

Virtual Routing Tables Polymerization for Lookup and Update
Tong Yang, Shenjiang Zhang, Xianda Sun, Huichen Dai Ruian Duan, Jianyuan Lu, Zhian Mi and Bin Liu

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract—Virtual router research has drawn increasing atten-
tion in recent years, and the most challenging issues of virtual
routers are compression, lookup, and incremental update of
10~200 routing tables. In this paper, we propose a set of solutions
to achieve that storage, lookup time, and update time don’t ex-
pand to 10~200 times, but reduce to 1~2 times.1

I. INTRODUCTION

Network virtualization has attracted extensive concern over
recent years, as it provides new possibilities for the evolution
path to the Future Internet by building a practical testbed
which can simulate the deployment and protocol of a new
global Internet architecture. Virtual router is one of the most
important research fields in network virtualization because of
the essential role of routers in the Internet.

Existing researches of implementations of virtual routers
can be mainly classified into three categories: software-based
solutions [1], FPGA-based solutions [2], and hybrid-structure-
based solutions [3]. They are all in pursuit of the instance
number and the performance of virtual routers, and the key
factors [5][6][7][8] determining the performance are storage
structure, lookup algorithm, and update mechanism of virtual
routing tables.

Routing lookup and compression are well-studied research
fields, and various solutions have been proposed, but they can
scarcely be applied to 10~200 virtual routing tables directly. To
operate 10~200 routing tables, some advocate separate solu-
tions [2][3], which can isolate the effects from each other.
However, the hardware support takes on a linear growth with
the increase of the number of virtual routers. In contrast,
merged solutions [4][5][6][7][8] consolidate all individual rout-
ing tables into a shared trie to carry out intensive lookup, which
can significantly reduce the hardware cost and power consump-
tion, especially when the number of virtual routers increases.
Existing merged solutions adopt trie structure or SRAM pipe-
line: trie-based solutions need multiple memory accesses,
hence cannot achieve fast lookup, while SRAM pipeline cannot
hold multiple routing tables in on-chip memory, accordingly
can hardly work well for virtual routers.

In real routers, TCAM-based solutions are the de facto
standard, owing to its simplicity and high lookup speed. There-
fore, we strive to hold the multiple virtual routing tables in one
TCAM to achieve fast lookup, while aiming for fast incremen-
tal update. The main shortcomings of TCAM-based solutions
are the high power consumption and high cost. To minimize
the hardware cost, power consumption, and routing lookup
delay, 1) we hold 10~200 routing tables in one TCAM chip to
perform fast lookup; 2) we propose an update algorithm with
complexity of O(1); 3) we achieve that the power consumption,
lookup delay become 1/h of the original, where h is the for-
warding times in the virtual routers.

Authors’ Email: yangtongemail@gmail.com, {zsj09, sunxd08, dhc10, dra08,
lu-jy11}@mails.tsinghua.edu.cn, mzaort@gmail.com, liub@tsinghua.edu.cn
Supported by NSFC (61073171, 60873250), Tsinghua University Initiative
Scientific Research Program (20121080068), the Specialized Research Fund
for the Doctoral Program of Higher Education of China (20100002110051).

As far as we know, this is the first effort to store all virtual
routing tables into a single TCAM; this is the first effort to
achieve that one packet is only looked-up once from the source
router to the destination router in a virtual network; this is also
the first effort to achieve that one outside update message
which would have been processed in every virtual router is
updated only once.

II. VIRTUAL ROUTING TABLES POLYMERIZATION

Suppose there are n virtual routers in a virtual network, and
one packet needs h hops in average to pass through this net-
work. At this moment, the requirements for routing table stor-
age and routing updates become n times as much as the origi-
nal, while the delay of routing lookup gets to h times as long as
the original. Actually, there is only one node physically, thus
intuitively the requirements for storage, lookup, and update can
be reduced to 1 or 2 times. In this section, we propose Virtual
Routing Tables Polymerization (VRTP) algorithm to polymer-
ize the requirements for routing table storage, lookup and in-
cremental update.

i) With regard to the storage structure, VRTP adopts Trie
Outline algorithm to draw an outline of all routing tables in a
virtual network.

