
0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

1

Enabling NFV Elasticity Control with Optimized
Flow Migration

Chen Sun, Jun Bi, Zili Meng, Tong Yang, Xiao Zhang, Hongxin Hu

Abstract—Network Function Virtualization (NFV) together
with Software Defined Networking (SDN) offers the potential
for enhancing service delivery flexibility and reducing overall
costs. Based on the capability of dynamic creation and destruc-
tion of network function (NF) instances, NFV provides great
elasticity in NF control, such as NF scaling out, scaling in, load
balancing, etc. To realize NFV elasticity control, network traffic
flows need to be redistributed across NF instances. However,
deciding which flows are suitable for migration is a critical
problem for efficient NFV elasticity control. In this paper, we
propose to build an innovative flow migration controller, OFM
Controller, to achieve optimized flow migration for NFV
elasticity control. We identify the trigger conditions and control
goals for different situations, and carefully design models and
algorithms to address three major challenges including buffer
overflow avoidance, migration cost calculation, and effective flow
selection for migration. We implement the OFM Controller on
top of NFV and SDN environments. Our evaluation results show
that OFM Controller is efficient to support optimized flow
migration in NFV elasticity control.

Index Terms—Elasticity control, optimized flow migration,
service level agreement, SLA, NFV.

I. INTRODUCTION

Network Function Virtualization (NFV) [2] was recently
introduced to replace traditional dedicated hardware middle-
boxes with software based Network Functions (NFs) to offer
the potential for both enhancing service delivery flexibility and
reducing overall costs. Based on the capability of dynamic NF
creation and destruction, NFV could support elastic control
over NF instances to adapt to frequent and substantial dynam-
ics of network traffic volumes [3], [4].

The elasticity of NFV has been widely exploited in real
world networks such as data centers [5] and 5G networks [6],
[7]. For example, 5G networks provide isolated network

Manuscript received May 5, 2018; revised August 18, 2018; accepted
August 28, 2018. This work was supported in part by National Key R&D
Program of China under Grant 2017YFB0801701 and in part by the National
Science Foundation of China under Grant 61472213. The preliminary version
of this paper titled “OFM: Optimized Flow Migration for NFV Elasticity
Control” was published in IEEE IWQoS 2018 [1] and presented on June 4,
2018 in Banff, Alberta, Canada. (Corresponding authors: Jun Bi and Tong
Yang.)

C. Sun, J. Bi, Z. Meng, and X. Zhang are with the Institute for
Network Sciences and Cyberspace, Tsinghua University, also with
the Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China, and the Beijing National Research
Center for Information Science and Technology, Beijing 100084,
China (e-mail: c-sun14@mails.tsinghua.edu.cn; junbi@tsinghua.edu.cn;
mengzl15@mails.tsinghua.edu.cn; zhang-x16@mails.tsinghua.edu.cn).

T. Yang is with the Department of Computer and Science, Peking Univer-
sity, Beijing 100871, China (e-mail: yangtongemail@gmail.com).

H. Hu is with the School of Computing, Clemson University, Clemson, SC
29634 USA (e-mail: hongxih@clemson.edu).

slices featuring high throughput, ultra-low latency, or massive
connections. Each slice contains network services (NSs) that
are composed of virtual network functions (VNFs) deployed
in virtual machines. To adapt to increasing traffic loads in
a network slice, recent research has proposed to scale out a
single VNF [8] or an entire NS [9] by dynamically deploying
new virtual machines (VMs) that carry VNF or NS instances.
After scaling, flows are distributed across a set of identical
instances using a front-end physical or virtual switch as a load
balancer [5], [9].

Furthermore, NFs typically have to maintain state informa-
tion for processed flows [10], [11]. To ensure the correctness
of packet processing after flow redistribution, some research
efforts [12], [5], [13], [14], [15], [16] have proposed to transfer
flow states alongside the flow migration. Split/Merge [14]
and OpenNF [5] rely on a centralized controller to transfer
states between NF instances and buffer incoming packets to
realize loss-free and order-preserving migration. On the other
hand, enhanced OpenNF [12] and other recent works [13],
[15] performed migration directly among NF instances to
improve the scalability and performance of flow migration
in NFV networks. Above research efforts mainly focus on
designing mechanisms for safe migration of flow states among
NF instances.

However, selecting suitable flows to migrate is also a signif-
icant problem in NFV elasticity control. A careless selection
of flows for migration would incur three major problems:
• Buffer overflow. From the system’s perspective, flow migra-

tion requires a preallocated buffer in the destination NF [12],
[15] to store in-flight traffic. In-flight traffic refers to the
traffic that arrives at the source instance after the states have
been migrated, or the traffic that arrives at the destination
instance before corresponding states become available. A
careless selection of flows could result in migrating several
elephant flows together, which might overflow the buffer
space and incur packet loss or service degradation.

• High migration cost. From the network tenant’s perspec-
tive, NFV networks should satisfy Service Level Agree-
ments (SLAs). A breach of certain SLAs would incur
penalties. However, flow migration might bring additional
processing latency (tens of milliseconds in [15]), which
may be unacceptable for flows that demand tight latency
SLAs (such as flows of algorithmic stock trading or high
performance distributed memory caches [17]), while ac-
ceptable for flows with looser latency constraints (such as
P2P transmission flows). Thus, randomly selecting flows to
migrate may result in serious SLA violation and increase
migration costs significantly.

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

2

TABLE I: NFV elasticity control situations

Situations When to Migrate Why to Migrate Where to Migrate Which Flows to Migrate

NF Overload NF load > peak load threshold Avoid performance degrading
Instances that are not overloaded

or newly created instances
(Scale out)

Some (Which flows?)

NF Underload NF load < bottom load threshold Save resources for reusing and
achieve energy efficiency

Merge current instances
(Scale in)

All flows of some instances
(Which instances?)

Load Balancing NF instances have imbalanced load Prevent possible overload Among current instances Some (Which flows?)
Failure Recovery NF instance failure occurs Realize failure recovery Non-failed instances All

NF Upgrading NF features require upgrading Carry out network policies Upgraded instances All

• Ineffective migration. From the network operator’s per-
spective, realizing NFV elasticity control without a proper
flow selection mechanism may fail to achieve the control ex-
pectation. For instance, when an NF instance is overloaded,
selecting too few flows to migrate might not effectively
alleviate the hot spot, while migrating too many flows might
create new hot spots.

To address the above problems, in this paper, we propose
a novel flow migration controller, OFM Controller, for
optimized flow migration in NFV elasticity control. To the
best of our knowledge, we are the first to design such a
controller that performs optimized flow selection for NFV
elasticity control. We analyze NFV elasticity control situations
and carefully design the OFM Controller to fully achieve
control goals, minimize migration costs, and avoid buffer
overflow. We make the following contributions in this paper:

• We categorize typical NFV elasticity control situations
including NF scaling, NF load balancing, NF failure re-
covery, and NF upgrading. We analyze in detail the trigger
conditions and flow selection goals of each situation, and
present the design challenges. (§ II)

• We propose the design of OFM Controller for opti-
mized flow migration in NFV elasticity control. The OFM

Controller collects flow statistics and NF loads during
runtime, and identifies situations where flow migration is
required. By effectively modeling the buffer requirements
and migration latency (§ III), OFM could select proper flows
to achieve control goals while minimizing the migration
costs and avoiding buffer overflow (§ IV).

• We implement the OFM Controller based on Floodlight
and perform extensive evaluations. Experimental results
show that OFM could achieve optimized flow migration in
NFV elasticity control, while ensuring full achievement of
control goals. (§ V)

The rest of this paper is organized as follows. Section II
analyzes situations for NFV elasticity control. Section III
elaborates the OFM design. Section IV presents optimized flow
migration calculation in OFM. We present the implementation
and evaluation results in Section V. We summarize the related
work in Section VI, and conclude this paper in Section VII.

II. ELASTICITY CONTROL SITUATIONS ANALYSIS

This section first summarizes the situations where flow
migration is required for NFV elasticity control. Then we
analyze the control goals and constraints of each situation as
well as the design challenges, which guide the design of OFM.

A. NFV Elasticity Control Situations

We list five typical situations of NFV elasticity control in
Table I, and analyze those situations in this section.
NF scaling out: This happens anytime when the load of an NF
instance exceeds the NF processing load threshold [5], [18],
[14], [19]. Network operators could perform NF scaling out in
the runtime to alleviate the hot spot and avoid performance de-
grading by migrating some flows from the overloaded instance
to other instances or to the newly created instance. However,
flows on the overloaded instance have various SLA constraints
and sizes. Proper flows should be selected to alleviate the hot
spot and create no new hot spots while incurring minimal SLA
violations and avoiding buffer overflow.
NF scaling in: To save resources and achieve energy effi-
ciency, when one or multiple NF instances are underloaded,
NF scaling in is performed by destroying some VMs and mi-
grating all flows on those instances to the remaining ones [5],
[14], [18], [19], which could reduce Operating Expenditures
(OPEX). In this article, we refer to the reduction of OPEX
as gaining “revenue benefit” [20]. However, flow migration
incurs additional latency and could violate SLA of some flows.
Therefore, we should select proper NF instances to destroy for
maximum revenue benefit and minimum migration costs.
NF load balancing: NF load balancing redistributes flows
across current NF instances to prevent potential NF overload
situations. NF load balancing brings no revenue benefits since
it does not shut down VMs. However, flow migration might
bring additional forwarding latency and incur SLA violation
penalties. Thus, we should select proper flows for migration
to both balance the load and minimize migration costs.
NF failure recovery: When an instance fails, we need to
recover from the failure by rerouting all flows on the failed
instance to healthy instances or by creating new instances [5].
NF upgrading: For maximum security, a network provider
may want traffic to always be processed by the latest NF
software [5]. NFV provides the capability to dynamically
launch updated NF instances. We need to migrate all flows
and states to the updated instances.

