This page is synchronized with OEIS in January 2007. Sequences in OEIS may start with a different index.
There is a separate page with proofs. Sequences from the OEIS that pass the recursion test, but are not defined as recursions, are collected on a separate page: Non Recursions.
Common properties:
The number of words of length n in alphabet {1,2,...,d} avoiding words "11", "22", ..., "kk" is a recurrence sequence with initial terms a(0) = 1, a(1) = d and a recurrence relation a(n) = (d-1)a(n-1) + (d-k)a(n-2). Proof.
The generating function f(x) = (mx+n)/(1 - dx - kx2) generates a sequence with the recurrence relation a(n) = da(n-1) + ka(n-2) and initial conditions a(0) = n and a(1) = nd + m.
Let p and q be the roots of the equation x2 - dx - k = 0. Then the sequence a(n) = pn + qn = ((d+sqrt(d2+4k))/2)n + ((d-sqrt(d2+4k))/2)n satisfies the recurrence a(n) = da(n-1) + ka(n-2) with the initial conditions a(0) = 2, a(1) = d. Proof.
Let p and q be the roots of the equation x2 - dx - k = 0. Then the sequence a(n) = (pn - qn)/(p-q) satisfies the recurrence a(n) = da(n-1) + ka(n-2) with the initial conditions a(0) = 0, a(1) = 1. Proof.
a(n) = d * a(n-1) - a(n-2).
Common properties for sequences with initial terms a(0) = 1, a(1) = d-1:
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,2, ..., d-1} which do not end in 0.
Proof.
a(n) equals the number of domino tilings in Sd-1 × P2n (product of a star graph and a path graph).
Proof.
The generating function of this sequence is (1-x)/(1-dx+x2).
Common properties for sequences with initial terms a(0) = 1, a(1) = d:
The difference sequence follows the same recursion and is similar (shifted) to the sequence starting with
a(0) = 1, a(1) = d-1.
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,2, ..., d-1}.
Proof.
a(n) equals the number of domino tilings in Sd-1 × P2n+1 (product of a star graph and a path graph) with d-3 non central vertices removed from the last star.
Proof.
The generating function of this sequence is 1/(1-dx+x2).
a(n) = (pn - qn)/(p-q), where p and q are the roots of the equation: x2 - dx + 1 = 0.
Sequence: 1, 2, 5, 13, 34, 89, 233, 610, 1597,
In OEIS: - A001519 a(n) = F(2n-1) = bisection of Fibonacci sequence. Also A122367 Dimension of 3-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 3 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j). Also A048575 Pisot sequences L(2,5), E(2,5).
Sequence: 1, 3, 8, 21, 55, 144, 377, 987, 2584,
In OEIS: - A001906 F(2n) = bisection of Fibonacci sequence.
Sequence: 1, 4, 11, 29, 76, 199, 521, 1364, 3571,
In OEIS: - A002878 Bisection of Lucas sequence.
Sequence: 1, 5, 14, 37, 97, 254, 665, 1741,
In OEIS: - A054486 A second order recursive sequence.
Sequence: 4, 11, 40, 149, 556, 2075, 7744, 28901,
In OEIS: - A077236 Bisection (even part) of Chebyshev sequence with diophantine property.
Sequence: 0, -1, -4, -15, -56, -209, -780, -2911, -10864,
In OEIS: - A106707 First entry of the vector (M^n)v, where M is the 2x2 matrix [[0,-1],[1,4]] and v is the column vector [0,1].
Sequence: 5, 16, 59, 220, 821, 3064, 11435,
In OEIS: - A077235 Bisection (odd part) of Chebyshev sequence with diophantine property.
Sequence: 1, 11, 131, 1561, 18601, 221651, 2641211,
In OEIS: - A077417 Chebyshev T-sequence with diophantine property.
Sequence: 1, 12, 143, 1704, 20305, 241956, 2883167,
In OEIS: - A004191 Expansion of 1/(1-12*x+x^2).
Sequence: 1, 13, 155, 1847, 22009, 262261, 3125123,
In OEIS: - A077416 Chebyshev S-sequence with diophantine property.
Sequence: 2, 12, 142, 1692, 20162, 240252, 2862862,
In OEIS: - A087800 a(n) =12a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 12, a(n) = (6+sqrt(35))^n + (6-sqrt(35))^n.
Sequence: 2, 24, 286, 3408, 40610, 483912, 5766334,
In OEIS: - A065101 a(0) = c, a(1) = p*c^3; a(n+2) = p*c^2*a(n+1) - a(n), for p = 3, c = 2.
a(n) = 13a(n-1) - a(n-2).
Sequence: 1, 12, 155, 2003, 25884, 334489, 4322473,
In OEIS: - A085260 Ratio-determined insertion sequence I(0.0833344) (see the link below).
Sequence: 1, 13, 168, 2171, 28055, 362544, 4685017,
In OEIS: - A078362 A Chebyshev S-sequence with diophantine property.
Sequence: 2, 13, 167, 2158, 27887, 360373, 4656962,
In OEIS: - A078363 A Chebyshev T-sequence with diophantine property.
a(n) = 14a(n-1) - a(n-2).
Sequence: 1, 7, 97, 1351, 18817, 262087, 3650401,
In OEIS: - A011943 Numbers n such that any group of n consecutive integers has integral standard deviation {viz. A011944(n)}.
Sequence: 1, 11, 153, 2131, 29681, 413403,
In OEIS: - A122769 Numbers n such that n^2 is of the form 1+2m+3m^2 (A056109).
Sequence: 1, 13, 181, 2521, 35113, 489061,
In OEIS: - A001570 Numbers n such that n^2 is simultaneously square and centered hexagonal. Also A122571 a(1)=a(2)=1, a(n)=14a(n-1)-a(n-2).
Sequence: 1, 14, 195, 2716, 37829, 526890,
In OEIS: - A007655 Standard deviation of A007654.
Sequence: 1, 15, 209, 2911, 40545, 564719, 7865521,
In OEIS: - A028230 Bisection of A001353. Indices of square numbers which are also octagonal.
Sequence: 1, 19, 379, 7561, 150841, 3009259, 60034339,
In OEIS: - A075839 11*n^2 - 2 is a square.
Sequence: 1, 20, 399, 7960, 158801, 3168060,
In OEIS: - A075843 99*a(n)^2 + 1 is a square.
Sequence: 1, 21, 419, 8359, 166761, 3326861,
In OEIS: - A083043 Integers y such that 11x^2-9y^2=2 for some integer x.
Sequence: 2, 20, 398, 7940, 158402, 3160100,
In OEIS: - A090728 a(n) = 20a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 20.
Sequence: 0, 6, 120, 2394, 47760, 952806, 19008360,
In OEIS: - A075844 11*n^2 + 4 is a square.
a(n) = 21a(n-1) - a(n-2).
