chaource: (Default)
Several researchers claimed to obtain the result that climate change is not primarily due to human activity. They lost their jobs very quickly thereafter. The universities claimed, in all cases, that the firing was not related to the researchers' views.

Murry Salby: first hired as a professor of "Climate Risk" but then demoted and fired once he obtained results that there was no risk. https://wattsupwiththat.com/2013/07/08/professor-critical-of-agw-theory-being-disenfranchised-exiled-from-academia-in-australia/

Bob Carter: https://web.archive.org/web/20130910223358/https://www.townsvillebulletin.com.au/article/2013/06/28/384514_news.html (article was removed from townsvillebulletin.com)

Roger Pielke Jr. was forced to quit allegedly due to his views.
https://business.financialpost.com/opinion/ross-mckitrick-this-scientist-proved-climate-change-isnt-causing-extreme-weather-so-politicians-attacked


Will Happer was fired by Al Gore himself.
https://www.epw.senate.gov/public/index.cfm/press-releases-all?ID=5ef55aa3-802a-23ad-4ce4-89c4f49995d2

Peter Ridd was fired allegedly for misconduct.
https://www.desmogblog.com/2018/05/21/climate-science-deniers-around-globe-rally-around-sacked-scientist-peter-ridd
chaource: (Default)
https://amazon.com/Carbon-Dioxide-Theory-Climate-Change/dp/3030168794/

This book provides a complete review of the role of CO2 in the Earth’s atmosphere and reveals detailed information about the subject of climate change. Many different science disciplines are visited and discussed and each area is introduced with a brief summary written to appeal to a broader audience. The logic of CO2 involvement in changing the climate is investigated from every perspective: reviewing the historical data record of Ice Ages with vast ice sheets, noting the interglacial periods of little or no ice, examining in further detail the 20th century data record and evaluating the radiation role of CO2 in the atmosphere. The radiation calculations, using the appropriate equations and data are reviewed in great detail. The results of this review and examination reveal no role of CO2 in any change of the Earth’s climate.

Можно-ли надѣяться, что этого приспѣшника мiровой закулисы, проплаченнаго нефтегазовыми лоббистами, этого такъ называемаго ученаго, будутъ слушать?

Я увѣренъ, что въ этой книгѣ - неправильная наука. Ну не можетъ быть, что испускаемый промышленный СО2 (около 1% отъ всего CO2: около 30*10^9 изъ 3*10^12 тоннъ) не играетъ никакой роли въ климатѣ. Даже движенiе Луны играетъ роль.
chaource: (Default)
https://golos-dobra.livejournal.com/1080616.html
Вот зачем на доскональное освоение всего этого я убил три года?
Одну статью уже пять лет просто боятся опубликовать, потому что результаты
не вызовут аплодисментов у Блумберга, другую вообще “закрыли”, потому
что тоже, ага, результаты совсем не те, что казалось бы согласно научному “консенсусу” должны были быть.
...

Ловить же “потепление” увы и их. Оно по последним прогнозам мирового научного сообщества
растет по 0.06 градуса в декаду начиная с 2000-го года, т.е. сейчас уже где-то плюс 0.12.
С доверительным интервалом согласно научному сообществу порядка 0.16 каждую декаду.

https://www.skepticalscience.com/contary-to-contrarians-ipcc-temp-projections-accurate.html

(0.06 ± 0.16°C) per decade since 2000

Ну понятно, что аномалия размером МИНУС шесть градусов душит все “глобальное потепление”
размером плюс 0.12
как котенка. Так и в целом, не только что локально по планете, сейчас плюс 0.2-0.4 градуса от базиса.
Только где-то в районе 2030-го года можно будет говорить о реально “экспериментальном”
подтверждении гипотезы человеческого потепления.

Пока такого подтверждения и близко нет, факт. Все пока укладывается вполне в рамки
естественной волатильности климата и выделить трендовый сигнал потепления
из стохастического шума не является
возможным в рамках честной науки, можете рассказать об этом вашим родным и близким.


По поимъ грубымъ расчетамъ, подтвержденiе или опроверженiе гипотезы man-made global warming будетъ возможно около 2050 г. - потому что при наблюдаемыхъ размѣрахъ и корреляцiяхъ флуктуацiй температуры нужно около 100 лѣтъ набирать статистику, чтобы достовѣрно увидѣть, увеличился ли наклонъ кривой послѣ 1950 года или остался такой-же, какъ до массированныхъ индустрiальныхъ выбросовъ CO2.

