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Abstract—Hash table, a widely used data structure, can achieve
an O(1) average lookup speed at the cost of large memory
usage. Unfortunately, hash tables suffer from collisions and
the rate of collisions is largely determined by the load factor.
Broadly speaking, existing research has taken two approaches
to improve the performance of hash tables. The first approach
trades-off collision rate with memory usage, but only works
well under low load. The second approach pursues high load
and no hash collisions, but comes with update failures. The
goal of this paper is to design a practical and efficient hash
table that achieves high load factor, low hash collision rate,
fast lookup speed, fast update speed, and zero update failures.
To achieve this goal, we take a three-step approach. First, we
propose a set of hashing techniques that leverage Bloom filters
to significantly reduce hash collision rates. Second, we introduce
a novel kick mechanism to achieve a high load factor. Last, we
develop bitmaps to significantly accelerate the kick mechanism.
Theoretical analysis and experimental results show that our
hashing schemes significantly outperform the state-of-the-art.
Our hash table achieves a high load factor (greater than 95%),
a low collision rate (less than 0.56%), and the number of hash
buckets almost equals to the number of key-value pairs. Given
n key-value pairs, the collision rate is reduced to 0 by either
using 1.18 ×n buckets or allowing up to 5 blind kicks. We have
released the source code of the implementations of our hash table
and of 6 prior hash tables at Github [1].

I. INTRODUCTION

A. Background and Problem Statement
Hash tables are data structures that store key-value pairs. A

key-value pair is a set of two linked data items: a key, which is
a unique identifier for some item of data, and a value, which
is the data or a pointer to the data that is identified. A hash
table is comprised of a finite number of buckets, where each
bucket is essentially a certain number of bits in the memory.
Depending on how the hash-table is designed, each bucket
is used to store one or more key-value pairs. A hash table
is associated with three operations: insertion, deletion, and
query. The insertion operation stores the value of a given key-
value pair at an appropriate location in the hash table. When
inserting the value, hash table may experience a collision, i.e.,
the bucket in the hash table assigned to the new key-value pair
is already taken by an existing one. These collisions are called
hash collisions. The deletion operation deletes a previously
inserted value of a given key-value pair from the hash table.
The query operation retrieves the previously inserted value
corresponding to a given key. In the rest of this paper, at
times, we will use the term update to refer to the insertion and

deletion operations simultaneously. A wide variety of metrics
are used to measure the quality of a hash table. These include
load factor, insertion speed, deletion speed, and query speed.
Load factor is defined as the ratio of the number of non-
empty buckets to the total number of buckets in the hash
table. A higher load factor indicates that the hash table utilizes
the memory efficiently by minimizing the number of unused
buckets. Insertion, deletion, and query speeds refer to the time
the hash table takes to insert, delete, and query the value
corresponding to a given key, respectively. Clearly, higher
speeds are more desirable.

Hash tables are being extensively used in a variety of appli-
cations such as key-value stores [11], [9], [22], NLP [26], [32],
[13], IP lookups [39], [27], [36], packet classification [14],
[31], [30], load balancing [33], [23], [3], [2], intrusion detec-
tion [25], [28], and TCP/IP state management [35]. With more
and more devices connecting to the Internet and causing an
increase in the amount of data at an unprecedented rate, in
most real-world applications, the number of key-value pairs
are also growing at an unprecedented rate. Unfortunately, the
memory available on computing devices to store the hash
tables is limited. Therefore, hash tables frequently experience
hash collisions when inserting new key-value pairs, which
adversely affect all three operations associated with the hash
table. For the insertion operation, hash collisions either lead to
the failure of insertion or result in an increased time to insert
a given key-value pair. For the deletion and query operations,
hash collisions result in an increased time to delete or query,
respectively, the previously inserted value corresponding to the
given key. In this paper, we design a new hash table that is
easy to implement in practical hardware devices and has high
load factor, high insertion, deletion, and query speeds, low rate
of collisions, and zero insertion failures.

B. Limitations of Prior Hashing Paradigms
The majority of the prior hash tables follow one of the

following four paradigms: chaining hash table, multi hash
table, multi hash table with Bloom filters, or kicking hash
table. Next, we describe the insertion, deletion, and query
operations on these four categories of hash tables and discuss
their limitations. These limitations will motivate the need and
design of our proposed scheme.

1) Chaining Hash Table: Chaining hash table (CHT) con-
sists of a single hash table T with m buckets and a hash



function h(.) with uniformly distributed output. Each bucket
has chain of units, and each unit has three fields: key, value,
and a pointer. The pointer field points to the next unit in the
chain, if any. Let B[i] represent the ith bucket in the table T ,
where 0 6 i 6 m. To insert a key-value pair with key x in
table T , CHT evaluates h(x), creates a new unit at the start of
the chain of bucket B[h(x)%m], and inserts the pair into this
unit. To delete a key-value pair with key x, CHT traverses the
chain of the bucket B[h(x)%m] looking for the key x. If it
find a unit with this key, it deletes the unit, otherwise reports
that the key was not found. To query the value for the key x,
CHT traverses the chain of the bucket B[h(x)%m] looking for
the key x. If it find a unit with this key, it returns the value,
otherwise reports that the key was not found.
Limitations: CHT falls short of three perspectives. First,
the use of pointers wastes a lot of memory space. Second,
the performance of CHT drops significantly when the load
factor is high. Therefore, it must keep many empty buckets
to maintain high performance. Third, its query operation is
inefficient, because it has to traverse long chains to find the
key, which may not even exist in the table. In other words, its
worst case query time is not reasonably bounded.

2) Multi Hash Table: Multi hash table (MHT) increases the
number of hash tables from 1 to z, where each hash table is
called a sub-table. Operation on sub-table is just same as CHT,
while the difference is that all operation starts from the first
sub-table and continue on the next one if needed, and ends
when iterate through all sub-tables.
Limitations: While MHT reduces the number of collisions
compared to CHT, it falls short of the perspective of query
speed, because it usually has to look into several sub-tables
before finding the desired key-value pair. Furthermore, the load
factor is also low. Notable schemes following this hashing
paradigm include d random[4] and d left hashing [34].