Sequence: 1, 21, 440, 9219, 193159, 4047120,
In OEIS: - A092499 Chebyshev polynomials S(n-1,21) with diophantine property.
Sequence: 2, 21, 439, 9198, 192719, 4037901,
In OEIS: - A090729 a(n) = 21a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 21.
a(n) = 22a(n-1) - a(n-2).
Sequence: 1, 11, 241, 5291, 116161, 2550251,
In OEIS: - A077422 Chebyshev sequence T(n,11) with diophantine property.
Sequence: 1, 22, 483, 10604, 232805, 5111106,
In OEIS: - A077421 Chebyshev sequence U(n,11)=S(n,22) with diophantine property.
Sequence: 2, 22, 482, 10582, 232322, 5100502,
In OEIS: - A090730 a(n) = 22a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 22.
a(n) = 23a(n-1) - a(n-2).
Sequence: 1, 23, 528, 12121, 278255, 6387744,
In OEIS: - A097778 Chebyshev polynomials S(n,23) with diophantine property.
Sequence: 2, 23, 527, 12098, 277727, 6375623,
In OEIS: - A090731 a(n) = 23a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 23.
a(n) = 24a(n-1) - a(n-2).
Sequence: 1, 12, 287, 6876, 164737, 3946812, 94558751,
In OEIS: - A077424 Chebyshev sequence T(n,12) with diophantine property.
Sequence: 1, 24, 575, 13776, 330049, 7907400,
In OEIS: - A077423 Chebyshev sequence U(n,12)=S(n,24) with diophantine property.
Sequence: 2, 24, 574, 13752, 329474, 7893624,
In OEIS: - A090732 a(n) = 24a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 24.
a(n) = 25a(n-1) - a(n-2).
Sequence: 1, 25, 624, 15575, 388751, 9703200,
In OEIS: - A097780 Chebyshev polynomials S(n,25) with diophantine property.
Sequence: 2, 25, 623, 15550, 388127, 9687625,
In OEIS: - A090733 a(n) = 25a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 25.
a(n) = 26a(n-1) - a(n-2).
Sequence: 1, 13, 337, 8749, 227137, 5896813,
In OEIS: - A097308 Chebyshev T-polynomials T(n,13) with diophantine property.
Sequence: 1, 26, 675, 17524, 454949, 11811150,
In OEIS: - A097309 Chebyshev polynomials of the second kind, U(n,x), evaluated at x=13.
Sequence: 2, 26, 674, 17498, 454274, 11793626,
In OEIS: - A090247 a(n) = 26a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 26.
a(n) = 27a(n-1) - a(n-2).
Sequence: 1, 26, 701, 18901, 509626, 13741001,
In OEIS: - A097835 First differences of Chebyshev polynomials S(n,27)=A097781(n) with diophantine property.
Sequence: 1, 27, 728, 19629, 529255, 14270256,
In OEIS: - A097781 Chebyshev polynomials S(n,27) with diophantine property.
Sequence: 1, 28, 755, 20357, 548884, 14799511,
In OEIS: - A097834 Chebyshev polynomials S(n,27) + S(n-1,27) with diophantine property.
Sequence: 2, 27, 727, 19602, 528527, 14250627,
In OEIS: - A090248 a(n) =27a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 27.
a(n) = 28a(n-1) - a(n-2).
Sequence: 1, 14, 391, 10934, 305761, 8550374,
In OEIS: - A097310 Chebyshev T-polynomials T(n,14) with diophantine property.
Sequence: 1, 28, 783, 21896, 612305, 17122644,
In OEIS: - A097311 Chebyshev polynomials of the second kind, U(n,x), evaluated at x=14.
Sequence: 2, 28, 782, 21868, 611522, 17100748,
In OEIS: - A090249 a(n) =28a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 28.
a(n) = 29a(n-1) - a(n-2).
Sequence: 1, 29, 840, 24331, 704759, 20413680,
In OEIS: - A097782 Chebyshev polynomials S(n,29) with diophantine property.
Sequence: 2, 29, 839, 24302, 703919, 20389349,
In OEIS: - A090251 a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29.
a(n) = 30a(n-1) - a(n-2).
Sequence: 1, 15, 449, 13455, 403201, 12082575,
In OEIS: - A068203 Chebyshev T-polynomials T(n,15) with diophantine property.
Sequence: 1, 30, 899, 26940, 807301, 24192090,
In OEIS: - A097313 Chebyshev polynomials of the second kind, U(n,x), evaluated for x=15.
Sequence: 4, 120, 3596, 107760, 3229204, 96768360,
In OEIS: - A068204 Let (x_n, y_n) be n-th solution to the Pell equation x^2 = 14*y^2 + 1. Sequence gives {y_n}.
Sequence: 1, 41, 1926, 90481, 4250681, 199691526,
In OEIS: - A049676 a(n)=(F(8n+3)+F(8n+1))/3, where F=A000045 (the Fibonacci sequence).
Sequence: 1, 47, 2208, 103729, 4873055, 228929856,
In OEIS: - A049668 a(n)=F(8n)/21, where F=A000045 (the Fibonacci sequence).
Sequence: 1, 48, 2255, 105937, 4976784, 233802911,
In OEIS: - A049678 a(n)=F(8n+4)/3, where F=A000045 (the Fibonacci sequence)..
Sequence: 2, 47, 2207, 103682, 4870847, 228826127,
In OEIS: - A087265 Lucas numbers L(8n).
Sequence: 3, 137, 6436, 302355, 14204249, 667297348,
In OEIS: - A049677 a(n)=(F(8n+6)+F(8n+1))/3, where F=A000045 (the Fibonacci sequence).
Sequence: 6, 281, 13201, 620166, 29134601, 1368706081,
In OEIS: - A049679 a(n)=(F(8n+7)+F(8n+5))/3, where F=A000045 (the Fibonacci sequence).
Sequence: 0, 7, 329, 15456, 726103, 34111385,
In OEIS: - A049686 a(n)=F(8n)/3, where F=A000045 (the Fibonacci sequence).
a(n) = 48a(n-1) - a(n-2).
Sequence: 1, 24, 1151, 55224, 2649601, 127125624,
In OEIS: - A114051 x such that x^2 - 23*y^2 = 1.
a(n) = 51a(n-1) - a(n-2).
Sequence: 1, 50, 2549, 129949, 6624850, 337737401,
In OEIS: - A097838 First differences of Chebyshev polynomials S(n,51)=A097836(n) with diophantine property.
Sequence: 1, 52, 2651, 135149, 6889948, 351252199,
In OEIS: - A097837 Chebyshev polynomials S(n,51) + S(n-1,51) with diophantine property.
Sequence: 2, 51, 2599, 132498, 6754799, 344362251,
In OEIS: - A099368 Twice Chebyshev's polynomials of the first kind, T(n,x), evaluated at x=51/2.
a(n) = 52a(n-1) - a(n-2).