B. Flow Selection Goals for NFV Elasticity Control

From the above analysis, we observe that situations includ-
ing NF scaling out, scaling in, and load balancing require
a careful selection of flows to achieve control goals while
minimizing migration costs and avoiding buffer overflow.
Therefore, we next analyze the detailed flow selection goals
when coping with each situation, and show them in Fig. 1.
NF scaling out: When an NF is overloaded, NF scaling
out must be performed to avoid packet loss or performance

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

3

!"#$%#"&'()*&+ !,*,-#"&' .&%*(

!"#$%&'(
)*+'%# !,-.

/ 0,1+2 3&- 45&- '%%#"1'-1&6
/ 7#8 3&- 45&- '"&1('6+#
/ 9161:'%:1;$'-1&6 +&4-4
/ <,==#$ &"#$=%&8 '"&1('6+#

>6(#$%&'(
)*+'%# ?6.

/ 9'@1:'% $#"#6,#A#6#=1-)9161:'%:1;$'-1&6 +&4-4.
/ 7#8 3&- 45&- '"&1('6+#
/ B#'4&6'A%# +'%+,%'-1&6 -1:#
/ <,==#$ &"#$=%&8 '"&1('6+#

7C D&'(
<'%'6+16;

/ <'%'6+#(7C %&'(
/ 9161:'%:1;$'-1&6 +&4-4
/ 7#8 3&- 45&- '"&1('6+#
/ 0,1+2 A'%'6+16;'6(+&6"#$;16;
/ <,==#$ &"#$=%&8 '"&1('6+#

Fig. 1: Flow selection goals for different control situations

degradation. Operators expect a quick load alleviation without
creating new hot spots. Besides, minimal migration costs are
desired and buffer overflow should be avoided.
NF scaling in: As merging multiple instances into fewer ones
and destroying free VMs could improve energy efficiency and
bring revenue benefits, we want to minimize the number of
remaining instances. However, flows on different instances
have different SLA constraints, and we want to minimize
the migration costs simultaneously. Therefore, we need to
compare SLA penalties for migrating flows on each instance
with the revenue benefit brought by destroying the VM, and
find the optimal migration plan. Besides, merging multiple
instances onto one requires a safe scaling in without creating
new hot spots. Finally, buffer overflow should be avoided
during migration.
NF load balancing: Load balancing could balance the load
among NF instances and prevent potential NF overload sit-
uations. However, NF load balancing is neither compulsory
(like scaling out) nor directly rewarding (like scaling in).
Therefore, to minimize the flow migration costs, we should
only redistribute flows with loose SLAs that would not be
violated during migration. Thus, only a limited set of flows
could be reallocated, which might not result in a completely
balanced final load. However, we could ameliorate the load
imbalance situation to some extent with no costs.

A strawman solution for NFV elasticity control proposed
in E2 [18] adopts a strategy of migration avoidance. Existing
flows are still processed by the previously assigned NF in-
stance, while only new flows are differentially handled. In this
way, no flow migration occurs for NFV elasticity control. For
example, for NF scaling out, we could simply instantiate a new
NF instance and redirect new flows to it. While the migration
avoidance strategy introduces no migration penalty, it may still
result in penalty during runtime. If an NF is overloaded, we
should quickly migrate flows away from the instance to avoid
performance degradation and SLA violation. We analyze the
migration avoidance strategy in detail in §VI.

C. Design Challenges
To achieve above flow selection goals, we design the OFM

Controller for NFV elasticity control. We encounter three
major challenges in the design of OFM.
Buffer overflow avoidance: A safe elasticity control requires
buffering in-flight traffic in the destination instance [12], [15]
during migration. However, buffer space is not unlimited.
We observe that migration of different flows incurs different

amount of in-flight traffic. Therefore, care must be taken while
selecting flows to migrate to avoid buffer overflow. To this end,
OFM dynamically measures the size of flows on NF instances
without intrusion into NF logic, and models the buffer space
requirement for the migration of each flow. (§ III.B).
Migration cost calculation: Flow migration could bring
additional forwarding latency, violate SLA constraints, and
incur a penalty. However, the penalty depends on the extent to
which the SLA is violated, i.e. the exceeding delay time over
the SLA constraints. Therefore, OFM is challenged to precisely
estimate the migration latency, which could vary significantly
with the number of flows to migrate [5], [15]. In response,
through experiments on real world NFs, OFM builds models
for flow migration latency based on the number of flows to
migrate and use it to calculate migration costs (§ III.C).
Effective flow selection for migration: As analyzed in
§ II.B, different control situations have unique control goals.
Therefore, we are challenged to design optimized flow selec-
tion mechanisms for the three situations. However, massive
parameters including NF load, flow size (elephant or mice
flows as defined in [21], [22]), migration latency of different
sized flows, VM revenue benefit, and buffer cost should be
considered to find an optimized migration plan for each situa-
tion, making it challenging to design algorithms for optimized
flow selection. Furthermore, the calculation could consume
significant time, which may be unacceptable for situations
like NF scaling out that requires a quick hot spot alleviation.
To address the above challenges, OFM carefully designs a
unified, optimal, but complex algorithm that could handle the
three situations simultaneously, and propose three fast but sub-
optimal algorithms for the three situations respectively while
taking into account all above parameters. (§ IV).

!"# $%&'(%))*(+*,%-(.*,

!"#$%&%"# '(&()&%"# !"###$%&

*+&%,-. /%01-&%"# !-.)2.-&%"#!"#'&(

345 3&"1-0(6."7 3&-&%8&%)8

96 3&-&28 !"..()&%"#

:%1&2-.%;-&%"# 4-<(1

:%1&2-.
968

3(1=(18

3'9
37%&)>(8

?1"=%8%"#%#0
!"#&1".

@2AA(1 !"8&
5#-.<8%8 !"###$)&

/%01-&%"# !"8&
5#-.<8%8 !"###$*&(

/%01-&%"#
!"#&1".

B+$,$ -.+/01C

Fig. 2: OFM Controller components and workflow

III. OFM DESIGN

To address the above challenges, we design the OFM

Controller to implement optimized flow migration in NFV
elasticity control situations. Components and workflow of the
OFM Controller are shown in Fig. 2. OFM Controller

monitors the status of every NF instance and detects traffic
overload, underload, and imbalance conditions. At the same
time, the OFM Controller collects the statistics of flows
on each NF for further selection (§ III.A). Once a condition
is detected, based on flow SLA constraints and dynamically
gathered flow statistics, OFM Controller first performs
Buffer Cost Analysis (§ III.B) and Migration Cost Analysis

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

4

(§ III.C). The analysis results are inputted into Optimal Mi-
gration Calculation (§ IV) to create the optimized migration
plan. Finally, OFM Provisioning Control and Migration Control
modules would interact with underlying resources to perform
flow migration in the same way as introduced in [12], [5],
[14], [15], etc.

However, a natural concern would be the practicality of
calculating an optimized plan for future migration based on
the current flow statistics. Actually, as mentioned in [23],
we should be able to use routes based on historical traffic
patterns for the last 1 second for effective flow scheduling.
Furthermore, as shown in § V-B, OFM can finish gathering
statistics and calculating within 1 second for all situations,
which demonstrates the timeliness of OFM. Next we introduce
each module of OFM in detail.

A. NF & Flow Status Collection and Condition Detection

The OFM Controller needs to collect NF processing
load, i.e., throughput, for elasticity control condition detection,
as well as the flow sizes for flow selection. A naive approach
to obtaining these statistics is to modify NF logic to maintain
flow-level packet counters. However, doing so would intrude
NF logic and increase NF development burden of statistics
gathering and communication with the controller. To precisely
collect above statistics in a light-weight manner, we exploit
the flow table entry counters of OpenFlow [24]. Physical or
virtual OpenFlow switches are widely used to connect physical
servers or VMs in the same server in NFV networks [25],
[5], [26], [27]. OpenFlow switches maintain a byte counter
for each flow table entry, while the controller queries coun-
ters from switches during runtime. However, flow entries in
OpenFlow flow tables are usually aggregated [28]. Directly
querying counters cannot provide flow-level byte counters.
Therefore, we utilize OpenFlow’s multi-stage flow tables [24],
assign the first flow table of an edge switch connected with
NFs as the counter table, and issue fine-grained rules to it
to maintain flow-level counters. The action of each entry in
the counter table is to directly send packets to the next flow
table. As shown in Fig. 3, we periodically query flow counters
from the counter table, and calculate the flow size by dividing
the counter difference by the query interval. Since the OFM

Controller can acknowledge the target NF of each flow,
it groups the flows based on the target NF and adds up the
sizes of flows targeting at the same NF to get the real-time
throughput of the NF.

