Out of Many We are One: Measuring Item Batch with
Clock-Sketch

Peiqing Chen" Dong Chen’ Lingxiao Zheng"
Peking University Peking University Peking University
Beijing Beijing Beijing
chenpeiqing@pku.edu.cn chendong18@pku.edu.cn zhenglingxiao@pku.edu.cn
Jizhou Li* Tong Yang' '
Peking University Peking University & Pengcheng
Beijing Laboratory
ljzh2014@pku.edu.cn Beijing
yangtongemail@gmail.com
ABSTRACT KEYWORDS

! Ttem batch denotes a consecutive sequence of identical items
that are close in time in a data stream. It is a useful data stream
pattern in cache, burst detection, APT detection ,etc. Basic item
batch measurement tasks include membership, cardinality, time
span and size. Currently, there is no algorithm tailored for item
batch measurement. The greatest challenge lies in accurately esti-
mating the time gap between two consecutive identical items. In
this paper, we propose Clock-sketch, a framework that introduces
the well-known CLOCK algorithm into item batch measurement.
The methodology of Clock-sketch is to clean outdated information
as much as possible, while guaranteeing that the information of all
items visited within the time window 7 is preserved. We conduct
experiments on three real-world datasets that feature in item batch
pattern. We compare the accuracy and throughput performance
of our Clock-sketch against the state-of-the-art and two naive ap-
proaches without using Clock-sketch technique. Results of item
batch activeness show that Clock-sketch outperforms the state-of-
the-art SWAMP in generating 50 times less false positive rate when
memory is small. All source codes are open-sourced and released
at Github.

CCS CONCEPTS

« Theory of computation — Sketching and sampling; - Infor-
mation systems — Data streams.

“Department of Computer Science and Technology, and National Engineering Labora-
tory for Big Data Analysis Technology and Application, Peking University, China
TPCL Research Center of Networks and Communications, Pengcheng Laboratory,
Shenzhen, China (e-mail: yangtongemail@gmail.com)

I This work is done under the guidance of the corresponding author: Tong Yang.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3452784

Item Batch; Clock; Sketch; Data stream mining

ACM Reference Format:

Peiging Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang. 2021.
Out of Many We are One: Measuring Item Batch with Clock-Sketch. In
Proceedings of the 2021 International Conference on Management of Data
(SIGMOD °21), June 20-25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3448016.3452784

1 INTRODUCTION

1.1 Background and Motivations

As the world grows interconnected, massive data transmission
has become pervasive in financial markets [8, 17], social network
[30] and web information retrieval [34]. Studying the pattern of
data streams, i.e., the internal correlation between items, can lead to
better understanding of data. We focus on an important data stream
pattern, namely item batch, and we are the first to study the pattern
of item batch. ? Given a threshold 7~ and the time series of item
a (i.e., the ith item a; arrives at t;), if time gap between (t;—1, t;)
and (t;, tj+1) is larger than 7~ and gap between (tx, ty1) is smaller
than 7 forany k = i,i+1, ..., j — 1, then items {a;, aj41, ..., aj} form
a batch B,. Given an item batch By, if all items have left for at
least time 7, we call it inactive, and these information is outdated.
Otherwise, we call it active. Basic item batch measurement includes
activeness, cardinality (the number of active item batches at a time),
time span, and size (the number of items contained). The following
are four common cases where item batch measurements can make
a real difference.

Case 1 - Cache: Cache flow is formed by a sequence of memory
fetching requests. Each memory fetching request is an item. Two
memory fetching requests with the same key are regarded as iden-
tical items. And an item batch is a continuous visit on the same key.
Item batch measurement results can provide beneficial a knowledge
for cache prefetching and help improve cache replacement policies.
On one hand, item batch measurement can help prefetching and
increase cache hit for periodical item batches. By observing the
starting time and time span of each item batch, we are able to find

2The definition of batch in item batch is different from Batch SGD in streaming data
[11, 12]. In this case of machine learning, a model is trained with a subset of data in
the data stream each time and does not differentiate the categories between these data.
However, in our item batch problem, we study batches of different categories.

https://doi.org/10.1145/3448016.3452784
https://doi.org/10.1145/3448016.3452784

item batches with periodical patterns. Therefore, prefetching an
item from a periodical item batch into the cache can realize cache
hit for all items in this item batch. On the other hand, item batch
measurement can help optimize Least Frequently Used (LFU) princi-
ple. For example, LFU stores items in cache only depending on their
historical frequency, and frequent items in the past will occupy
cache memory and hold new items out. With the help of item batch
measurement, we can find inactive item batches whose frequency
records are still high and evict these items to make space for new
incoming items. Another example is that LFU puts weight one on
each incoming item. Thus items from larger item batches are not
likely to be inserted into cache soon. With historical knowledge
of the size of past item batches, we will be able to judge whether
an incoming item belongs to a large item batch. If we change the
weight of replacement from one to the size of its past item batches,
larger incoming item batches will encounter fewer cache misses.
Case 2 - Burst detection: Burst detection in data streams is a hot
topic and has wide applications in text stream mining [21], bursty
topic mining [36], and trading volumes monitoring [39]. Current
work include [21, 36, 39]. These work studies different burst detec-
tion problems. For example, [21] detects bursty topics in text stream
based on a given topic, and [32] detects lasting and abrupt bursts
in linear time. However, none of these work supports per-flow (all
items identical to a forms a per item flow of a) burst detection in
real-time, which is an important topic in flow control and informa-
tion retrieval. With the help of item batch measurements, we will be
able to carry out per distinct item burst detection in real-time. For
example, when detecting bursts in a financial transaction stream,
each transaction is an item. Two transactions with the same sender
are regarded as identical items. A simple approach is to define bursts
as item batches with high density, i.e., those with larger size but a
smaller span. Further, by recording burst items, we will be able to
find frequently appeared burst items, which can be reported and
dealt with individually.

Case 3 - APT detection: Advanced Persistent Threat (APT) is a
cyber threat that poses great harm to the information security of
enterprises, government, and other organizations [15, 19, 33]. APT
generally uses low frequency and small scale flows so that it is hard
to be detected by traditional security measures. When detecting
APT in a network data stream, each L-4 packet is an item. Two
L-4 packets with the same header (e.g., source IP, destination IP,
source Port, destination Port, Protocol) are regarded as identical
items. APT can be viewed as a kind of suspicious per item flow in
the data stream. APT features in small size per batch, long time gap
between every two batches, and a large number of batches in total.
With the help of item batch measurement, we will be able to detect
suspicious flows and analyze this flow in the application layer.
Case 4 - Online advertisement: The online advertising is esti-
mated to be a $230 billion industry [28]. The data stream is gener-
ated when customers click on different commodities through web
pages. In the click stream of online advertisements, each click con-
tains information of the customer’s IP address, the commodity type
and the clicking time, etc.. Each click is an item. Two clicks with the
same customer’s IP address and commodity type are regarded as
identical items. An item batch is formed when continuous clicks on
the same type of commodity happen. Such item batches imply the

consumption habits of specific users: everlasting item batches indi-
cates the user’s enduring interest in specific commodity types, while
new item batches indicate a new focus of a customer. Additionally,
if we only study item batches belonging to a single customer, fur-
ther information can be revealed: customers who only keep a few
active item batches at a time are more focused on shopping, while
those who keep a lot of active item batches simultaneously appear
more aimless in shopping. Therefore, it would be more lucrative
to deliver targeted advertisement of specific commodity types to
the first kind of people and deliver a different of new products and
popular series to the second kind of people.

From the above cases, it is clear that item batch is most helpful
when it comes in real-time. For instance, in use case 1 of cache, real-
time measurement results can help carry out replacement policy at
once, thus minimizing cache miss; In use case 2 of burst detection,
a collision of bursts may cause congestion in network. Real-time
measurement results can help analyze the cycle of periodic bursts,
and manage the traffic to avoid future burst collision.

1.2 Our Solution

The major challenges of item batch measurement are: 1. efficiently
record comprehensive information of item batches with small time
and space overhead 2. detect and clean out-dated information (i.e.,
information of inactive batches) in time.. This calls for an estima-
tion of the gap between every two consecutive identical items in
the data stream. Currently, there is no algorithm tailored for item
batch measurements. A straightforward solution is to use a circular
queue to store all item IDs and time records (64 bits) of all items
within a time window 7. Though this approach can provide an
accurate result, it requires too much memory because of both the
high volume of data streams and the large number of item batches.
We aim to design a compact data structure that stores neither item
IDs nor time records to fit into CPU caches [38].