Sequence: 1, 26, 1351, 70226, 3650401, 189750626,
In OEIS: - A114052 x such that x^2 - 27*y^2 = 1.
a(n) = 66a(n-1) - a(n-2).
Sequence: 1, 33, 2177, 143649, 9478657, 625447713,
In OEIS: - A099370 Chebyshev's polynomial of the first kind, T(n,x), evaluated at x=33.
Sequence: 1, 65, 4289, 283009, 18674305, 1232221121,
In OEIS: - A078988 Chebyshev sequence with diophantine property.
Sequence: 1, 66, 4355, 287364, 18961669, 1251182790,
In OEIS: - A097316 Chebyshev U(n,x) polynomial evaluated at x=33.
Sequence: 1, 67, 4421, 291719, 19249033, 1270144459,
In OEIS: - A078989 Chebyshev sequence with diophantine property.
Sequence: 0, 8, 528, 34840, 2298912, 151693352,
In OEIS: - A121740 Solutions to the Pell equation x^2 - 17y^2 = 1 (y values).
a(n) = 83a(n-1) - a(n-2).
Sequence: 1, 82, 6805, 564733, 46866034, 3889316089,
In OEIS: - A097841 First differences of Chebyshev polynomials S(n,83)=A097839(n) with diophantine property.
Sequence: 1, 84, 6971, 578509, 48009276, 3984191399,
In OEIS: - A097840 Chebyshev polynomials S(n,83) + S(n-1,83) with diophantine property.
Sequence: 2, 83, 6887, 571538, 47430767, 3936182123,
In OEIS: - A099373 Twice Chebyshev's polynomials of the first kind, T(n,x), evaluated at 83/2.
a(n) = 98a(n-1) - a(n-2).
Sequence: 1, 99, 9701, 950599, 93149001, 9127651499,
In OEIS: - A046173 Indices of square numbers which are also pentagonal.
Sequence: 0, 20, 1960, 192060, 18819920, 1844160100,
In OEIS: - A072818 Possibly the only integers of the form sqrt(m^2*(m^2-1)*2/3) [only checked for the first 5 terms].
a(n) = 102a(n-1) - a(n-2).
Sequence: 1, 51, 5201, 530451, 54100801, 5517751251,
In OEIS: - A099397 Chebyshev's polynomial of the first kind, T(n,x), evaluated at x=51.
Sequence: 1, 101, 10301, 1050601, 107151001, 10928351501,
In OEIS: - A097727 Pell equation solutions (5*b(n))^2 - 26*a(n)^2 = -1 with b(n):=A097726(n), n ≥ 0.
Sequence: 1, 102, 10403, 1061004, 108212005, 11036563506,
In OEIS: - A097725 Chebyshev U(n,x) polynomial evaluated at x=51.
Sequence: 1, 103, 10505, 1071407, 109273009, 11144775511,
In OEIS: - A097726 Pell equation solutions (5*a(n))^2 - 26*b(n)^2 = -1 with b(n):=A097727(n), n ≥ 0.
a(n) = 110a(n-1) - a(n-2).
Sequence: 1, 55, 6049, 665335, 73180801, 8049222775,
In OEIS: - A114049 x such that x^2 - 21*y^2 = 1.
a(n) = 123a(n-1) - a(n-2).
Sequence: 1, 122, 15005, 1845493, 226980634, 27916772489,
In OEIS: - A097843 First differences of Chebyshev polynomials S(n,123)=A049670(n+1) with diophantine property.
Sequence: 1, 123, 15128, 1860621, 228841255, 28145613744,
In OEIS: - A049670 a(n)=F(10n)/55, where F=A000045 (the Fibonacci sequence).
Sequence: 1, 124, 15251, 1875749, 230701876, 28374454999,
In OEIS: - A097842 Chebyshev polynomials S(n,123) + S(n-1,123) with diophantine property.
Sequence: 2, 123, 15127, 1860498, 228826127, 28143753123,
In OEIS: - A065705 Lucas numbers L(10n).
a(n) = 146a(n-1) - a(n-2).
Sequence: 1, 145, 21169, 3090529, 451196065, 65871534961,
In OEIS: - A097730 Pell equation solutions (6*b(n))^2 - 37*a(n)^2 = -1 with b(n):=A097729(n), n ≥ 0.
Sequence: 1, 146, 21315, 3111844, 454307909, 66325842870,
In OEIS: - A097728 Chebyshev U(n,x) polynomial evaluated at x=73 = 2*6^2+1.
Sequence: 1, 147, 21461, 3133159, 457419753, 66780150779,
In OEIS: - A097729 Pell equation solutions (6*a(n))^2 - 37*b(n)^2 = -1 with b(n):=A097730(n), n ≥ 0.
a(n) = 171a(n-1) - a(n-2).
Sequence: 1, 170, 29069, 4970629, 849948490, 145336221161,
In OEIS: - A098244 First differences of Chebyshev polynomials S(n,171)=A097844(n) with diophantine property.
Sequence: 1, 172, 29411, 5029109, 859948228, 147046117879,
In OEIS: - A097845 Chebyshev polynomials S(n,171) + S(n-1,171) with diophantine property.
a(n) = 194a(n-1) - a(n-2).
Sequence: 1, 195, 37829, 7338631, 1423656585,
In OEIS: - A084232 RMS values associated with A084231.
a(n) = 198a(n-1) - a(n-2).
Sequence: 1, 197, 39005, 7722793, 1529074009,
In OEIS: - A097733 Pell equation solutions (7*b(n))^2 - 2*(5*a(n))^2 = -1 with b(n):=A097732(n), n ≥ 0. Note that D=50=2*5^2 is not square-free.
Sequence: 1, 198, 39203, 7761996, 1536836005,
In OEIS: - A097731 Chebyshev U(n,x) polynomial evaluated at x=99 = 2*7^2+1.
Sequence: 1, 199, 39401, 7801199, 1544598001,
In OEIS: - A097732 Pell equation solutions (7*a(n))^2 - 2*(5*b(n))^2 = -1 with b(n):=A097733(n), n ≥ 0. Note that D=50=2*5^2 is not square-free.
a(n) = 227a(n-1) - a(n-2).
Sequence: 1, 226, 51301, 11645101, 2643386626,
In OEIS: - A098247 First differences of Chebyshev polynomials S(n,227)=A098245(n) with diophantine property.
Sequence: 1, 228, 51755, 11748157, 2666779884,
In OEIS: - A098246 Chebyshev polynomials S(n,227) + S(n-1,227) with diophantine property.
a(n) = 258a(n-1) - a(n-2).
Sequence: 1, 257, 66305, 17106433, 4413393409,
In OEIS: - A097736 Pell equation solutions (8*b(n))^2 - 65*a(n)^2 = -1 with b(n):=A097735(n), n ≥ 0.
