
One Slow Memory Access Hash Table∗

Tong Yang1, Yufei Wang1, Haowei Zhang1, Yunlong Wang2
Guojie Luo1, Jiaxi Zhang1, Xiaoming Li1, Steve Uhlig3

1Department of Computer Science, Peking University, China
2Department of Electronic Engineering, Tsinghua University, China

3School of electronic engineering and computer science, Queen Mary University of London, UK

ABSTRACT
Existing hash tables cannot guarantee onememory access per query
in the worst case without update failures. In this paper, we propose
the OMH table, which is deployed in the fast-slow hierarchical mem-
ories (e.g., GPU/CPU). Our hash table builds exclusive fingerprints
in the fast memory to guide query in the slow memory, and it needs
one slow memory access per query in the worst case, supports fast
incremental updates, and guarantees no update failure.

1 INTRODUCTION
Hash tables are one of the most classic data structures. Thanks
to their average O(1) time complexity for insertion, query and
deletion, hash tables have been applied to a variety of areas, such
as IP address lookups [14], packet classification [6], MAC table
lookup and more [3–5]. Most real-world workloads that hit hash
tables are read-heavy [1]: most of the operations to hash tables are
queries. The main shortcoming of hash tables is that they cannot
guarantee O(1) time complexity for queries in the worst case. In
many applications, it is critical for the worst-case query time to be
well-bounded, e .д., a switch in a data center queries each incoming
packet in its MAC table, and if query operations take too much time
in the worst case, the buffer of the incoming packet might overflow,
causing packet loss.

A large number of works have studied how to reduce the number
of memory access per query in the worst case. There are mainly
two kinds of solutions. The first kind achieves constant lookup time
at the cost of slow update and possibility of update failures. Typical
schemes include Cuckoo Hashing [9] and its variants, and Perfect
hashing. Cuckoo hashing needs two memory accesses per query in
the worst case, however, this bounded worst-case complexity comes
at the cost of slow updates and the possibility of update failures.
Perfect Hashing achieves one memory access per query through
special designed hash functions, but does not support fast incre-
mental updates. The Second kind of solutions achieve in average
around 1 slow memory access per query by leveraging the fast-
slow hierarchical memories, Typical schemes include Segmented
Hashing [7] and Peacock Hashing [8]. Typically, the access time
of fast memory like SRAM is compared negligible to that of slow
memory like DRAM. Therefore, the second kind of solutions focus
on using auxiliary data structure (e.g., fingerprints, Bloom filters
(BFs) [2]) in the fast memory to reduce the number of accesses
of slow memory. However, both BFs and fingerprints have false
positives, which means even with their assistance, there could still
be multiple slow memory accesses in the worst case.

∗Co-primary authors: Tong Yang and Yufei Wang. This work is supported by Primary
Research & Development Plan of China (2016YFB1000304), National Basic Research
Program of China (973 Program, 2014CB340405), NSFC (61672061), the Open Project
Funding of CAS Key Lab of Network Data Science and Technology, Institute of Com-
puting Technology, Chinese Academy of Sciences.

In summary, existing works either suffer from slow update and
possibility of update failures, or do not improve the worst-case
performance. The goal of this paper is to design a hash table that
requires at most one memory access per query in the worst case,
and supports fast incremental update without update failures. The
key idea is to compute multiple fingerprints for a KV pair, and
choose one so that each KV pair has only one matched fingerprint.

2 ONE MEMORY HASH TABLE
2.1 Data Structure

Slow Memory main table

Fast Memoryfingerprint table

^
^

^
^

^
^
^

…

…

ௗݐ ݆ . ݅݀ ௗݐ ݆ . ݌݂
hଵ(.) hଶ (.) hୢ (.)

stash

1 2 ݀…

index fieldݓଵ bits fingerprint fieldݓଶ bits
w bits

m

m

ௗܶ ݆ ௗܮ ݆

……s entries

Figure 1: Data structure of OMH.

