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Abstract ' —Bloom Filter is a widely used data structure in
computer science. It enables memory efficient and fast set
membership queries. Bloom filter-based solutions have been
proposed in the past decade for lookup in forwarding tables of
backbone routers [2]. However, the main shortcomings of using
Bloom Filters for lookup lie in the absence of support for deletion
operations that are needed to update the forwarding tables.
Counting Bloom Filter supporting deletion has therefore to be
used, increasing significantly the memory requirement.
Moreover, Counting Bloom Filter suffers from both false positive
and false negative. In this paper, we propose to solve the issue
with deletion of Bloom Filters by using a Withdrawal To
annOuncement (WTO) mapping that replaces withdrawal with
announcements, transforming deletions into additions or record
changes. Experimental evaluation show that the proposed
techniques improve largely the performance of Bloom Filter used
for forwarding lookup and open way for the use of Bloom Filters
in real operational settings.

L INTRODUCTION

Bloom Filter (BF) data structures have been applied to a
large set of applications in computer science [5][6][7]. Bloom
Filters are used for fast and memory efficient set membership
queries. In the past decade, applications of these structures to
networking problems have been proposed.

In order to increase lookup speed and reduce its cost and
power consumption, Dharmapurikar et al. [2] proposed the
Prefix Bloom Filter (PBF) structure that uses on-chip Bloom
Filter to represent the trie? used to find the longest matched
prefix. The evaluation shows that in average about 1.003 off-
chip memory accesses is needed for any single lookup, faster
than TCAM in average but with larger worst case complexity.
PBF only uses SRAM and achieved therefore lower cost and
lower power consumption. However, any lookup solution has

1 This work is supported by NSFC (61202489), and the National Science &
Technology Pillar Program No.2012BAHO01B03, and the Instrument Develop-
ing Project of CAS under Grant No.YZ201229.

Trie is a tree-like data structure allowing the organization of prefixes on a
digital basis by using the bits of prefixes to direct the branching, an excellent
survey of trie-based lookup solutions are provided in [1].
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to deal with updates that are frequent in the current operational
network. Unfortunately, Bloom Filter cannot support deletion
operations that are needed to do updates. Therefore, they have
to be replaced with Counting Bloom Filter (CBF) that uses a k&
bits counter to replace each bit of Bloom Filter array, ie.,
supporting deletion operations CBFes entails £ times more
memory. This can prevent CBFs to be stored in on-chip FPGA
memory. Moreover, in addition to false positive that is
common in BFs, CBF can suffer from false negatives
happening when a counter overflows [4]. False negative results
in wrong lookups that are not acceptable for ISPs.

Nonetheless, while deletion operations are problematic for
Bloom Filters, insertion operations are natural. We propose in
this paper the Withdrawal To annOuncement (WTQ) mapping
that transforms withdrawal messages to announcement
messages, that have the same effect on the forwarding
behaviour of the routing table. The technique is motivated by
the fact that when a prefix is withdrawn in a forwarding or
routing table, it always has a shorter less specific prefix that
has a default next-hop. The idea of WTO mapping is therefore
to transform a prefix deletion message into a prefix insertion
(or change) with the next-hop set to the next-hop of the closest
ancestor prefix node. We present the details of WTO mapping
in Section IV. As most of update and withdrawals happen in
the leaves, WTO mapping achieves excellent performances.

II.  WTO ALGORITHM

First we give some conclusions of Bloom Filter and

Counting Bloom Filter:

e Bloom Filter supports insertion operations and
membership query, but cannot support deletion operations.

e Bloom Filter has false positive, but no false negative.

e Counting Bloom Filter uses a counter in place of a bit of
Bloom Filter, hence can support deletion operations.

e Counting Bloom Filter has both false positive and false
negative.

In order to support incremental update, PBF adopts
Counting Bloom Filter, then two problems arise:



e If a counter in the Counting Bloom Filter costs x bits, then
X times memory is needed as compared with Bloom Filter.
Therefore, Counting Bloom Filter is probably too large to
be held in on-chip memory.

e Counting Bloom Filter has false negative. When false
negative occurs, PBF algorithm probably returns a
mistaken next-hop.

Actually, the above two problems can be solved if there is
no withdrawal message, but we cannot just ignore the
withdrawal messages.