Sequence: 1, 258, 66563, 17172996, 4430566405,
In OEIS: - A097734 Chebyshev U(n,x) polynomial evaluated at x=129 = 3*43.
Sequence: 1, 259, 66821, 17239559, 4447739401,
In OEIS: - A097735 Pell equation solutions (8*a(n))^2 - 65*b(n)^2 = -1 with b(n):=A097736(n), n ≥ 0.
a(n) = 291a(n-1) - a(n-2).
Sequence: 1, 290, 84389, 24556909, 7145976130,
In OEIS: - A098250 First differences of Chebyshev polynomials S(n,291)=A098248(n) with diophantine property.
Sequence: 1, 292, 84971, 24726269, 7195259308,
In OEIS: - A098249 Chebyshev polynomials S(n,291) + S(n-1,291) with diophantine property.
a(n) = 322a(n-1) - a(n-2).
Sequence: 2, 322, 103682, 33385282, 10749957122,
In OEIS: - A089775 Lucas numbers L(12n).
a(n) = 326a(n-1) - a(n-2).
Sequence: 1, 325, 105949, 34539049, 11259624025,
In OEIS: - A097739 Pell equation solutions (9*b(n))^2 - 82*a(n)^2 = -1 with b(n):=A097738(n), n ≥ 0.
Sequence: 1, 326, 106275, 34645324, 11294269349,
In OEIS: - A097737 Chebyshev U(n,x) polynomial evaluated at x=163.
Sequence: 1, 327, 106601, 34751599, 11328914673,
In OEIS: - A097738 Pell equation solutions (9*a(n))^2 - 82*b(n)^2 = -1 with b(n):=A097739(n), n ≥ 0.
a(n) = 340a(n-1) - a(n-2).
Sequence: 1, 170, 57799, 19651490, 6681448801,
In OEIS: - A114048 x such that x^2 - 19*y^2 = 1.
a(n) = 363a(n-1) - a(n-2).
Sequence: 1, 362, 131405, 47699653, 17314842634,
In OEIS: - A098253 First differences of Chebyshev polynomials S(n,363)=A098251(n) with diophantine property.
Sequence: 1, 364, 132131, 47963189, 17410505476,
In OEIS: - A098252 Chebyshev polynomials S(n,363) + S(n-1,363) with diophantine property.
a(n) = 394a(n-1) - a(n-2).
Sequence: 1, 197, 77617, 30580901, 12048797377,
In OEIS: - A114050 x such that x^2 - 22*y^2 = 1.
a(n) = 402a(n-1) - a(n-2).
Sequence: 1, 401, 161201, 64802401, 26050404001,
In OEIS: - A097742 Pell equation solutions (10*b(n))^2 - 101*a(n)^2 = -1 with b(n):=A097741(n), n ≥ 0.
Sequence: 1, 402, 161603, 64964004, 26115368005,
In OEIS: - A097740 Chebyshev U(n,x) polynomial evaluated at x=201.
Sequence: 1, 403, 162005, 65125607, 26180332009,
In OEIS: - A097741 Pell equation solutions (10*a(n))^2 - 101*b(n)^2 = -1 with b(n):=A097742(n), n ≥ 0.
a(n) = 443a(n-1) - a(n-2).
Sequence: 1, 442, 195805, 86741173, 38426143834,
In OEIS: - A098256 First differences of Chebyshev polynomials S(n,443)=A098254(n) with diophantine property.
Sequence: 1, 444, 196691, 87133669, 38600018676,
In OEIS: - A098255 Chebyshev polynomials S(n,443) + S(n-1,443) with diophantine property.
a(n) = 486a(n-1) - a(n-2).
Sequence: 1, 485, 235709, 114554089, 55673051545,
In OEIS: - A097767 Pell equation solutions (11*b(n))^2 - 122*a(n)^2 = -1 with b(n):=A097766(n), n ≥ 0.
Sequence: 1, 486, 236195, 114790284, 55787841829,
In OEIS: - A097765 Chebyshev U(n,x) polynomial evaluated at x=243=2*11^2+1.
Sequence: 1, 487, 236681, 115026479, 55902632113,
In OEIS: - A097766 Pell equation solutions (11*a(n))^2 - 122*b(n)^2 = -1 with b(n):=A097767(n), n ≥ 0.
a(n) = 531a(n-1) - a(n-2).
Sequence: 1, 530, 281429, 149438269, 79351439410,
In OEIS: - A098259 First differences of Chebyshev polynomials S(n,531)=A098257(n) with diophantine property.
Sequence: 1, 532, 282491, 150002189, 79650879868,
In OEIS: - A098258 Chebyshev polynomials S(n,531) + S(n-1,531) with diophantine property.
a(n) = 578a(n-1) - a(n-2).
Sequence: 1, 577, 333505, 192765313, 111418017409,
In OEIS: - A097770 Pell equation solutions (12*b(n))^2 - 145*a(n)^2 = -1 with b(n):=A097769(n), n ≥ 0.
Sequence: 1, 578, 334083, 193099396, 111611116805,
In OEIS: - A097768 Chebyshev U(n,x) polynomial evaluated at x=289=2*12^2+1.
Sequence: 1, 579, 334661, 193433479, 111804216201,
In OEIS: - A097769 Pell equation solutions (12*a(n))^2 - 145*b(n)^2 = -1 with b(n):=A097770(n), n ≥ 0.
a(n) = 627a(n-1) - a(n-2).
Sequence: 1, 626, 392501, 246097501, 154302740626,
In OEIS: - A098262 First differences of Chebyshev polynomials S(n,627)=A098260(n) with diophantine property.
Sequence: 1, 628, 393755, 246883757, 154795721884,
In OEIS: - A098261 Chebyshev polynomials S(n,627) + S(n-1,627) with diophantine property.
a(n) = 678a(n-1) - a(n-2).
Sequence: 1, 677, 459005, 311204713, 210996336409,
In OEIS: - A097773 Pell equation solutions (13*b(n))^2 - 170*a(n)^2 = -1 with b(n):=A097772(n), n ≥ 0.
Sequence: 1, 678, 459683, 311664396, 211308000805,
In OEIS: - A097771 Chebyshev U(n,x) polynomial evaluated at x=339=2*13^2+1.
Sequence: 1, 679, 460361, 312124079, 211619665201,
In OEIS: - A097772 Pell equation solutions (13*a(n))^2 - 170*b(n)^2 = -1 with b(n):=A097771(n), n ≥ 0.
a(n) = 731a(n-1) - a(n-2).
Sequence: 1, 730, 533629, 390082069, 285149458810,
In OEIS: - A098292 First differences of Chebyshev polynomials S(n,731)=A098263(n) with diophantine property.
Common properties for sequences with initial terms a(0) = 1 and a(1) = d+1 :
a(n) equals the number of 00-avoiding words of length n on alphabet {0,1,2, ..., d}. Proof.