In this paper, we introduce the well-known CLOCK [13] algo-
rithm into item batch measurement for the first time, and propose
a framework named Clock-sketch. The key idea of CLOCK is con-
servative cleaning: preserving information of all items that are
visited within time window 7~ and only outdated information can
be cleaned. However, CLOCK still leaves outdated information, i.e.,
information of inactive item batches. For example, when using one
bit clock cell, CLOCK cleans all non-frequent items that are not
visited within 27 (detailed in Section 2.2), but may wrongly pre-
serve items that are visited beyond 7~ and within 27". We define
such time period as the error window. Items in the error window
may generate false positive errors when querying the activeness of
item batches.

The methodology of Clock-sketch is to clean outdated informa-
tion as much as possible, while guaranteeing that the information
of all items visited within time window 7 is preserved. To clean
outdated information as much as possible, we need to reduce the
impact of error window in item batch measurements. There are two
strategies: enlarging the clock cell size and increasing the number
of hash functions in the sketch. On the one hand, a larger clock cell
shrinks the size of error window. Clock-sketch uses s-bit clock cell
and accelerates the circular cleaning speed. This shrinks the error
window from 7 to % far smaller than that of one-bit clock cells.
On the other hand, more hash functions lower the impact of items

in the error window. In a sketch, information of each item will be
inserted into k > 1 randomly chosen cells which will be all used
later for the query. Cleaning any of the k cells will eliminate the
existence/footprints of the item in the sketch. Given an item q;, it
will be preserved in the sketch for an extra time J; (a;) beyond 7.
In other words, the error incurred by item a; lasts 8;(a;). §;(a;) is
related to the distance between the hash positions and position of
the clock hand. Using more hash functions will lead to a smaller
expectation of &;(a;) (see Figure 3). In summary, more clock bits
(larger s) requiring more memory usage leads to smaller error win-
dow size; more hash functions (larger k) requiring more memory
usage, leading to smaller §; of each item in the error window. There-
fore, given a fixed size of memory, there is a balance of parameters
s, k to minimize the measurement error. In this paper, we study the
best choice of parameters s and k through mathematical proofs in
Section 5 and verify it by experiments in Section 6.

The major contributions of this paper are as follows:

1. This is the first work to generalize item batch pattern from various
data stream applications.

2. We introduce CLOCK algorithm to measure item batch compre-
hensively.

3. We provide concrete mathematical analysis and extensive exper-
imental results.

1.3 Main Experimental Results

We test our Clock-sketch on three real-world datasets which feature
in item batch pattern and carried out experiments on both count-
based and time-based item batch definition. In measuring item
batch activeness, our Clock-sketch outperforms the state-of-the-
art SWAMP in generating 50 times less false positive rate. The
results are comparative in the other three tasks.All related codes
are open-sourced and available at Github anonymously [5].

2 RELATED WORK

2.1 Item Batch Measurement

Currently, no work is specially designed for item batch measure-
ment. However, some algorithms for sliding window measurement
can be introduced into activeness and cardinality task.

2.1.1 Algorithms for item batch activeness.

The Time-Out Bloom Filter (TOBF) [22] uses an array of times-
tamps. For insertion, it sets the k hashed locations as current time
teur. For query, if any of the k hashed timestamp is inactive (i.e.,
earlier than t¢y,r — 77), it reports an inactive item batch. Otherwise,
it returns true.

The Timing Bloom filter (TBF) [37] uses a wraparound counter
array to record arrival time instead of recording timestamps directly.
Every time an item is inserted, TBF scans a piece of the array to
remove inactive time records.

Sliding Window Approximate Measurement Protocol
(SWAMP) [7] uses a cyclic queue and a Tiny Table[16]. The cyclic
queue records the fingerprints of the latest w items. The Tiny Table
records the frequency of distinct items in the latest w items. For
insertion, the oldest fingerprint in the cyclic queue is replaced and
tuples concerned are updated in the Tiny Table.

2.1.2 Algorithms for item batch cardinality.

The Counter Vector Sketch (CVS) [27] uses an array of totally
n counters. For insertion, it sets the values of k hashed counters to
maximum c. Afterward, it randomly chooses several counters and
decrements them by 1. For query, if u among all n counters are non-
zero, the reported cardinality shall be ulnZ. CVS falls short in the
error induced by the randomness in picking counters to decrement.
The Timestamp-Vector algorithm (TSV) [20] uses an array of
totally n timestamps. For insertion, it sets the hashed counters
to current time t¢yr. For query, it counts the number of active
timestamps (i.e., timestamps no earlier than t¢,, — 77) in the array,
denoted as u. The reported cardinality is also uln%

2.2 CLOCK

CLOCK [13] is a classic cache policy proposed by Frank Corbat’o et
al.. CLOCK has wide applications in operating systems [13, 18, 23],
databases, and file systems [9]. Cache memory is commonly orga-
nized as an array of uniformly-sized units known as page counters,
just suited for storing a page extracted from the external memory.
CLOCK views this array of pages as a cyclic queue and attaches a
reference bit [13] to each page counter. What’s more, CLOCK uses
an additional thread called clock hand to cyclically update each
reference bit and corresponding page counter information that it
traverses. Suppose the cycle of clock hand traversing is 7. Pages
that are visited again within 7~ time will always get a cache hit,
while pages not visited again beyond 27" time will be automatically
cleaned from the cache, clearing space for other incoming pages.

The clock hand update and memory fetch events are independent.
The clock hand update is performed at a predefined constant speed
(i.e., T for a cycle). In the meantime of a memory fetch, the cleaning
process is still performing. In order to save space, we suppose both
the memory fetch and the clock hand update happen at time #; and
ty in Figure 1. At time #1, a cache hit happens at counter 5 and the
clock hand traverses counter 0. Upon the cache hit, the reference bit
of counter 5 updates to 1, while the information in the page counter
remains. Upon the clock hand traversal, the clock hand meets a
counter whose reference bit is 1. It changes the reference bit into 0,
and the page counter remains intact. At time ¢, a memory fetch is
directed to counter 7 and the clock hand traverses counter 3. Upon
the memory fetch, a new page pagey is fetched from the external
memory. The page counter stores page; and the attached reference
bit is set to 1. Upon the clock hand traversal, the clock hand meets
a counter whose reference bit is 0. It clears the page information
stored in page counter 3.

3 ALGORITHM
3.1 Preliminaries and Problem Statement

Preliminaries on item batch model: Item batch is a data stream
model. A data stream is an infinite sequence of items (allowing
duplication). An item batch is defined as a group of same items in
the data stream, where the time gap between each two adjacent
items is below a predefined threshold 7. Threshold 7 can be either
time-based (containing items in a time window with 7~ time units,
e.g., 10 ms) or count-based (containing 7 items, e.g., 1,000,000
items). These two kinds of definitions are equal when the data
stream passes at a constant speed.

I:l Page counter E] Reference bit
Fetch P,
(o] co [_[o] o [o] co col 7, o

c[z7] c1j c(z] cij czj cij c(z] cij

P,|1 [_EI I:E]

O CE s

clée] a2l cle] czj

pl,|o| |P21 o| p1,|1| |p21|o|
2las) | e, |:| s3] c[s] P, |:| 3]

Cache hit P, cl4] cl4]
t, : Before updates t, : After updates

cle] 2] cle] 2]

Py 1] P, 0] " [o]
casi [, [o] i cts] i3]
caj ca

t, : Before updates t, : After updates

Figure 1: Insertions and updates of basic CLOCK (one reference bit version)

Common sketch model: In recent years, sketches have become
popular data structures to deal with data stream [24-26, 29, 31]. Our
Clock-sketch can work with a series of sketch algorithms, which we
summarize as a common sketch model. The common sketch model
is an array of cells (called sketch cells). Each cell can be either a
bit, a counter, a timestamp, or a combination of them. Several hash
functions are used to hash each item into several cells, called hashed
cells. To insert an item into the sketch, the hashed cells of this item
are updated. The query of an item depends on all information stored
in all hashed cells.

Table 1: Notations used in the rest of the paper.

