Послѣдняя моя надѣжда найти методъ, которымъ климатологи пользуются для оцѣнки ошибокъ, - это прочитать материалы доклада IPCC. Священная Википедiя говоритъ, что потеплѣнiе оцѣнивается такъ:
In the period from 1906 to 2005, Earth's average surface temperature rose by 0.74±0.18 °C. The rate of warming almost doubled in the last half of that period (0.13±0.03 °C per decade, against 0.07±0.02 °C per decade).[27]
Вотъ онѣ, оцѣнки ошибокъ. Идемъ по горячему слѣду!
Ссылка [27] - это докладъ "Climate Change 2007: Working Group I: The Physical Science Basis". IPCC AR4.
https://en.wikipedia.org/wiki/Global_warming#cite_note-29 Это талмудъ на 1000 страницъ съ десятками тысячъ ссылокъ на статьи. На страницѣ 336 читаемъ (выдѣленiе жирнымъ шрифтомъ мое):
The time series used in this report have undergone diverse quality controls that have, for example, led to removal of outliers, thereby building in some smoothing. In order to highlight decadal and longer time-scale variations and trends, it is often desirable to apply some kind of low-pass filter to the monthly, seasonal or annual data. In the literature cited for the many indices used in this chapter, a
wide variety of schemes was employed.
...
Another low-pass filter, widely used and easily understood, is to fit a linear trend to the time series although
there is generally no physical reason why trends should be linear, especially over long periods. The overall change in the time series is often inferred from the linear trend over the given time period, but can be quite misleading. Such measures are typically not stable and are sensitive to beginning and end points, so that
adding or subtracting a few points can result in marked differences in the estimated trend. Furthermore, as the climate system exhibits highly nonlinear behaviour, alternative perspectives of overall change are provided by comparing low-pass-filtered values (see above) near the beginning and end of the major series.
The linear trends are estimated by Restricted Maximum Likelihood regression (REML, Diggle et al., 1999), and the estimates of statistical significance assume that the terms have serially uncorrelated errors and that the residuals have an AR1 structure. Brohan et al. (2006) and Rayner et al. (2006) provide annual uncertainties, incorporating effects of measurement and sampling error and uncertainties regarding biases due to urbanisation and earlier methods of measuring SST. These are taken into account, although
ignoring their serial correlation.
The error bars on the trends, shown as 5 to 95% ranges, are wider and more realistic than those provided by the standard ordinary least squares technique. If, for example, a century-long series has multi-decadal variability as well as a trend,
the deviations from the fitted linear trend will be autocorrelated. This will cause the REML technique
to widen the error bars, reflecting the greater difficulty in distinguishing a trend when it is superimposed on other long-term variations and the sensitivity of estimated trends to the period of analysis in such circumstances. Clearly, however, even the REML technique cannot widen its error estimates to take account of variations
outside the sample period of record. Robust methods for the estimation of linear and nonlinear trends in the presence of episodic components
became available recently (Grieser et al., 2002).
As some components of the climate system respond slowly to change, the climate system naturally contains persistence. Hence,
the statistical significances of REML AR1-based linear trends could be overestimated (Zheng and Basher, 1999; Cohn and Lins, 2005).
Nevertheless, the results depend on the statistical model used, and more complex models are not as transparent and often lack physical realism. Indeed, long-term persistence models (Cohn and Lins, 2005) have not been shown to provide a better fit to the data than simpler models.
Appendix 3.B: Techniques, Error Estimation and Measurement Systems: See Supplementary Material
This material is included in the supplementary material. Please note that the many references that are cited only in Appendix 3.B have not been included in the list above, but are just as valuable in formulating the report.
Здѣсь наступаетъ засада. Эти дополнительные матерiалы (Appendix 3.B), гдѣ объясняются методы расчетовъ и оцѣнки ошибокъ - напрочь отсутствуютъ! Якобы они должны быть въ файлахъ ПДФ, но ихъ нигдѣ нѣтъ!
https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3sappendix-3-b.htmlИтакъ, предварительный отвѣтъ найденъ - они пользуются методомъ REML, который какъ-то учитываетъ корреляцiи во времени. Это уже плюсъ. Однако, остаются многочисленные вопросы и проблемы.
