, C, D and R are 4 prefix nodes in 
a trie and the circles represent that the egress port of these 
nodes is 1, while the rectangles represent port 2. When a 
withdrawal message: withdraw 101*, arrives instead of 
removing node D and updating the Bloom Filter, WTO 
algorithm changes the next-hop of node D to port 1 (the next-
hop of node C), suppressing the need to apply an operation on 
the Bloom Filter.  

                
(a) step I.                                            (b) step II. 

Figure 1.  The scheme of WTO algorithm. 

It is noteworthy that WTO algorithm may cause domino 
effect. In the example shown in Figure 1, when deleting node C 
after node D being deleted, WTO algorithm needs to change 

both the egress port of node C and D to port 2. To address this 
potential problem, a simple solution consists in checking the 
sub-trie rooted at the updated node. However, this entails a 
longer time and larger memory. To accelerate WTO mapping, 
we assign a flag to each node. When during deletion operation, 
the updated node is not really deleted but changed, just like the 
node D in step I of Figure 1, the flag of the nearest ancestor 
node (node C in Figure 1) should be set to true. During next 
deletion, WTO algorithm finds that the flag of a node is true, it 
continues to traverse the sub-trie to change the corresponding 
nodes. This happens in the example of Figure 1, when node C 
is deleted after node D. 

However, getting the nearest ancestor and its flag needs a 
pointer in each node to point back to its parent node. To avoid 
this back pointer, we record the flag of the nearest ancestor 
node in the next node during the traversal process needed to 
find the updated node. This further reduces the additional 
memory accesses resulting from back pointers. 

The above technique reduces strongly in practice the 
needed sub-trie traversals.  

Nonetheless, when the domino effect happens, it needs 
more time to apply an update than the common situations. The 
rate of domino effect depends on the update messages. In other 
words, the performance of WTO algorithm depends on the 
characteristics of update messages, in particular the withdrawal 
update messages. According to our previous experimental 
results in [12], the update messages happen mainly in Leaves 
nodes. This suggests that even when the domino effect happens, 
only a few levels of the prefixes are affected. 

In addition to this, we have also carried out large-scale 
experiments and find that withdrawal messages are much fewer 
than announcement messages (see Figure 3 in Section III). This 
phenomenon indicates that WTO algorithm is applicable for 
real routers. As explained above, the WTO mapping can fix the 
of the major problems that lead authors of [2] to use CBFs in 
place of BF, controlling therefore the memory increase. 
Moreover, the increase in the number of memory accesses 
induced by domino effect of the WTO algorithm is not too 
large to result in performance loss (see Figure 6 in Section III).  

III. EXPERIMENTAL RESULT  
In this section, we will validate using empirical experiment 

the proposed techniques to implement Bloom Filter based IP 
lookup.

A. Experimental Settings 
1) Data Set 

The data set is taken from RIPE NCC [11] at www.ripe.net, 
which collects routing updates from peers. In order to 
objectively evaluate the performance of WTO algorithm, we 
extracted the  RIB  on 2012/6/1 at 8:00 AM  from 10 backbone 
routers, and all corresponding update messages happening 
during a full day are downloaded and parsed. 

2) Computer Configuration 
Our experiments have been conducted on a windows XP 

sp3 machine with Pentium (R) Dual-Core CPU 
5500@2.80GHz and 4G memory.  

B. Experiments on WTO Algorithm 
The x-axis of Figure 2~7 represents the update time of 

update messages. For instance, '201210231945' means the time 
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2012-10-10 23:19:45. The labels, rrc00, rrc01, etc. are the 
router ID defined by RIPE Network Coordination Centre [11]. 

As the WTO algorithm is executed for any withdrawal 
messages, so we study the number of withdrawal messages. 
We show in Figure 2 the number of withdrawal messages for 
the 10 routing tables. The maximum value is around 927496 
for one day (for rrc00). This number of withdrawal means in 
average 927496/24/3600 10.73 updates per second. Moreover 
this number is small compared with the number of total updates: 
16956829 that means in average 196.26 update messages per 
second. 

 
Figure 2.  The number of updates in one day over 12 routers. 

 
Figure 3.  The ratio of the number of withdrawal update messages to that of 
total update messages. 

As mentioned in Section I, the relative rarity of 'withdrawal 
messages' makes WTO algorithm work well. To validate this, 
we plot the ratio of the number of withdrawal messages to the 
total update messages in Figure 3. It can be observed that the 
ratio ranges from 0.03 to 0.16 with a mean of 0.1. This 
suggests that only 1/10 update messages are withdrawal. That 
means WTO is performed in average 1/10 of time. 