Notation Meaning
a an item in the data stream
a the item batch that a belongs to
teur current time
T size of a sliding window
n number of sketch)\clock cells in a sketch
scli] the i sketch cell in the sketch
celi] the i clock cell in the clock array
k number of hash functions
s number of bits in a clock

3.2 Clock-Sketch Framework

Data Structure: Clock-sketch is a common sketch model with a
clock-like structure. Each sketch cell in the model is attached with
an extra s bit cell, named as the clock cell. The cell array is viewed
as a cyclic queue, and a cleaning pointer sweeps through the clock
cells as time passes. The value in a clock cell is initialized as the
maximum value, 2° — 1, and will decrement by 1 when the pointer
sweeps through it. Different from CLOCK [13], we preserve the zero
value of clock cells as the valid flag. When the value is decremented
to zero, we think the sketch cell is invalid and clean the stored
information. Figure 4 gives an example of how Clock-sketch works:
Insertion: Given an incoming item, we first calculate the hash
functions and get the hashed cells, then update the cells. The sketch
cells are updated according to the sketch model, and the clock cells
are set to 25 — 1.

Query: The query process is the same as the sketch model. We
only refer to the information stored in sketch cells.

Cleaning process: A cleaning pointer cyclically sweeps through
the clock cells. Specifically, the cleaning pointer first points at the

past future
Ty Ty — Tewr —
| a; | b b cb C \—~time
4'—’{ 7T7 e —
25 =2

error window

standard window
Figure 2: Impact analysis of items in the error window

first cell in the array and sweeps through each clock cells one by
one. After the last cell of the array is swept through, the pointer
will point at the first cell again. For each clock cell, the pointer
decrements the value by 1. When the value of a clock cell reaches
zero, we clean the information stored in the corresponding sketch
cell. The cleaning process is parallel to the insertion or query. For a
time-based Clock-sketch, a clock cell is processed after a certain
number of time units pass, and for a count-based Clock-sketch, it is
processed after a certain number of items are inserted. For a sliding
window with size of 77, to make sure that items in the time window
will not be cleaned, the time for the pointer to sweep through the
whole array should be 25—7:2

3.3 Error Analysis

The error in Clock-sketch is generated mainly from two aspects.
The first aspect is the hash collision between active items, which
is the intrinsic flaw brought by the sketch model. If all hashed
cells of an item are the hashed cells of other items, then the stored
information of it may be overwritten or biased. 3

The second aspect is the effect of outdated items that is not
cleaned timely. To guarantee that any item in the time window will
not be cleaned, the hashed cells of each item can be swept through
by the cleaning pointer no more than 2° — 2 times. As a result, the
size of the time window should be at most 2° — 2 times the size of the
time for the cleaning pointer to circle the array. However, the items
appear in a small time span before the time window is outdated,
but their hashed cells may not be swept through 2° — 1 times, so
that they may not be considered outdated. The time span before the
sliding time window is called as the error window, and its size is

3The Bloom filter [10] uses an array of bits which are initially 0. There are 5 hash
locations for each item in the array. When an item a arrives, it sets all 5 bits to 1. For
an item which hasn’t appeared, if only 3 of its hashed locations are set to 1 by other
items, the algorithm still returns false because the remaining 2 bits are still 0. However,
if all 5 bits are set to 1 due to hash collision, the algorithm will return yes, which is a
biased answer.

.“‘I..“ .
N . A
N H N k)
| | N 9

O y 9
i ’0.-“' ’0.-“'

k=1 hash function k=4 hash functions

Figure 3: Impact of the number of hash functions k
the time for the pointer to circle the array (i.e., 53—). Figure 2 is an
example of outdated items. Item a only appears in the error window,
and may incur error in the measurement. Item b only appears in
the standard window and has no outdated information. Item c
appears in both the error window and the standard window, which
may incur error in some applications (e.g., item batch activeness
measurement) while not in other applications (e.g., item batch size
measurement).
Effect of parameter k: Figure 3 gives an example of an item in
the error window for a Clock-sketch using k = 1 hash functions or
using k = 4 hash functions. The item in the error window will not
be cleaned as long as any one of k hashed cells is not swept through
by the cleaning pointer in the last circle. Suppose the cleaning
pointer sweeping through one of the item’s hashed cell for the first
time happens delta; time after the item is inserted, then the item
will be kept in Clock-sketch for 7~ + delta;. The larger k is, the
smaller delta; is expected to be, and there is less possibility that a
outdated item is still kept in Clock-sketch.
Effect of parameter s: s is the number of bits for each clock cell.
A larger s can reduce the size of the error window, thus reduce
the error from outdated items. However, for a fixed memory of
Clock-sketch, a larger s means that each clock cell consumes more
memory, and the number of cells should be reduced to meet the
memory requirement. For the sketch model, the smaller the number
of cells is, the larger the possibility of a hash collision is.

Under the restriction of limited memory and a fixed sliding
window size, we want to select the optimal k and s to minimize
the error in measurements. In Section 5, we show how to pick the
optimal k and s for specific measurement tasks.

“'..“

4 APPLICATION

In this section, we showcase how clock framework can work to-
gether with the sketch data structure for basic item batch measure-
ments. In order to save space, we only demonstrate pseudocode
of item batch cardinality. The pseudocode of all algorithms are
released in the technical report in [6]

4.1 Item Batch Activeness

Item batch activeness denotes whether or not an item batch is
currently active. Specifically, an item batch By is active if and only
if an item a shows up within the past time window 7". We use the
Bloom filter[10] with Clock-sketch framework to detect item batch
activeness. We attach an s-bit clock cell to each cell (i.e., a bit) in
the Bloom filter. Noticing the fact that each cell is 1 if and only if
its corresponding clock cell is non-zero and vice versa, we can omit

i.a
g-.

the cell array and save one bit for each bucket. Therefore, a query
can be conducted based on the zeroness and nonzeroness of the
clock array.

Data structure: It contains an n-clock cell array, cc[0], cc[1], ...,
cc[n — 1] and k hash functions Hj, Ha, ..., Hi.. Each clock cell is
composed of s bits. All clock cells are initially set to 0.

Insert: When an item a arrives at the current time ty,;, we calculate
k hashed locations Iy, Iy, ..., I by li(a) = Hi(a)%n(i = 1,2,...,k).
Then we update the value to 2° — 1 at the llth, léh, l]‘;h clock cells.
Besides, we use an additional thread to circularly scans the whole
array at the speed of % per cycle. The thread decreases any clock
cell with a positive value by one each time.

Query: To query the activeness of item batch B,, we find the k
clock cells corresponding to item a. If all clock cells have non-zero
values, the return value is positive, i.e., B, is an active item batch.
Otherwise, the return value is negative, i.e., B, is an inactive item

batch.

4.2 Item Batch Cardinality

Item batch cardinality denotes the number of currently active item
batches. Specifically, if there are x different items within the past
time window 77, the current item batch cardinality is x. We use the
Bitmap[35] with Clock-sketch framework to measure item batch
cardinality. We attach an s-bit clock cell to each cell (i.e., a bit) in
the Bitmap. Same to the Bloom filter, we can omit the original cell
of the Bitmap and only depend on the zeroness and nonzeroness of
the clock cell array during query.

Data structure: It contains an n-clock cell array, cc[0], cc[1], ...,
cc[n — 1] and one hash function Hj. Each clock cell is composed of
s bits. All clock cells are initially set to 0.

Insert: When an item a arrives at the current time ¢, we calculate
one hash location I; by I;(a) = Hi(a)%n. Then we update the value
to 25 — 1 at the l{h clock cells. Besides, we use an additional thread
to circularly scans the whole array at the speed of % per cycle.
The thread decreases any clock cell with a positive value by one
each time.

Query: To query the cardinality of item batch B,, we count the
numbers of clock cells whose value are 0, denoted as u.The Bitmap
gives the maximum likelihood estimation to data stream cardinality
as: —nln %,

4.3 Item Batch Time Span

Item batch time span denotes the time gap between the first item
of B, and the current time t¢,. We remodel the Bloom filter[10]
to fit item batch time span measurement. By changing each sketch
cell of the Bloom filter from a bit to a 64-bit timestamp, we will be
able to record the arriving time of the first item a in item batch B,.
Data structure: It contains an n-clock cell array, cc[0], cc[1], ...,
cc[n — 1], n-sketch cell array, sc[0], sc[1], ..., sc[n — 1] and k hash
functions Hj, Ha, ..., Hy.. Each clock cell is composed of s bits and
each sketch cell is a 64-bit timestamp. All clock cells are initially
set to 0 and all sketch cells are initially set to 0.