As shown in Figure 1, OMH consists of three components: A
fingerprint table, a stash in fast memory, and a main table in slow
memory. The main table is composed of d sub-tables T1,T2, . . . ,Td .
The fingerprint table is composed of d arrays t1, t2, . . . , td . Both
Ti and ti (1 ⩽ i ⩽ d) havem buckets, and are associated with the
same hash function hi (.) (1 ⩽ i ⩽ d), whose output is uniformly
distributed in the range [1,m]. We denote the jth bucket in the ith
sub-table and array byTi [j] and ti [j], respectively. Each bucketTi [j]
in the main table has a linked list which is denoted by Li [j]. The
stash is an array of s (s is usually very small, e.g, 32) entries, and each
entry can store one KV pair. A bucket Ti [j] in main table together
with its corresponding bucket ti [j] in fingerprint table records a
KV pair ⟨kl ,vl ⟩:Ti [j] is large and stores ⟨kl ,vl ⟩, while ti [j] is small
and stores a fingerprint of ⟨kl ,vl ⟩. There are 2w1 independent FP-
hashes hFq (0 ⩽ q ⩽ 2w1 − 1) used to compute fingerprints. q is
called the index of hFq . A bucket ti [j] in the fingerprint table has
w bits, and contains two fields: the fingerprint field (ti [j]. f p) and
the index field (ti [j].index). The fingerprint field has w2 bits (the
length of a fingerprint) and is used to record the fingerprint of the
KV pair stored in Ti [j]. The index field hasw1 (w1 = w −w2) bits
and is used to record the index of the FP-hash that generates the
fingerprint. The initialization of OMH is to set all the buckets Ti [j]
and ti [j] (1 ⩽ i ⩽ d, 1 ⩽ j ⩽ m) to 0.1



2.2 Operations
2.2.1 Construction. Given a set of KV pairs S, OMH builds the

main table first, and then the fingerprint table. During the process,
two techniques are proposed to meet the design goal: footprint
recording and exclusive fingerprinting, both discussed below.
1) Main table construction: For each KV pair ⟨kl ,vl ⟩ in S,
OMH maps it to d buckets in the main table: T1[h1(kl )], T2[h2(kl )],
. . . , Td [hd (kl )]. We call them the candidate buckets of ⟨kl ,vl ⟩.
OMH checks them sequentially and stops when an empty bucket is
found. During this process, there are three possible cases: 1) If an
empty bucket is found, OMH inserts ⟨kl ,vl ⟩ into it. For the other
d − 1 unchosen candidate buckets, OMH inserts ⟨kl ,vl ⟩ into the
linked lists of all of them. This process is called footprint record-
ing. 2) If no empty bucket is found and the stash is not full, OMH in-
serts ⟨kl ,vl ⟩ into the stash. 3) If no empty bucket is found and the
stash is full, then OMH activates instant table extension: it adds
a new pair of tables Td+1 and td+1 associated with h1(.), which
have the same structure and size as T1 and t1. OMH inserts ⟨kl ,vl ⟩
intoTd+1[h1(kl )], and L1[h1(kl )], L2[h2(kl )], . . . , Ld [hd (kl )] due to
footprint recording. Note that each previously inserted KV pair
⟨k ′l ,v

′
l ⟩ should be copied to the linked list Ld+1[h1(k ′l )] due to foot-

print recording, however, the reuse of h1(.) avoids such heavy copy
because Ld+1[j] (1 ⩽ j ⩽ m) can be obtained as L1[j] ∪T1[j].
2) Fingerprint table construction: After the construction of
main table, for each bucket Ti [j] that stores a KV pair ⟨kl ,vl ⟩,
OMH chooses an adequate FP-hash to compute a fingerprint, and
records the index of this FP-hash and the fingerprint in ti [j]. Ade-
quate means that the computed fingerprint of ⟨kl ,vl ⟩ is different
from all the fingerprints of KV pairs in Li [j]. OMH utilizes a tech-
nique called exclusive fingerprinting to choose the FP-hash. Let
⟨kl ,vl ⟩ be a KV pair stored inTi [j], Li [j] be the linked list ofTi [j], S
be the set of keys in Li [j]. An FP-hash hFq is adequate if and only if:
hFq (kl ) , hFq (s),∀s ∈ S. OMH tries the 2w1 FP-hashes sequentially,
and if it finds an adequate hFq , OMH records q in ti [j].index , and
hFq (kl ) in ti [j]. f p. If no adequate FP-hash is found, OMH inserts it
into stash to avoid the computation of a fingerprint. If the stash is
full, instant table extension is performed.

2.2.2 Insertion: To insert a KV pair ⟨kl ,vl ⟩, OMH locates its
d candidate buckets in main table, checks them sequentially, and
stops if an empty bucket is found. During this process, there are
three possible cases: 1) If an empty bucket is found, OMH inserts
⟨kl ,vl ⟩ into it and all linked lists of the other d − 1 unchosen
buckets. Then OMH performs exclusive fingerprinting for ⟨kl ,vl ⟩.
For the other d − 1 unchosen candidate buckets, if they contain
a KV pair ⟨k ′l ,v

′
l ⟩ and record a FP-hash hFq , OMH checks if hFq is

still adequate, because ⟨kl ,vl ⟩ is newly added to the linked list.
If hFq becomes inadequate,i.e., hFq (kl ) = hFq (k ′l ), OMH applies the
exclusive fingerprinting for ⟨k ′l ,v

′
l ⟩. 2) If no empty bucket is found

and the stash is not full, then OMH inserts ⟨kl ,vl ⟩ into the stash.
3) If no empty bucket is found and the stash is full, then the instant
table extension mechanism is activated.