----------------------
Update. Еще цитаты:

https://www.scitechnol.com/2327-4581/2327-4581-1-103.pdf
"Some people draw a line segment covering the period 1998 to 2010 and argue that we confirm no temperature change in that period. However, if you did that same exercise back in 1995, and drew a horizontal line through the datafor 1980 to 1995, you might have falsely concluded that global warming had stopped back then. This exercise simply shows that the decadal fluctuations are too large to allow us to make decisive conclusions about long term trends based on close examination of periods as short as 13 to 15 years."

...опубликовать мне это не дали и никогда не дадут.
Сначала надо уехать куда-нибудь в глушь, чтобы в живых остаться, буквально.

Помянутая статья британских ученых в принципе задумана правильно, но исполнена отвратительно.
Я сделал и это “как надо”, но результаты невозможно опубликовать в силу того что старшие считают это политически неправильным, а статус у них такой, что закачаешься, т.е. буквально в области статистики временных серий сильнее авторитета в мире нет.

Long run surface temperature dynamics of an A-OGCM:
the HadCM3 43CO2 forcing experiment revisited
Sile Li, Andrew Jarvis

p 820
A discrete time AR(1) noise model was used to account for serial correlation in the
model residuals y(t)–x(t) with the AR(1) parameter included within the optimisation scheme (-4.3865* 10-1 (2.7290 *10-2)).

p.819

The response error residuals were found to be significantly autocorrelated (partial
correlation at lag 1 year = 0.4556 ± 0.0302).

То есть не только знак, но и величина разная. И это даже не вдаваясь в принципиальные вещи, просто с ходу.

По идее любой исследователь мог бы прямо взять их результаты для оценки неопределенности,
если бы они были правильно сделаны и куда надо шли. А они никак не идут.
chaource: (Default)
Послѣдняя моя надѣжда найти методъ, которымъ климатологи пользуются для оцѣнки ошибокъ, - это прочитать материалы доклада IPCC. Священная Википедiя говоритъ, что потеплѣнiе оцѣнивается такъ:

In the period from 1906 to 2005, Earth's average surface temperature rose by 0.74±0.18 °C. The rate of warming almost doubled in the last half of that period (0.13±0.03 °C per decade, against 0.07±0.02 °C per decade).[27]

Вотъ онѣ, оцѣнки ошибокъ. Идемъ по горячему слѣду!

Ссылка [27] - это докладъ "Climate Change 2007: Working Group I: The Physical Science Basis". IPCC AR4. https://en.wikipedia.org/wiki/Global_warming#cite_note-29
Это талмудъ на 1000 страницъ съ десятками тысячъ ссылокъ на статьи. На страницѣ 336 читаемъ (выдѣленiе жирнымъ шрифтомъ мое):

The time series used in this report have undergone diverse quality controls that have, for example, led to removal of outliers, thereby building in some smoothing. In order to highlight decadal and longer time-scale variations and trends, it is often desirable to apply some kind of low-pass filter to the monthly, seasonal or annual data. In the literature cited for the many indices used in this chapter, a wide variety of schemes was employed.
...
Another low-pass filter, widely used and easily understood, is to fit a linear trend to the time series although there is generally no physical reason why trends should be linear, especially over long periods. The overall change in the time series is often inferred from the linear trend over the given time period, but can be quite misleading. Such measures are typically not stable and are sensitive to beginning and end points, so that adding or subtracting a few points can result in marked differences in the estimated trend. Furthermore, as the climate system exhibits highly nonlinear behaviour, alternative perspectives of overall change are provided by comparing low-pass-filtered values (see above) near the beginning and end of the major series.

The linear trends are estimated by Restricted Maximum Likelihood regression (REML, Diggle et al., 1999), and the estimates of statistical significance assume that the terms have serially uncorrelated errors and that the residuals have an AR1 structure. Brohan et al. (2006) and Rayner et al. (2006) provide annual uncertainties, incorporating effects of measurement and sampling error and uncertainties regarding biases due to urbanisation and earlier methods of measuring SST. These are taken into account, although ignoring their serial correlation.