3) MHT with Bloom Filters: The limitation of slow query
speed of MHT can be overcome by using a Bloom filter Fj

for each sub-table Tj . A Bloom filter [5], [38], [37] is a bit
array that can be used to quickly check whether an item has
been inserted in a sub-table or not. Each Bloom filter consists
of an array Fj of mBF

j bits corresponding to its affiliated sub-
table. Each Bloom filter Fj is associated with c independent
hash functions, represented by hBF

j,k(.), where 0 6 k 6 c− 1.
We represent MHT with Bloom filters using MHTBF.
Limitations: Although MHTBF is faster than MHT, for each
lookup, it still needs to query all Bloom filters, which requires
z × c hash computations if each Bloom filter uses c hash
functions and there are z sub-tables. Furthermore, the load
factor of MHTBF is as low as that of MHT. Notable schemes
that follow this hashing paradigm include FHT [29], segment
hashing [19], peacock hashing [20], and choice hashing [15].

4) Kicking Hash Table: KHTs can be produced from
any of the CHT, MHT, and MHTBF by introducing slight
modifications into their corresponding insertion, deletion, and
query operations. While the exact details of implementation
for different KHT based schemes are different, the basic
underlying principle is that when inserting a key-value, if

the bucket to which the key is mapped by the hash-function
already contains another key-value pair, kick that existing key-
value pair out, insert the new key-value pair in that bucket, and
find a new bucket for the kicked-out key-value pair.
Limitations: While KHTs generally have faster query speeds
and relatively high load factors, they are severely limited by
their slow insertion speeds because they require a large number
of hash computations and memory accesses due to kicking and
still often end up with insertion failures. Such schemes also
need to reconstruct the entire hash tables if they are frequently
unable to update the tables, which takes a large amount of
time and is hardly acceptable in practical applications. Notable
schemes that follow this hashing paradigm include perfect
hashing [12], [8], cuckoo hashing [24], the applications of
cuckoo hashing [9], [40], and more [17], [21].

C. Proposed Approach
In this paper, we propose a new hash table, called Rectan-

gular Hash Table (RHT). RHT achieves high load factor, high
insertion, deletion, and query speeds, low rate of collisions,
and zero insertion failures. RHT is an MHTBF based kicking
hash table. Just like MHTBF, RHT has z sub-tables, where we
represent the jth sub-table by Tj . Each sub-table Tj has mj

buckets, an independent hash function hj(.), and a Bloom filter
Fj associated with it, where 0 6 j 6 z − 1. We represent the
ith bucket in the sub-table Tj with Bj [i], where 0 6 i 6 mj .
Each Bloom filter Fj is associated with c independent hash
functions with uniformly distributed outputs, represented by
hBF
j,k(.), where 0 6 k 6 c− 1.
RHT differs from MHTBF in following four key aspects:

kicking mechanism, sub-table sizes, hash chains, and load
balancing technique. Regarding kicking mechanism, when
inserting a key-value pair with key x, instead of blind-
ly kicking a key-value pair out of one of the z buckets
Bj [hj(x)%mj ],∀j ∈ [0, z− 2], RHT first utilizes a bitmap to
determine which key-value pair among these z−1 buckets will
most quickly find a new empty bucket, and then kicks that key-
value pair out. For reasons that will become apparent in the
next two paragraphs, RHT never kicks out the key-value pairs
from the buckets for sub-table Tz−1. Our bitmap based kicking
scheme overcomes the limitation of slow insertion speeds of
conventional KHTs. The insertion speed of RHT is up to 2
times faster than prior hash tables. This bitmap based kicking
also enables RHT to achieve a significantly higher load factor
compared to prior hash tables because it kicks those key-value
pairs that can be inserted into empty buckets quickly with
fewest subsequent kicks. The load factor of RHT is up to 1.2
times higher than prior hash tables.

Regarding sub-table sizes, the sizes of sub-tables in RHT
follow a decreasing arithmetic progression, i.e., mj+1 =
mj − 1. We do not keep the sizes of all sub-tables the same
because some sub-tables experience fewer collisions compared
to others and should have a smaller size to improve the
memory efficiency of RHT. These arithmetically decreasing
sub-table sizes enable us to combine all z Bloom filters
associated with the z sub-tables into a single Bloom filter.



The key intuition is that ∀j ∈ [0, z− 1], mj +mz−1−j results
in the same number, i.e., if we combine sub-tables Tj and
Tz−1−j , the resulting sub-table will always have the same
number of buckets regardless of the value of j. This means
that, we can have dz/2e Bloom filters of the same size for
all these dz/2e combined sub-tables. As long as these dz/2e
Bloom filters use the same c hash functions, we can combine
them into a single Bloom filter by placing them adjacently.
The results of hash functions now point to dz/2e consecutive
bits instead of a single bit. To set a bit of Bloom filter Fj ,
where 1 6 j 6 dz/2e, we take bitwise logical OR of the
dz/2e bits with 2j − 1. To read the bit of Bloom filter Fj , we
take bitwise logical AND of the dz/2e bits with 2j − 1. If the
result is 0, the bit is 0 otherwise 1.

As RHT combines all Bloom filters into a single Bloom
filter, in querying the value for any given key, RHT now
computes only c hash functions to retrieve all bits that it needs
to identify sub-tables that might contain the key. Thus, by
combining the Bloom filters, RHT has reduced the number
of hash computations by z times compared to the number of
hash computations of MHTBF to query its z Bloom filters.
Our arithmetically decreasing sub-table sizes enable RHT to
overcome the limitation of slow query speeds of MHT and
MHTBF. The query speed of RHT is up to 5 times faster than
prior hash tables, respectively.