Insert: When an item a arrives at the current time ¢y, we calculate
k hashed locations Iy, Iy, ..., I by l;j(a) = Hij(a)%n(i = 1,2,...,k).
Then we update the value to 2° — 1 at the llth, léh, . llt(h clock cells.
If the sketch cell sc[ll.th] is 0, then we set it to the current time

I_I"a I_I"a
255
. 37 | c[oj 0 | . 37 | c[oj 0 |

l Occupied sketch cell D Empty sketch cell @ Clock cell

Lol

7] a9 7] c[1]' C[7] aij az cij
o] (Lo][] [[o] W] [[o] L
c[6] c[2] c[e] C[2] cle] czj cle] c[2]
| 5N =]]] =]] W]
¥ cis] ol 2 d C[5]] @ 5] g a1 [[o] aa

cl4] a4
t,: Before inserting a t, : After inserting a

cl4] cl4]

t, : Before update t, : After update

Figure 4: Insertion and update of Clock-sketch, using 8-bit clock cell

teur. Besides, we use an additional thread to circularly scans the
whole array at the speed of 257:2 per cycle. The thread decreases
any clock cell with a positive value by one each time. Once the
value of cc[i](i = 1,2, ...,n) is decreased to 0, then we set 0 to the
sclil(i=1,2,..,n).

Query: To query the time span of item batch B,, we find the k
hashed clock cells and sketch cells corresponding to item a at the
current time ty,. If all clock cells have non-zero values, the life
span exists. Then we get the newest time (i.e., time closest to t¢y,r)
tpegin in the k sketch cells as the beginning time of the item batch
Bg. The time span can be represented by the value of tcur — tpegin-

4.4 Item Batch Size

Item batch size denotes the number of items in a currently active
item batch B,. Specifically, it measures the number of duplicate
items a between the arrival of the first item in B, and the current
time. We use the Count-Min sketch [14] with clock framework
to measure item batch size. We attach an s-bit clock cell to each
sketch cell (i.e., a counter) in the Count-Min sketch. Information of
count values in cells remains valid as long as their corresponding
clock cell values are non-zero. Therefore, a cell is able to record the
number of items within an item batch. On the other hand, when
the clock cell counts down to zero, the information in the sketch
cell is immediately erased, indicating the end of an item batch.
Data structure: It contains an n-clock cell array, cc[0], cc[1], ...,
cc[n — 1] and an n-sketch cell array, sc[0], sc[1], ..., sc[n — 1] and
k hash functions Hj,Hj,...,Hy. Hash function H; is attached to ith
n-counter array (i = 1,2, ..., d). Each clock cell is composed of s bits,
and each sketch cell is a counter. The size of the counter depends
on the actual size of the window in applications. All clock cells and
sketch cells are initially set to 0.

Insert: When an item a arrives at the current time t,,-, we calculate
k hashed locations Iy, Iy, ..., Iy by li(a) = Hi(a)%n(i = 1,2,...,k).
Then we increase the value of the cc[l;](i = 1,2,...,k) by 1. And
we update the value to 2° — 1 at clock cell cc[[;](i = 1,2,...,d).
Besides, we use an additional thread to circularly scans the whole
array at the speed of % per cycle. The thread decreases any clock
cell with a positive value by one each time. Once the value of the
ce[jl(i = 1,2,...,n) is decreased to 0, we set 0 to the sketch cell
sc[jli=1,2,..,n).

Query: To query the size of item batch B,, we find the k sketch cells
corresponding to item a. Firstly, we calculate k hashed locations

Ii, I, ..., 13 by li(a) = Hi(a)%n(i = 1,2,...,d). Then we get the k
sketch cells sc[l;] (i = 1,2, ..., k). The minimal value among the k
counters is the estimation of the item batch size.

5 MATHEMATICAL ANALYSIS

We demonstrate how to choose the best clock size s in the above four
applications. We give an analysis on count-based window 7, which
is same to time-based window when all items in the data stream
arrive at a constant speed. The time span of a stream is subject to
an exponential distribution with parameter A;. The number of new
streams that are generated in one unit of time is ng, and the size of
a stream subject to an exponential distribution with parameterAs.

5.1 Item Batch Membership

Item batch membership denotes whether an item belongs to a cur-
rent active item batch. We use BF+clock to measure it. Suppose that
the cell number of BF+clock is n, the number of hash functions is
k, the size of the time window is 77, and the number of bits per cell
is s. Our goal is to minimize the false positive rate f(s) while the
memory M = ns is fixed.

Considering the interruption of outdated elements, the total
number of active elements is 7 (1 + ﬁ). Since only half of the
hash mappings of outdated elements are valid (not cleaned up),

there are k7 (1 + 2(25—172)) valid hash mappings in total, So the FPR
is:
1 L k7'(1+m)
fO === TImIE -k
Similar to the usual bloom filter, the optimal k is —nnz__
’T(1+m)
Then e
f(s)~ 27k =2 "awy) @)
Plugn = %, and we get
_ Man1
flo~2 =2 T 3)

Since s = 2,3, ...,
s = 2, which is:

it is obvious that f(s) gets its minimum when

3Mln:
a7k =27 S 083517 @)
For comparison, the FPR of TBF is:
M
g =0(0.61857197) (5)

We can see that our algorithm is superior to TBF by a scale of
logT .
From equation (4), in order to achieve an FPR of ¢, the memory
our algorithm needs is:
8
3ln2

For comparison, in order to achieve a FPR of €, the memory that
SWAMP needs is:

1 1
Mi(e) = Tlogzg ~ 3.8472Tl0g2; (6)

Ma(e) > Tlogy -)

Our algorithm is also superior to SWAMP by a scale of log7". Let
T =2

My (e) > 16‘7'1092l 8)
€

So we can see that our algorithm is significantly superior to TBF.

5.2 Item Batch Cardinality

Item batch cardinality denotes how many different members have
arrived during the last time window. We use Bitmap+clock to mea-
sure it. Assume that the cell number of Bitmap+clock is n, the
number of hash functions is k, the size of time window is 7, and
the number of bits per cell is s. Our goal is to minimize the rela-
tive error RE(s) while the memory M = ns is fixed. Considering
the interruption of outdated elements, an upper bound of the total
number of active elements is

mo = m(1+ =—) ©)

Assume that the number of 0 in Bitmap is u, then the output of
our algorithm m is:

mp =-n Y (10)
n

It is easy to see that the probability of “a certain cell of Bitmap

mg
is0”is (1-1/n)™ <e”n ,so
m _mo
ne”n <E(u) <ne n (11)

Therefore, the probability of “the relative error of a single measure
is greater than (ﬁ +€)” P(s, €) satisfies :

P(s,€) < Pr(Jmy — mg| > em)
< Pr(jlu—E(u)| > ne_%(Hﬁ)(l—e_mTe) (12)
< Pr(ju-E(u)| > ni)

Use Hoeffding Bound, and we see that:

P(s,€) < Pr(lu—E(u)| > ng) <2 (13)

Lete = %ln(%), then the equation below satisfies with a proba-
bility of not less than 1 — &:

RE(s) <

8 2
—In(— 14
55 T\, (3 (14)

Plugn = %:

1 8s 2
RE(S) < m + Mln(g) (15)

5.3 Item Batch Time Span

Item batch time span denotes how long an active item batch has
last. We use BF+clock with timestamp to measure it. Assume that
the cell number of BF+clock with timestamp is n, the number of
hash functions is k, the size of the time window is 7, the number
of bits per cell is s, and the number of bits per timestamp is ¢ (in
our experiment, ¢t = 64). Our goal is to minimize the error rate f(s)
given that the memory M = n(s + t) is fixed. In BF+clock with
timestamp the error rate consists of two parts: the first part fi(s) is
caused by hash collision, and the second part f>(s) is caused by the
interruption of outdated elements. Then:

F(s) < fi(s) + fa(s) (16)

Assume that when the generation and extinction of streams
come into a balance, the number of active streams is x, then the
average number of streams that disappears in one unit of time is
A1x due to the property of exponential distribution. So A1x = ny,

that is
no
x=— 17
> (7)
First we consider f2(s). f2(s)consists of two parts :

1
252
disappears in the time range of (7, (1+ 251_2)7"]. Since there
are x active streams at (1+ 25—172)‘7~ time. Assume the number

of streams that disappear during that period is x1, then

a) The stream generated before (1 +)T time ago, and

MT

E[x1] =x(1—e 7=2) (18)

b) The stream both generates and disappears in the time range

of (7,(1+ 251_2)‘7']. Assume the number of streams that
disappear during that period is x2, then

E[x;] = no(1—e wz™) x —— — (19)
= 25 -2 M

The probability of “the stream satisfying either of the two condi-
tions above will make the query result wrong” is ﬁ so
X1+ Xx2
(x1+x2+x)(k+1)

fa(s) = (20)

We can see that x1 + x2 is much smaller than x when s is not too
small, so f2(s) is approximately linear to x; and x3, so

 E[x]+Elx]
BN~ T+ Bl + 0 (k5 D @1

Then we consider fi(s). the valid hash mapping of streams is at
most k(x + x1 + x2). Similar to normal BF, we can get

_ k(x+x1+x7) k

fils)=(1-e n) (22)
Finally, plug x and n = SM?, and we get:
F(s) = fi(s) + E[f2(s)]
~(1-¢ R)+ M7
(MT +no(2%5=2))(k+1)

(23)

Plug the concrete value of A1, M, k, t, 7", ng in experimental con-

ditions, and we get that the optimal s generally lies in [8, 64], and
it increases as M increases and 7~ decreases.