The error bars on the trends, shown as 5 to 95% ranges, are wider and more realistic than those provided by the standard ordinary least squares technique. If, for example, a century-long series has multi-decadal variability as well as a trend, the deviations from the fitted linear trend will be autocorrelated. This will cause the REML technique to widen the error bars, reflecting the greater difficulty in distinguishing a trend when it is superimposed on other long-term variations and the sensitivity of estimated trends to the period of analysis in such circumstances. Clearly, however, even the REML technique cannot widen its error estimates to take account of variations outside the sample period of record. Robust methods for the estimation of linear and nonlinear trends in the presence of episodic components became available recently (Grieser et al., 2002).
As some components of the climate system respond slowly to change, the climate system naturally contains persistence. Hence, the statistical significances of REML AR1-based linear trends could be overestimated (Zheng and Basher, 1999; Cohn and Lins, 2005). Nevertheless, the results depend on the statistical model used, and more complex models are not as transparent and often lack physical realism. Indeed, long-term persistence models (Cohn and Lins, 2005) have not been shown to provide a better fit to the data than simpler models.

Appendix 3.B: Techniques, Error Estimation and Measurement Systems: See Supplementary Material
This material is included in the supplementary material. Please note that the many references that are cited only in Appendix 3.B have not been included in the list above, but are just as valuable in formulating the report.

Здѣсь наступаетъ засада. Эти дополнительные матерiалы (Appendix 3.B), гдѣ объясняются методы расчетовъ и оцѣнки ошибокъ - напрочь отсутствуютъ! Якобы они должны быть въ файлахъ ПДФ, но ихъ нигдѣ нѣтъ!
https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3sappendix-3-b.html

Итакъ, предварительный отвѣтъ найденъ - они пользуются методомъ REML, который какъ-то учитываетъ корреляцiи во времени. Это уже плюсъ. Однако, остаются многочисленные вопросы и проблемы.

1. Результаты расчетовъ по REML указаны въ таблицѣ на стр. 243. Эта таблица показываетъ темпъ роста температуры за перiоды 1850-2005, 1901-2005, и 1979-2005, причемъ съ разбивкой по суше, океану, сѣверному, южному полушарiямъ, и по даннымъ разныхъ группъ ученыхъ. Цифры темпа роста разнятся очень сильно - отъ 0.04 до 0.4 С за декаду. Какъ это интерпретировать, не очень ясно. Океаны утѣпляются очень медленно, а сѣверное полушарiе на сушѣ - очень быстро. Усредненiемъ по всѣй поверхности Земли получается "средняя температура по больницѣ" - т.е. лишенная физическаго смысла величина, полученная усредненiемъ совершенно разныхъ, физически не связанныхъ другъ съ другомъ процессовъ. Такая величина будетъ флуктуировать безъ какой-либо закономѣрности, подъ влiянiемъ непредсказуемыхъ факторовъ.

2. "A wide variety of schemes was employed". Это значитъ, они не знаютъ, что они вычисляютъ. Это чистое упражненiе въ статистикѣ - какъ "лучше" усреднить и сгладить временной рядъ. Отвѣта на такъ поставленный вопросъ не будетъ никогда, отсюда и "wide variety of schemes".

3. "there is generally no physical reason why trends should be linear", "adding or subtracting a few points can result in marked differences in the estimated trend", "the results depend on the statistical model used" - это свидѣтельствa того, что вычисляется лишенная физическаго смысла величина ("trend").

4. Явно сказано, что игнорируются корреляцiи временного ряда въ опредѣленныхъ мѣстахъ вычисленiй.

5. Однако, также сказано, что используется методъ REML, который, съ одной стороны, учитываетъ корреляцiи, но, съ другой стороны, "the statistical significances of REML AR1-based linear trends could be overestimated" въ присутствiи корреляцiй ("the climate system naturally contains persistence"). Это значитъ, что методъ REML не учитываетъ полностью эффектовъ корреляцiй. Надо будетъ прочитать статью про методъ REML, а также про другiе методы, которые вродѣ бы должны исправить этотъ недочетъ.