Step I: As shown in Figure 1, every routing table is stored
in a trie. We overlie all routing tables, and get an outline trie,
which is then extended into a ‘healthy trie’. A healthy trie must
satisfy two constraints: 1) all nodes excluding the root node
must have a sibling node; 2) only leaf nodes have next-hops.

Fig. 1. The basic principle of trie outline algorithm.

Step II: Every trie is pushed into the outline’s leaf nodes.
As a result, the inner nodes of outline trie have no next-hop,
but the leaf nodes have a next-hop array, accordingly the next-
hop information can be represented by a huge matrix.

ii) With regard to lookup, based on this outline trie, we
propose an approach to store the routing table in one TCAM
for the first time, while existing algorithms don’t adopt TCAM,
because one TCAM can only hold one or two backbone routing
tables, and multiple TCAMs call for expensive cost and high
power consumption. The naive TCAM approach is to put the
prefixes of all routing tables in TCAM, thereby multiple
TCAMs are needed, while the goal of VRTP is to adopt only
one TCAM. The scheme of VRTP is as follows: as mentioned
above, every leaf node of the outline trie has a next-hop array,
consequently the associate SRAM of TCAM should be large
enough to store a large number of next-hop array. If the SRAM
cannot hold the next-hop array, VRTP puts another independ-

2

ent SRAM to store the next-hop array, and the associate SRAM
of TCAM merely stores an address which points to the corre-
sponding next-hop array. Experimental results show that 10
routing tables can be held in a 700K TCAM. In addition, be-
cause there are only leaf nodes in outline trie, thus the prefixes
in TCAM can be random, while traditional TCAM-based solu-
tions must put the prefixes in order of prefix length because of
prefix overlap2. This also benefits the parallel lookup of TCAM
a lot.

Furthermore, we propose an approach to achieve that every
packet which is forwarded h times in the virtual network mere-
ly be looked-up once. This is convenient to implement owing
to the Trie Outline algorithm: given an incoming packet, the
lookup result will get a next-hop array, which indicates all the
next-hops that every virtual router should forward the packet to.
In fact, only the virtual routers in the forwarding path need to
lookup this packet. In this way, the lookup count of every
packet can keep one with the increase of the virtual routers.

iii) With regard to incremental update, update messages can
be divided into inner nodes update and leaf nodes update, while
inner nodes update can be changed into leaf nodes update. This
provides a good opportunity for the application of our previ-
ously proposed Blind Spot (BS) algorithm [9]. The core idea of
BS algorithm is to eliminate domino effect by setting those
updating nodes which would have produced domino effect as
Blind Spot, so as to operate fast update. The update complexity
of BS algorithm is O(lookup+h), where the lookup complexity
of TCAM is O(1), and the average depth of Blind Zone (h) is
around 2 according to the experimental results. Therefore, the
update complexity of VRTP is O(3), i.e., O(1). Although BS
algorithm can avoid the prefix movements in TCAM, but the
update time is still n times as long as one real routing table
update using BS algorithm. In order to reduce n to 1, we classi-
fy the routing update messages into two categories: the update
messages from outside and inside virtual network. Actually,
most update messages come from outside network, and all vir-
tual routers must process them. For one outside update message,
rather than update n virtual routing table one by one, VRTP
update it once in the outline trie: 1) locate the update node, one
inner node update can be translated into several leaf nodes up-
date; 2) the following update procedure is to update the corre-
sponding next-hop array of leaf nodes, which is convenient and
fast. In this way, the update times can be reduced from n to 1.

III. EVALUATION

We have downloaded and parsed 10 routing tables and one-
day update messages from www.ripe.net to evaluate the num-
ber of prefixes and the update performance of outline trie.