Regarding the hash chains, RHT allows hash chains only
in the smallest sub-table, i.e., in the sub-table Tz−1. When
inserting a new key-value pair, if all buckets are occupied, and
after consulting the bitmap, RHT determines that neither of the
z−1 key-value pairs that are stored in buckets Bj [hj(x)%mj ],
where0 6 j 6 z − 2, will find an empty bucket if kicked out,
RHT randomly picks one of these z − 1 buckets and kicks
its key-value pair. RHT then looks at the bitmap again to
determine whether any of key-value pair in the z − 2 buckets
that this recently kicked out key-value pair maps to will find
an empty bucket if kicked out. This process continues until a
kicked out key-value pair finds an empty bucket, or the number
of kicks reach a threshold θ. The value of θ is set to ensure that
most key-value pairs can find an empty bucket. If the number
of kicks reaches the threshold, and there still is a kicked out
key-value pair with key y that needs to be inserted, RHT
inserts it into the hash chain of bucket Bz−1[hz−1(y)%mz−1].
By keeping the hash-chains in a sub-table, RHT overcomes
the limitation of insertion failures of KHTs. The motivation
behind associating the hash chains with the smallest sub-table
is to reduce the memory usage of RHT.

Regarding load-balancing, when inserting a key-value pair,
RHT picks the sub-table with the smallest load factor among
all sub-tables that have an empty bucket for the key-value
pair. To summarize, while RHT is based on the MHTBF based
KHT paradigm, it does not suffer from any of the limitations
of either the KHT paradigm (i.e., insertion failure and slow
insertion speed) or the MHTBF paradigm (i.e., slow query and
deletion speeds, and low load factor).

D. Key Contributions
1) We propose a novel hash table, namely RHT, that

outperforms all prior state-of-the-art hash tables in terms
of insertion, deletion, and query speeds, load factor, and
rate of collisions.

2) We implemented RHT along with 6 prior state-of-the-
art hash tables and extensively evaluated them and
performed their side-by-side comparison. Our results
show that RHT outperforms all prior state-of-the-art
hash tables in terms of insertion speed by 2 times, query
speed by 5 times, load factor by 1.2 times, and rate of
collisions by 10 times.

II. RECTANGULAR HASH TABLE

In this section, we describe our rectangular hash table
(RHT) scheme. To motivate and justify the design choices
we made, we start with the bare bones version of RHT and
incrementally build over it to arrive at the final design of RHT.
In describing each version of RHT, we will first discuss the
design of that version and describe how this design addresses
the limitations of the previous version of RHT or of the hash
tables previously proposed by researchers. Finally, we will
discuss the limitations of that version, which motivate the
design of the next version.

A. RHT Version 1: using One Combined Bloom Filter
Recall from Section I-B3 that one of the limitations of

MHTBF is that a large number of hash computations sig-
nificantly affect the query speed of MHTBF. The objective
of version 1 of RHT, represented by RHTv1, is to reduce
the number of Bloom filters from z to 1, which will reduce
the number of hash computations per query from z × c to
just c, and increase the query speed, deletion speed. RHTv1

is essentially the same as MHTBF, except that the number
of buckets in each sub-table follows a decreasing arithmetic
progression, i.e., mj+1 = mj − 1, where 0 6 j 6 z − 1.
The key intuition is that ∀j ∈ [0, z− 1], mj +mz−1−j results
in the same number. In RHTv1, we logically combine sub-
tables Tj and Tz−1−j for each j ∈ [0, dz/2e], which results in
dz/2e logical sub-tables with equal number of buckets which
benefits the combination of Bloom filters thus achieving less
number of memory accesses. Figure 1 shows 6 sub-tables with
arithmetically decreasing sizes on the left side and 3 combined
sub-tables of equal sizes at the right. Note that the logical sub-
tables form a rectangular shaped data structure and so we name
our scheme rectangular hash table.

RHTv1 maintains the Bloom filter Fj for each logical sub-
table Lj , where 0 6 j 6 dz/2e. The same number of bits in
each Bloom filter Fj , i.e., ∀j ∈ [0, dz/2e], mBF

j is a constant
value mBF, resulting in same false positive rate of each filter,
thus going one step further, instead of keeping the dz/2e
Bloom filters separated, we can combine them by appending
their corresponding bits into a bin comprising of d z2e bits
as a unit in new combined Bloom filter without influencing
each previous filter’s performance. Figure 1 also shows the
3 equally sized Bloom filters are appended to one combined
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Fig. 1. Rectangular hash table architecture.

filter CF , and CF [l] represents the lth bin of the CF , where
0 6 l 6 mBF − 1. We use the same set of c hash functions
for the combined Bloom filter as previous, where the result of
each hash function now points to one bin comprised of dz/2e
bits storing each bit from separated filters. We represent the
jth bit in the lth bin by CF [l][j], where 0 6 l 6 mBF − 1 and
0 6 j 6 dz/2e. Figure 2 shows a 3-bit Bloom filter which
is obtained from three equally sized standard Bloom filters
F1, F2, and F3. Unlike sub-tables, which are conceptually
combined, we physically combine the dz/2e Bloom filters to
one Bloom filter, which we then place in on-chip memory for
fast query processing. To avoid insertion failures due to no
space available, RHTv1 uses chaining lists as the zth sub-table
as it is the shortest among all sub-tables. Thus, the pointers
will use the least amount of memory. Next, we describe the
insertion, query, and deletion operations of RHTv1.

F1 F2 F3

multi-bit BF  
Fig. 2. Structure of the combined Bloom filter.

