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Abstract—Sketch is a probabilistic data structure, and is widely
used for per-flow measurement in network. The most common
sketches are the CM sketch and its several variants. However,
given a limited memory size, these sketches always significantly
overestimate some flows, exhibiting poor accuracy. To address
this issue, we proposed a novel sketch named the Bloom sketch,
combining the sketch with the Bloom filter, another well-known
probabilistic data structure widely used for membership queries.
Extensive experiments based on real IP traces show that our
Bloom sketch achieves up to 14.47x higher accuracy compared
with the CM sketch, while exhibiting comparable insertion and
query speed. Our source code is available at Github [1].

I. INTRODUCTION

Per-flow measurement, which refers to estimating the num-
ber of packets in each flow (i.e., flow size), is a fundamental
issue in modern network. It can help detect SYN flooding
attack [2], alleviate network congestion [3|], find heavy hitters
[4] and heavy changes [5] in intrusion detection systems, etc.
Due to the high speed and huge volume of network traffic,
one kind of probabilistic data structures called sketches is
extensively used for per-flow measurement. The sketch targets
at performing approximate per-flow measurement at line speed
with a limited memory size. There are three typical sketches:
the CM [6], CU [7], and Count sketch [8]. Each of these
three sketches is a counter array with several hash functions.
When processing a packet, they extract the flow ID (e.g.,
source IP, destination IP, 5-tuple, efc.) from this packet, and
locate multiple counters in their counter array by calculating
multiple hashes on the flow ID. Then, CM increments all
the hashed counters by one; CU only increments all the
smallest counter(s). When given a flow ID, the CM/CU sketch
reports the minimum value of the hashed counters as the
corresponding flow size. For the count sketch and more, we
refer readers to the literature [8]—[13].

However, all conventional sketches cannot work well in real
network traffic. In real network traffic, the distribution of flow
sizes is skewed: a few flows (i.e., elephant flows) have large
sizes while most flows (i.e., mice flows) only have small sizes
[14]. As conventional sketches use multiple arrays of fixed-
size counters to perform the counting, the counter size should
be determined by the most elephant flows in network traffic.
Therefore, numerous mice flows cannot “fill up” the counters
that they are hashed to. That is, the high-order bits of most
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counters are wasted, which leads to poor memory efficiency.
Besides, given a limited memory size, conventional sketches
suffer from another problem: some mice flows are apt to be
significantly overestimated due to severe hash collisions with
elephant flows. We call this problem the elevation effects of
elephant flows. In this paper, we proposed the Bloom sketch
to perform memory-efficient counting based on hierarchical
counter arrays and reduce the elevation effects by employing
multiple Bloom filters.

II. THE BLOOM SKETCH ALGORITHM
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Fig. 1: Hierarchical counter arrays + Bloom filter layer.

Data structure: As shown in Figure the Bloom sketch
consists of A sketch layers (i.e., counter arrays): S1,Sa, ..., Sx,
with small counters, and A — 1 Bloom filter layers (i.e., bit
arrays): By, Ba, ..., Ba_1.

Insertions: When processing a packet with flow ID e, we
first locate d; hashed counters at S; by calculating d; hashes,
and increment the smallest hashed counter(s). If one or more
hashed counters overflow at S;, we have the following guaran-
tee: e must cause their dy hashed counters to overflow concur-
rently, since we always increment the smallest counter(s). This
guarantee provides us an opportunity to isolate each sketch or
Bloom filter layer from the others to a certain extent. We can
just use e as the hash key of the ds hash functions to locate
ds hashed counters at So. Then we increment the smallest
hashed counter(s) at Sy and set the d; hashed counters at S;
to 0. In addition, we uses e as the hash key to locate d hashed
bits at 13; and set these bits to one. Similarly, the property of
concurrent overflowing also applies to Sy and more. Therefore,
if S overflows also, we can similarly resort to S3 to record the
number of overflows, and set the d/, hashed bits at Ba to one.
Such operations will continue recursively, until no overflow
happens at one certain sketch layer.

Query: When given a flow ID e, we first get the smallest value
V1 of the d; hashed counters at S;. Then we need to identify



whether e has reached the higher layers during insertions by
checking whether the dj hashed bits at the layer B; are all
one. 1) If the d} hashed bits are not all one, we just report
the V; as the estimated flow size of e. 2) Otherwise, we need
to do the same operation at Sz and Bs. Such operations will
be performed continuously until the dy, hashed bits at By, are

not all one. Then we report the 23;1 (Vi x 225=19 ) as the
estimated flow size of e. Due to the isolation among the sketch
or Bloom filter layers, querying each of these layers can be
performed in parallel.

One Memory Access Bloom Filter: To accelerate the oper-
ations at the Bloom filter layers, we employ the one memory
access Bloom filter [15]]. Specifically, we confine the multiple
hashed bits at the Bloom filter layer within one machine word.
Besides, we split one 64-bit hash value into several bit strings
with user-defined length. We use these bit strings to first locate
a machine word at one certain Bloom filter layer, and then
locate multiple hashed bits within this machine word. In this
way, the cost that each insertion or query spent at each Bloom
filter layer is reduced to one memory access and one hash
computation.

Analysis: In the Bloom sketch, each sketch layer functions
like an independent sketch to record a small part of each flow
size. Due to the skewed distribution of flow sizes, the higher
sketch layer accessed by fewer packets can use less memory to
achieve the same accuracy. By leveraging a suitable scheme of
memory allocation, the memory efficiency can be guaranteed
because almost all bits of each counter are fully utilized.
The Bloom filter layers can reduce the elevation effects by
helping check the overflowing status at the corresponding
sketch layers.

III. PERFORMANCE EVALUATION

Experiment Setup: We use 6 real IP traces from the main
gateway of our campus, and use 5-tuple as the flow ID. We
set A = 4, locate 4 hashed counters or bits at each layer,
and allocate 0.1/0.9MB memory to Bloom filter/sketch layers.
The memory allocation within each type of layers follows
geometric series with common ratio of 0.125. We make source
code available at Github [1]].

Average AbsoLute Error (AAE): AAE is defined as
ﬁ > ie1 |fi — fil, where N is the number of flows and f;/ f;
is the real/estimated size of flow e;. Figure 2(a)| plots the AAEs
of different sketches on different IP tracecs. Our experimental
results show that averagely, the AAE of the Bloom sketch is
9.82, 5.10, and 6.26 times lower than the AAEs of the CM,
CU and C sketch, respectively.

Average Relat/i\ve Error (ARE): ARE is defined as
ﬁ > i1 ([fi—fil/ fi). Figure m'plots the ARE:s of different
sketches on different IP tracecs. Our experimental results show
that averagely, the ARE of the Bloom sketch is 14.47, 8.52,
and 9.19 times lower than the AREs of the CM, CU and C
sketch, respectively.

Throughput (T): We calculate the throughput for each inser-
tion or query with unit of mega-instructions per second (Mips).
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Fig. 2: Accuracy comparison on different IP traces.
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Fig. 3: Throughput comparison on different IP traces.

Figure [3(a)| and [3(b)| plot the insertion and query throughputs
of different sketches on different IP traces, respectively.
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