Deletions are needed when withdrawal messages happen. A
withdrawal message means that the announced prefix and its
next-hop should be deleted from routing table, e.g., let’s
assume that the prefix1011*:4 has to withdraw. Now, if a
packet with destination address IP 10110* arrives, to which
egress should it be forwarded? In practice, there are always
shorter prefixes matching the IP, like 101%, 10* and *, in the
routing table. So in this example, the withdrawal message just
changes the longest matched prefix from 1011* to 101%*.
Therefore, in place of deleting the prefix 1011%*, one can just
change its next-hop to the next-hop of prefix 101*. By doing
this the forwarding behavior of the routing table will change.
Nonetheless, we have just transformed the withdrawal
messages into an announcement messages and suppress the
need for a deletion operation in Bloom Filters. This example
illustrates the rationale of Withdrawal To annOuncement
(WTO) mapping algorithm. WTO algorithm aims at changing
withdrawal message into announcement one while keeping the
forwarding behavior of routers unchanged.

By eliminating the need for deletion, WTO algorithm
enables to simply use a Bloom Filter instead of the Counting
Bloom Filter.

The WTO mapping algorithm works as follows. It seeks a
way to convert withdrawal messages to announcement
messages by changing the next-hop of the prefix to be deleted
to its nearest ancestor’s next-hop in the trie. For instance, as
shown in Figure 1, node A, B, C, D and R are 4 prefix nodes in
a trie and the circles represent that the egress port of these
nodes is 1, while the rectangles represent port 2. When a
withdrawal message: withdraw 101%, arrives instead of
removing node D and updating the Bloom Filter, WTO
algorithm changes the next-hop of node D to port 1 (the next-
hop of node C), suppressing the need to apply an operation on
the Bloom Filter.
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Figure 1. The scheme of WTO algorithm.

It is noteworthy that WTO algorithm may cause domino
effect. In the example shown in Figure 1, when deleting node C
after node D being deleted, WTO algorithm needs to change

both the egress port of node C and D to port 2. To address this
potential problem, a simple solution consists in checking the
sub-trie rooted at the updated node. However, this entails a
longer time and larger memory. To accelerate WTO mapping,
we assign a flag to each node. When during deletion operation,
the updated node is not really deleted but changed, just like the
node D in step I of Figure 1, the flag of the nearest ancestor
node (node C in Figure 1) should be set to true. During next
deletion, WTO algorithm finds that the flag of a node is true, it
continues to traverse the sub-trie to change the corresponding
nodes. This happens in the example of Figure 1, when node C
is deleted after node D.

However, getting the nearest ancestor and its flag needs a
pointer in each node to point back to its parent node. To avoid
this back pointer, we record the flag of the nearest ancestor
node in the next node during the traversal process needed to
find the updated node. This further reduces the additional
memory accesses resulting from back pointers.

The above technique reduces strongly in practice the
needed sub-trie traversals.

Nonetheless, when the domino effect happens, it needs
more time to apply an update than the common situations. The
rate of domino effect depends on the update messages. In other
words, the performance of WTO algorithm depends on the
characteristics of update messages, in particular the withdrawal
update messages. According to our previous experimental
results in [12], the update messages happen mainly in Leaves
nodes. This suggests that even when the domino effect happens,
only a few levels of the prefixes are affected.

In addition to this, we have also carried out large-scale
experiments and find that withdrawal messages are much fewer
than announcement messages (see Figure 3 in Section III). This
phenomenon indicates that WTO algorithm is applicable for
real routers. As explained above, the WTO mapping can fix the
of the major problems that lead authors of [2] to use CBFs in
place of BF, controlling therefore the memory increase.
Moreover, the increase in the number of memory accesses
induced by domino effect of the WTO algorithm is not too
large to result in performance loss (see Figure 6 in Section III).

III. EXPERIMENTAL RESULT

In this section, we will validate using empirical experiment
the proposed techniques to implement Bloom Filter based IP
lookup.

A. Experimental Settings

1) Data Set
The data set is taken from RIPE NCC [11] at www.ripe.net,
which collects routing updates from peers. In order to
objectively evaluate the performance of WTO algorithm, we
extracted the RIB on 2012/6/1 at 8:00 AM from 10 backbone
routers, and all corresponding update messages happening
during a full day are downloaded and parsed.