5.4 Item Batch Size

Item batch size denotes how many members an active item batch
has. We use CM+clock to measure it. Assume that the cell number
of a CM+clock array is n, the number of arrays is k, the size of time
window is 7, the number of bits per cell is s, and the number of
bits per counter is b (in our experiment, b = 16). Our goal is to
minimize the relative error given that the memory M = kn(s +1) is
fixed. Since the real value of size is fixed, minimizing the relative
error is equivalent to minimizing the absolute error f(s). Ignoring
the interruption of outdated elements, there are two types of error:
First, before the stream of an element e starts, its counters may not
be 0. Second, after the stream of e starts, its counters may be in
collision with other streams. Assume that when the stream of e
starts, the value of i — th counter of e is Xj, and after the stream of
e starts, the second-type error of i — thcounter of e is ¥;. Then

f(s) =min(X1 + Y1, X2 + Yo, .., Xj + Y1) (24)

Assume that when the generation and extinction of streams
come into a balance, the number of active streams is x, then the
average number of streams that disappears in one unit of time is
A1x due to the property of exponential distribution. So A1x = ny,
that is

no
x = 7 (25)

In one counter array, these streams have x hash mappings, so
the probability of “a certain cell of counter array is not 0” is 1 —
(1-1/n)* =~ 1- e~ n. We can assume that z2 = n"—/{’l is far less
than 1 so that it is almost impossible that one cell is simultaneously
used by two streams before the stream of a certain element e starts.
Therefore, in the condition that this cell is non-zero its value subject
to an exponential distribution with parameter A;. So, for any i =
1,2,..k

Pr(X;>m)=(1—e n)e ™™ VYm>0 (26)

and the expectation of Xj is
_x 1
E[Xi] = (1-¢7H) @)
2

. no -
Since % = ﬁ is far less than 1, we have:
1

no

N — 28
nll/lz ()

E[Xi]

Then we consider Y;. We can assume that when measuring, the

time span of the stream of e, t(e), subject to an exponential distri-

bution with parameterl;. Since t(e) elements arrive during ¢(e)
time, we can get:

sy = 2 - 2 9)
So
ELX; + Y] = 222 (30)

niAidg
Apparently, X; + Y;is non-negative, so according to Markov inequal-
ity :

P(f(s) > ¢

+A
22y _ p(X;+Y; > cE[X; + Y]k < ek ve > 1
nAidg
(31)

M

k(s+Db)
k(s+b)(ng + A
PG5 > FEED0)

Note that we have not take the interruption of outdated elements
into consideration. Similar to bf+clock with timestamp, we know
that the probability of “there is an interruption of outdated element,

Plugn =

y<ckves1 (32)

and it makes the query result wrong” is m So, af-
ter taking the interruption of outdated elements into consideration,
we have:
k(s+b)(no+A2)
P(f(s) >¢ R V7YY P
K, MT
(MT +no(25 -2))(k+1)°
Plug the concrete parameters, and we get that when s = 2, f(s)
is lower than the case that equals to other values (4, 8, 16, 32) with
high probability. However, when s = 2, the probability of “there is
an interruption of outdated element and it makes the query result
wrong” is also larger than other cases, which may bring very big
errors. So in practice, the relative error of s = 2 and s = 4 is almost
the same (s = 4 is slightly better when memory is large, and s = 2
is slightly better when memory is small).

6 EXPERIMENTAL RESULTS

In this section, we provide experimental results of our Clock-sketch
so as to give practical proof for mathematical analysis in Section
5. All abbreviations of Clock-sketch applications and the state-of-
the-art are used in the evaluation, and their full name are shown in
Table 2.

(33)
Ve > 1

<c

Table 2: Abbreviations in experiments

Abbreviation | Full name
BF+clock Clock-sketch for item batch activeness
BM-+clock Clock-sketch for item batch cardinality
BF-ts+clock | Clock-sketch for item batch time span

CM+clock Clock-sketch for item batch size

TBF Timing Bloom Filter

TOBF Time-Out Bloom Filter
TSV Timestamp Vector algorithm
SWAMP Sliding Window Approximate Measure-
ment Protocol
CVS Counter Vector Sketch

6.1 Experimental Setup

Implementation: We implement Clock-sketch and all other al-
gorithms in C++. The hash functions are implemented using the
32-bit Bob Hash (obtained from the open-source website [1]) with
different initial seeds.

Datasets: We use three datasets and carry out experiments on the
above mentioned algorithms. These datasets are all data streams
that feature in item batch pattern.

1) CAIDA is a public traffic dataset released by CAIDA [2]. Each
trace collected from the dataset contains approximately 30M items
and 600K distinct items (srcIP). CAIDA features in item batch pat-
tern of flow transmission.

2) Criteo Dataset contains feature values and conversion feedback
for clicked display ads sampled over a two-month period.[3]. Every
ad is associated with a timestamp and 9 categorical terms hashed
for anonymity, for a total of 150K unique hashed categorical terms.
Criteo features in item batch patterns of user behavior.

3) Network Dataset contains users’ posting history on the stack
exchange website [4]. Each item has three values u,v,t, which means
user u answered user v’s question at time t. We use u as ID. Network
also features in item batch pattern of user behavior.

We carry out count-based experiment on CAIDA, Criteo and Net-
work datasets to prove the mathematical analysis in Section 5. For
generality, we carry out time-based experiment on CAIDA which
demonstrates similar experimental results. Due to space limitations,
we display graphs of four experiments on item batch membership
measurement, and give CAIDA (count-based) as a representative
for the other three tasks.

Computation Platform: We conduct the experiments on a ma-
chine with two 6-core processors (12 threads, Intel Core i7 8700K
CPU @4.8 GHz) and 64 GB DRAM memory @3600MHz. Each pro-
cessor has three levels of cache memory: one 32KB L1 data caches
and one 32KB L1 instruction cache for each core, one 256KB L2
cache for each core, and one 15MB L3 cache shared by all cores.
Metrics:

1)False Positive Rate (FPR): -, where m denotes the number
of queried inactive item batches, and n denotes the number of
queries that returns positive. We use FPR to evaluate the accuracy
of BF+clock. Because we use inactive item batches to perform query,
there will only be false positives but no true positives.

2)Relative Error (RE): @ where f denotes the true value of

the measurement results and J?denotes the estimated measurement
result of f. We use RE to evaluate the accuracy of BM+clock and
BF-ts+clock. For BM+clock, f is the number of distinct and active
item batches. For BF-ts+clock, f is the number of item batches
whose time span is accurately measured. RE is a suitable metric for
BF-ts+clock because the algorithm either gives an accurate answer
or a high valuation.

3) Average Relative Error (ARE): ﬁ Yeew lfi— fil/f;, where f;

is the real frequency of item e;, f; is its estimated frequency, and ¥
is the query set. We use ARE to evaluate the accuracy of CM+clock
by querying each active item batch once.

4) Throughput: Million operations (insertions or queries) per sec-
ond (Mops). In comparing Clock-sketch with the state-of-the-art,
we only test time consumed to insert into each sketch cell because
the clock cell traversal can be performed by another thread in prac-
tice. Further, we study the relation between clock cell’s size and
throughput. In this case, we include the clock traversal time to dis-
play the effect. Experiments are repeated 10 times and the average
throughput is reported.

Multithread throughput: Using two threads to perform the inser-
tion and cleaning process will cause overhead in synchronization,
which lowers throughput. To raise throughput, we use two meth-
ods: 1) Cancelling the synchronization between the insertion thread
and the cleaning thread: Cancelling data synchronization between
the insertion thread and the cleaning thread only affects a few cells,
which are very likely to be cleaned in the following time. Therefore,

cancelling synchronization will barely affect accuracy. 2) Using
SIMD acceleration: Because the cleaning thread performs identical
operation on an array of cells, this process can be accelerated using
SIMD.