2.2.3 Query: To query ⟨kl ,vl ⟩, OMH first checks the stash.
If kl is found, OMH reports the value and query ends. Other-
wise, OMH locates d candidate buckets t1[h1(kl )], t2[h2(kl )], . . . ,
td [hd (kl )]. For each bucket ti [hi (kl )](1 ⩽ i ⩽ d), OMH gets the
FP-hash index q and fingerprint f , and computes hFq (kl ) to see if

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2

Taxi Post DoCWords
Synthetic

Q
ue

ry
 A

M
A

Dataset

Chaining
Linear

Double
Cuckoo

Segment
D-left

Peacock
BCHT

SmartCK
OMH

 30

 35

 40

 45

 50

 55

 60

 65

2048 3072 4096 5120 6144 7168 8192 9216 1024011264

Th
ro

ug
hp

ut
(M

qp
s)

Batch Size

Donation
Porto Taxi
Synthetic

DocWords

(a) QueryAMA (b) GPU throuдhput
Figure 2: Evaluations of OMH

it matches with f . There are two possible situations: 1) If there is
more than one matched fingerprints, or there is no matched fin-
gerprint, OMH reports a failure, meaning the queried key does not
exist. 2) If there is only one matched fingerprint, OMH locates the
bucket in the fingerprint table that contains the matched finger-
print, and checks its corresponding bucket in the main table: if kl
is found, OMH reports the value; if kl is not found, OMH reports a
failure. In both situations, there is at most one slow memory access.

2.2.4 Deletion: To delete a KV pair ⟨kl ,vl ⟩, OMH first queries
to find it, and then removes it.
3 EVALUATION
We use three real-world datasets and one synthetic dataset. We
compare OMHwith chaining [12], linear [? ], double[? ], cuckoo [9],
d-left [13], peacock [8], segment [7], BCHT [10] and smartcuckoo
hashing [11] in terms of query Average Memory Access (AMA). We
also implement OMH on a fast-slow hierarchical memory platform:
the GPU/CPU platform, and report its query throughput in Mqps
(Million query per second).

As shown in Figure 2(a), we find that OMH needs only 1 AMA
on all four datasets. No other hash scheme achieves this. The AMA
of OMH is 1.92, 5.48, 4.01, 1.55, 1.56, 15.32, 1.38, 1.28 and 1.65 times
lower than that of chaining, linear, double, cuckoo, segment, d-left,
peacock, BCHT and smartcuckoo, respectively. As shown in Figure
2(b), the maximum query throughput OMH achieves is around 55
Mqps, demonstrating its relevance to real-world scenarios.
REFERENCES
[1] Berk Atikoglu and Yuehai. et Xu. 2012. Workload analysis of a large-scale key-

value store. measurement and modeling of computer systems 40, 1 (2012), 53–64.
[2] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.
[3] HaipengDai, LMeng, andAlex X Liu. 2018. Finding persistent items in distributed,

datasets. In IEEE INFOCOM.
[4] Haipeng Dai, Muhammad Shahzad, Alex X Liu, and Yuankun Zhong. 2016. Find-

ing persistent items in data streams. Proceedings of the VLDB Endowment 10, 4
(2016), 289–300.

[5] Haipeng Dai, Yuankun Zhong, Alex X Liu, Wei Wang, and Meng Li. 2016. Noisy
Bloom Filters for Multi-Set Membership Testing. In ACM SIGMETRICS. 139–151.

[6] Pankaj Gupta and Nick McKeown. 2001. Algorithms for packet classification.
Network, IEEE 15, 2 (2001), 24–32.

[7] Sailesh Kumar and Patrick Crowley. 2005. Segmented hash: an efficient hash table
implementation for high performance networking subsystems. (2005), 91–103.

[8] Sailesh Kumar and et Turner, Jonathan. 2008. Peacock hashing: Deterministic
and updatable hashing for high performance networking. In IEEE INFOCOM.

[9] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[10] Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. (2015), 1493–1508.

[11] Yuanyuan Sun and Yu Hua .et. [n. d.]. SmartCuckoo: A Fast and Cost-Efficient
Hashing Index Scheme for Cloud Storage Systems. In 2017 USENIX ATC.

[12] R. L. Rives T. H. Cormen, C. E. Leiserson. 2009. Introduction to Algorithms. The
MIT Press.

[13] Berthold Vocking. [n. d.]. How asymmetry helps load balancing. J. ACM 50, 4
([n. d.]).

[14] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. 1997.
Scalable high speed IP routing lookups. Vol. 27. ACM.

2


	Abstract
	1 Introduction
	2 One Memory Hash Table
	2.1 Data Structure
	2.2 Operations

	3 Evaluation
	References