As mentioned in Section III, WTO algorithm may cause 
domino effect. When the flag of updating node or the nearest 
ancestor node is true, WTO algorithm must traverse the sub-
trie rooted at the updating node, then additional memory 
accesses are needed. Actually, because update messages are 

generally happening in 'Leaves' [12], additional memory 
accesses are very low. We plot in Figure 4 the number of 
additional memory accesses,. Results show that the maximum 
number of additional memory accesses is 3620 over one day. 
Given a common DRAM working at 333MHz, 3620 additional 
memory accesses only need 3620/333000000=10.9us that is 
negligible.  

 
Figure 4.  The number of additional memory accesses using WTO algorithm 
for 10 routing tables over one day. 

 

Figure 5.  The number of memory accesses for update messages over one day. 

 

Figure 6.  The number of additional memory accesses in average for each 
withdrawal message. 

20
12

06
01

08
50

 
20

12
06

01
09

45
 

20
12

06
01

10
35

 
20

12
06

01
11

25
 

20
12

06
01

12
15

 
20

12
06

01
13

05
 

20
12

06
01

13
55

 
20

12
06

01
14

45
 

20
12

06
01

15
35

 
20

12
06

01
16

25
 

20
12

06
01

17
15

 
20

12
06

01
18

05
 

20
12

06
01

18
55

 
20

12
06

01
19

45
 

20
12

06
01

20
35

 
20

12
06

01
21

25
 

20
12

06
01

22
15

 
20

12
06

01
23

05
 

20
12

06
01

23
55

 
20

12
06

02
00

45
 

20
12

06
02

01
35

 
20

12
06

02
02

25
 

20
12

06
02

03
15

 
20

12
06

02
04

05
 

20
12

06
02

04
55

 
20

12
06

02
05

45
 

20
12

06
02

06
35

 
20

12
06

02
07

25
 0

100k

200k

300k

400k

500k

600k

700k

800k

900k

1M

# 
of

 w
ith

dr
aw

al
 m

es
sa

ge
s

Time

 rrc00
 rrc01
 rrc04
 rrc05
 rrc07
 rrc11
 rrc12
 rrc13
 rrc14
 rrc15

20
12

06
01

08
50

 
20

12
06

01
09

45
 

20
12

06
01

10
35

 
20

12
06

01
11

25
 

20
12

06
01

12
15

 
20

12
06

01
13

05
 

20
12

06
01

13
55

 
20

12
06

01
14

45
 

20
12

06
01

15
35

 
20

12
06

01
16

25
 

20
12

06
01

17
15

 
20

12
06

01
18

05
 

20
12

06
01

18
55

 
20

12
06

01
19

45
 

20
12

06
01

20
35

 
20

12
06

01
21

25
 

20
12

06
01

22
15

 
20

12
06

01
23

05
 

20
12

06
01

23
55

 
20

12
06

02
00

45
 

20
12

06
02

01
35

 
20

12
06

02
02

25
 

20
12

06
02

03
15

 
20

12
06

02
04

05
 

20
12

06
02

04
55

 
20

12
06

02
05

45
 

20
12

06
02

06
35

 
20

12
06

02
07

25
 0.00

0.05

0.10

0.15

0.20

0.25

ra
tio

 o
f w

ith
dr

aw
al

 m
es

sa
ge

s

Time

 rrc00  rrc01
 rrc04  rrc05
 rrc07  rrc11
 rrc12  rrc13
 rrc14  rrc15

20
12

06
01

08
50

 
20

12
06

01
09

45
 

20
12

06
01

10
35

 
20

12
06

01
11

25
 

20
12

06
01

12
15

 
20

12
06

01
13

05
 

20
12

06
01

13
55

 
20

12
06

01
14

45
 

20
12

06
01

15
35

 
20

12
06

01
16

25
 

20
12

06
01

17
15

 
20

12
06

01
18

05
 

20
12

06
01

18
55

 
20

12
06

01
19

45
 

20
12

06
01

20
35

 
20

12
06

01
21

25
 

20
12

06
01

22
15

 
20

12
06

01
23

05
 

20
12

06
01

23
55

 
20

12
06

02
00

45
 

20
12

06
02

01
35

 
20

12
06

02
02

25
 

20
12

06
02

03
15

 
20

12
06

02
04

05
 

20
12

06
02

04
55

 
20

12
06

02
05

45
 

20
12

06
02

06
35

 
20

12
06

02
07

25
 0

500

1000

1500

2000

2500

3000

3500

4000

# 
of

 a
dd

iti
on

al
 m

em
or

y 
ac

ce
ss

es

Time

 rrc00  rrc01
 rrc04  rrc05
 rrc07  rrc11
 rrc12  rrc13
 rrc14  rrc15

20
12

06
01

08
50

 
20

12
06

01
09

45
 

20
12

06
01

10
35

 
20

12
06

01
11

25
 

20
12

06
01

12
15

 
20

12
06

01
13

05
 

20
12

06
01

13
55

 
20

12
06

01
14

45
 

20
12

06
01

15
35

 
20

12
06

01
16

25
 

20
12

06
01

17
15

 
20

12
06

01
18

05
 

20
12

06
01

18
55

 
20

12
06

01
19

45
 

20
12

06
01

20
35

 
20

12
06

01
21

25
 

20
12

06
01

22
15

 
20

12
06

01
23

05
 

20
12

06
01

23
55

 
20

12
06

02
00

45
 

20
12