6. "the statistical significances of REML AR1-based linear trends could be overestimated" - "Nevertheless, the results depend on the statistical model used". Фраза построена такъ, какъ будто "nevertheless" смягчаетъ проблему недостаточной точности REML. Однако, на дѣлѣ эта проблема лишь усугубляется, если результаты еще и зависятъ отъ выбора статистической модели.

PS

Ура, найденъ Appendix 3.B.
https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter3-supp-material.pdf
Разочарованъ - ни слова о корреляцiяхъ или методѣ REML.

Слѣдующiе шаги - найти и прочитать источники, упомянутые въ связи съ проблемами REML:

The linear trends are estimated by Restricted Maximum Likelihood regression (REML, Diggle et al., 1999)
Diggle, P.J., K.Y. Liang, and S.L. Zeger, 1999: Analysis of Longitudinal Data. Clarendon Press, Oxford, UK, 253 pp. (А это уже книга, не статья.)

...the statistical significances of REML AR1-based linear trends could be overestimated (Zheng and Basher, 1999; Cohn and Lins, 2005)
Zheng, X., and R.E. Basher, 1999: Structural time series models and trend detection in global and regional temperature series. J. Clim., 12, 2347– 2358.
Cohn, T., and H.J. Lins, 2005: Nature’s style: Naturally trendy. Geophys.
Res. Lett., 32, L23402, doi:10.1029/2005GL024476.

Robust methods for the estimation of linear and nonlinear trends in the presence of episodic components became available recently (Grieser et al., 2002)
Grieser, J., S. Trömel, and C.-D. Schönwiese, 2002: Statistical time series decomposition into significant components and application to European temperature. Theor. Appl. Climatol., 71, 171–183.
chaource: (Default)
Посмотрѣлъ на статьи Hansen et al.
https://pubs.giss.nasa.gov/abs/ha00510u.html
https://pubs.giss.nasa.gov/abs/ha03200f.html
о глобальномъ измѣненiи температуры.
https://data.giss.nasa.gov/gistemp/graphs/

Главный мой вопросъ былъ - понять, какъ климатологи вычисляютъ эмпирическую ошибку въ опредѣленiи темпа роста температуры (который раньше былъ якобы около 0.6 C / вѣкъ, а въ послѣднiя 40 лѣтъ якобы ускорился вдвое-втрое). Отвѣтъ - въ этихъ статьяхъ никакъ не вычисляютъ. Эта ошибка авторами не оцѣнивается, и разныя цифры темпа роста (какъ, напримѣръ, "0.15 - 0.20 C per decade") приводятся въ разныхъ мѣстахъ статьи безъ поясненiй, какъ если бы онѣ были само-очевидны.

Второй вопросъ - какъ климатологи вычисляютъ эмпирическую неопредѣленность средняго значенiя температуры въ какомъ-либо году. Отвѣтъ - она вычисляется въ предположенiи, что корреляцiи температуры между разными годами равны нулю, и достаточно только проанализировать эмпирическiя ошибки измѣренiй на метеостанцiяхъ въ данномъ году, а также различные эффекты типа urban correction. Всѣ эти эффекты изучены уже вѣсьма подробно.

Напримѣръ, анализируется вопросъ - насколько вѣроятно, исходя изъ данныхъ, что 2005 годъ былъ теплѣе, чѣмъ 1998 годъ. Для отвѣта на этотъ вопросъ явно говорится, что средняя температура T_2005 распредѣлена по Гауссу вокругъ своего средняго значенiя, независимо отъ T_1998, которая тоже распредѣлена по Гауссу, и дальше дѣлается вычисленiе. Однако, авторы никакъ не пытаются оцѣнить корреляцiю между температурами въ 2005 и 1998 годахъ, а безъ такой оцѣнки вычисленiе становится невѣрнымъ. ("Year 2005 is 0.06°C warmer than 1998 in the GISS analysis. How certain is it that 2005 was warmer than 1998? ... Actual 1998 and 2005 temperatures are specified by normal probability distributions about our calculated values. ...")

Въ этихъ статьяхъ нѣтъ также никакихъ упоминанiй о томъ, что большiя корреляцiи на масштабахъ многихъ лѣтъ ограничиваютъ нашу возможность точно вычислить и глобальную температуру, и ея трендъ. Само существованiе этихъ корреляцiй, правда, упоминается какъ особый видъ "сезонныхъ колебанiй", которые визуально не исчезаютъ изъ графика даже послѣ того, какъ были вычислены среднiе по 12 мѣсяцамъ. Никакихъ количественныхъ оцѣнокъ величины этихъ корреляцiй, однако, вообще не представлено.