As shown in Figure 2, the x-axis represents the router’s ID,
every bar stands for one router’s prefix number. The green line
means the solid node (leaf node) number of the outline trie,
while the red curve indicates the number of all nodes in the
outline trie. It can be observed that the number of solid nodes
which will be stored in TCAM keeps a little growth with the
increase of virtual routers. This is because the routing tables of
the same moment in backbone routers have the similarities of
number and outline, and the similarities will be more remarka-
ble in the routers of one virtual network. Every rectangle-like

2 Prefixes overlap refers to that some prefixes are a part of others. The prefix
of an inner node must be a part of leaf node prefix. In this case, an incoming
IP could match multiple nodes, thus the prefixes of the matched nodes should
be put orderly to select the longest matched prefixes by priority encoder. Due
to the elimination of prefix overlap by Trie Outline algorithm, the priority
encoder is no longer needed.

area in Figure 3 is the update result of the marked router, and
the x-axis of Figure 3 means the time of update messages. Re-
sults show that there are only around 2247 blind spots (0.31%
of the overall prefix number) on 10 routers for one-day updates.

Fig. 2. the increase of the prefix number of the outline trie for 10 routing tables
over one day.

Fig. 3. the increase of BS count on 10 routers for one-day update

REFERENCES

[1] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, Sylvia
Ratnasamy. RouteBricks: Exploiting Parallelism To Scale Software
Routers. In Proc. SOSP 2009.

[2] M. B. Anwer, M. Motiwala, M. Tariq, and N. Feamster. SwitchBlade: A
platform for rapid deployment of network protocols on programmable
hardware. In Proc. ACM SIGCOMM, 2010.

[3] Deepak Unnikrishnan, Ramakrishna Vadlamani, Yong Liao, Abhishek
Dwaraki, Jérémie Crenne, Lixin Gao, and Russell Tessier. Scalable
Network Virtualization Using FPGAs. In Proc. FPGA 2010.

[4] J. Fu and J. Rexford. Efficient IP address lookup with a shared
forwarding table for multiple virtual routers. In Proc. CoNEXT 2008.

[5] H. Song, M. Kodialam, F. Hao, and T. V. Lakshman, “Building
scalable virtual routers with trie braiding,” In Proc. INFOCOM 2010.

[6] Thilan Ganegedara, Hoang Le, Viktor K. Prasanna. Towards On-the-fly
Incremental Updates for Virtualized Routers on FPGA. In Proc. FPL
2011.

[7] Hoang Le, Thilan Ganegedara and Viktor K. Prasanna. Memory-
Efficient and Scalable Virtual Routers Using FPGA. In Proc FGPA 2011.

[8] O˜ guzhan Erdem. Hoang Le, Viktor K. Prasanna. Cuneyt F. Bazlamac.
Hybrid Data Structure for IP Lookup in Virtual Routers Using FPGAs.
In Proc. FCCM 2011.

[9] T. Yang, Z. Mi, R. Duan, X. Guo, J. Lu, S. Zhang, X. Sun, B. Liu. An
Ultra-fast Universal Incremental Update Algorithm for Trie-based
Routing Lookup. Accepted by Proc. ICNP 2012.

0 1 2 3 4 5 6 7 8 11 12
0

200000

400000

600000

800000

1000000

1200000

1400000

of

 p
re

fix
es

of routing tables

 # of all nodes
 single fib size
 # of solid nodes

20
12

06
01

14
43

20
12

06
01

21
23

20
12

06
02

04
03

20
12

06
01

11
11

20
12

06
01

17
51

20
12

06
02

00
31

20
12

06
02

07
13

20
12

06
01

14
00

20
12

06
01

20
41

20
12

06
02

03
25

20
12

06
01

10
11

20
12

06
01

16
57

20
12

06
01

23
48

20
12

06
02

06
34

20
12

06
01

13
14

20
12

06
01

19
54

20
12

06
02

02
34

20
12

06
01

09
13

20
12

06
01

15
53

20
12

06
01

22
33

20
12

06
02

05
13

20
12

06
01

12
02

20
12

06
01

18
47

20
12

06
02

01
32

20
12

06
01

08
15

20
12

06
01

14
57

20
12

06
01

21
37

20
12

06
02

04
17

20
12

06
01

10
56

20
12

06
01

17
36

20
12

06
02

00
16

20
12

06
02

06
56

20
12

06
01

13
36

20
12

06
01

20
20

20
12

06
02

03
00

0

500

1000

1500

2000

2500

3000

3500

of

 b
lin

d
sp

ot

time

 # of blind spot

rrc15rrc14rrc11rrc10rrc7rrc5rrc4rrc2rrc1rrc0

