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Abstract—Virtual router research has drawn increasing atten-
tion in recent years, and the most challenging issues of virtual 
routers are compression, lookup, and incremental update of 
10~200 routing tables. In this paper, we propose a set of solutions 
to achieve that storage, lookup time, and update time don’t ex-
pand to 10~200 times, but reduce to 1~2 times.1 

I. INTRODUCTION 

Network virtualization has attracted extensive concern over 
recent years, as it provides new possibilities for the evolution 
path to the Future Internet by building a practical testbed 
which can simulate the deployment and protocol of a new 
global Internet architecture. Virtual router is one of the most 
important research fields in network virtualization because of 
the essential role of routers in the Internet.  

Existing researches of implementations of virtual routers 
can be mainly classified into three categories: software-based 
solutions [1], FPGA-based solutions [2], and hybrid-structure-
based solutions [3]. They are all in pursuit of the instance 
number and the performance of virtual routers, and the key 
factors [5][6][7][8] determining the performance are storage 
structure, lookup algorithm, and update mechanism of virtual 
routing tables.  

Routing lookup and compression are well-studied research 
fields, and various solutions have been proposed, but they can 
scarcely be applied to 10~200 virtual routing tables directly. To 
operate 10~200 routing tables, some advocate separate solu-
tions [2][3], which can isolate the effects from each other. 
However, the hardware support takes on a linear growth with 
the increase of the number of virtual routers. In contrast, 
merged solutions [4][5][6][7][8] consolidate all individual rout-
ing tables into a shared trie to carry out intensive lookup, which 
can significantly reduce the hardware cost and power consump-
tion, especially when the number of virtual routers increases. 
Existing merged solutions adopt trie structure or SRAM pipe-
line: trie-based solutions need multiple memory accesses, 
hence cannot achieve fast lookup, while SRAM pipeline cannot 
hold multiple routing tables in on-chip memory, accordingly 
can hardly work well for virtual routers. 

In real routers, TCAM-based solutions are the de facto 
standard, owing to its simplicity and high lookup speed. There-
fore, we strive to hold the multiple virtual routing tables in one 
TCAM to achieve fast lookup, while aiming for fast incremen-
tal update. The main shortcomings of TCAM-based solutions 
are the high power consumption and high cost. To minimize 
the hardware cost, power consumption, and routing lookup 
delay, 1) we hold 10~200 routing tables in one TCAM chip to 
perform fast lookup; 2) we propose an update algorithm with 
complexity of O(1); 3) we achieve that the power consumption, 
lookup delay become 1/h of the original, where h is the for-
warding times in the virtual routers. 
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As far as we know, this is the first effort to store all virtual 
routing tables into a single TCAM; this is the first effort to 
achieve that one packet is only looked-up once from the source 
router to the destination router in a virtual network; this is also 
the first effort to achieve that one outside update message 
which would have been processed in every virtual router is 
updated only once. 

II. VIRTUAL ROUTING TABLES POLYMERIZATION 

Suppose there are n virtual routers in a virtual network, and 
one packet needs h hops in average to pass through this net-
work. At this moment, the requirements for routing table stor-
age and routing updates become n times as much as the origi-
nal, while the delay of routing lookup gets to h times as long as 
the original. Actually, there is only one node physically, thus 
intuitively the requirements for storage, lookup, and update can 
be reduced to 1 or 2 times. In this section, we propose Virtual 
Routing Tables Polymerization (VRTP) algorithm to polymer-
ize the requirements for routing table storage, lookup and in-
cremental update. 

i) With regard to the storage structure, VRTP adopts Trie 
Outline algorithm to draw an outline of all routing tables in a 
virtual network.  

Step I: As shown in Figure 1, every routing table is stored 
in a trie. We overlie all routing tables, and get an outline trie, 
which is then extended into a ‘healthy trie’. A healthy trie must 
satisfy two constraints: 1) all nodes excluding the root node 
must have a sibling node; 2) only leaf nodes have next-hops.  

 
Fig. 1.  The basic principle of trie outline algorithm. 