Suppose there are n NF instances of the same type,
such as firewalls, running in the NFV network. The OFM

Controller periodically queries flow statistics from the
data plane, and calculates the load lj of instance j 2 [1, n].
For condition detection, we define thtop as the peak process-
ing load threshold of an NF instance, and thbottom as the
bottom load threshold. We use the variance of the NF loads
var(l1, ..., ln) to quantify the load imbalance grade. We define
the maximum allowed variance of NF loads as thvar. We
define conditions for NFV elasticity control as:

• Overload: lj > thtop,j for any j 2 [1, n]
• Underload: lj 6 thbottom,j for any j 2 [1, n]

!"#$ %&'&()&(*)
+#"",*&(#-

%./ %$(&*0,)

/! %&'&1)
+#"",*&(#-

!"#$%&'()**'&*)%+"$(
"$(,-(*')$#.)'+%/

0."1(2/%&(
!"#$%&'

Fig. 3: NF status collection in OFM

• Imbalance: var(l1, ..., ln) > thvar

Based on above rules, NFV elasticity control conditions
can be detected, which would trigger optimal flow migration
calculation to handle the situation.

B. Buffer Cost Analysis
During the migration, in-flight traffic needs to be buffered

until the end of the state installation. Then, in-flight traffic will
be flushed to the destination NF instance for processing. The
OFM Controller adopts the distributed buffering mecha-
nism in [12] and buffers the in-flight traffic in the destination
instance. We target at avoiding buffer overflow by estimating
the in-flight traffic in the following way.

Suppose flow k of byte rate sizek needs to be migrated,
and the migration time of flow k is denoted as lamigration,k.
During flow migration, all in-flight packets of this flow
are buffered at the destination instance. Therefore, the total
buffered packet size required could be modeled as:

bufferk = sizek ⇥ lamigration,k (1)

In this way, we could calculate the buffer requirement for
migrating each flow, and select proper set of flows to avoid
buffer overflow in the destination instance. The estimation of
the flow migration time will be introduced later in this section.

C. Migration Cost Analysis
Due to the additional latency incurred by flow migration,

NFV elasticity control might break flow SLAs [20] and cause
penalty [29]. Furthermore, for NF scaling in, shutting down
underloaded VMs could bring revenue benefit and ameliorate
the migration cost. Next we introduce the SLA violation
penalties and revenue benefit estimation in detail.

1) Penalty for SLA Violations: Latency related SLAs in
cloud services regulate maximum processing latency for spe-
cific request types [29]. Similarly, we define latency related
SLAs in NFV: it regulates the maximum latency for each
flow processed by NFV networks, where NFV provides packet
processing services by NFs including firewall, IDS, VPN, load
balancing, etc [18], [19].

Given an Instance j with m flows, given a flow k, let lak
be the latency of flow k, and let LAk be the SLA latency of
flow k. Obviously, lak should be no larger than LAk. During
runtime without flow migration, the total latency of flow k on
NF instance j is equal to the NF processing latency, i.e. lak =
laprocessing,j for k 2 [1,m]. However, flow migration might
introduce additional latency overhead. Therefore, in order to
meet the latency related SLA during migration, the migration
latency should satisfy:

lamigration,k 6 LAk � laprocessing,j for k 2 [1,m] (2)

During flow migration, the above inequality might be
breached and incur penalty. The untimely-processed traffic of

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

5

!"#$%"&&'%

� �

�
�

(#)$*#+', (#)$*#+'-
).($+/

� !"#$%& (#)$*#+'- '$ ())*+' ,'('*
� !"#$%& (#)$*#+', '$ '%(",#*% ,'('*
� -%(",#*% ,'('*,
� ./0* /+1('*

0(1%*$("#
."%23&". &(#2)

4"5%6)$'7 3&". 0(1%*$("#

Fig. 4: Four-step flow migration workflow from [12]. The switch could be physical/virtual.

a flow k is exactly the buffered in-flight traffic, i.e. bufferk.
According to [29], we could model the SLA violation penalty
as a linear function. We denote the penalty rate as �, and the
delay time for migrating a flow as DT . We have:

Penalty = ↵+ � ⇥ buffer ⇥DT (3)

However, for a flow k, if its latency SLA is not violated,
the delay time is set to zero, and the penalty should be zero.
Otherwise, the delay time is the exceeded latency over the
SLA constraint. Therefore, we have:

DTk = max (0, lamigration,k + laprocessing,k � LAk) (4)

The migration penalty of flow k could be modeled as:

Penaltyk =

⇢
↵+ � ⇥ bufferk ⇥DTk DTk > 0
0 DTk = 0

(5)

Next, we need to estimate the migration time of a flow to
calculate the SLA violation penalty. Fig. 4 shows the four-
step workflow of state migration in [12] with four major time
usages.

• t1: the time of the controller informing the destination
instance to accept state.

• t2: the time of the controller informing the source in-
stance to transfer state.

• tsk: the state transfer time for the flow k
• tu: the flow rule update time.
The total migration time for flow k could be represented as:

lamigration,k = t1 + t2 + tsk + tu (6)

Among them, t1, t2, and tu are not related to the specific
flow to migrate. We could easily measure them in NFV net-
works and consider them as constants. However, as illustrated
in [12], the state transfer time depends on the number of
flows to migrate, regardless of flow sizes. Our evaluation in
Section V demonstrates a linear relationship between state
transfer time of a flow (tsk) and the total number of flows
(fn) to migrate. We describe their relationship as:

tsk = � + ⌘ ⇥ fn (7)

� and ⌘ are two constants and could vary for different NF
types. In this way, we could estimate the migration time of
the selected flows and calculate the penalty. When migrating
fn flows, for an individual flow k, the delayed time, buffer
requirement, and migration cost are modeled as:

DTk = (t1+ t2+ tu+�+⌘ ⇤fn)+ laprocessing,k�LAk (8)

bufferk = sizek ⇥ (t1 + t2 + tu+ � + ⌘ ⇥ fn) (9)

costk = Penaltyk =

⇢
↵+ � ⇥ bufferk ⇥DTk DTk > 0
0 DTk = 0

(10)
2) Revenue Benefit Estimation: For NF scaling in situa-

tions, shutting down VMs could bring revenue benefit and
neutralize the migration cost. We denote the price (i.e. the
cost of the VM per time slot [29]) of the VM j as PriVMj .
Furthermore, we need to estimate the VM runtime saved by
VM scaling in. Suppose we always destruct a VM when it is
underloaded. The running time saved in this approach is the
time when VM load is under thbottom. Therefore, we collect
the historical data and calculate the average time interval
TINTavg when an VM is underloaded, and take it as the
estimated saved time. Therefore, we model the revenue benefit
and the total migration cost of destructing VM j as:

benefitj = PriVMj ⇥ TINTavg for j 2 [1,m] (11)

costj =
nX

k=1

Penaltyk � benefitj (12)

IV. OPTIMIZED FLOW MIGRATION CALCULATION

Based on above modeling and analysis, in this section, we
present algorithms used by the OFM Controller to achieve
optimized NFV elasticity control. As analyzed in §II, the three
NFV elasticity control situations have unique flow selection
goals. Before going to the algorithm design, we first analyze
the flow selection goals in detail.

First, when one or multiple NF instances are overloaded,
OFM Controller performs NF scaling out by migrating
some flows from the overloaded instances to other instances
or to the newly created instances. A strawman solution for NF
scaling out is to migrate half of the traffic load away to effec-
tively alleviate the hot spot. However, flows on the overloaded
instance may have tight latency SLAs, and migrating half of
these flows could incur large penalties. Actually, the basic
control goal of NF scaling out is to migrate some flows away
to reduce the NF load below the peak threshold. To achieve
this control goal, we introduce the peak safe threshold thsafe,
which regulates the peak load of the overloaded instance
after scaling out. For example, suppose the peak threshold
thpeak = 80% of the total capacity while thsafe = 60%.
Suppose there is an overloaded (80%) instance. Instead of
migrating half (40%) load, we could simply ensure that 20%
is migrated away for effective overload mitigation. Note that
the actual threshold values could be dynamically configured
by network operators based on network traffic statistics. The

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

6

determination of the threshold values is out of the scope of
this paper.

Second, when there are Nus > 1 underloaded NF instances
of the same type, OFM Controller would perform NF
scaling in by merging some instances onto one and shutting
down the free VMs. During instance merging, we pursue the
maximum revenue benefit and avoid creating no new hot spots
by ensuring the load of the remaining instances are below
thsafe.

Finally, we periodically perform NF load balancing to
prevent potential NF overload situations. An optimal migration
plan should ensure that the variance of NF load is below
the peak variance threshold thvar while resulting in minimal
migration penalty.

Based on the above analysis, below we first propose the
unified optimal flow migration calculation algorithm based
on Integer Linear Programming (ILP) (§ IV-A). However, we
observe that the ILP formulation cannot be quickly solved
within a limited time. Therefore, we exploit the opportunity
of relaxing the constraints in the three situations respectively.
For each situation, we introduce an optimal formulation for
flow selection, as well as a heuristic algorithm to guarantee
the timeliness of OFM (§IV-B for NF scaling out, §IV-C for NF
scaling in, and §IV-D for NF load balancing). Finally, as we
use different algorithms for different situations, we propose a
coordination mechanism to handle different combinations of
the above situations (§IV-E).