6.2 Item Batch Activeness

Optimal Clock Cell Size (Figure 5). We show the performance
of BF+clock with different clock size s under the same memory
and window size constraint. We pick the optimal number of hash
functions k according to the given clock size s. Experiment results
show that picking s = 2 always leads to the lowest FPR, which
confirmed the results in Section 5.1.

Accuracy evaluation (Figure 6). We compare BF+clock with the
state-of-the-art, namely TBF, TOBF, SWAMP. For BF+clock, we
set s = 2 and optimal hash function number according to 5.1. We
use the recommended parameter for algorithms for comparison.
Respectively, we set 18 bits for each counter and 8 hash functions of
TBF [37]. For TOBF [22], we use the 64-bit timestamp. For SWAMP,
we use its ISMEMBER estimator [7]. All data points that are not
shown in these graphs denote zero FPR according to our estimation.
Results show when the window size is 21°, and the memory is
limited from 8 KB to 512 KB, our algorithm is better than the state-
of-the-art for the different datasets, especially when memory is
small. The FPR is two orders of magnitude lower than the other
algorithms when the memory is less than 64 KB. Moreover, the
ideal curve denotes estimating item batch activeness by artificially
eliminating the error window, i.e., only items from tcy,r — 7 to teyr
into a Bloom filter and query activeness. Experimental results from
all datasets demonstrates that our clock-sketch algorithm, BF+clock,
is the best approach to the ideal curve.

Stability evaluation (Figure 7). We show that the BF+clock gives
a comparable FPR when being queried at different times. This indi-
cates that BF+clock is suitable for enduring operation.
Evaluation on window size (Figure 8). We give a FPR trend
under different window sizes and memory restrictions. On all four
datasets used, BF+clock displays a diminishing FPR when the win-
dow size shrinks or memory expands.

Throughput evaluation (Figure 12). We use a memory of 8KB
and a window size of 4096 for Bf+clock. It reaches a throughput at
about 20 Mops in both insertion and query, which is already high
enough and doesn’t need SIMD acceleration. This throughput rate
rivals all state-of-the-art.

Evaluation on cache policies (Figure 8). We compare BF+clock
with a typical cache policy, namely LFU (Least Frequently Used),
under different cache sizes. For each cache miss, BF+clock chooses
the next vacant cell or inactive cell to store the new item. We
choose the window size of BF+clock as twice the size of cache,
because we want to let the cache store all the active items in the
time window and there are duplicate items in the time window. In
real applications, the size of BF+clock is small compared to cache
storage and can be neglected. Experimental results show that our
BF+clock algorithm generally has a higher hit rate than LFU. When
the cache size is limited, BF+clock performs notably better.

—@— 16KB —&— 32KB —@— 16KB —A— 32KB —@— 16KB —A— 32KB —@— 16KB —&— 32KB

v—FPR I:l # clock cell —#— 64KB —v— 128KB —— 64KB —v— 128KB —— 64KB —v— 128KB —— 64KB —v— 128KB
5 10° 10° 10° 10°
10 600k ==
500k 101 S 10 10%)
10* = 10 102 YY) jor AT ! i e e
. 400k S . /‘r/‘ x o _2,/l '/v/
£ 102 a00k § 10 &104 &104 S &10 /
o - - ! ! ! ! !
10° HH 200k # 103 10 s / 10 s 10
10° 10
10* ﬂ H oo 10% 10 10°, 10
2345678 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Clock cell size Clock cell size Clock cell size Clock cell size Clock cell size

(a) Clock cell number (b) CAIDA(count-based) (c) Criteo(count-based) (d) Network(count-based) (e) CAIDA(time-based)

Figure 5: Optimal clock cell size for BF+clock under fixed memory. When using BF+clock to measure item batch activeness,
the optimal clock size is always 2 under different memory constraints. Under fixed memory, as the clock cell size grows, the
number of clock cells decreases, which increases the possibility of hash collisions, further increasing FPR. Figure 5a shows
the relationship among clock cell size, the number of clock cells, and FPR when memory is 128KB.

10

—@— BF+clock —&— SWAMP —@— BF+clock —&— SWAMP —®— BF+clock —&— SWAMP —@— BF+clock —&— SWAMP
—#— TOBF —¥— TBF —#— Ideal —#— TOBF —y— TBF —*— Ideal —#— TOBF —y— TBF —#— Ideal —#—TOBF —— TBF —#— Ideal
10° 10%— \‘\. 10° .\' 100 —
3 K
1020 102 102P5 \ \ 107205
x x \ @ A x
o [\ a
w w X w

1 10 \ 104 104+
¥ \ *

624 25 26 27 28 2° 10-624 25 26 27 28 29 10-62“ 25 26 27 28 20 10-62“ 25 26 27 28 2°

Memory (KB) Memory (KB) Memory (KB) Memory (KB)

(a) CAIDA(count-based) (b) Criteo(count-based) (c) Network(count-based) (d) CAIDA(time-based)

Figure 6: Accuracy evaluation of item batch activeness

—@— T=1<<15 —A— T=1<<16 —@— T=1<<15 —A— T=1<<16 —@— T=1<<15 —A— T=1<<16 —@— T=1<<15 —A— T=1<<16
—— T=1<<17 —— T=1<<17 —— T=1<<17 —— T=1<<17
10° 10° 10° 10°
= - * . " T T
L0y 107 1 L 107 o 10 A
—
& S DD SR I S e &
105 o ¢ 107 10 107} —g—o——g 4
e —
3 -3 -3 -3
07 8 9 10 ¥ 7 8 9 10 ¥ 7 & 9 10 ¥ 7 8 9 10
Time (*window) Time (*window) Time (*window) Time (*window)

(a) CAIDA(count-based) (b) Criteo(count-based) (c) Network(count-based) (d) CAIDA(time-based)

Figure 7: Stability evaluation of BF+clock
—@— T=1<<15 —A— T=1<<16 —@— T=1<<15 —&— T=1<<16 —@— T=1<<15 —A— T=1<<16 —@— T=1<<15 —A— T=1<<16
——T=1<<17 ——T=1<<17 ——T=1<<17 ——T=1<<17

10° 10° 10° 10°

AN B e S S N

~
10+ y 10 \ 10* N 10* \
10'62“ 2% 26 27 10'624 2° 26 27 l0'624 2% 2° 27 10'62“ 25 26 27
Memory (KB) Memory (KB) Memory (KB) Memory (KB)

(a) CAIDA(count-based) (b) Criteo(count-based) (c) Network(count-based) (d) CAIDA(time-based)

Figure 8: Window size evaluation of BF+clock

6.3 Item Batch Cardinalit theoretical optimal clock size is s = 8 (5.2), which corresponds to
Yy P %

Optimal Clock Cell Size (Figure 9a). We show the optimal clock the experimental ?SUItS-])

size s under different constraints when using CAIDA and count- Accuracy evaluation (Figure 9b). We compare BM+clock with

the state-of-the-art, namely TSV, CVS, SWAMP. We choose optimal
k and s for BM+clock and recommended parameter for algorithms
for comparison. Specifically, we use 64-bit timestamp for TSV, the
maximum value of counter as 10 for CVS and use DISTINCTMLE

based time. We give an error bound of RE(s), ﬁ + 4/ ﬁ—flln(f—s).
Given memory M = 128KB, window size W = 16384 and § = 0.8,

—@— M=1KB —A— M=2KB —@— BM+clock —&— CSV

—O0— T=1<<12 —A—T=1<<13 —@— T=1<<12 —A—T=1<<14

T M2AKB v M=BKB —#— SWAMP —¥—TSV —m—T=1<<14 —m—T=1<<16
100 —— M=16KB 105 0.025 0.025
S §103i \ 5 002 5 002
'-'Elo = \ \ \ £0.015 Wo.015
Q 1 D 2
B2 510 & 001 £ om
310 [[5] [9]
© 1510 ©0.005 0,005
- -3
0345 6 7 8 ot 22 20 20 5 %6 8 10 12 14 2 B 20 2 2 o
Clock cell size Memory (KB) Time (*window) Memory (KB)