Step II: Every trie is pushed into the outline’s leaf nodes. 
As a result, the inner nodes of outline trie have no next-hop, 
but the leaf nodes have a next-hop array, accordingly the next-
hop information can be represented by a huge matrix.  

ii) With regard to lookup, based on this outline trie, we 
propose an approach to store the routing table in one TCAM 
for the first time, while existing algorithms don’t adopt TCAM, 
because one TCAM can only hold one or two backbone routing 
tables, and multiple TCAMs call for expensive cost and high 
power consumption. The naive TCAM approach is to put the 
prefixes of all routing tables in TCAM, thereby multiple 
TCAMs are needed, while the goal of VRTP is to adopt only 
one TCAM. The scheme of VRTP is as follows: as mentioned 
above, every leaf node of the outline trie has a next-hop array, 
consequently the associate SRAM of TCAM should be large 
enough to store a large number of next-hop array. If the SRAM 
cannot hold the next-hop array, VRTP puts another independ-
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ent SRAM to store the next-hop array, and the associate SRAM 
of TCAM merely stores an address which points to the corre-
sponding next-hop array. Experimental results show that 10 
routing tables can be held in a 700K TCAM. In addition, be-
cause there are only leaf nodes in outline trie, thus the prefixes 
in TCAM can be random, while traditional TCAM-based solu-
tions must put the prefixes in order of prefix length because of 
prefix overlap2. This also benefits the parallel lookup of TCAM 
a lot. 

Furthermore, we propose an approach to achieve that every 
packet which is forwarded h times in the virtual network mere-
ly be looked-up once. This is convenient to implement owing 
to the Trie Outline algorithm: given an incoming packet, the 
lookup result will get a next-hop array, which indicates all the 
next-hops that every virtual router should forward the packet to. 
In fact, only the virtual routers in the forwarding path need to 
lookup this packet. In this way, the lookup count of every 
packet can keep one with the increase of the virtual routers. 

iii) With regard to incremental update, update messages can 
be divided into inner nodes update and leaf nodes update, while 
inner nodes update can be changed into leaf nodes update. This 
provides a good opportunity for the application of our previ-
ously proposed Blind Spot (BS) algorithm [9]. The core idea of 
BS algorithm is to eliminate domino effect by setting those 
updating nodes which would have produced domino effect as 
Blind Spot, so as to operate fast update. The update complexity 
of BS algorithm is O(lookup+h), where the lookup complexity 
of TCAM is O(1), and the average depth of Blind Zone (h) is 
around 2 according to the experimental results. Therefore, the 
update complexity of VRTP is O(3), i.e., O(1). Although BS 
algorithm can avoid the prefix movements in TCAM, but the 
update time is still n times as long as one real routing table 
update using BS algorithm. In order to reduce n to 1, we classi-
fy the routing update messages into two categories: the update 
messages from outside and inside virtual network. Actually, 
most update messages come from outside network, and all vir-
tual routers must process them. For one outside update message, 
rather than update n virtual routing table one by one, VRTP 
update it once in the outline trie: 1) locate the update node, one 
inner node update can be translated into several leaf nodes up-
date; 2) the following update procedure is to update the corre-
sponding next-hop array of leaf nodes, which is convenient and 
fast. In this way, the update times can be reduced from n to 1. 

III. EVALUATION 

We have downloaded and parsed 10 routing tables and one-
day update messages from www.ripe.net to evaluate the num-
ber of prefixes and the update performance of outline trie.  

As shown in Figure 2, the x-axis represents the router’s ID, 
every bar stands for one router’s prefix number. The green line 
means the solid node (leaf node) number of the outline trie, 
while the red curve indicates the number of all nodes in the 
outline trie. It can be observed that the number of solid nodes 
which will be stored in TCAM keeps a little growth with the 
increase of virtual routers. This is because the routing tables of 
the same moment in backbone routers have the similarities of 
number and outline, and the similarities will be more remarka-
ble in the routers of one virtual network. Every rectangle-like 

                                                           
2 Prefixes overlap refers to that some prefixes are a part of others. The prefix 
of an inner node must be a part of leaf node prefix. In this case, an incoming 
IP could match multiple nodes, thus the prefixes of the matched nodes should 
be put orderly to select the longest matched prefixes by priority encoder. Due 
to the elimination of prefix overlap by Trie Outline algorithm, the priority 
encoder is no longer needed. 

area in Figure 3 is the update result of the marked router, and 
the x-axis of Figure 3 means the time of update messages. Re-
sults show that there are only around 2247 blind spots (0.31% 
of the overall prefix number) on 10 routers for one-day updates.  

 

Fig. 2.  the increase of the prefix number of the outline trie for 10 routing tables 
over one day. 

 

Fig. 3.  the increase of BS count on 10 routers for one-day update 
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