The generating function of this sequence is (1+x)/(1-dx-dx2).
Common properties for sequences with initial terms a(0) = 0, a(1) = 1:
The generating function of this sequence is x/(1-dx-dx2).
a(n) = (pn - qn)/(p-q), where p and q are the roots of the equation: x2 - dx - d = 0.
Common properties for sequences with initial terms a(0) = 2, a(1) = d:
The generating function of this sequence is (2-dx)/(1-dx-dx2).
a(n) = pn + qn, where p and q are the roots of the equation: x2 - dx - d = 0. Namely a(n) = = ((d+sqrt(d2+4d))/2)n + ((d-sqrt(d2+4d))/2)n. Proof.
Sequences:
a(n) = - 4a(n-1) - 4a(n-2).
Sequence: 1, -2, 4, -8, 16, -32, 64, -128, 256,
In OEIS: - A122803 Powers of -2.
Sequence: 0, -1, 4, -12, 32, -80, 192, -448, 1024,
In OEIS: - A085750 Determinant of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 ≤ i,j ≤ n.
Sequence: 0, 2, 4, 12, 32, 88, 240, 656, 1792, 4896,
In OEIS: - A106433 Yet another way to compute A028860 ( first two terms different) : 2 X 2 vector Matrix Markov with characteristic Polynomial: x^2-2*x-2.
Sequence: 3, 15, 54, 207, 783, 2970, 11259,
In OEIS: - A085480 a(n) = p^n + q^n, where p = (3 + sqrt 21)/2, q = (3 - sqrt 21)/2.
Sequence: 1, 6, 21, 81, 306, 1161, 4401, 16686,
In OEIS: - A108306 Expansion of (3*x+1)/(1-3*x-3*x^2).
a(n) = 4a(n-1) + 4a(n-2).
Sequence: 1, 4, 20, 96, 464, 2240, 10816, 52224,
In OEIS: - A057087 Scaled Chebyshev U-polynomials evaluated at i. Generalized Fibonacci sequence.
Sequence: 1, 5, 24, 116, 560, 2704, 13056, 63040,
In OEIS: - A086347 On a 3 X 3 board, number of n-move routes of chess king ending at a given side
cell.
Sequence: 1, 0, 4, 16, 80, 384, 1856, 8960, 43264,
In OEIS: - A094013 Expansion of (1-4x)/(1-4x-4x^2). Also A106568 First entry of the vector (M^n)v, where M is the 2x2 matrix [[0,4],[1,4]] and v is the column vector [0,1].
The sum of the first n terms: a(1) + a(2) + ... + a(n-1) + a(n) equals a(n+2) - a(2).
The sum of the first n odd numbered terms: a(1) + a(3) + ... + a(2n-3) + a(2n-1) equals a(2n) - a(2) + a(1).
The sum of the first n even numbered terms: a(2) + a(4) + ... + a(2n-2) + a(2n) equals a(2n+1) - a(1).
Properties for the sequence with initial terms a(0) = 1 and a(1) = 2 (shifted Fibonacci sequence):
a(n) equals the number of 00-avoiding words of length n on alphabet {0,1}.
The generating function of this sequence is (1+x)/(1-x-x2).
Properties for the sequence with initial terms a(0) = 0, a(1) = 1 (Fibonacci sequence):
The generating function of this sequence is x/(1-x-x2).
a(n) = (pn - qn)/(p-q), where p and q are the roots of the equation: x2 - x - 1 = 0. Namely a(n) = (φn + (-1/φ)n)/sqrt(5), where φ is the golden ratio.
Asymptotically a(n) = Round(φn/sqrt(5)), where φ is the golden ratio.
Properties for the sequence with initial terms a(0) = 2, a(1) = 1 (Lucas sequence):
The generating function of this sequence is (2-x)/(1-x-x2).
a(n) = pn + qn, where p and q are the roots of the equation: x2 - x - 1 = 0. Namely a(n) = ((1+sqrt(5))/2)n + ((1-sqrt(5))/2)n = φn + (-1/φ)n, where φ is the golden ratio.
Asymptotically a(n) = Round(φn), where φ is the golden ratio.
Sequence: 1, 3, 4, 7, 11, 18, 29, 47, 76, 123,
In OEIS: - A000032 Lucas numbers (beginning at 2): L(n) = L(n-1) + L(n-2); and A000204 Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3.
Sequence: 1, 4, 5, 9, 14, 23, 37, 60, 97, 157,
In OEIS: - A000285 a(n) = a(n-1) + a(n-2). Also A104449 Fibonacci-type sequence. Each term is the sum of the two previous terms.
Sequence: 2, 4, 6, 10, 16, 26, 42, 68, 110, 178,
In OEIS: - A090991 Number of meaningful differential operations of the n-th order on the space R^6. Also A118658 L_n - F_n where L_n is the Lucas Number and F_n is the Fibonacci Number. Also A078642 Numbers with two representations as the sum of two Fibonacci numbers.
Sequence: 2, 5, 7, 12, 19, 31, 50, 81, 131, 212,
In OEIS: - A001060 a(n) = a(n-1) + a(n-2); and A013655 F(n)+L(n), where F(n) and L(n) are Fibonacci and Lucas numbers respectively.
Sequence: 1, 2, 5, 12, 29, 70, 169, 408, 985,
In OEIS: - A000129 Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2). Also A069306 Number of 2 X n binary arrays with a path of adjacent 1's from upper left corner to anywhere in right hand column.
Sequence: 1, 3, 7, 17, 41, 99, 239, 577, 1393,
In OEIS: - A001333 Numerators of continued fraction convergents to sqrt(2). Also A078057 Expansion of (1+x)/(1-2*x-x^2).
Sequence: 1, 4, 9, 22, 53, 128, 309, 746, 1801,
In OEIS: - A048654 Generalized Pellian with second term equal to 4.
Sequence: 1, 5, 11, 27, 65, 157, 379, 915, 2209,
In OEIS: - A048655 Generalized Pellian with second term equal to 5.
Sequence: 1, 6, 13, 32, 77, 186, 449, 1084, 2617,
In OEIS: - A048693 Generalized Pellian with 2nd term equal to 6.
Sequence: 1, 7, 15, 37, 89, 215, 519, 1253, 3025,
In OEIS: - A048694 Generalized Pellian with second term equal to 7.
Sequence: 1, 8, 17, 42, 101, 244, 589, 1422, 3433,
In OEIS: - A048695 Generalized Pellian with second term equal to 8.
Sequence: 1, 9, 19, 47, 113, 273, 659, 1591, 3841,
In OEIS: - A048696 Generalized Pellian with second term equal to 9.
Sequence: 1, 10, 21, 52, 125, 302, 729, 1760, 4249,
In OEIS: - A048697 Generalized Pellian with second term equal to 10.