Insertion: To insert a key-value pair with key x, RHTv1 first
evaluates hj(x)%mj , j ∈ [0, z − 1],and then identifies all
empty buckets among Bj [hj(x)%mj ]. It then inserts this key-
value pair into the empty bucket in the sub-table that has
the smallest load factor, because of which RHTv1 ensures
good load balancing across sub-tables. If, however, RHTv1

finds that none of the z buckets Bj [hj(x)%mj ] are emp-
ty, it inserts the key-value pair to the chain of the bucket
Bz−1[hz−1(x)%mz−1], which is the last sub-table we as-
signed as chain list. Note that RHTv1 does not use any method
of kicking. After inserting the key-value pair in a bucket of a
sub-table, in order to record the key-value pair, RHTv1 updates
the bin in the combined Bloom filter with the associated bit.
More specifically, if it adds the key-value pair to sub-table Tj ,
it either sets CF [hBF

k (x)%mBF][j] to 1 if 0 6 j 6 dz/2e, or
sets CF [hBF

k (x)%mBF][z − 1− j] to 1 if dz/2e < j 6 z − 1.

To set the jth bit to 1 in a bin, RHTv1 simply takes logical
OR to the bin, which is efficient.
Query: To query a key x, RHTv1 queries the Bloom filter at
every jth bit in all bins, that is the mBF bits CF [l][j], where
0 6 l 6 mBF − 1. If all c bits CF [hBF

k (x)%mBF][j] are set
to 1, it goes to check the buckets Bj [hj(x)%mj ] in sub-table
Tj and Bz−1−j [hz−1−j(x)%mz−1−j ] in Tz−1−j to determine
whether the key is there. If it finds the key in either bucket,
it returns the associated value, otherwise, it increments j by
1 and repeats the entire process until it either finds the key in
a sub-table or has iterated all dz/2e Bloom filters. Note that
when querying, RHTv1 does not calculate z×c hash functions
which is in MHTBF, but only calculates c hash functions. To
read the jth bit in a bin, RHTv1 simply takes logical AND to
that bin with 2j − 1 in binary.
Deletion: To delete a key-value pair with key x, RHTv1 first
searches the bucket containing the key as described above and
then removes the key-value pair from that bucket if the bucket
does not belong to the sub-table Tz−1 which is a chain list.
If the bucket belongs to the sub-table Tz−1, after traversing
the chain of the bucket Bz−1[hz−1(x)%mz−1], it finds the
key and copies the value in the pointer field of that unit to
the pointer field of the preceding unit, then deletes the unit.
If it can not find the key, it declares that the key was not
found in the hash table. As the combined Bloom filter CF is
generated by combining standard Bloom filters, and standard
Bloom filters do not support deletions, RHTv1 does not delete
the key in the combined Bloom filter after removing the pair
from the sub-table.
Limitations: When querying a key x, RHTv1 needs to look up
buckets in two sub-tables Tj and Tz−1−j , which is inefficient.
Ideally, we would like our scheme to look up only one bucket
in one sub-table. The next version of RHT, represented by
RHTv2 addresses this limitation.

B. RHT Version 2: using A Second-half Bloom Filter
To reduce the times of looking up from 2 to 1, RHTv2

maintains an additional Bloom filter to support it, which we
call the second-half Bloom filter and represent by CFhalf. The
number of bins and the number of hash functions in CFhalf
are equal to those in CF . while unlike CF , CFhalf is not
obtained by combining any Bloom filters. CFhalf is shown at
right side in Figure 1. Next, we describe the insertion, query,
and deletion operations of RHTv2.
Insertion: To insert a key-value pair with key x, RHTv2

follows the same procedure as RHTv1 does except that if
the sub-table to which it inserts this key-value pair is among
the smaller bz/2c sub-tables, then it also updates the Bloom
filter CFhalf in addition to CF . More specifically, if RHTv2

inserts this key-value pair into a bucket in the sub-table
Tj , where j ∈ (dz/2e, z − 1], RHTv2 also sets the c bits
CFhalf[h

BF
k (x)%mBF] to 1.

Query: To query a key x, RHTv2 follows the same procedure
as RHTv1 does except that if all c bits CF [hBF

k (x)%mBF][j]
are set to 1, it then checks the c bits hBF

k (x)%mBF of CFhalf. If
all c bits CFhalf[h

BF
k (x)%mBF] are not set to 1, RHTv2 looks up



the bucket Bj [hj(x)%mj ] for key x in sub-table Tj , otherwise
it looks up the bucket Bz−1−j [hz−1−j(x)%mz−1−j ] in sub-
table Tz−1−j .
Deletion: To delete a key-value pair with key x, RHTv2

follows the same procedure as RHTv1 does. Similar to RHTv1,
RHTv2 does not delete the key from CF and CFhalf after
removing it from the bucket.
Limitations: While RHTv2 reduces the number of looking up
sub-tables from two to one, it still has a high rate of bucket
collisions, i.e., when the number of key-value pairs is large,
it is very likely that all candidate buckets are occupied when
inserting new key-value pair. RHTv1 and RHTv2 insert the new
key-value pair into the last sub-table which we assigned as a
chain list at the bucket Bz−1[hz−1(x)%mz−1]. Consequently,
this leads to a lower load factor because some buckets in the
sub-tables stay unfilled which potentially could offer a position
for pairs which are forced to append into the chain list. The
next version of RHT, represented by RHTv3, improves upon
RHTv2 in increasing the load factor.