06
02

01
35

 
20

12
06

02
02

25
 

20
12

06
02

03
15

 
20

12
06

02
04

05
 

20
12

06
02

04
55

 
20

12
06

02
05

45
 

20
12

06
02

06
35

 
20

12
06

02
07

25
 0.0

5.0x107

1.0x108

1.5x108

2.0x108

2.5x108

3.0x108

3.5x108

4.0x108

# 
of

 to
ta

l m
em

or
y 

ac
ce

ss
es

 fo
r u

pd
at

es

Time

 rrc00
 rrc01
 rrc04
 rrc05
 rrc07
 rrc11
 rrc12
 rrc13
 rrc14
 rrc15

20
12

06
01

08
50

 
20

12
06

01
09

45
 

20
12

06
01

10
35

 
20

12
06

01
11

25
 

20
12

06
01

12
15

 
20

12
06

01
13

05
 

20
12

06
01

13
55

 
20

12
06

01
14

45
 

20
12

06
01

15
35

 
20

12
06

01
16

25
 

20
12

06
01

17
15

 
20

12
06

01
18

05
 

20
12

06
01

18
55

 
20

12
06

01
19

45
 

20
12

06
01

20
35

 
20

12
06

01
21

25
 

20
12

06
01

22
15

 
20

12
06

01
23

05
 

20
12

06
01

23
55

 
20

12
06

02
00

45
 

20
12

06
02

01
35

 
20

12
06

02
02

25
 

20
12

06
02

03
15

 
20

12
06

02
04

05
 

20
12

06
02

04
55

 
20

12
06

02
05

45
 

20
12

06
02

06
35

 
20

12
06

02
07

25
 -0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

# 
of

 a
dd

iti
on

al
 m

em
or

y 
ac

ce
ss

es
 

pe
r w

ith
dr

aw
al

 u
pd

at
e

Time

 rrc00
 rrc01
 rrc04
 rrc05
 rrc07
 rrc11
 rrc12
 rrc13
 rrc14
 rrc15



4 
 

To make a comparison, we plot the total memory accesses 
for updates including announcement and withdrawal messages 
over one day in Figure 5. The number of memory access 
number is about 0.4 billion, 110497 times of the additional 
3620 memory accesses. That’s to say, the negative effect of 
time overhead brought by WTO algorithm is only around 10-6 
of the original update time.  

We show in Figure 6, the number of additional memory 
accesses for each withdrawal after using WTO algorithm. It 
can be observed that in average only 0.001 additional memory 
accesses are needed.  

 

Figure 7.  The ratio of the number of additional prefixes to that of total 
prefixes on 10 routing tables over one day. 

 

Figure 8.  The number of additional prefixes on 10 routers over one day. 

The other negative effect of WTO algorithm is the 
introduction of additional prefixes. As WTO algorithm 
changes the withdrawal messages to announcement messages, 
there will be more prefixes after using WTO algorithm. The 
number of additional prefixes is an important metrics for WTO 
algorithm, as too many additional prefixes means larger routing 
table size, that might make WTO algorithm not practical.  

According to Figure 2, there are 927496 update messages at 
most. One might think that the number of additional prefixes 
will be 927496. However, in practice the number is much 
smaller as only a small fraction of prefixes are frequently 
updated. We show in Figure 7 and 8, the number of additional 
prefixes observed after applying WTO. 

The ratio of the number of additional prefixes to the total 
prefixes is shown in Figure 7. It shows that the ratio ranges 
from 0.002 to 0.04 with a mean of 0.01. This means that WTO 
algorithm results in average in only 0.01 additional prefixes 
produced for each withdrawal message. 

As shown in Figure 8, the number of additional prefixes 
ranges from 979 to 13215 with a mean of 4050. This is much 
smaller than the number withdrawal messages (927496). If the 
router has enough memory, WTO algorithm can always work 
well. If the memory becomes insufficient, we can periodically 
perform a refresh, when the router is idle. 

IV. CONCLUSION 
In order to solve the issue raised by the usage of Bloom 

Filter based techniques for IP lookup, we propose WTO 
algorithm to solve the update problem for Longest Prefix 
Matching. We carried out experiments to evaluate the 
performance of WTO algorithm, and results show that they can 
overcome the shortcomings of Bloom filter-based solutions at 
the cost of negligible overhead. 
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