Sequence: 2, 7, 30, 127, 538, 2279, 9654, 40895,
In OEIS: - A097924 Sequence relates numerators and denominators in the continued fraction convergents to sqrt(5).
a(n) = 4a(n-1) + a(n-2).
Sequence: 1, 2, 9, 38, 161, 682, 2889,
In OEIS: - A001077 Numerators of continued fraction convergents to sqrt(5).
Sequence: 1, 4, 33, 268, 2177, 17684, 143649,
In OEIS: - A041024 Numerators of continued fraction convergents to sqrt(17). Also A088317 a(n) = 8a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.
Sequence: 1, 8, 65, 528, 4289, 34840, 283009,
In OEIS: - A041025 Denominators of continued fraction convergents to sqrt(17).
Sequence: 2, 8, 66, 536, 4354, 35368, 287298,
In OEIS: - A086594 a(n)=8a(n-1)+a(n-2), starting with a(0)=2 and a(1)=8.
Sequence: 1, 5, 51, 515, 5201, 52525, 530451,
In OEIS: - A088320 a(n) = 10a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 5. Also A041040 Numerators of continued fraction convergents to sqrt(26).
Sequence: 1, 6, 73, 882, 10657, 128766, 1555849,
In OEIS: - A041060 Numerators of continued fraction convergents to sqrt(37). Also A089926 a(n)=12a(n-1)+a(n-2), a(0)=1,a(1)=6.
Sequence: 1, 12, 145, 1752, 21169, 255780,
In OEIS: - A041061 Denominators of continued fraction convergents to sqrt(37).
Sequence: 2, 12, 146, 1764, 21314, 257532,
In OEIS: - A086928 a(n) = 12a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 12, a(n) = (6+sqrt(37))^n + (6-sqrt(37))^n.
a(n) = 2a(n-1). Autocopy sequences: their first differences are the sequence itself.
Sequence starting with 1: 1, 2, 4, 8, 16, 32, 64, ..., In OEIS: - A000079 Powers of 2: a(n) = 2^n.
Sequence starting with 3: 3, 6, 12, 24, 48, 96, 192, ..., In OEIS: - A007283 3*2^n. Also A081808
Numbers n such that the largest prime power in n factorization equals phi(n).
Sequence starting with 7: 7, 35, 175, 875, 4375, 21875, ..., In OEIS: - A005055 7*5^n.
a(n) = 6a(n-1).
Sequence: 1, 6, 36, 216, 1296, 7776, ...,
In OEIS: - A000400 Powers of 6.
a(n) = 7a(n-1).
Sequence starting with 1: 1, 7, 49, 343, 2401, 16807, ..., In OEIS: - A000420 Powers of 7.
Sequence starting with 2: 2, 14, 98, 686, 4802, 33614, ..., In OEIS: - A109808 Value of Tutte dichromatic polynomial T_G(0,1) where G is the Cartesian product of the paths P_2 and P_n (n>1).
a(n) = 8a(n-1).
Sequence starting with 1: 1, 8, 64, 512, 4096, 32768, ..., In OEIS: - A001018 Powers of 8.
Sequence starting with 2: 2, 16, 128, 1024, 8192, 65536, ..., In OEIS: - A013730 2^(3n+1).
Sequence starting with 4: 4, 32, 256, 2048, 16384, 131072, ..., In OEIS: - A013731 2^(3n+2).
a(n) = 9a(n-1).
Sequence starting with 1: 1, 9, 81, 729, 6561, 59049, ..., In OEIS: - A001019 Powers of 9. Also A100062 Denominator of the probability that an integer n occurs in the cumulative sums of the decimal digits of a random real number between 0 and 1.
Sequence starting with 3: 3, 27, 243, 2187, 19683, 177147, ..., In OEIS: - A013708 3^(2n+1).
a(n) = 10a(n-1).
Sequence starting with 1: 1, 10, 100, 1000, 10000, 100000, ..., In OEIS: - A011557 Powers of 10.
a(n) = 11a(n-1).
Sequence starting with 1: 1, 11, 121, 1331, 14641, 161051, ..., In OEIS: - A001020 Powers of 11.
a(n) = 12a(n-1).
Sequence starting with 1: 1, 12, 144, 1728, 20736, 248832, ..., In OEIS: - A001021 Powers of 12.
a(n) = 13a(n-1).
Sequence starting with 1: 1, 13, 169, 2197, 28561, 371293, ..., In OEIS: - A001022 Powers of 13.
a(n) = 14a(n-1).
Sequence starting with 1: 1, 14, 196, 2744, 38416, 537824, ..., In OEIS: - A001023 Powers of 14.
a(n) = 15a(n-1).
Sequence starting with 1: 1, 15, 225, 3375, 50625, 759375, ..., In OEIS: - A001024 Powers of 15.
a(n) = 16a(n-1).
Sequence starting with 1: 1, 16, 256, 4096, 65536, 1048576, ..., In OEIS: - A001025 Powers of 16.
Sequence starting with 2: 2, 32, 512, 8192, 131072, 2097152, ..., In OEIS: - A013776 2^(4n+1).
Sequence starting with 4: 4, 64, 1024, 16384, 262144, ..., In OEIS: - A013709 4^(2n+1).
Sequence starting with 8: 8, 128, 2048, 32768, 524288, ..., In OEIS: - A013777 2^(4n+3).
a(n) = 17a(n-1).
Sequence starting with 1: 1, 17, 289, 4913, 83521, 1419857, ..., In OEIS: - A001026 Powers of 17.
a(n) = 18a(n-1).
Sequence starting with 1: 1, 18, 324, 5832, 104976, 1889568, ..., In OEIS: - A001027 Powers of 18.
a(n) = 19a(n-1).
Sequence starting with 1: 1, 19, 361, 6859, 130321, 2476099, ..., In OEIS: - A001029 Powers of 19.
a(n) = 20a(n-1).
Sequence starting with 1: 1, 20, 400, 8000, 160000, 3200000, ..., In OEIS: - A009964 Powers of 20.
a(n) = 21a(n-1).
Sequence starting with 1: 1, 21, 441, 9261, 194481, 4084101, ..., In OEIS: - A009965 Powers of 21.
a(n) = 22a(n-1).
Sequence starting with 1: 1, 22, 484, 10648, 234256, 5153632, ..., In OEIS: - A009966 Powers of 22.
a(n) = 23a(n-1).
Sequence starting with 1: 1, 23, 529, 12167, 279841, 6436343, ..., In OEIS: - A009967 Powers of 23.
a(n) = 24a(n-1).
Sequence starting with 1: 1, 24, 576, 13824, 331776, 7962624, ..., In OEIS: - A009968 Powers of 24.
a(n) = 25a(n-1).
Sequence starting with 1: 1, 25, 625, 15625, 390625, 9765625, ..., In OEIS: - A009969 Powers of 25.