Авторы статей не демонстрируютъ пониманiя того, что какая-либо величина, - такая, какъ температура, или концентрацiя СO2 - которая постоянно флуктуируетъ съ существенными временными корреляцiями на масштабахъ многихъ лѣтъ, должна анализироваться какъ случайный процессъ, а не какъ наборъ независимыхъ другъ отъ друга значенiй, измѣренныхъ въ разные моменты времени. Напримѣръ, авторы задаются вопросомъ - какъ своевременно оповѣщать публику о томъ, что температура вдругъ значительно выросла. Но, чтобы опредѣлить, что температура выросла "значительно", мало увидѣть, что значенiе стало выше прежняго на X процентовъ - нужно еще убѣдиться, что это увеличенiе не является обычной флуктуацiей. Для этого надо знать, каково совмѣстное распредѣленiе флуктуацiй на разныхъ масштабахъ времени, т.е. каковъ спектръ флуктуацiй. Но авторы не анализируютъ ничего подобнаго - они ограничиваются различнаго рода усредненiями (на 12 мѣсяцевъ, на 5 лѣтъ, на 10 лѣтъ и т.д.). Усредненiе убираетъ изъ данныхъ информацiю о корреляцiяхъ и дѣлаетъ невозможнымъ расчетъ спектра флуктуацiй.

Предположимъ, намъ извѣстно изъ наблюденiй, что 2016 годъ былъ въ среднемъ очень теплымъ. Поскольку температура сильно скоррелирована по времени, то есть большая вѣроятность, что и слѣдующiе годы будутъ теплыми. Далѣе, мы видимъ, что 2017 годъ тоже очень теплый, но нѣсколько холоднѣе, чѣмъ 2016. Является ли это свидѣтельствомъ того, что начиная съ 2017 года наступило глобальное похолоданiе, или же это обычная флуктуацiя, практически ничего не добавляющая къ нашему знанiю о климатѣ? Для отвѣта на этотъ вопросъ надо знать, какъ минимумъ, какова типичная флуктуацiя температуры на масштабѣ одного-двухъ лѣтъ, а также каковъ статистическiй характеръ пиковъ и плато температуры, чтобы выяснить, не находимся ли мы сегодня въ одномъ изъ этихъ режимовъ. Къ сожаленiю, видимъ, что авторы статей ни разу не провели такого рода разсужденiй и расчетовъ - ни въ статьѣ 1998 года, ни въ статьѣ 2010 года.

Такимъ образомъ, пока что я вынужденъ сдѣлать не вполнѣ утѣшительные выводы. Даннымъ температуры послѣднихъ 40 лѣтъ вѣрить, скорѣе, можно, а вотъ вычисленiямъ, разнымъ усредненнымъ графикамъ и численнымъ результатамъ климатологовъ о темпахъ роста температуры - вѣрить, скорѣе, нельзя.
chaource: (smiling face)
Summary: Out of about 3200 scientists surveyed, 5% were climate scientists. Out of these 160 climate scientists, 79 have published more than 50% of their recent peer-reviewed papers on the subject of climate change. 77 out of these 79 agreed that human activity is a “significant contributing factor” to global warming; that's the "97%" of scientists. However, everybody else's opinions were not counted in this figure.

A 2012 poll of American Meteorological Society members reported a diversity of opinion. Of the 1,862 members who responded (a quarter of the organization), 59 percent stated that human activity was the primary cause of global warming, and 11 percent attributed the phenomenon to human activity and natural causes in about equal measure, while just under a quarter (23 percent) said enough is not yet known to make any determination.

Read more at: http://www.nationalreview.com/article/425232/climate-change-no-its-not-97-percent-consensus-ian-tuttle
chaource: (smiling face)
This article says that the rise in CO2 concentration is caused by the rise of temperature. "Science has spoken."