C. RHT Version 3: using Cuckoo Kicking

To increase the load factor, RHTv3 invites kicking method
into RHTv2, which is inspired by cuckoo hashing [24]. The
key idea behind kicking is that when all z buckets that an
incoming key-value pair matches are already occupied, if we
kick out one of the exsiting pairs in those buckets and replace
it with the incoming pair, there is a chance that the kicked out
pair can match to an empty bucket. In this way, the incoming
pair as well as the kicked out pair both get placed into buckets
and neither of the pairs end up in a chain of sub-table Tz−1.
This approach results in two advantages. First, more buckets
get utilized, which increases the load factor. Second, the sizes
of chains in the sub-table Tz−1 decrease, which accelerates
querying the key-value pairs in the chains of the sub-table
Tz−1. Next, we describe the insertion, query, and deletion
operations of RHTv3.
Insertion: To insert a key-value pair with key x, RHTv3

follows the same procedure as RHTv2 except that if all z
buckets Bj [hj(x)%mj ], where 0 6 j 6 z − 1, are occupied,
instead of inserting this new incoming key-value pair into
the chain of bucket Bz−1[hz−1(x)%mz−1], it kicks out the
key-value pair stored in the bucket Blx [hlx(x)%mlx ], where
lx ∈ [0, z − 2] and replaces it with the incoming key-value
pair. Note that our kicking out the pair from the bucket of
sub-table Tlx is arbitrary. One could choose any sub-table and
achieve the same performance. Suppose, the key in the kicked
out key-value pair is x1. RHTv3 executes the same insertion
process for this kicked out pair as it did for the new incoming
pair except that it does not use sub-table Tlx . It is possible that
the z−1 buckets Bj [hj(x1)%mj ], where j 6= lx, are again all
occupied, in which case RHTv3 will again kick out a key-value
pair, this time from the bucket Blx1

[hlx1
(x1)%mlx1

], where
lx1 ∈ [0, z−2]−{lx}, and insert the kicked out key-value pair
with key x1 in that bucket. RHTv3 again executes the same
insertion process on x2 and so on. To bound the amount of
times that RHTv3 spends on kicking, we put a threshold to

limit the times key-value pairs can be kicked out. Once the
threshold is reached, RHTv3 inserts the last kicked out key-
value pair into the appropriate bucket of sub-table Tz−1.
Query: The query operation of RHTv3 is the same as the
query operation of RHTv2.
Deletion: The deletion operation of RHTv3 is the same as the
deletion operation of RHTv2.
Limitations: Kicking method inspired by cuckoo hashing is
not time efficient because RHTv3 randomly chooses a bucket
to kick a key-value pair out without determining whether the
kicked out pair will find an empty bucket or not. We call such
kicks blind kicks. Blind kicks increases the number of kicks
before a kicked out pair finds an empty bucket. Consequently,
the insertion speed of RHTv3 is relatively slow. The next
version of RHT, represented by RHTv4, improves upon RHTv3

to increase the insertion speed by adopting a new kicking
method.

D. RHT Version 4: The Final Design

To reduce the number of kicks, RHTv4 replaces blind kicks
with bitmap kicks. For each sub-table Tj , where 0 6 j 6 z−1,
RHTv4 maintains a small bitmap Mj in the on-chip memory.
Each bitmap Mj is essentially just a set of mj bits. Recall
that mj represents the number of buckets in sub-table Tj .
We represent the ith bit in the bitmap Mj with Mj [i], where
0 6 i 6 mj −1. Each bit Mj [i] corresponds to a bucket Bj [i]
in sub-table Tj , where 0 6 j 6 z − 1 and 0 6 i 6 mj − 1.
The key idea is that each bit in any given bitmap stores the
occupancy status of the corresponding bucket in the sub-table,
i.e., if bucket Bj [i] is empty, then the bit Mj [i] is 0, otherwise
it is set to 1. As bitmaps reside in on-chip memory, RHTv4 can
quickly access them to determine which buckets are currently
empty and which key-value pair, if kicked out from its current
bucket, will find an empty bucket. With the help of bitmaps,
RHTv4 significantly reduces the number of kicks because
bitmaps give a holistic view of empty and non-empty buckets
in the sub-tables. Next, we describe the insertion, query, and
deletion operations of RHTv4.
Insertion: To insert a key-value pair with key x, RHTv4 first
evaluates the z hash functions hj(x)%mj and then looks up
the z bits Mj [hj(x)%mj ] in bitmaps, where 0 6 j 6 z − 1,
to identify the empty buckets. If, it finds some empty buckets,
it inserts this key-value pair into the empty bucket of the sub-
table that has the smallest load factor, i.e., the sub-table with
empty bucket for which

∑mj−1
i=0 Mj [i]/mj is the smallest. It

then updates the combined Bloom filters CF and/or CFhalf
to indicate that the key-value pair has been inserted in this
sub-table, as described earlier for RHTv1 and RHTv2. If,
RHTv4 does not find an empty bucket, instead of blindly
kicking out a key-value pair from Blx [hlx(x)%mlx ], where
lx ∈ [0, z − 2], it sets lx = 0, and checks whether the key-
value pair in Blx [hlx(x)%mlx ] will find an empty bucket if
kicked out or not. More specifically, let the key of the key-
value pair in Blx [hlx(x)%mlx ], where currently lx = 0, be
represented with y. RHTv4 checks whether any of the bits
Mj [hj(y)%mj ], where 0 6 j 6 z−1, in the bitmaps are 0. If



there is at least one bit that is 0, it means that there is at least
one empty bucket among the buckets Bj [hj(y)%mj ], where
j 6= lx, in one of the sub-tables to which the key-value pair
currently stored in Blx [hlx(x)%mlx ] can be moved. In this
case, RHTv4 kicks out this key-value pair with key y from the
bucket Blx [hlx(x)%mlx ], moves it to the empty bucket of the
sub-table with smallest load factor, and inserts the incoming
key-value pair with key x into this bucket Blx [hlx(x)%mlx ].
If, however, none of the bits Mj [hj(y)%mj ] in the bitmaps are
0, this means that none of the other buckets Bj [hj(y)%mj ],
where j 6= lx, in remaining sub-tables are empty. Therefore,
kicking this key-value pair will not do any good and will only
lead to another kick. In this case, RHTv4 increments lx by
one and checks the bitmaps for the key-value pair stored in
the next bucket Blx [hlx(x)%mlx ]. It continues this process of
looking for an empty bucket for the key-value pair stored in
Blx [hlx(x)%mlx ] until either for a certain value of lx, where
0 6 lx 6 z − 2, RHTv4 finds an empty bucket with the help
of bitmaps, or all z− 1 key-value pairs currently stored in the
z − 1 buckets Blx [hlx(x)%mlx ], where 0 6 lx 6 z − 2, have
been checked and there is no empty bucket for any of them
to be moved to. If in the latter case, RHTv4 randomly picks a
key-value pair in one of the buckets Blx [hlx(x)%mlx ], where
0 6 lx 6 z − 2, kicks it out (i.e., performs a blind kick as
in RHTv3), inserts the incoming pair with key x in its place,
and tries to insert the most recently kicked out key-value pair
using the same method as it used for the incoming key-value
pair with key x. Just like RHTv3, to bound the amount of
time RHTv4 spends on kicking, we put a threshold θ on the
number of blind kicks. Once the threshold is reached, RHTv4