A. Optimal Flow Migration Calculation

First, we propose an algorithm that could produce the
optimal flow migration plan for the NFV elasticity control
situations. Let Ns be the number of NF instances, and let Nd

be the number of instances after migration. During NF scaling
out, at most Ns new NF instances will be created in the worst
case when all Ns NF instances are overloaded at the same
time. During NF scaling in, at least 1 NF instance will remain.
Therefore, 1 6 Nd 6 2 ⇥ Ns. We use xfsd 2 {0, 1} as an
indicator of whether flow f is migrated from source instance
s to destination instance d. if s = d, a flow is considered to
be not migrated and incurs zero penalty. For simplicity, we
assume that recycling a VM brings a constant revenue benefit
of benefit. Suppose there are ms flows on instance s. The
ILP formulation to solve x is:

min (Penalty �Benefit), where (13)

Penalty =
NsX

s=1

NdX

d=1,d 6=s

(
msX

f=1

xfsd ⇥ Penaltyfsd) (14)

Benefit = (Ns �
NdX

d=1

sgn(
X

f,s

xfsd))⇥ benefit (15)

s.t.
(1) xfsd 2 {0, 1} for s 2 [1, Ns], d 2 [1, Nd], f 2

[1,ms]
(2)

PNd

d=1 xfsd = 1 for s 2 [1, Ns], f 2 [1,ms]

(3)
PNs

s=1

Pms

f=1 xfsd⇥ bufferf 6 Bufferd for all d 2
[1, Nd]

(4) loads+
PNs

s=1

Pms

f=1 xfid⇥sizef �
PNd

j=1

Pms

f=1 xfsj⇥
sizef 6 thsafe for s 2 [1, Ns]

(5)* var(loads +
PNs

i=1

Pms

f=1 xfid ⇥ sizef �PNd

j=1

Pms

f=1 xfsj ⇥ sizef) 6 thvar

where sizef denotes the size of flow f , bufferf denotes
the buffer required for migrating flow f , Bufferd denotes
the buffer size in destination instance d, and loads denotes
the current load of instance d.

The objective function (Eq. 13) minimizes the total migra-
tion cost. The penalty (Eq. 14) comes from the SLA violation
penalty during migration, and the revenue benefit (Eq. 15)
comes from the destruction of VM instances. We consider a
VM is destructed if all flows on it are migrated away, while
no flows are migrated to it. Constraint (1) regulates that a
flow f is either migrated or not migrated, while Constraint
(2) ensures that a flow is migrated once and only once to any
instance including the instance it belongs to. Constraint (3)
avoids buffer overflow in the destination instances. Constraint
(4) ensures that no new hot spots are created. Constraint (5)*
balances NF loads by constraining the variance of NF loads
under threshold thvar.

However, with Constraint (1) to (4), the algorithm could
generate at least one feasible solution as we could dynamically
create or destruct NF instances to safely accommodate all
flows. Meanwhile, Constraint (5) tries to limit the variance of
NF instance load after migration. Under an extreme situation
where there exist two NF instances, each carrying only one
flow, and the load of the two instances are 50% and 10% re-
spectively. The loads of the two instances cannot be balanced,
leaving the ILP formulation unsolvable. Therefore, we exploit
the goal programming [30] technique by allocating Constraint
(1) to (4) high goal values and assigning a low goal value
to Constraint (5). This ensures that the feasible solutions that
satisfy Constraint (1) to (4) can still be generated if Constraint
(5) makes the problem unsolvable.

The above ILP formulation could handle the three sit-
uations simultaneously and generate the optimal migration
plan. However, the ILP problem cannot be quickly solved
due to two major reasons. First, we observe from Eq. 5 that
Penaltyfsd is a piecewise function depending on DTfsd,
making the ILP formulation unsolvable in a short time (e.g., a
few milliseconds [31]). Second, we allocate a parameter xfsd

for every single flow to indicate whether flow f is migrated
from instance s to d or not. The number of parameters is
linearly proportional to the number of NF instances (100s [32])
and flows on the instances (millions [33]). Massive number of
parameters make it difficult to quickly solve the ILP formu-
lation. However, according to the control goals of NF scaling
out and load balancing in Section II, efficient calculation is
required to quickly generate the migration plan. To address
this challenge, we exploit the opportunity of relaxing the
constraints in the three situations respectively and propose a
fast algorithm for each situation. We introduce the design of
the three fast algorithms in the rest of this section.

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

7

B. NF Scaling Out
1) Optimum formulation for NF scaling out: When one

or multiple NF instances are overloaded, OFM Controller

scales out NF instances by migrating some flows from the
overloaded instances to other instances or to the newly created
instances. As analyzed in Section II, NF scaling out requires
a quick hot spot alleviation without creating a new hot spot
or leading to buffer overflow. We could identify overloaded
instances and consider them as the source instances of the
flows to be migrated. Therefore, the source instance set only
includes the overloaded instances, which brings a significant
reduction of the number of parameters. Furthermore, NF
scaling out does not pursue balanced load after migration.
The relaxation of constraints could also help accelerate the
ILP solving. We use Nos to denote the number of overloaded
NF instances. We have Ns 6 Nd 6 Ns+Nos. Based on above
observations, we modify the objective function for NF scaling
out as follows.

min (Penalty �Benefit), where (16)

Penalty =
NosX

s=1

NdX

d=1,d 6=s

(
msX

f=1

xfsd ⇥ Penaltyfsd) (17)

Benefit = (Ns �
NdX

d=1

sgn(
X

f,s

xfsd))⇥ benefit (18)

We adopt Constraint (1) to (4) in the previous ILP formu-
lation as the constraints here.

2) Fast heuristic algorithm for NF scaling out: However,
the objective function above is still piecewise, making the
ILP unsolvable in a limited time of a few milliseconds.
According to the control goals of NF scaling out in Section II,
efficient calculation is required to quickly alleviate the hot
spot. Therefore, we propose a three-step heuristic to accelerate
the calculation. We first select flows to be migrated away
from the overloaded instances to ensure effective alleviation
of the overload situation. Next, we calculate whether we can
place the selected flows to other currently deployed instances.
If current instances cannot hold all flows with respect to
the thsafe constraint, we place as many flows into current
instances as possible. Finally, we deploy new NF instances to
accommodate the remaining flows that cannot be placed on
current instances. The intuition is to avoid starting new NF
instances to reduce the migration penalty. Next we introduce
the three steps in detail.
Step 1: Flow selection. We start by picking the set of flows
on each overloaded instance to alleviate the hot spot with
minimum migration cost. Since we cannot pre-acknowledge
the total number of flows to migrate, we assume that each flow
is migrated individually and consumes a Single Flow Migrate
Time (SFMT). The SFMT can be measured and calculated for
different NF types, which will be introduced in Section V. For
each overloaded instance s, we perform the following simple
ILP algorithm.

min
msX

f=1

xfs ⇥ Penaltyf , where (19)

Penaltyf = sizef ⇥ (laprocessing,f +SFMT �LAf) (20)

s.t.
(1) xfs 2 {0, 1} for s 2 [1, Nos], f 2 [1,ms]
(2) loads � thsafe 6

Pms

f=1 xfs ⇥ sizef 6 loads/2
Constraint (1) regulates that a flow is either migrated or not

migrated. Constraint (2) ensures that enough flows are selected
for effective hot spot alleviation. According to our evaluation
in Section V, the above ILP could be quickly solved within a
few milliseconds.
Step 2: Flow placement onto current instances. Next we
place previously selected flows to current instances that are
not overloaded. During placement, we try to place as many
flows on current instances as possible so as to minimize the
number of new instances to be deployed. In this process,
the constraints are avoiding new hot spot creation and buffer
overflow. Suppose there are mf flows to be redistributed onto
Nd current instances that are not overloaded. We present an
ILP formulation for this step as follows.

max
NdX

d=1

mfX

f=1

xfd ⇥ sizef (21)

s.t.
(1) xfd 2 {0, 1} for d 2 [1, Nd], f 2 [1,mf]
(2)

PNd

d=1 xfd 6 1 for f 2 [1,mf]
(3) loadd +

PNd

d=1

Pmf

f=1 xfd ⇥ sizef 6 thsafe for d 2
[1, Nd]

(4)
Pmf

f=1 xfd ⇥ bufferf 6 Bufferd for d 2 [1, Nd]
We will demonstrate that the above formulation can also

be solved in a short time of a few milliseconds in Section V.
We examine the solution x to check if all flows are placed
onto current instances. If

PNd

d=1 xfd = 1 for f 2 [1,mf],
current instances can accommodate all flows and the algorithm
finishes. Otherwise, we start new instances for the remaining
flows.
Step 3: New instance deployment. Finally, we deploy new
instances to accommodate the remaining flows. We denote
the number of remaining flows as mrf . The objective of this
step is to minimize the number of new instances to hold all
remaining flows, so as to minimize the penalty. The load of
the new instances after migration should be below thsafe

and buffer overflow should be avoided. The solution is to
iteratively create new instances to carry the maximum possible
size of flows, until all flows are packed into NF instances. For
each iteration, we formulate the flow packing process into the
following ILP problem.

max

mrfX

f=1

xf ⇥ sizef (22)

s.t.
(1) xf 2 {0, 1} for f 2 [1,mrf]
(2)

Pmrf

f=1 xf ⇥ sizef 6 thsafe

(3)
Pmrf

f=1 xf ⇥ bufferf 6 buffer
After each iteration, selected flows are removed from the

remaining flow set, until all flows are removed. We will
demonstrate that the above ILP problem can be quickly solved
in Section V.