Sequence starting with 5: 5, 125, 3125, 78125, 1953125, ..., In OEIS: - A013710 5^(2n+1).
a(n) = 26a(n-1).
Sequence starting with 1: 1, 26, 676, 17576, 456976, 11881376, ..., In OEIS: - A009970 Powers of 26.
a(n) = 27a(n-1).
Sequence starting with 1: 1, 27, 729, 19683, 531441, 14348907, ..., In OEIS: - A009971 Powers of 27.
Sequence starting with 3: 3, 81, 2187, 59049, 1594323, ..., In OEIS: - A013732 3^(3n+1).
Sequence starting with 9: 9, 243, 6561, 177147, 4782969, ..., In OEIS: - A013733 3^(3n+2).
a(n) = 28a(n-1).
Sequence starting with 1: 1, 28, 784, 21952, 614656, 17210368, ..., In OEIS: - A009972 Powers of 28.
a(n) = 29a(n-1).
Sequence starting with 1: 1, 29, 841, 24389, 707281, 20511149, ..., In OEIS: - A009973 Powers of 29.
a(n) = 30a(n-1).
Sequence starting with 1: 1, 30, 900, 27000, 810000, 24300000, ..., In OEIS: - A009974 Powers of 30.
a(n) = 31a(n-1).
Sequence starting with 1: 1, 31, 961, 29791, 923521, 28629151, ..., In OEIS: - A009975 Powers of 31.
a(n) = 32a(n-1).
Sequence starting with 1: 1, 32, 1024, 32768, 1048576, ..., In OEIS: - A009976 Powers of 32.
Sequence starting with 2: 2, 64, 2048, 65536, 2097152, ..., In OEIS: - A013822 2^(5n+1).
Sequence starting with 4: 4, 128, 4096, 131072, 4194304, ..., In OEIS: - A013823 2^(5n+2).
Sequence starting with 8: 8, 256, 8192, 262144, 8388608, ..., In OEIS: - A013824 2^(5n+3).
Sequence starting with 16: 16, 512, 16384, 524288, 16777216, ..., In OEIS: - A013825 2^(5n+4).
a(n) = 33a(n-1).
Sequence starting with 1: 1, 33, 1089, 35937, 1185921, ..., In OEIS: - A009977 Powers of 33.
a(n) = 34a(n-1).
Sequence starting with 1: 1, 34, 1156, 39304, 1336336, ..., In OEIS: - A009978 Powers of 34.
a(n) = 35a(n-1).
Sequence starting with 1: 1, 35, 1225, 42875, 1500625, ..., In OEIS: - A009979 Powers of 35.
a(n) = 36a(n-1).
Sequence starting with 1: 1, 36, 1296, 46656, 1679616, ..., In OEIS: - A009980 Powers of 36.
Sequence starting with 6: 6, 216, 7776, 279936, 10077696, ..., In OEIS: - A013711 6^(2n+1).
a(n) = 37a(n-1).
Sequence starting with 1: 1, 37, 1369, 50653, 1874161, ..., In OEIS: - A009981 Powers of 37.
a(n) = 38a(n-1).
Sequence starting with 1: 1, 38, 1444, 54872, 2085136, ..., In OEIS: - A009982 Powers of 38.
a(n) = 39a(n-1).
Sequence starting with 1: 1, 39, 1521, 59319, 2313441, ..., In OEIS: - A009983 Powers of 39.
Sequence starting with 17: 17, 663, 25857, 1008423, ..., In OEIS: - A063941 17*39^n.
a(n) = 40a(n-1).
Sequence starting with 1: 1, 40, 1600, 64000, 2560000, ..., In OEIS: - A009984 Powers of 40.
a(n) = 41a(n-1).
Sequence starting with 1: 1, 41, 1681, 68921, 2825761, ..., In OEIS: - A009985 Powers of 41.
a(n) = 42a(n-1).
Sequence starting with 1: 1, 42, 1764, 74088, 3111696, ..., In OEIS: - A009986 Powers of 42.
a(n) = 43a(n-1).
Sequence starting with 1: 1, 43, 1849, 79507, 3418801, ..., In OEIS: - A009987 Powers of 43.
a(n) = 44a(n-1).
Sequence starting with 1: 1, 44, 1936, 85184, 3748096, ..., In OEIS: - A009988 Powers of 44.
a(n) = 45a(n-1).
Sequence starting with 1: 1, 45, 2025, 91125, 4100625, ..., In OEIS: - A009989 Powers of 45.
a(n) = 46a(n-1).
Sequence starting with 1: 1, 46, 2116, 97336, 4477456, ..., In OEIS: - A009990 Powers of 46.
a(n) = 47a(n-1).
Sequence starting with 1: 1, 47, 2209, 103823, 4879681, ..., In OEIS: - A009991 Powers of 47.
a(n) = 48a(n-1).
Sequence starting with 1: 1, 48, 2304, 110592, 5308416, ..., In OEIS: - A009992 Powers of 48.
a(n) = 49a(n-1).
Sequence starting with 1: 1, 49, 2401, 117649, 5764801, ..., In OEIS: - A087752 Powers of 49.
Sequence starting with 7: 7, 343, 16807, 823543, 40353607, ..., In OEIS: - A013712 7^(2n+1).
a(n) = 64a(n-1).
Sequence starting with 1: 1, 64, 4096, 262144, 16777216, ..., In OEIS: - A089357 2^(6n).
Sequence starting with 4: 4, 256, 16384, 1048576, 67108864, ..., In OEIS: - A013734 4^(3n+1).
Sequence starting with 8: 8, 512, 32768, 2097152, 134217728, ..., In OEIS: - A013713 8^(2n+1).
Sequence starting with 16: 16, 1024, 65536, 4194304, 268435456, ..., In OEIS: - A013735 4^(3n+2).
a(n) = 81a(n-1).
Sequence starting with 3: 3, 243, 19683, 1594323, 129140163, ..., In OEIS: - A013778 3^(4n+1).
Sequence starting with 9: 9, 729, 59049, 4782969, 387420489, ..., In OEIS: - A013714 9^(2n+1).
Sequence starting with 27: 27, 2187, 177147, 14348907, ..., In OEIS: - A013779 3^(4n+3).
Sequence starting with 81: 81, 6561, 531441, 43046721, ..., In OEIS: - A089683 3^(4n).
a(n) = 100a(n-1).
Sequence starting with 1: 1, 100, 10000, 1000000, ..., In OEIS: - A098608 100^n.
Sequence starting with 10: 10, 1000, 100000, 10000000, ..., In OEIS: - A013715 10^(2n+1).
a(n) = 101a(n-1).
Sequence starting with 1: 1, 101, 10201, 1030301, 104060401, ..., In OEIS: - A096884 Related to Pascal's triangle.
a(n) = 121a(n-1).
Sequence starting with 11: 11, 1331, 161051, 19487171, ..., In OEIS: - A013716 11^(2n+1).
a(n) = 125a(n-1).