inserts the most recently kicked out key-value pair into the
chain of the appropriate bucket of sub-table Tz−1. By tuning
the value of θ, RHTv4 can make a trade-off between the load
factor of sub-tables and the insertion speed. Finally, note that
every time RHTv4 inserts a key-value pair into a bucket Bj [i],
it always sets the bit Mj [i] to 1, where 0 6 j 6 z − 1 and
0 6 i 6 mj .

Query: The query operation of RHTv4 is the same as the
query operation of RHTv3.

Deletion: The deletion operation of RHTv4 is also the same as
the deletion operation of RHTv3 except that whenever RHTv4

deletes a key-value pair from a bucket Bj [i], and the bucket
becomes empty, it always resets the bit Mj [i] to 0, where
0 6 j 6 z−1 and 0 6 i 6 mj . Note that for sub-table Tz−1, it
is possible that when a key-value pair is deleted from a bucket,
the bucket does not become empty, because the buckets in sub-
table Tz−1 contain chains of key-value pairs, rather than single
key-value pairs.

Table I summarizes and compares all hash tables we have
discussed until now. We observe from this table that RHTv4

outperforms cuckoo hashing as well as other schemes in terms
of support for parallelization, number of memory accesses,
update speed, and insertion failures. Next, we calculate the
false positive rates of the Bloom filters used in RHTv4, which
determines the number of buckets that RHTv4 will look up

when querying the value for any given key or deleting the
key-value pair corresponding to that key.

1) False Positive Rate: RHTv4 uses two Bloom filters: CF
and CFhalf. Let there be n key-value pairs and z sub-tables
regrouped into d z2e sub-tables. Let the Bloom filter CF has
w bins, where each bin has d z2e bits, corresponding to the
d z2e regrouped sub-tables. Recall from Section II-A, that we
use c hash functions for CF . We let c = ln2w

n . The false
positive rate of CF is equal to that of any of the independent
d z2e Bloom filters Fj . Therefore, the false positive rate of CF ,
represented by f(CF ), is given by the following equation.

f(CF ) = 1− (1− 0.5c)
z
2−1 (1)

If the number of BFs that report true is u+1, the false positive
rate is given by the following equation.

f(CF, u) = 0.5c∗u ∗ (1− 0.5c(z−u−1)) (2)

As we also use c hash functions for CFhalf, its false positive
rate is simply f(CFhalf) = 0.5c. Given that a key is present in
one of the sub-tables, if CF reports that the key exists only in
one sub-table and CFhalf does not report that the key exists,
then no false positives occur and the probability of this event
is (1 − f(CF )) × (1 − f(CFhalf)). If CF reports that a key
exists in u+1 sub-tables and CFhalf does not report that the key
exists, u false positives occur and the probability of this event
is f(CF, u)×(1−f(CFhalf)). If CF reports that the key exists
only in one sub-table and CFhalf suffers from a false positive,
the probability of this event is (1−f(CF ))×f(CFhalf). If CF
reports that a key exists in u+ 1 sub-tables, i.e., suffers from
u false positives, and CFhalf also suffers from a false positive,
the probability of this event is f(CF, u) × f(CFhalf). As an
example, when z = 8 and c = 16, the false positive rate of
RHTv4 is 1−(1−f(CF ))∗(1−f(CFhalf)) ≈ 6.1∗10−5, which
is extremely small. This shows that our two Bloom filter based
approach significantly reduces the number for sub-tables that
RHTv4 looks up the given key in, which in turn significantly
increases its insertion speed.

III. PERFORMANCE EVALUATION

A. Experimental setup

For our experiments, we assume that one memory access
can read/write one bucket. We use β to represent the ratio of
number buckets in all sub-tables to the number of total items.
In our experiments, we vary the value of β from 1.05 to 10, i.e.,
the size of the hash table will be 1.05 to 10 times the number of
items. To generate data sets for evaluation, we used synthetic
benchmarking data produced by the well known Yahoo Cloud
Serving Benchmark (YCSB) [6]. From the YCSB data, we
generated a large number of key-value pairs, where the size
of value in each pair is fixed at 8 bits. Out of all the pairs, the
size of key in approximately one-third pairs is 8 bits, in another
one-third pairs is 16 bits, and in the remaining one-third is
128 bits. Corresponding to each size of the key, we generated
three groups of data containing 8 million, 128 million, and 192
million key-value pairs. Consequently, we obtained 9 groups



TABLE I
SUMMARY AND COMPARISON OF HASH TABLES

Name Number of
pointers

Load
factor

Number of
Bloom filters

Number of
bitmaps

Query
complexity

Update
complexity

Update
failures

CHT > 2m ≈ 50% 0 0 O(1) O(1) None
MHT > m ≈ 90% 0 0 O(z) O(z) None

MHTBF > m ≈ 90% z 0 O(1) O(z) None
Cuckoo 0 ≈ 95% 0 0 O(1) O(n) Yes
RHTv1 ≈ m/(2z − 1) ≈ 90% 1 0 O(1) O(z) None
RHTv2 ≈ m/(2z − 1) ≈ 90% 2 0 O(1) O(z) None
RHTv3 ≈ m/(2z − 1) > 95% 2 0 O(1) O(z) None
RHTv4 ≈ m/(2z − 1) > 95% 2 z O(1) O(z) None
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Fig. 3. Memory accesses per insertion during hash table construction (β = 1.05, θ = 1) for three scales of datasets.
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Fig. 4. # memory accesses per query (when β = 1.05, θ = 1) for three scales of datasets.

of data for this evaluation. We represent the group with X
million pairs and Y bit keys as X Y. Our experiments are
conducted on a Thinkstation D30 server with 2 Intel CPUs
(Xeon E5-2620, 2.00 GHz, 6 physical cores).