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

8

C. NF Scaling in
1) Optimum formulation for NF scaling in: OFM

Controller would perform NF scaling in by migrating
flows on underloaded instances to the remaining instances
and shutting down the free VMs. OFM Controller applies
an ILP algorithm to minimize the migration cost. Suppose
there are Nus underloaded NF instances. Instance s carries
ms flows. xfsd is an indicator of whether flow f is migrated
from instance s to instance d. The ILP formulation to solve x
aims at maximizing the revenue benefit (Eq. 13. The number
of remaining instances Nd, satisfies 0 < Nd 6 Ns. We omit
the repeated ILP formulation here for brevity.

2) Fast heuristic algorithm for NF scaling in: However, the
objective function of the above formulation is still piecewise
since only when all flows on one instance are migrated
away can we destroy the instance and gain revenue benefit.
To accelerate the calculation, we no longer migrate each
flow individually to other instance. Instead, we merge current
instances by migrating all flows on one underloaded instance
to another instance and destroying the free instance. To achieve
this goal, we propose a two-step heuristic algorithm for NF
scaling in.
Step 1: Beneficial instance identification. First we need to
identify the NF instances whose destruction brings a higher
revenue benefit than the migration cost of all flows on it.
We filter instances that satisfy benefit � penalty > 0 and
name them candidate instances. Suppose there are Ncs such
instances.
Step 2: Optimal instance merging. Next we merge the
candidate instances to other instances with respect to the load
constraint thsafe and buffer size constraint buffer. We use
xsd 2 0, 1 to indicate whether instance s is merged onto
instance d. We model the problem as:

max
NcsX

s=1

NdX

d=1

xsd ⇥ (benefits � Penaltys) (23)

s.t.
(1) xsd 2 {0, 1} for s 2 [1, Ncs], d 2 [1, Nd]
(2)

PNd

d=1 xsd = 1 for s 2 [1, Ncs]
(2) loadd +

PNcs

s=1 xsd ⇥ sizes 6 thsafe

(3)
PNcs

s=1 xsd ⇥ buffers < buffer for d 2 [1, Nd]
By solving the above ILP formulation, we could calculate

the optimized flow selection for NF scaling in within accept-
able time. We evaluate the algorithm in Section V.

D. NF Load Balancing
1) Optimum formulation for NF load balancing: Despite

that NF load balancing could prevent potential NF overload
situations, it is neither compulsive (like NF scaling out to alle-
viate the hot spot) nor immediately rewarding (like NF scaling
in which brings revenue benefit). Therefore, we migrate flows
on NF instances with heavier load, i.e. greater than the average
load, to NF instances with lighter load under the condition that
no SLA violations occur, incurring zero migration costs. Note
that flows that are migrated away from one instance might be
placed onto different NFs. OFM Controller is challenged
to avoid generating hot spots and achieve a relatively balanced

load. A straightforward solution is to divide flows into several
groups of equal size, and redistribute all flows to all instances
according to the division, in order to minimize the load
variance of NF instances. We use xfsd as a indicator of
whether flow f is migrated from instance s to instance d. Here
we only migrate flows f whose migration penalty is zero. We
present the ILP formulation for this solution as follows.

min var(loadd +
NsX

s=1

mfsX

f=1

xfsd ⇥ sizef �
mfdX

f=1

xfsd ⇥ sizef)

(24)
s.t.
(1) xfsd 2 {0, 1} for s 2 [1, Ns], d 2 [1, Nd], f 2

[1,ms]
(2)

PNd

d=1 xfsd = 1 for s 2 [1, Ns], f 2 [1,ms]
(3)

PNs

s=1

Pms

f=1 xfsd ⇥ bufferf 6 Bufferd for d 2
[1, Nd]

Algorithm 1: Heuristic Algorithm for NF Load Balancing
Input: Flow Parameters: size, SFMT , LA, laprocessing
Input: NF Parameters: load, lavg , lstdev , Buffer.
Output: Flows to Migrate, their sources, and Their Targets:

migrationplan[f, s, d].
NFListheavy = [], NFListlight = [], F lowList =1
[], migrationplan = [];
// Step 1: Instance Classification2
foreach s 2 [0, Ns] do3

if loads > lavg + lstdev then4
NFListheavy .append(s);5

if loads < lavg � lstdev then6
NFListlight.append(s);7

// Step 2: Flow selection8
foreach s 2 NFListheavy do9

lextra,s = loads � (lavg + lstdev);10
totalSize = 0;11
// Sort flows in according to flow sizes in decending order;12
foreach f 2 [1,mfs] do13

Penaltyf = sizef ⇥ (laprocessing,f + SFMT � LAf);14
if Penaltyf == 0 then15

if totalSize+ sizef > lextra,s then16
break;17

F lowList.append(f, s);18
totalSize = totalSize+ sizef ;19

// Step 3: Destination NF selection20
foreach d 2 NFListlight do21

// P lace flows to instance d using Eq. (22),22
// while ensuring loadd does not exceed lavg ;23
foreach f 2 F lowList do24

if flow f should be placed on instance d then25
migrationplan.append(f, s, d);26

2) Fast heuristic algorithm for NF load balancing: Above
global flow redistribution may lead to the migration of massive
flows, which may bring negative impact on normal packet
processing. Furthermore, the piecewise object function pre-
vents the problem from being solved within a limited time.
In response, our key idea is to fetch flows from instances
whose loads are above the sum of the average load lavg plus
the standard deviation lstdev and relocate the selected flows
to instances with loads lower than lavg � lstdev. We design
a three-step heuristic, and the pseudo code is presented in
Algorithm 1.

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

9

Step 1: Instance classification. We calculate the average load
lavg of NF instances and put the NF instances whose load
is greater than lavg + lstdev (heavily loaded instances) into
NFListheavy and the others with loads lowever than lavg �
lstdev (lightly loaded instances) into NFListlight.
Step 2: Flow selection. For each heavily loaded instance
s, we calculate the extra NF load above lavg + lstdev as
lextra,s. We select flows on instance s whose SLA would not
be violated during migration. Considering the fact that flows
migrated away from one instance might be placed on multiple
other instances, we assume that each flow is migrated indi-
vidually and consumes a SFMT. We store the qualified flows
into the FlowList, and sort the flows with a descending order
of flow sizes. Then we select flows one by one for migration,
and stop when adding one more flow would overflow the extra
load lextra,s. The intuition here is to quickly reduce the load
of the overloaded instance, since network traffic could vary
significantly, and a fast load balancing is desired to avoid
potential hot spots. Migrating large flows would reduce the
total number of flows to migrate and accelerate the balancing.
Step 3: Destination NF selection. In this step, we mix up
selected flows of all heavily loaded instances from Step 2 into
the final FlowList and split them onto light-loaded instances
to achieve a balanced load. We fill up the processing load
below lavg of each lightly loaded instance with selected flows
in FlowList using the bin-packing algorithm. The reason why
we use lavg instead of lavg�lstdev as the peak threshold is that
we want to accommodate the maximum number of flows on
lightly loaded instances. However, some flows in FlowList
might still not be assigned to any destination instance. These
flows are placed back to the original NF instances.

Based on our evaluation in Section V, the above three-step
algorithm could quickly generate a migration plan to achieve
relatively balanced load among NF instances with no penalty.

E. Coexistence of Multiple Situations

Finally, we discuss how OFM Controller reacts when
two or three NFV elasticity control situations appear simul-
taneously. Our strategy is simple: when there is coexistence
of multiple situations, we first strive to make network work
well and then consider the benefit of shutting down VMs.
First, if there are NFs overloaded. We choose to first handle
NF overload since NF overload probably results in high
SLA violation penalty. Specifically, we move flows from
heavily loaded instances to lightly loaded instances, which
could mitigate the underload and load imbalance situations to
some extent. If there is no lightly loaded instance, we create
new NFs. After NF overload is well handled, we need to
decide which situation to handle first if underload and load
imbalance situations coexist in the NFV network. NF load
balancing prevents potential NF overload situations. However,
NF scaling in merges instances for revenue benefit and may
augment the load of heavily loaded instances, leading to a
higher possibility of NF overload. Therefore, we choose to
balance NF load first. Note that the process of balancing
NF load will not incur NF overload. After load balancing, if
any instance carries a processing load lower than thlow, OFM

performs NF scaling in and recycles free VMs. To conclude,
the reaction order to the three NFV elasticity control situations
is: overload ! load imbalance ! underload.

V. IMPLEMENTATION AND EVALUATION

A. Implementation
We implemented the OFM Controller on top of the

Floodlight [34] controller. Specifically, we maintain flow SLAs
in a simple key-value storage data structure, and expose
REST interfaces which can be used to dynamically append,
modify, and delete SLAs. The NF Status Collection and Flow
Statistics Collection modules collect NF loads and flow statis-
tics through OpenFlow interfaces during runtime, which are
utilized by the Condition Detection module to detect situations
for NFV elasticity control. Note that for the deployment of
OFM, no modification to OpenFlow is required. OFM simply
requires the switches to be able to report flow statistics and
forward flows according to flow table rules. However, NFs
should expose state management interfaces to the controller for
safe and efficient state migration, as required by [5], etc. The
Buffer Cost Analysis module calculates required buffer costs,
and the Migration Cost Analysis module calculates migration
costs for different situations. Then, the Optimal Migration
Calculation module would calculate the optimized set of flows
using algorithms presented in Section III. To solve the ILP
formulation for NF scaling in situations, we use lpsolve, a Java
based mixed integer linear programming (MILP) solver [35].