2) Computer Configuration

Our experiments have been conducted on a windows XP
sp3 machine with Pentium (R) Dual-Core CPU
5500@2.80GHz and 4G memory.

B. Experiments on WTO Algorithm

The x-axis of Figure 2~7 represents the update time of
update messages. For instance, '201210231945' means the time



2012-10-10 23:19:45. The labels, rrc00, rrc0l1, etc. are the
router ID defined by RIPE Network Coordination Centre [11].

As the WTO algorithm is executed for any withdrawal
messages, so we study the number of withdrawal messages.
We show in Figure 2 the number of withdrawal messages for
the 10 routing tables. The maximum value is around 927496
for one day (for rrc00). This number of withdrawal means in
average 927496/24/3600=~10.73 updates per second. Moreover

this number is small compared with the number of total updates:

16956829 that means in average 196.26 update messages per
second.
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Figure 2. The number of updates in one day over 12 routers.
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Figure 3. The ratio of the number of withdrawal update messages to that of
total update messages.

As mentioned in Section I, the relative rarity of 'withdrawal
messages' makes WTO algorithm work well. To validate this,
we plot the ratio of the number of withdrawal messages to the
total update messages in Figure 3. It can be observed that the
ratio ranges from 0.03 to 0.16 with a mean of 0.1. This
suggests that only 1/10 update messages are withdrawal. That
means WTO is performed in average 1/10 of time.

As mentioned in Section III, WTO algorithm may cause
domino effect. When the flag of updating node or the nearest
ancestor node is true, WTO algorithm must traverse the sub-
trie rooted at the updating node, then additional memory
accesses are needed. Actually, because update messages are

generally happening in 'Leaves' [12], additional memory
accesses are very low. We plot in Figure 4 the number of
additional memory accesses,. Results show that the maximum
number of additional memory accesses is 3620 over one day.
Given a common DRAM working at 333MHz, 3620 additional
memory accesses only need 3620/333000000=10.9us that is
negligible.
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Figure 4. The number of additional memory accesses using WTO algorithm
for 10 routing tables over one day.
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Figure 6. The number of additional memory accesses in average for each
withdrawal message.



To make a comparison, we plot the total memory accesses
for updates including announcement and withdrawal messages
over one day in Figure 5. The number of memory access
number is about 0.4 billion, 110497 times of the additional
3620 memory accesses. That’s to say, the negative effect of
time overhead brought by WTO algorithm is only around 10
of the original update time.

We show in Figure 6, the number of additional memory
accesses for each withdrawal after using WTO algorithm. It
can be observed that in average only 0.001 additional memory
accesses are needed.
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Figure 7. The ratio of the number of additional prefixes to that of total
prefixes on 10 routing tables over one day.
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The other negative effect of WTO algorithm is the
introduction of additional prefixes. As WTO algorithm
changes the withdrawal messages to announcement messages,
there will be more prefixes after using WTO algorithm. The
number of additional prefixes is an important metrics for WTO
algorithm, as too many additional prefixes means larger routing
table size, that might make WTO algorithm not practical.

According to Figure 2, there are 927496 update messages at
most. One might think that the number of additional prefixes
will be 927496. However, in practice the number is much
smaller as only a small fraction of prefixes are frequently
updated. We show in Figure 7 and 8, the number of additional
prefixes observed after applying WTO.

The ratio of the number of additional prefixes to the total
prefixes is shown in Figure 7. It shows that the ratio ranges
from 0.002 to 0.04 with a mean of 0.01. This means that WTO
algorithm results in average in only 0.01 additional prefixes
produced for each withdrawal message.

As shown in Figure 8, the number of additional prefixes
ranges from 979 to 13215 with a mean of 4050. This is much
smaller than the number withdrawal messages (927496). If the
router has enough memory, WTO algorithm can always work
well. If the memory becomes insufficient, we can periodically
perform a refresh, when the router is idle.

IV. CONCLUSION

In order to solve the issue raised by the usage of Bloom
Filter based techniques for IP lookup, we propose WTO
algorithm to solve the update problem for Longest Prefix
Matching. We carried out experiments to evaluate the
performance of WTO algorithm, and results show that they can
overcome the shortcomings of Bloom filter-based solutions at
the cost of negligible overhead.
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