B. Evaluation of RHTv4

Let n represent the number of key-value pairs that need to be
inserted into the hash table. We evaluated RHTv4 for all three
values of n, i.e., n = 8M, 128M, and 192M. When conducting
experiment for each value of n, we used 8 sub-tables, where
the total size of 8 sub-tables is β × n (1.05 6 β 6 10). We
insert the n items into the z = 8 sub-tables using our RHTv4

scheme. We define the collision rate as the number of items
in the chain of the last sub-table to the total number of items.
We use c = 16 hash functions per Bloom filter. We evaluate
RHTv4 in terms of load factor, collision rate, insertion speed,
query speed, and number of kicks.

1) Load Factor and Collision Rate: For the evaluation of
load factor and collision rate, we set θ = 1 and β = 1.05.
Figure 5 plots the load factor of RHTv4 for our nine groups.
The bars in this figure show the load factor of each subtable,

and the line shows the aggregate load factor across all tables.
We observe from this figure that the 8 sub-tables are very
well balanced, and the overall load factor is 95.21%. RHTv4

achieves such a high load factor using just 1.05× n memory.
Figure 6 shows the collision rate of RHTv4. We observe from
this figure that the collision rate of RHTv4 is just 0.034%.
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Fig. 5. Load factor of RHTv4 on the 9 data groups (β = 1.05, θ = 1).

2) Insertion and Query Speeds: For the evaluation of
insertion and query speeds, we again set θ = 1 and β = 1.05.
We quantify the speed in terms of the number of memory
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Fig. 6. Collision rate of RHTv4 on the 9 data groups (β = 1.05, θ = 1).

accesses. We insert all the items from each data set into the
RHTv4 hash table. As more items are inserted, each insertion
needs more memory accesses due to bitmap kicks. In the worst
case, the number of memory accesses is still bounded by 8+1
accesses per insertion. Figures 3(a), 3(b), and 3(c) show the
number of memory accesses per insertion of RHTv4 for the 9
groups of data. We observe from these figures that majority
of items in all groups require less than 6 memory accesses
per insertion. Figure 4(a), 4(b), and 4(c) show the number of
memory accesses per query. We observe that the number of
memory accesses per query ranges from 1.00033 to 1.00039
with a mean of 1.00036.

3) Bitmap and Blind Kicks: In this experiment, we set
β = 1.05. We observed from our experiments that after one
traversal of bitmap kicks, most items find empty buckets, and
after 6 blind kicks, there are no items left in the hash chains
of the last sub-table. Table II shows the number of items
in the hash chains after θ number of kicks. When we set
θ = 6, the number of memory accesses per insertion is at
most 8×6+1 = 49, and the number of memory accesses per
search is at most 8. Even when there is only one blind kick
allowed i.e., θ = 1 and when β = 1.05, only a very small
fraction of items (0.035%) lies in the hash chains.

TABLE II
NUMBER OF COLLISION ITEMS BEFORE AND AFTER θ BLIND KICKS.

before kick θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6
8 1 464883 2702 360 65 11 1 0

128 1 7413615 41936 5991 986 122 7 0
192 1 11114921 62737 8800 1446 151 15 0

C. Comparison of RHTv4 with Prior Art
We compare RHTv4 with six prior well-known state of the

art hash tables namely 1) hash chaining [7], 2) linear probing
[18], 3) double hashing [18], 4) cuckoo hashing [24], 5) d left
hashing [34], and 6) peacock hashing [20]. We use the same
data sets as described earlier for this comparative study. Before
we present the results from our experiments, let us first define
insertion failures for prior schemes. Recall that RHTv4 does
not suffer from insertion failures. In linear probing, double
hashing, and cuckoo hashing, whenever a collision happens
during insertions, these schemes probe another bucket and this
probing is recursively repeated. We set the maximum number
of probing recursions to 500, which implies that the maximum
number of memory accesses per insertion is 500 for these three
schemes. After 500 attempts, if collisions still persist, and the

scheme is unable to find an empty bucket for the key-value
pair, we declare it as an insertion failure. For peacock hashing
and RHTv4, we use 16 hash functions for the Bloom filters. For
the remaining Bloom filter parameters, we use their optimal
values calculated using the equations derived in [5]. To avoid
insertion failure in peacock hashing and d left hashing, we use
chaining for the sub-tables to avoid insertion failures. Next, we
compare the performance of these hashing schemes in terms
of load factor, insertion speed, and query speed.

1) Load Factor: Figure 7(a) shows the load factor of all
hashing schemes for all nine groups of data using β = 1.05.
We observe from this figure that the load factor of RHTv4 is
always the largest. Linear hashing and double hashing achieve
similar load factors to RHTv4 at the cost of up to 500 memory
accesses per key-value pair (due to 500 insertion attempts) and
several insertion failures. The load factor of other schemes are
much lower, with chaining hash being the lowest. Figure 7(b)
7(c) 7(d) shows the load factor of all hashing schemes for
8 1, 128 1, and 192 1 groups of data, respectively, when β
varies from 1.05 to 10. We observe from these figures that
the load factor of RHTv4 is the largest in almost all cases.
Linear hashing and double hashing achieve similar load factors
at the expense of much higher memory accesses. Peacock
hashing achieves high load factors only when β is large, which
means that compared to RHTv4, Peacock hashing requires
much larger memory footprint to achieve high load factor.