(a) Optimal clock size (b) Accuracy evaluation

(c) Stability evaluation (d) Window size evaluation

Figure 9: Evaluation of item batch cardinality

—8— M=16KB —&— M=32KB —@&— BF-ts+clock

—@— T=1<<12 —A—T=1<<14 —@— T=1<<10 —A—T=1<<12

—®— M=64KB —y— M=128KB —A— Naive —B—T=1<<16 —m— T=1<<14
10° 10° 10° - 10°
repeoeeeseessel N S
3 5
w 1% N 0:10 b \
x - 2N A\
810" & 8107 g10 2
102 N <
10° & ny
2 0-3 -4 -4
1046 8 1012 14 16 28 27 28 2 0% 7 8 9 10 W 2 7 5
Clock cell size Memory (KB) Time (*window) Memory (KB)

(a) Optimal clock size (b) Accuracy evaluation

(c) Stability evaluation (d) Window size evaluation

Figure 10: Evaluation of item batch time span

—@— M=8KB —&— M=16KB —@— CM+clock —@— T=1<<10 —A— T=1<<12 —@— T=1<<10 —A— T=1<<12
—— M=32KB —y— M=64KB —A— Naive ——T=1<<14 —m— T=1<<14
2
10t ° oo 00— 10 o
v 10 102
A__k——H‘" '\'
w 1004 W w w ™
o @ 10° x x
< < ‘\. <10 s < g0 \
107 '\‘N '\1 '\
2 2 2 '\‘
-2 X - X
10 > 3 4 5 6 7 8 0 26 27 28 29 10 6 7 8 9 10 10 21 22 23 24 25 26 o7
Clock cell size Memory (KB) Time (*window) Memory (KB)

(a) Optimal clock size (b) Accuracy evaluation

(c) Stability evaluation (d) Window size evaluation

Figure 11: Evaluation of item batch size

[Jinsert P777] Query

730
5]
220}
5 %
2 %
g’ 10
=
Fo
BF+clock TBF TOBF SWAMP
Figure 12: Throughput comparison of item batch activeness
—@— LFU —A— BF+clock
0.7
0.6 /?‘V‘
& T
©
x0.5 /\/‘ /
E ./u/.
0.4 ./q

0%2 35 27 25 26 27 27 2°
Cache Size (*10)
Figure 13: Hit rate comparison on cache size

estimator for SWAMP. Results show that our bitmap algorithm
generally performs better than the state-of-the-art when the whin-
dow size is 212, and the memory varies from 2 KB to 32 KB. When
the memory is less than 32 KB, the RE of our algorithm is more
than two orders of magnitude lower than TSV and SWAMP.Our
algorithm is also a little better than the CVS in almost all cases.
Stability evaluation (Figure 9c). We show the BM+clock’s RE
fluctuation with time. When cardinality changes as time passes,
measurement error follows. Generally, RE is beneath 0.08 when
memory M = 4 KB and window size W = 212.

Evaluation on window size: Figure 9d gives a RE trend with
different window size. On the Caida dataset, when the memory is
larger than 4 KB, the case of window size 7~ = 2!4 is better than
the case of window size 7~ = 212 or 7~ = 210,

Throughput evaluation. In throughput comparison with the
state-of-the-art, we use a memory of 8KB and a window size of 8192.
The insertion throughput for BM+clock, CVS, TSV and SWAMP
are 8.20, 4.97, 13.1, 11.3 Mops respectively.

Table 3: Evaluation on Throughput

Algorithm | Clock Throughput Throughput Throughput Accuracy Accuracy
cell size | (single thread) | (multi-thread) | (multi-thread & SIMD) | (single thread) | (multi-thread)
BF+clock 2 17.7227 Mops - - - -
BM-+clock 8 1.14506 Mops 1.12482 Mops 8.2028 Mops RE=0.001853 RE=0.00188
CM+clock 8 0.245895 Mops 0.250286 Mops 2.3119 Mops ARE=0.000327 ARE=0.004392
BF-ts+clock 8 1.10144 Mops 1.08607 Mops 6.52566 Mops FPR=0.000257 FPR=0.000253

6.4 Item Batch Time Span

Optimal Clock Cell Size (Figure 10a). We show the optimal
clock size is 8 when the window size is 4096 and the memory is
128K B. The default counter size is 16. This result corresponds to
the optimal mathematical value of F(s) in Section 5.3.

Accuracy evaluation (Figure 10b). As no algorithm is specially
designed for item batch time-span measurement, here we give a
naive solution without using clock framework. We substitute each
clock in BF-ts+clock with a 64-bit timestamp #; which records the
last time that this counter is visited. The sketch cells store tg;, the
start time of item batches. For insertion of item g, it picks k hash
positions and compares tc,,r and #;. If the gap between t¢,,, and ;
exceeds 7, we change both tg, and t; to t¢y,. Otherwise, we only
change t; to tyr. For query, we pick the k hash positions and choose
the earliest f;, denoted as t¢. For any active item batch, the gap
between tf and t¢y must be smaller than 7. The algorithm returns
the latest t, timestamp whose corresponding ¢; = t. Apparently,
this naive solution either gives a correct answer or gives an overes-
timation of the time span of B, which is the same as BF-ts+clock.
Figure 10b shows the experimental result of BF-ts+clock versus the
naive solution. Results show that the optimal clock size is 8 when
using 128KB memory. Also, when memory increases, the optimal
clock size increases, which proves the effect of clock framework.
Stability evaluation (Figure 10c). We demonstrate the stability
of BF+clock over time.

Evaluation on window size (Figure 10d). We give a similar
trend of FPR as the former tasks.

Throughput evaluation. We use a memory of 128KB and a win-
dow size of 4096, and set the clock cell size to 8. The insertion
throughput and query throughput of CM+clock are 1.10144 Mops
and 21.501, respectively.

6.5 Item Batch Size

Optimal Clock Cell Size (Figure 11a). We show that when the
window size is 214, the optimal clock size is 3 or 4 when the memory
is 16KB to 32KB and the optimal clock size is 8 when the memory
increase to 64KB. Both results correspond to the optimal value
given in 5.4.

Accuracy evaluation (Figure 11b). As no algorithm is specially
designed for item batch size measurement, here we give a naive
solution without using clock framework. Similar to the naive solu-
tion proposed in Section 6.4, we substitute each clock in CM+clock
with a 64-bit timestamp #; which records the last time that this
counter is visited. For insertion of item a, it picks k hashed loca-
tions and compare t., and ¢;. If the gap between ¢, and t; exceeds
T, we reset the counter to 0 and set #; to t,,. Otherwise, we only
increment the counter by 1. For query, we pick the smallest counter

among all k hashed locations. Figure 11b shows the experimental
result of CM+clock versus the naive solution. Results show when
the memory is less than 256K B, the CM (ours) is always better than
the CM (naive), which proves the effect of clock framework.
Stability evaluation (Figure 11c). We show the CM sketch gives
a comparable ARE when being queried at different times. This
indicates that CM sketch is suitable for enduring operation.
Evaluation on window size (Figure 11d). We give a trend of
ARE in different window sizes. It shows that when clock s = 2,
the ARE increases as the window size increases from W = 210 to
W = 214, And as the memory used increases from 32 KB to 512 KB,
the difference decreases.

Throughput evaluation. We use a memory of 512KB and a win-
dow size of 16384, and set the clock cell size to 8. The insertion
throughput and query throughput of CM+clock are 0.245895 Mops
and 14.3706 respectively.

7 CONCLUSION AND FUTURE WORK

We are the first to measure item batch, a useful pattern in common
data streams. We introduce CLOCK into item batch measurement
and propose Clock-sketch in this paper. The key idea is preserving
information of all active item batches in the data structure and
clean information of inactive item batches as much as possible.
We perform extensive experiments on real world datasets with
batch pattern. Results show that our Clock-sketch can achieve high
accuracy and high speed with small memory restriction. All related
source codes are anomalously released at Github [5].

In this paper, we discuss item batch composed of identical items,
i.e, items with the same ID in a data stream. Other real world appli-
cations may require different definitions of item batch: 1) Item batch
composed of similar items rather than identical items. For example,
when processing a stream of purchase records, beef and steak are
similar items while soap and milk are not. 2) The threshold 7 for
two different item batches B, and By, may differ and an algorithm
should learn the proper thresholds for different item batches. Be-
sides, item batch measurement is also useful in distributed systems.
Combining Flink framework can help save synchronization cost in
distributed measurement. These are promising directions that will
further lead the study of item batch.

ACKNOWLEDGMENT

We thank Yikai Zhao, Peng Liu, Yuhan Wu, Yilun Jin and Lianke
Qin for their helpful suggestions and discussions. This work is
supported by Key-Area Research and Development Program of
Guangdong Province 2020B0101390001, National Natural Science
Foundation of China (NSFC) (No. U20A20179), and the project of
"FANet: PCL Future Greater-Bay Area Network Facilities for Large-
scale Experiments and Applications" (No. LZC0019).