1. Результаты расчетовъ по REML указаны въ таблицѣ на стр. 243. Эта таблица показываетъ темпъ роста температуры за перiоды 1850-2005, 1901-2005, и 1979-2005, причемъ съ разбивкой по суше, океану, сѣверному, южному полушарiямъ, и по даннымъ разныхъ группъ ученыхъ. Цифры темпа роста разнятся очень сильно - отъ 0.04 до 0.4 С за декаду. Какъ это интерпретировать, не очень ясно. Океаны утѣпляются очень медленно, а сѣверное полушарiе на сушѣ - очень быстро. Усредненiемъ по всѣй поверхности Земли получается "средняя температура по больницѣ" - т.е. лишенная физическаго смысла величина, полученная усредненiемъ совершенно разныхъ, физически не связанныхъ другъ съ другомъ процессовъ. Такая величина будетъ флуктуировать безъ какой-либо закономѣрности, подъ влiянiемъ непредсказуемыхъ факторовъ.
2. "A wide variety of schemes was employed". Это значитъ, они не знаютъ, что они вычисляютъ. Это чистое упражненiе въ статистикѣ - какъ "лучше" усреднить и сгладить временной рядъ. Отвѣта на такъ поставленный вопросъ не будетъ никогда, отсюда и "wide variety of schemes".
3. "there is generally no physical reason why trends should be linear", "adding or subtracting a few points can result in marked differences in the estimated trend", "the results depend on the statistical model used" - это свидѣтельствa того, что вычисляется лишенная физическаго смысла величина ("trend").
4. Явно сказано, что игнорируются корреляцiи временного ряда въ опредѣленныхъ мѣстахъ вычисленiй.
5. Однако, также сказано, что используется методъ REML, который, съ одной стороны, учитываетъ корреляцiи, но, съ другой стороны, "the statistical significances of REML AR1-based linear trends could be overestimated" въ присутствiи корреляцiй ("the climate system naturally contains persistence"). Это значитъ, что методъ REML не учитываетъ полностью эффектовъ корреляцiй. Надо будетъ прочитать статью про методъ REML, а также про другiе методы, которые вродѣ бы должны исправить этотъ недочетъ.
6. "the statistical significances of REML AR1-based linear trends could be overestimated" - "Nevertheless, the results depend on the statistical model used". Фраза построена такъ, какъ будто "nevertheless" смягчаетъ проблему недостаточной точности REML. Однако, на дѣлѣ эта проблема лишь усугубляется, если результаты еще и зависятъ отъ выбора статистической модели.
PS
Ура, найденъ Appendix 3.B.
https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter3-supp-material.pdfРазочарованъ - ни слова о корреляцiяхъ или методѣ REML.
Слѣдующiе шаги - найти и прочитать источники, упомянутые въ связи съ проблемами REML:
The linear trends are estimated by Restricted Maximum Likelihood regression (REML, Diggle et al., 1999)
Diggle, P.J., K.Y. Liang, and S.L. Zeger, 1999: Analysis of Longitudinal Data. Clarendon Press, Oxford, UK, 253 pp. (А это уже книга, не статья.)
...the statistical significances of REML AR1-based linear trends could be overestimated (Zheng and Basher, 1999; Cohn and Lins, 2005)
Zheng, X., and R.E. Basher, 1999: Structural time series models and trend detection in global and regional temperature series. J. Clim., 12, 2347– 2358.
Cohn, T., and H.J. Lins, 2005: Nature’s style: Naturally trendy. Geophys.
Res. Lett., 32, L23402, doi:10.1029/2005GL024476.
Robust methods for the estimation of linear and nonlinear trends in the presence of episodic components became available recently (Grieser et al., 2002)
Grieser, J., S. Trömel, and C.-D. Schönwiese, 2002: Statistical time series decomposition into significant components and application to European temperature. Theor. Appl. Climatol., 71, 171–183.