B. Evaluation
We evaluate OFM based on a testbed with ten servers,

each of which is equipped with two Intel(R) Xeon(R) E5-
2690 v2 CPUs (3.00GHz, 10 physical cores), 256G RAM
and two 10G NICs. The servers run Linux kernel 4.4.0-31.
We use a server to run the OFM Controller, a server for
Open vSwitch (OVS) [36], and eight servers for eight NF
instances of the same type. To avoid affecting performance
due to virtualization and demonstrate OFM’s feasibility on real
world physical devices, each software NF runs on bare metal
servers without VM or Docker encapsulation, and all servers
are connected to a Pica8 P-3922 physical switch. However,
in a real world virtualization environment, operators often use
VMs to carry software NFs, and multiple VMs may co-locate
in the same physical server. In this case, virtual switches
such as Open vSwitch are used for packet delivery within
the server [26], [27]. We could use the virtual switch to
collect flow statics and handle flow distribution across multiple
identical instances.

For test traffic, we use a DPDK based packet generator
that runs on the fifth server and is directly connected to
the server carrying OVS. The generator sends and receives
traffic to measure the forwarding latency. We use two types
of traffic patterns including (1) Real-world traffic trace: we
use the LBNL/ICSI enterprise trace [37], a typical traffic trace
collected from real-world enterprise networks, whose flow size
distribution and flow duration distribution are shown as Fig.
5, and (2) Randomly generated traffic trace, in which we
create flows with random source and destination addresses.

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

10

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

Kbps

C
D
F

(a) Flow size distribution

100 101 102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

Milliseconds

C
D
F

(b) Flow duration distribution

Fig. 5: LBNL/ICSI trace statistics (broken down by
srcIP-dstIP pairs)

We configure the generator to create traffic according to the
pattern type, flow number, and flow size.

We evaluate OFM with the following goals.
• Demonstrate the relationship between flow migration time

and the number of flows to migrate. This justifies OFM’s
estimation of flow migration latency (Section V-B1).

• Demonstrate the timeliness and practicability of OFM

status collection during runtime measurement (Sec-
tion V-B2).

• Demonstrate that the OFM scaling out algorithm can find
an optimized migration plan that effectively alleviates the
hot spot (Section V-B3).

• Demonstrate that the OFM scaling in algorithm can find
an optimal migration plan that brings the maximum
migration benefit (Section V-B4).

• Demonstrate OFM load balancing algorithm’s capability
to effectively mitigate the load imbalance situation (Sec-
tion V-B5).

• Demonstrate that OFM algorithms can efficiently solve the
problem within limited calculation time and are scalable
in real world network scales (Section V-B6).

1) Flow Migration Time: In this experiment, we examine
the relationship between the flow migration time, lamigration

and the number of flows to migrate, n. We start two NFs
instances of the same type on two servers. We randomly
generate and send a different number of flows into one of
the NF instances to create initial flow states in it. Then
we configure the OFM Controller to perform flow and
state migration of all flows on this instance to the other free
instance, and measure the migration time. We have tested three
types of NFs including Prads [38], Bro [39], and IPtables [40].
Prads maintains the state of flow meta data, end-host operating
system and service details. Bro maintains the connection
information of TCP, UDP, and ICMP. IPtables tracks the 5-
tuple, TCP state, security marks, etc. for all active flows. For
each NF type, we vary the number of flows to migrate from 10
to 100, and randomly vary the flow rate. Evaluation results are
presented in Fig. 6 reals a linear positive correlation between
the migration time and the number of flows for migration,
regardless of the flow rate. Furthermore, we present the result
of linear regression for each NF type.
• Prads: lamigration = 86.982 + 5.7892⇥ n, R2 = 0.998
• Bro: lamigration = 39.205 + 2.9545⇥ n, R2 = 0.997
• IPtables: lamigration = 32.595+4.5222⇥n, R2 = 0.998

R2 is a measure of accuracy of fit with a value of 1 denoting
a perfect fit. Above regression expressions demonstrate a

Number of flows
10 30 50 70 100

M
ig

ra
tio

n
tim

e
(m

s)

0

200

400

600

800
Prads
Bro
IPtables

Fig. 6: Relationship between migration time and flow number

Number of flow counters
20 40 60 80 100

800

1000

1200

1400

1600

Fig. 7: Latency of the OFM Controller querying counters

strong linear correlation between the migration time and the
number of flows to migrate and can be utilized to estimate
the migration latency. Especially, we could use the regression
expression to estimate the SFMT (by assigning n = 1), which
can be used for the scaling in and load balancing algorithms.

2) Timeliness of OFM: OFM collects flow statistics and
calculates a migration plan during runtime. To ensure timeli-
ness, statistics have to be gathered quickly and the algorithms
should run efficiently. We enable the OFM Controller to
query different numbers of flow counters from one underlying
switch. As shown in Fig. 7, the OFM Controller could
fetch 100 counters within 1.5 ms. Furthermore, as shown in
the rest of this section, the entire control loop of statistics
gathering and calculation could finish within 1 second, which
demonstrates the timeliness and practicality of OFM.

3) NF Scaling out Algorithm: We evaluate the optimization
effect and computation time of the NF scaling out algorithm
using the Prads NF. In order to simulate NF overload situa-
tions, we assume that there are 10 NF instances, and set the
number of overloaded instance as 2, 4, 6, 8. As the number of
overloaded instances increases, the new instance deployment
phase of the OFM scaling out algorithm is more likely to
be triggered, which introduces a higher penalty. We set the
thsafe as 60%, 55%, and 50%, respectively, and assume that
in each situation, 5%, 10%, 15%, and 20% of flows (size-
wise) need to be migrated for each overloaded instance. The
decrease of thsafe indicates that current instances can hold
fewer flows and new instances are more likely to be deployed.
In order to quantify the migration cost, due to the lack of
real world SLA settings for NFV networks, we set the SLAs
of the flows by following the uniform random distribution in
[0.5⇥(SFMT+laprocessing), 1.5⇥(SFMT+laprocessing)].
This could ensure that some flow SLAs are violated during
migration, and some are not.

We compare the OFM scaling out algorithm with an optimal
algorithm and a size-greedy algorithm. The optimal solution

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

11

���� ���� ���� ����
�

�

�

�
[����

0
LJ
UD
WLR
Q�
FR
VW

�������

�

�

6L]H�JUHHG\ 2)0 2SWLPDO

���� ���� ���� ����
�

�

�

�
[���� �������

���� ���� ���� ����
�

�

�

�
[���� �������

���� ���� ���� ����
�

�

�

�
[���� �������

���� ���� ���� ����
�

�

�

�
[���� �������

���� ���� ���� ����
�

�

�

�
[����

0
LJ
UD
WLR
Q�
FR
VW

�������

���� ���� ���� ����
�

�

�

�
[����

0LJUDWLRQ�UDWLR

�������

���� ���� ���� ����
�

�

�

�
[���� �������

���� ���� ���� ����
�

�

�

�
[���� �������

���� ���� ���� ����
�

�

�

�
[���� �������

���� ���� ���� ����
�

�

�

�
[���� �������

���� ���� ���� ����
�

�

�

�
[���� �������

Fig. 8: Effect of OFM scaling out algorithm. We mark the (#overloaded instances, thsafe) on subfigures’ top-right corner.

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

7R
WD
O�0
LJ
UD
WLR
Q�
%
HQ
HI
LW

1XPEHU�RI�XQGHUORDGHG�LQVWDQFHV

�

�

2)0 5DQGRP

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

�� �� �� �� ��
��

�

�

�

�
[���� ���������

Fig. 9: Effect of OFM scaling in algorithm. We mark the (thbottom, thsafe) on subfigures’ top-right corner.

produces the flow set that covers enough flows for migration
with minimal cost. For the size-greedy solution, it picks the
flow with the largest size until enough flows are selected to
alleviate the hot spot, so that the flow selection process can
finish as quickly as possible. For the flow placement onto
current instance step, it chooses large flows to place on current
instances over small flows. The intuition here is to maximize
the size of flows placed on current instances. Finally, for
the new instance deployment process, the size-greedy strategy
always packs large sized flows into new instances so as to
minimize the number of new instances. As shown in Fig. 8,

OFM scaling out algorithm could reduce the migration cost
to a large extent compared with the size-greedy algorithm,
while suffering slightly higher cost compared with the optimal
solution. This proves the effectiveness of the OFM algorithm.

4) NF Scaling in Algorithm: OFM exploits ILP to calculate
an optimal solution that could minimize the migration cost for
NF scaling in situations. In order to evaluate the optimization
effect, we set thbottom as 10%, 15%, 20%, 25% and thsafe

as 40%, 50%, 60%. Above thresholds could be dynamically
configured by the operator during the runtime. We scatter flows
from the LBNL/ICSI enterprise trace to NF instances to ensure

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

12

TABLE II: The scalability of OFM algorithms with respect to different parameters

Parameter Scale out Scale in Load balancing
Number of flows Demonstrated in Fig. 12(b). Not related. Demonstrated in Fig. 11(b).