REFERENCES

=

[10

[11]

[12]

(13

[14]

[15

[16]

[17]

(18]

[19

[20]

[21

2008. Bob Jenkins’ hash function web page, paper published in Dr Dobb’s journal.
http://burtleburtle.net/bob/hash/doobs.html.

2020. The CAIDA Anonymized Internet Traces.
data/overview/.

2020. The Criteo dataset Internet Traces.
https://cmt3.research.microsoft.com/SIGMOD2021/Submission/Details/25.
2020. The Network dataset Internet Traces. http://snap.stanford.edu/data/.
2020. The source codes of our and other related algorithms. https://github.com/
Clock-sketch/clock-sketch2020.

2020. The technical report of our paper, including all pseudocode. https://github.
com/Clock-sketch/clock-sketch2020/blob/master/Technical_report.pdf.

Eran Assaf, Ran Ben Basat, Gil Einziger, and Roy Friedman. 2018. Pay for a sliding
bloom filter and get counting, distinct elements, and entropy for free. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2204-2212.
Bryan Ball, Mark Flood, Hosagrahar Visvesvaraya Jagadish, Joe Langsam, Louiqa
Raschid, and Peratham Wiriyathammabhum. 2014. A flexible and extensible
contract aggregation framework (caf) for financial data stream analytics. In
Proceedings of the International Workshop on Data Science for Macro-Modeling.
1-6.

Sorav Bansal and Dharmendra S Modha. 2004. CAR: Clock with Adaptive Re-
placement.. In FAST, Vol. 4. 187-200.

Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422-426.

Oscar Boykin, Sam Ritchie, Jan O’Connell, and Jimmy Lin. 2014. Summingbird:
A Framework for Integrating Batch and Online MapReduce Computations. Proc.
VLDB Endow. 7, 13 (Aug. 2014), 1441-1451. https://doi.org/10.14778/2733004.
2733016

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

Fernando J Corbato. 1968. A paging experiment with the multics system. Technical
Report. MASSACHUSETTS INST OF TECH CAMBRIDGE PROJECT MAC.
Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58-75.

Michael K Daly. 2009. Advanced persistent threat. Usenix, Nov 4, 4 (2009),
2013-2016.

Gil Einziger and Roy Friedman. 2015. Counting with TinyTable: Every bit counts!.
In 2015 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 77-78.

Lajos Gergely Gyurko, Terry Lyons, Mark Kontkowski, and Jonathan Field. 2013.
Extracting information from the signature of a financial data stream. arXiv
preprint arXiv:1307.7244 (2013).

Laura M. Haas, Walter Chang, Guy M. Lohman, John McPherson, Paul F. Wilms,
George Lapis, Bruce Lindsay, Hamid Pirahesh, Michael J. Carey, and Eugene
Shekita. 1990. Starburst mid-flight: As the dust clears. IEEE Transactions on
Knowledge & Data Engineering 1 (1990), 143-160.

Thoufique Hag, Jinjian Zhai, and Vinay K Pidathala. 2017. Advanced persistent
threat (APT) detection center. US Patent 9,628,507.

Hyang-Ah Kim and David R O’Hallaron. 2003. Counting network flows in real
time. In GLOBECOM03. IEEE Global Telecommunications Conference (IEEE Cat.
No. 03CH37489), Vol. 7. IEEE, 3888-3893.

Jon Kleinberg. 2003. Bursty and hierarchical structure in streams. Data Mining
and Knowledge Discovery 7, 4 (2003), 373-397.

http://www.caida.org/

Shijin Kong, Tao He, Xiaoxin Shao, Changqing An, and Xing Li. 2006. Time-out
bloom filter: A new sampling method for recording more flows. In International
Conference on Information Networking. Springer, 590-599.

Marshall Kirk McKusick, Keith Bostic, Michael] Karels, and John S Quarterman.
1996. The design and implementation of the 4.4 BSD operating system. Vol. 2.
Addison-Wesley Reading, MA.

Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. 2017. A
General-Purpose Counting Filter: Making Every Bit Count. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
775-787. https://doi.org/10.1145/3035918.3035963

Yanging Peng, Jinwei Guo, Feifei Li, Weining Qian, and Aoying Zhou. 2018.
Persistent bloom filter: Membership testing for the entire history. In Proceedings
of the 2018 International Conference on Management of Data. 1037-1052.
Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster
and more accurate stream processing. In Proceedings of the 2016 International
Conference on Management of Data. 1449-1463.

Jingsong Shan, Jianxin Luo, Guigiang Ni, Zhaofeng Wu, and Weiwei Duan. 2016.
CVS: fast cardinality estimation for large-scale data streams over sliding windows.
Neurocomputing 194 (2016), 107-116.

Anshumali Shrivastava, Arnd Christian Konig, and Mikhail Bilenko. 2016. Time
adaptive sketches (ada-sketches) for summarizing data streams. In Proceedings of
the 2016 International Conference on Management of Data. 1417-1432.

Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. 2018. Sketch-
ing linear classifiers over data streams. In Proceedings of the 2018 International
Conference on Management of Data. 757-772.

Nan Tang, Qing Chen, and Prasenjit Mitra. 2016. Graph stream summarization:
From big bang to big crunch. In Proceedings of the 2016 International Conference
on Management of Data. 1481-1496.

Daniel Ting. 2018. Count-Min: Optimal Estimation and Tight Error Bounds
using Empirical Error Distributions. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2319-2328.
Tingting Chen, Yi Wang, Binxing Fang, and Jun Zheng. 2006. Detecting Lasting
and Abrupt Bursts in Data Streams Using Two-Layered Wavelet Tree. In Advanced
Int’l Conference on Telecommunications and Int’l Conference on Internet and Web
Applications and Services (AICT-ICIW’06). 30-30.

Nikos Virvilis and Dimitris Gritzalis. 2013. The big four-what we did wrong
in advanced persistent threat detection?. In 2013 international conference on
availability, reliability and security. IEEE, 248-254.

Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. 2015. Persistent data
sketching. In Proceedings of the 2015 ACM SIGMOD international conference on
Management of Data. 795-810.

Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A
linear-time probabilistic counting algorithm for database applications. ACM
Transactions on Database Systems (TODS) 15, 2 (1990), 208-229.

Wei Xie, Feida Zhu, Jing Jiang, Ee-Peng Lim, and Ke Wang. 2016. Topicsketch:
Real-time bursty topic detection from twitter. IEEE Transactions on Knowledge
and Data Engineering 28, 8 (2016), 2216-2229.

Linfeng Zhang and Yong Guan. 2008. Detecting click fraud in pay-per-click
streams of online advertising networks. In 2008 The 28th International Conference
on Distributed Computing Systems. IEEE, 77-84.

Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve
Uhlig. 2018. Cold filter: A meta-framework for faster and more accurate stream
processing. In Proceedings of the 2018 International Conference on Management of
Data. 741-756.

Yunyue Zhu and Dennis Shasha. 2003. Efficient elastic burst detection in data
streams. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. 336-345.

https://github.com/Clock-sketch/clock-sketch2020
https://github.com/Clock-sketch/clock-sketch2020
https://github.com/Clock-sketch/clock-sketch2020/blob/master/Technical_report.pdf
https://github.com/Clock-sketch/clock-sketch2020/blob/master/Technical_report.pdf
https://doi.org/10.14778/2733004.2733016
https://doi.org/10.14778/2733004.2733016
https://doi.org/10.1145/3035918.3035963

	Abstract
	1 Introduction
	1.1 Background and Motivations
	1.2 Our Solution
	1.3 Main Experimental Results

	2 Related Work
	2.1 Item Batch Measurement
	2.2 CLOCK

	3 Algorithm
	3.1 Preliminaries and Problem Statement
	3.2 Clock-Sketch Framework
	3.3 Error Analysis

	4 Application
	4.1 Item Batch Activeness
	4.2 Item Batch Cardinality
	4.3 Item Batch Time Span
	4.4 Item Batch Size

	5 Mathematical Analysis
	5.1 Item Batch Membership
	5.2 Item Batch Cardinality
	5.3 Item Batch Time Span
	5.4 Item Batch Size

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Item Batch Activeness
	6.3 Item Batch Cardinality
	6.4 Item Batch Time Span
	6.5 Item Batch Size

	7 Conclusion and future work
	References