2) Insertion Speed: Figure 8(a) plots the number of mem-
ory accesses per insertion during the hash table construc-
tion for all hashing schemes when β = 1.05. We observe
from this figure that the chaining hash scheme achieves the
fastest insertion speed because each insertion either needs one
memory access for empty buckets or two memory accesses
for non-empty buckets. RHTv4 achieves faster insertion speed
compared to all other schemes except chaining hash scheme,
owing to the Bloom filters and Bitmaps. The line of cuckoo
hashing does not appear in Figure 8(a) because its insertion
speed is too slow (around 90 memory accesses per insertion)
and lies out of the scale of this figure. Figures8(b), 8(c), and
8(d) plot the number of memory accesses per insertion for
8 1, 128 1, and 192 1 groups of data, respectively, during
the hash table construction for all schemes when β varies from
1.05 to 10. We observe from this figure that the chaining hash
again achieves the lowest insertion time, followed by RHTv4

and double hashing. Cuckoo hashing and linear hashing suffer
from very slow insertion speed when β is small.

3) Query Speed: Figure 9(a) plots the number of memory
accesses per query for all schemes when β = 1.05. We observe
from this figure that RHTv4 achieves the fastest query speed,
owing to the high load factor and small false positive rate of
Bloom filters. Cuckoo hashing performs very well too, as it
only needs at most two memory accesses per search. Figures
9(b), 9(c), and 9(d) plot the number of memory accesses per
query for all schemes when β varies from 1.05 to 10. We
observe from these figures that RHTv4 achieves the fastest
query speed, followed by cuckoo hashing, chaining hash, and
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(a) Load factor (β = 1.05, θ = 1)
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(b) Load factor (θ = 1, 8Mi)
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(c) Load factor (θ = 1, 128Mi)
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(d) Load factor (θ = 1, 192Mi

Fig. 7. Comparison of load factor of RHTv4 with prior 6 hashing schemes using three scales of datasets.
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(a) Insertion time (β = 1.05, θ = 1)
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(b) Insertion time (θ = 1, 8Mi)
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(c) Insertion time (θ = 1, 128Mi)

2 4 6 8 1 0
1

2

3

4

5  C h a i n i n g  H a s h       
 L i n e a r  H a s h      
 D o u b l e  H a s h     
 C u c k o o  H a s h
 P e a c o c k  H a s h
 d _ l e f t  H a s h
 R H T v 4

 �

 

 

# m
em

ory
 ac

ce
ss

 pe
r in

se
rtio

n

(d) Insertion time (θ = 1, 192Mi)

Fig. 8. Comparison of insertion time of RHTv4 with prior 6 hashing schemes using three scales of datasets.
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(a) Search time (β = 1.05, θ = 1).
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(b) Search time (θ = 1, 8Mi)
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(c) Search time (θ = 1, 128Mi)
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(d) Search time (θ = 1, 192Mi)

Fig. 9. Comparison of search time of RHTv4 with prior 6 hashing schemes using three scales of datasets.

double hashing. The search time of linear hashing is very high
when β is small.
D. Cost of Using Bloom Filters

Among the seven hashing schemes we have evaluated
above, RHTv4 and peacock hashing both use Bloom filters.
The use of Bloom filters require some extra memory. If we use
16 hash functions for BFs and 8 sub-tables, the false positive
rate of RHTv4 goes as low as 6.1 ∗ 10−5 (see section II-D1
for calculation) and each item needs 16/ ln 2 = 22.86 bits.
Peacock hashing requires z−1 Bloom filters of different sizes,
while RHTv4 only requires two Bloom filters.

IV. RELATED WORK

Hash tables have been extensively studied in literature
and discussed in Section I-B. Next, we briefly describe only
notable hash tables. A more thorough survey of prior hashing
schemes is available in [16] by Kirsch et al.

A. MHT and MHTBF

Azar et al.did the seminal work on multi-choice hashing
[4]. They proved a powerful allocation result, which states
that if n balls are placed sequentially into m > n bins
and if each ball has k > 2 candidate bins, then with high

probability, the maximal load in a bin after all balls are
inserted is (ln lnn)/ ln k+O(1). Vöcking presented a notable
improvement of Azar’s work, namely d left hashing [34],
which uses k equally sized sub-tables, where each table has its
own hash function and each bucket in each sub-table supports
chaining. While d left hashing achieves lower hash collision
rate and balances the load factor of sub-tables well, it only
works efficiently when implemented in pipeline or parallel.

B. KHT
Cuckoo hashing is a notable KHT that utilizes kicking and

sustains a high load factor [24]. It is used in applications such
as cuckoo filter [10], cuckoo switch [40], and memc3 [9].
To insert a key-value pair, it computes two hash positions
using two independent hash functions and inserts the pair
in the empty bucket corresponding to either of the two hash
positions. If neither of the two buckets are empty, it randomly
chooses one of the buckets, kicks its key-value pair out, and
replaces it with the new key-value pair. Afterwards, it inserts
the kicked out key-value pair into its other candidate bucket,
if that bucket is empty. It repeats this kicking process up
to 500 times. If after 500 kicks, a key-value pair is still
not inserted successfully, it discards the pair, and reports an
insertion failure.



V. CONCLUSION

Hash tables have become indispensable due to their use in a
large number of practical applications such as key-value stores,
NLP, IP lookups, packet classification, load balancing, TCP/IP
state management, and intrusion detection. For this reason,
designing efficient hash tables is of paramount importance.
In this paper, we propose Rectangular Hash Table (RHTv4),
which uses Bloom filters to significantly reduce the hash
collision rate, a kick mechanism to achieve high load factor,
and bitmaps to significantly accelerate the kick mechanism.
Theoretical analysis and experimental results show that our
proposed hash tables achieve a very high load factor of up to
96% and a very low hash collision rate, which is much smaller
than those of the state-of-the-art hashing schemes. Compared
to the state-of-the-art, RHTv4 also achieves significantly faster
insertion and query speeds without experiencing insertion
failures.
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