Packet rate Packet rate can be converted to Number of flows based on real world flow size distribution [3].
Number of instances Demonstrated in Fig. 12(a) Demonstrated in Fig. 13 Demonstrated in Fig. 11(a)

�

�

�

�

�� �� �� �� ��

/
RD
G�
YD
UL
DQ
FH

UH
GX
FW
LR
Q�
UD
WLR

1XPEHU�RI�LQVWDQFHV

3DLUZLVH
2)0

Fig. 10: Effect of OFM NF load
balancing algorithm

�

��

��

��

��

���

�� �� �� �� ��

&
RP
SX
WD
WLR
Q�
WLP
H��
ȝV
�

1XPEHU�RI�LQVWDQFHV

3DLUZLVH
2)0

(a) With different number of instances.

�

��

��

��

��

���

�� �� �� �� ��

&
RP
SX
WD
WLR
Q�
WLP
H��
ȝV
�

$YHUDJH�QXPEHU�RI�IORZV

3DLUZLVH
2)0

(b) With different number of flows.

Fig. 11: Scalability of OFM load balancing algorithm.

2 4 6 8
10−2

10−1

100

Number of overloaded instances

C
om

pu
ta

tio
n

tim
e

(m
s)

OFM
Size−greedy

(a) With different number of instances.

�(��

�(��

�(��

�(��

�(��

�� �� �� �� �� �� �� �� �� ���

&
RP
SX
WD
WLR
Q�
WLP
H�
�P
V�

1XPEHU�RI�IORZV

2)0

6L]H�JUHHG\

2SWLPDO

(b) With different number of flows.

Fig. 12: Scalability of OFM scaling out algorithm.

10 20 30 40 50
10−2
10−1
100
101
102
103

Number of underloaded instances

C
om

pu
ta

tio
n

tim
e

(m
s)

OFM
Random

Fig. 13: Scalability of OFM NF scaling in
algorithm.

that a certain number of NF instances are underloaded. We
configure the SLA of the flows following the same uniform
random distribution as in the NF scaling out experiment.

The performance of this approach depends almost fully on
the ILP formulation and solving. The ILP performance is
mainly influenced by the number of underloaded NF instances
of the same type. We set the number of underloaded instances
as 10, 20, 30, 40, and 50 out of a total number of 100 instances.
We use the Prads NF to perform the evaluation. We compare
NF scaling in algorithm in OFM with a random solution that
randomly picks NF pairs to merge while assuring that the total
NF load after merging does not exceed the thsafe. As shown
in Fig. 9, the OFM solution could achieve a linear increase
in the migration benefit with the increase of the underloaded
instance number and always outperforms the random solution
significantly.

5) NF Load Balancing Algorithm: NF load balancing in
OFM targets on reducing the load variance of NF instances
belonging to the same NF type. Therefore, we vary the number
of NF instances from 10 to 50, calculate the load variance
of NF instances before (varbefore) and after (varafter) the
load balancing algorithm, and calculate the variance reduction
ratio = varbefore/varafter. We randomly arrange flows from
the LBNL/ICSI enterprise trace on NF instances to ensure that
no overload or underload situations happen.

We compare the NF load balancing algorithm in OFM with
a pairwise solution that greedily pairs the overloaded and
underloaded NF instances by sorting the load of NF instances
and iteratively picking instances with the lowest and highest
loads as pairs. It then redistributes flows between the two

instances in each pair for load balancing. As shown in Fig. 10,
the load variance of NF instances could be reduced by a factor
of 1.5 to 2.5 by the OFM load balancing algorithm, which is
20% to 60% better than the pairwise solution.

6) Scalability of OFM Algorithms: We evaluate the scala-
bility of OFM with respect to real world network parameters.
According to the design of OFM algorithms, the number of
flows, packet rate, and the number of instances may affect the
computation time. As packet rate can be easily converted to
the number of flows based on flow size distribution of real
world network traffic [3], below we focus on the scalability of
OFM algorithms with respect to different numbers of flows and
numbers of instances. For test flows in our experiment, we use
real world flows from the LBNL/ICSI enterprise trace, whose
statistics is presented in Fig. 5. We summarize the scalability
evaluation of OFM in Table II.

For OFM scaling out algorithm, we first measure the compu-
tation time under different number of instances with the same
evaluation setup as Section V-B3. As shown in Fig. 12(a), the
OFM algorithm consumes less than 1 ms computation time,
which occupies only a tiny portion of the entire migration time.
Despite the size-greedy algorithm could finish more quickly
within 0.1 ms, its optimization effect falls far behind OFM, as
mentioned in Section V-B3. Second, we vary the number of
flows on one instance and set the number of instances to one.
As shown in Fig. 12(b), the computation time of OFM is below
0.1 ms under different numbers of flows and increases slowly
as the number of flows increases. Moreover, OFM calculation
time is significantly shorter than that of the optimal solution.
Above results demonstrate the scalability and efficiency of the

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

13

OFM scaling out algorithm.
For OFM scaling in algorithm, as the number of flows is

not considered in algorithm design, we vary the number of
underloaded instances to evaluate its scalability. According to
Fig. 13, the computation time of the OFM NF scaling in algo-
rithm is below 200 ms when handling 10 to 50 underloaded
instances, which is acceptable in real-world network scale.

For OFM load balancing algorithm, we first set the average
number of flows on each instance to 10, vary the number of
instances, and measure the computation time. We then set
the number of instances to 10, vary the average number of
flows on each instance, and measure the computation time.
As shown in Fig. 11(a) and Fig. 11(b), the computation
time of the OFM algorithm is well below 100 µs for all
parameter configurations, which demonstrates the scalability
of the algorithm to quickly balance NF load in real world
NFV networks.

VI. RELATED WORK

Some research efforts [5], [12], [13], [14], [15], [16], [41]
have addressed the necessity of state migration to support NFV
elasticity control. Split/Merge [14] and OpenNF [5] rely on
a centralized control plane to buffer states during migration,
while enhanced OpenNF [12] and other efforts [13], [15], [16],
[41] perform state and packet transfer entirely in the data
plane to improve scalability and performance. Above efforts
mainly focus on safe and efficient state migration in NFV.
In contrast, OFM addresses the challenge of optimized flow
selection for NFV elasticity control to minimize penalty, and
is complementary to above works.

Murad et al. [42] proposed to extract state from NFs and
store state in a data store layer, thus eliminating the necessity
to migrate flows for NFV elasticity control. However, such a
design could add to the NF processing latency by a maximum
of 500 µs, which might be unbearable for latency sensitive
applications [17], [16]. In comparison, OFM carefully considers
the SLA requirements of flows and selects appropriate flows
to migrate to achieve optimized NFV elasticity control.

A strawman solution for NFV elasticity control proposed
in E2 [18] adopts a strategy of migration avoidance. Existing
flows are still processed by previously assigned NF instances,
while new flows are differentially handled. In this way, no flow
migration occurs for NFV elasticity control. For NF scaling
out, we simply instantiate a new NF instance and redirect new
flows to it. For NF scaling in, we coalesce new flows on a
few selected NFs and terminate other servers after all of their
residual flows are served. For NF load balancing, we exploit
consistent hashing to balance new flows. While the migration
avoidance strategy introduces no migration penalty, it may
still result in penalty. For NF scaling out, flows on existing
NF instances may grow larger, which increases NF loads,
degrades NF performance, and incurs SLA violations. For NF
scaling in, many flows in data centers are long-lived flows that
could last for minutes to hours [3]. The migration avoidance
strategy prevents timely destruction of underloaded instances
and therefore cannot bring as high revenue benefit as OFM. For
NF load balancing, as flows on existing NF instances grow in

sizes, NF instances may become overloaded and trigger NF
scaling out, which would also introduce SLA violation penalty
without careful flow selection.

Flow migration, which is also called flow handover, is also
a significant problem in 5G networks. Two typical recent
researches [43], [44] have illustrated the necessity for the
flow admission control from 5G macro cell networks to small
cells. Above works targeted at minimizing the affection to
the experience of other users during flow handover. Similarly,
OFM aims at minimizing SLA violation penalty during NF
elasticity control and flow migration. However, OFM differs
from above works significantly. For 5G networks, the macro
cell network itself can process all packets, while small cells
are adopted to reduce power and cost. Therefore, migrating
flows to small cells is optional, and an admission control
mechanism is required to ensure user experience. However,
in NFV networks, one NF instance is typically not adequate
to process all flows, making elasticity control inevitable. OFM
could optimize migration penalty.

Finally, comparing to the previous version of this paper [1],
we have made substantive enhancements in this manuscript.
First, we provide a unified ILP formulation for the three
NFV elasticity control situations to generate an optimal flow
migration plan. However, the optimal algorithm cannot be
quickly solved in a limited time when not violating the control
goals of the NFV elasticity control situations. Therefore, we
need to design unique algorithms to handle the three situations
respectively. Second, we have thoroughly modified the opti-
mized flow migration algorithms for the three situations. For
each situation, we first present the optimal algorithm and then
the acceleration solution to effectively and efficiently generate
the migration plan. Furthermore, we discuss how OFM reacts
when two ore three NFV elasticity control situations happen
simultaneously. Finally, we have updated the evaluation to
demonstrate that OFM can enable NFV elasticity control with
optimized flow migration.