The statistical association between temperature and greenhouse gases over glacial cycles is well documented, but causality behind this correlation remains difficult to extract directly from the data. A time lag of CO2 behind Antarctic temperature—originally thought to hint at a driving role for temperature—is absent at the last deglaciation, but recently confirmed at the last ice age inception and the end of the earlier termination. We show that such variable time lags are typical for complex nonlinear systems such as the climate, prohibiting straightforward use of correlation lags to infer causation. However, an insight from dynamical systems theory now allows us to circumvent the classical challenges of unravelling causation from multivariate time series. We build on this insight to demonstrate directly from ice-core data that, over glacial–interglacial timescales, climate dynamics are largely driven by internal Earth system mechanisms, including a marked positive feedback effect from temperature variability on greenhouse-gas concentrations.

http://www.nature.com/nclimate/journal/v5/n5/full/nclimate2568.html
chaource: (smiling face)
Previous posts - http://chaource.livejournal.com/135561.html and http://chaource.livejournal.com/135899.html

Suppose that the temperature T(t) has the form

T(t) = β t + R(t),

where R(t) is a stationary random process with zero mean and correlation function

C(x) = E [ R(t) R(t+x) ].

Also suppose that we only observe T(t) during the interval [ - D/2, D/2 ]. We can estimate β from these observations by the method of least squares: we approximate T(t) by a linear function,

T(t) = a + b t + error,

and we choose a and b such that the integral of square error over [ -D/2, D/2] is at the minimum.

The result is that a and b become random variables with standard deviation that we can compute by the same method as in my previous post. If R(t) is an oscillating function that makes n oscillations of amplitude M, the standard deviation of both a and b*D is of order M/n. The mean of "a" is zero, and the mean of "b" is β (i.e. these estimators are unbiased). The quantity b*D is the mean change in the temperature (i.e. the estimated amount of "climate change") during the observation interval.

I estimated the value of M/n to be of order 1 °C. So, for the Wikipedia-quoted data:

... a 15-year period starting in 1996 shows a rate of increase of 0.14 [0.03 to 0.24] °C per decade, but taking 15 years from 1997 the rate reduces to 0.07 [–0.02 to 0.18] °C per decade.
https://en.wikipedia.org/wiki/Global_warming_hiatus

we find that the total amount of climate change during the observation interval is of order 0.2 °C. This is below 1 sigma and not statistically significant.

In other words, this value could be 0.1 °C or -0.5 °C just as likely, due to random fluctuations, and so we cannot conclude that the temperature has increased or decreased during that interval.

My estimate is of course rough, but it can be made precise by a numerical calculation of the correlation function C(t). How do meteorologists estimate the uncertainty in their global warming?
chaource: (smiling face)
via http://arbat.livejournal.com/855100.html#cutid11

The average temperature was extrapolated with precision 0.01 degree, from data that covers only 12% of the surface of the Earth, including data from some weather station that were "adjusted" so that the results show October 2015 to be "hottest October ever".
Data from satellites (covering all surface) show that there was no especial warming this October.
http://realclimatescience.com/2015/11/record-crushing-fraud-from-noaa-and-nasa-ahead-of-paris/


In my previous post, I estimated that the average temperature of the Earth surface is only defined up to 2 degree uncertainty. By choosing one or another averaging procedure, one can obtain any result within the 2 degree uncertainty. If the data is "adjusted", of course any result is possible.
chaource: (smiling face)
"Global warming" means that the surface temperature grows with time, on the average. How can we define the average temperature? What is the precision of the definition of this value?

For simplicity, let us first assume that we know how to average the temperature over the entire Earth to obtain a single value. So, after this averaging we find a value T(t) as a function of time. This function typically exhibits large oscillations, both regular (daily, seasonal) and irregular. We can certainly choose a particular time interval [a,b] and compute the average of T(t) over that interval. However, the results may depend on the interval quite sensitively. Here is what happens when one takes different intervals and fits a line to the data, computing the rate of increase:

... a 15-year period starting in 1996 shows a rate of increase of 0.14 [0.03 to 0.24] °C per decade, but taking 15 years from 1997 the rate reduces to 0.07 [–0.02 to 0.18] °C per decade. https://en.wikipedia.org/wiki/Global_warming_hiatus

If we take other periods for analysis, we might conclude that there is a global cooling.
https://en.wikipedia.org/wiki/Global_cooling

So it is clear that, if we are to talk sensibly about the rate of increase of T, we first need to define the "time-averaged" value of T, and estimate the inherent uncertainty in the definition of the time-averaged T.