VII. CONCLUSION AND FUTURE WORK

We have proposed the design of OFM Controller to
realize optimized flow migration for NFV elasticity control.
We have analyzed different NFV elasticity control situations
including NF scaling out, scaling in, and load balancing, and
identified their control goals and challenges. After modeling
buffer and migration cost, we have introduced a unified
optimal formulation for all three situations, which cannot be
solved within limited time. Thus, to achieve the unique control
goals of each situation, we have designed a unique optimal
formulation and a fast heuristic algorithm for each situation.
Finally, we have introduced that OFM chooses to handle NF
overload, load imbalance, and NF underload in order when two
or three situations coexist in NFV. We have implemented the
OFM Controller on top of NFV and SDN environments.
Extensive evaluation results show that OFM could achieve
near optimal flow migration within reasonable calculation
time. As our future work, we will implement more NFs and
integrate OFM into popular open-source NFV platforms to
further demonstrate its effectiveness and efficiency.

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

14

REFERENCES

[1] C. Sun, J. Bi, Z. Meng, X. Zhang, and H. Hu, “Ofm: Optimized
flow migration for nfv elasticity control,” in 2018 IEEE/ACM 21st
International Symposium on Quality of Service (IWQoS). IEEE, url:
http://netarchlab.tsinghua.edu.cn/⇠junbi/IWQoS-2018.pdf, 2018.

[2] R. Guerzoni et al., “Network functions virtualisation: an introduction,
benefits, enablers, challenges and call for action, introductory white
paper,” in SDN and OpenFlow World Congress, 2012.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 267–280.

[4] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 123–137.

[5] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in Proceedings of the 2014 ACM conference on SIGCOMM.
ACM, 2014, pp. 163–174.

[6] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5g on the horizon: Key
challenges for the radio-access network,” IEEE vehicular technology
magazine, vol. 8, no. 3, pp. 47–53, 2013.

[7] B. Blanco, J. O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng,
J. Pérez-Romero, I. Trajkovska, P. S. Khodashenas, L. Goratti,
M. Paolino et al., “Technology pillars in the architecture of future 5g
mobile networks: Nfv, mec and sdn,” Computer Standards & Interfaces,
vol. 54, pp. 216–228, 2017.

[8] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro,
“Service function chaining use cases in mobile networks,” Internet
Engineering Task Force, 2015.

[9] S. Dutta, T. Taleb, and A. Ksentini, “Qoe-aware elasticity support
in cloud-native 5g systems,” in Communications (ICC), 2016 IEEE
International Conference on. IEEE, 2016, pp. 1–6.

[10] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
programming platform-independent stateful openflow applications in-
side the switch,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 44–51, 2014.

[11] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level state transition as a new switch primitive for sdn,” in Proceedings
of ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN’14), 2014.

[12] A. Gember-Jacobson and A. Akella, “Improving the safety, scalability,
and efficiency of network function state transfers,” in Proceedings of
the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization. ACM, pp. 43–48.

[13] B. Kothandaraman, M. Du, and P. Sköldström, “Centrally controlled
distributed vnf state management,” in Proceedings of the 2015 ACM
SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. ACM, 2015, pp. 37–42.

[14] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), 2013, pp. 227–240.

[15] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, “Transparent flow
migration for nfv,” in Network Protocols (ICNP), 2016 IEEE 24th
International Conference on. IEEE, 2016, pp. 1–10.

[16] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in NSDI, 2018.

[17] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: cloud scale load balancing with hardware and soft-
ware,” in Proceedings of the 2014 ACM conference on SIGCOMM.
ACM, 2014, pp. 27–38.

[18] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 2015,
pp. 121–136.

[19] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[20] M. Alhamad, T. Dillon, and E. Chang, “Conceptual sla framework for
cloud computing,” in Digital Ecosystems and Technologies (DEST), 2010
4th IEEE International Conference on. IEEE, 2010, pp. 606–610.

[21] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[22] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254–265.

[23] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies.
ACM, 2011, p. 8.

[24] O. N. Foundation, “Openflow switch specification 1.4.0,” 2013.
[25] S. Miteff and S. Hazelhurst, “Nfshunt: A linux firewall with openflow-

enabled hardware bypass,” in Network Function Virtualization and
Software Defined Network (NFV-SDN), 2015 IEEE Conference on.
IEEE, 2015, pp. 100–106.

[26] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “Clickos and the art of network function virtualization,” in 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). Seattle, WA: USENIX Association, 2014, pp. 459–473.

[27] J. Hwang, K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
Network and Service Management, IEEE Transactions on, vol. 12, no. 1,
pp. 34–47, 2015.

[28] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
ACM Sigplan Notices, vol. 46, no. 9, pp. 279–291, 2011.

[29] L. Wu, S. K. Garg, and R. Buyya, “Sla-based resource allocation for
software as a service provider (saas) in cloud computing environments,”
in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on. IEEE, 2011, pp. 195–204.

[30] J. P. Ignizio, Goal programming and extensions. Lexington Books,
1976.

[31] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1998.

[32] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 43–56.

[33] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 2017, pp. 15–28.

[34] Project floodlight. [Online]. Available: http://www.projectfloodlight.org/
floodlight/

[35] M. Berkelaar, J. Dirks, K. Eikland, P. Notebaert, and J. Ebert,
“lpsolve: A mixed integer linear programming (milp) solver,” URL
http://sourceforge. net/projects/lpsolve, 2007.

[36] Open vswitch. [Online]. Available: http://openvswitch.org/
[37] Lbnl/icsi enterprise tracing project. [Online]. Available: http://www.icir.

org/enterprise-tracing
[38] Passive real-time asset detection system. [Online]. Available: http:

//prads.projects.linpro.no.
[39] V. Paxson, S. Campbell, J. Lee et al., “Bro intrusion detection system,”

Lawrence Berkeley National Laboratory, Tech. Rep., 2006.
[40] netfilter/iptables project. [Online]. Available: http://www.netfilter.org/
[41] Y. Lin, U. C. Kozat, J. Kaippallimalil, M. Moradi, A. C. Soong, and

Z. M. Mao, “Pausing and resuming network flows using programmable
buffers,” in SOSR. ACM, 2018, p. 7.

[42] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), Boston, MA, 2017, pp. 97–112.

[43] T. Taleb and A. Ksentini, “Qos/qoe predictions-based admission control
for femto communications,” in Communications (ICC), 2012 IEEE
international conference on. IEEE, 2012, pp. 5146–5150.

[44] A. Ksentini, T. Taleb, and K. B. Letaif, “Qoe-based flow admission
control in small cell networks,” IEEE Transactions on Wireless Com-
munications, vol. 15, no. 4, pp. 2474–2483, 2016.

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2869953, IEEE Journal
on Selected Areas in Communications

15

Chen Sun received the B.S. degree in Department
of Electronic Engineering at Tsinghua University
in 2014. Currently he is a Ph.D. candidate at the
Institute for Network Sciences and Cyberspace, Ts-
inghua University. His research interests include
Internet Architecture, Software-Defined Networking,
and Network Function Virtualization. He has pub-
lished papers in SIGCOMM, ICNP, SOSR, IWQoS,
IEEE Communications Magazine, IEEE Network
Magazine, etc.

Jun Bi (S’98–A’99–M’00–SM’14) received B.S.,
C.S., and Ph.D. degrees in Department of Com-
puter Science at Tsinghua University, Beijing, China.
Currently, he is a Changjiang Scholar Distinguished
Professor of Tsinghua University and the director
of Network Architecture Research Division, Institute
for Network Sciences and Cyberspace at Tsinghua
University. His current research interests include
Internet Architecture, SDN/NFV, and Network Se-
curity. He successfully led tens of research projects,
published more than 200 research papers and 20

Internet RFCs or drafts, owned 30 innovation patents, received national sci-
ence and technology advancement prizes, IEEE ICCCN outstanding leadership
award, and best paper awards. He is a distinguished member of CCF (China
Computer Federation).

Zili Meng is currently pursuing the bachelor’s de-
gree with Department of Electronic Engineering,
Tsinghua University. He has authored or co-authored
papers in SIGCOMM, SOSR, IWQoS and ICC. His
research interest includes Network Function Virtual-
ization and Software Defined Networks.

Tong Yang received his Ph.D. degree in Computer
Science from Tsinghua University in 2013. He vis-
ited Institute of Computing Technology, Chinese
Academy of Sciences (CAS) China from 2013.7 to
2014.7. Now he is an assistant professor in Com-
puter Science Department, Peking University. His re-
search interests include routers and switches, Bloom
filters, sketches, and Openflow. He has published
over 40-refereed technical papers, many of which
appeared in top conferences and journals, including
SIGCOMM, SIGMOD, VLDB, ATC, ICDE, ToN,

INFOCOM, SOSR, ICNP, etc.

Xiao Zhang received the B.S. degree from the De-
partment of Computer Science and Technology, Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2016. She is currently pursuing
the master’s degree with the Institute for Network
Sciences and Cyberspace, Tsinghua University. Her
research interests include software-defined network-
ing and network functions virtualization.

Hongxin Hu (S’10–M’12) is an Assistant Professor
in the Division of Computer Science, School of
Computing, Clemson University. He received the
Ph.D. degree in computer science from Arizona State
University, Tempe, AZ, in 2012. His current research
interests include security in emerging networking
technologies, security in Internet of Things (IoT),
security and privacy in social networks, and security
in cloud and mobile computing. He has published
over 100 refereed technical papers, many of which
appeared in top conferences and journals. He is the

recipient of the Best Paper Awards from ACM SIGCSE 2018 and ACM
CODASPY 2014, and the Best Paper Award Honorable Mentions from ACM
SACMAT 2016, IEEE ICNP 2015, and ACM SACMAT 2011.