Suppose that T(t) were a stationary random process with zero mean and a fixed correlation function C(t):

E [ T(t) ] = 0
E [ T(t_1) T(t_2) ] = C(t_1 - t_2) .

Suppose further that we can only observe a single sample of T(t), and only for t within a fixed interval of duration D. Let us denote by A(D) the average of T over the observed interval. The value of A(D) is a random variable with zero mean and nonzero standard deviation. Can we estimate its standard deviation from a single available sample of T(t)?
Read more... )
chaource: (smiling face)
Professor Murry Salby advances his analysis of climate change and the role of CO2. His conclusion: increase in CO2 is not a cause of global warming because CO2 tracks temperature change, not vice versa; modern high levels of CO2 are not at all unusual or historically unprecedented; human emission of CO2 and methane is not a significant factor in climate change; models currently used for long-time climate prediction are completely inadequate and should not be trusted.

https://www.youtube.com/watch?v=HeCqcKYj9Oc

This somewhat monotonous and somber lecture was delivered shortly before Salby was dismissed from his university position. The university canceled his return ticket and held dismissal hearings in his absence.

https://en.wikipedia.org/wiki/Murry_Salby
The Wikipedia page on Salby never mentions the possibility that he could have been dismissed because of his views on climate. The Wikipedia page instead discusses at length the various allegations of misconduct made against Salby at the last two universities where he held academic positions. Salby's views on climate, or their reception by the academic community, are not discussed in any detail in the Wikipedia page.

The science is far from settled. Many scientists dissent - especially scientists who have no political stake in the matter:
https://www.youtube.com/watch?v=deNbnxaJYOU
https://www.youtube.com/watch?v=eiPIvH49X-E

P.S. About the history of the current welfare-based system of science funding:
https://www.youtube.com/watch?v=dsLjp-23BXw&t=175
chaource: (smiling face)
Watched some more discussions and debates about man-made climate warming. My initial conclusions are unchanged (we don't know if it's man-made). There are several aspects of this debate that to me quite obviously indicate that the issue is not settled, in part because it's too technically complicated, in part because it's politically driven.

Read more... )
chaource: (smiling face)
https://www.youtube.com/watch?v=D-m09lKtYT4

This British documentary was not aired in the US.

To this I can add some interesting paleo-climate data from the Carbon Dioxide Information Analysis Center).

Image

In the last 450,000 years, the mean temperature in Antarctica has fluctuated several times, going up and down by about 10 or 12 degrees Celsius. Right now we are in a phase that has higher temperatures. About 120 KY ago and about 350 KY ago, temperatures were still higher than today (as implied by the ice core graph).

My revelation as regards the global warming comes from visiting the glaciers in Iceland. The guide explained that a particular glacier has been melting very slowly but inexorably during the last 200 years or so. The Icelanders have been planning their land development according to how much land is going to be made free by the retreating glacier. Obviously, the climate is getting warmer. And just as obviously (by looking at the ice core graph), humans have contributed very little to that and can change nothing about it.

PS.

The main point of the documentary is that CO2 output is not a cause of climate change at all. An increase of CO2 levels is a consequence of climate warming, delayed by about 800 years. It is true that CO2 is a "greenhouse" gas, i.e. a gas that affects thermal radiation transfer in the atmosphere and can cause warming. But CO2 is by far not the most important greenhouse gas in the atmosphere. The most important one is water vapor, also known as "clouds". The main driving force of climate change is solar radiation, which changes the amount of cosmic rays reaching Earth, which changes the rate of cloud formation, which in turn changes the temperature.

Another point is that there have been several periods in recent history when climate was significantly warmer than it is today. The last such period was around 1000 AD. There were no catastrophes during that period: no rising of the oceans that would flood all cities, no droughts that would starve the population. During that time, life was relatively good and bountiful: vineyards were common in northern Britain, and many richly decorated cathedrals were built in Europe.

Profile

chaource: (Default)
chaource

February 2026

S M T W T F S
123 45 67
8 910 11121314
151617181920 21
22232425262728

Syndicate

RSS Atom

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 22nd, 2026 06:06 pm
Powered by Dreamwidth Studios