Sequence starting with 5: 5, 625, 78125, 9765625, 1220703125, ..., In OEIS: - A013736 5^(3n+1).
Sequence starting with 25: 25, 3125, 390625, 48828125, 6103515625, ..., In OEIS: - A013737 5^(3n+2).
a(n) = 144a(n-1).
Sequence starting with 12: 12, 1728, 248832, 35831808, 5159780352, ..., In OEIS: - A013717 12^(2n+1).
a(n) = 169a(n-1).
Sequence starting with 13: 13, 2197, 371293, 62748517, 10604499373, ..., In OEIS: - A013718 13^(2n+1).
a(n) = 196a(n-1).
Sequence starting with 14: 14, 2744, 537824, 105413504, 20661046784, ..., In OEIS: - A013719 14^(2n+1).
a(n) = 216a(n-1).
Sequence starting with 6: 6, 1296, 279936, 60466176, 13060694016, ..., In OEIS: - A013738 6^(3n+1).
Sequence starting with 36: 36, 7776, 1679616, 362797056, ..., In OEIS: - A013739 6^(3n+2).
a(n) = 225a(n-1).
Sequence starting with 15: 15, 3375, 759375, 170859375, 38443359375, ..., In OEIS: - A013720 15^(2n+1).
a(n) = 243a(n-1).
Sequence starting with 3: 3, 729, 177147, 43046721, ..., In OEIS: - A013826 3^(5n+1).
Sequence starting with 9: 9, 2187, 531441, 129140163, ..., In OEIS: - A013827 3^(5n+2).
Sequence starting with 81: 9, 81, 19683, 4782969, 1162261467, ..., In OEIS: - A013829 3^(5n+4).
a(n) = 256a(n-1).
Sequence starting with 4: 4, 1024, 262144, 67108864, ..., In OEIS: - A013780 4^(4n+1).
Sequence starting with 16: 16, 4096, 1048576, 268435456, ..., In OEIS: - A013721 16^(2n+1).
Sequence starting with 64: 64, 16384, 4194304, 1073741824, ..., In OEIS: - A013781 4^(4n+3).
a(n) = 289a(n-1).
Sequence starting with 17: 17, 4913, 1419857, 410338673, ..., In OEIS: - A013722 17^(2n+1).
a(n) = 324a(n-1).
Sequence starting with 18: 18, 5832, 1889568, 612220032, ..., In OEIS: - A013723 18^(2n+1).
a(n) = 343a(n-1).
Sequence starting with 7: 7, 2401, 823543, 282475249, ..., In OEIS: - A013740 7^(3n+1).
Sequence starting with 49: 49, 16807, 5764801, 1977326743, ..., In OEIS: - A013741 7^(3n+2).
a(n) = 361a(n-1).
Sequence starting with 19: 19, 6859, 2476099, 893871739, ..., In OEIS: - A013724 19^(2n+1).
a(n) = 400a(n-1).
Sequence starting with 20: 120, 8000, 3200000, 1280000000, ..., In OEIS: - A013725 20^(2n+1).
a(n) = 441a(n-1).
Sequence starting with 21: 21, 9261, 4084101, 1801088541, ..., In OEIS: - A013726 21^(2n+1).
a(n) = 484a(n-1).
Sequence starting with 22: 22, 10648, 5153632, 2494357888, ..., In OEIS: - A013727 22^(2n+1).
a(n) = 512a(n-1).
Sequence starting with 8: 8, 4096, 2097152, 1073741824, ..., In OEIS: - A013742 8^(3n+1).
Sequence starting with 64: 64, 32768, 16777216, 8589934592, ..., In OEIS: - A013743 8^(3n+2).
a(n) = 529a(n-1).
Sequence starting with 23: 23, 12167, 6436343, 3404825447, ..., In OEIS: - A013728 23^(2n+1).
a(n) = 576a(n-1).
Sequence starting with 24: 24, 13824, 7962624, 4586471424, ..., In OEIS: - A013729 24^(2n+1).
a(n) = 625a(n-1).
Sequence starting with 5: 5, 3125, 1953125, 1220703125, ..., In OEIS: - A013782 5^(4n+1).
Sequence starting with 125: 125, 78125, 48828125, ..., In OEIS: - A013783 5^(4n+3).
a(n) = 729a(n-1).
Sequence starting with 9: 9, 6561, 4782969, 3486784401, ..., In OEIS: - A013744 9^(3n+1).
Sequence starting with 27: 27, 6561, 1594323, 387420489, ..., In OEIS: - A013828 3^(5n+3).
Sequence starting with 81: 81, 59049, 43046721, 31381059609, ..., In OEIS: - A013745 9^(3n+2).
a(n) = 1000a(n-1).
Sequence starting with 10: 10, 10000, 10000000, 10000000000, ..., In OEIS: - A013746 10^(3n+1).
Sequence starting with 100: 100, 100000, 100000000, ..., In OEIS: - A013747 10^(3n+2).
a(n) = 1001a(n-1).
Sequence starting with 1: 1, 1001, 1002001, 1003003001, 1004006004001, ..., In OEIS: - A097659 1001^n.
a(n) = 1024a(n-1).
Sequence starting with 4: 4, 4096, 4194304, 4294967296, ..., In OEIS: - A013830 4^(5n+1).
Sequence starting with 16: 16, 16384, 16777216, 17179869184, ..., In OEIS: - A013831 4^(5n+2).
Sequence starting with 64: 64, 65536, 67108864, 68719476736, ..., In OEIS: - A013832 4^(5n+3).
Sequence starting with 256: 256, 262144, 268435456, 274877906944, ..., In OEIS: - A013833 4^(5n+4).
a(n) = 1296a(n-1).
Sequence starting with 6: 6, 7776, 10077696, 13060694016, ..., In OEIS: - A013784 6^(4n+1).
Sequence starting with 216: 216, 279936, 362797056, 470184984576, ..., In OEIS: - A013785 6^(4n+3).
a(n) = 1331a(n-1).
Sequence starting with 11: 11, 14641, 19487171, 25937424601, ..., In OEIS: - A013748 11^(3n+1).
Sequence starting with 121: 121, 161051, 214358881, ..., In OEIS: - A013749 11^(3n+2).
a(n) = 1728a(n-1).
Sequence starting with 12: 12, 20736, 35831808, 61917364224, ..., In OEIS: - A013750 12^(3n+1).
Sequence starting with 144: 144, 248832, 429981696, ..., In OEIS: - A013751 12^(3n+2).
a(n) = 2197a(n-1).
Sequence starting with 13: 13, 28561, 62748517, 137858491849, ..., In OEIS: - A013752 13^(3n+1).
Sequence starting with 169: 169, 371293, 815730721, ..., In OEIS: - A013753 13^(3n+2).
a(n) = 2401a(n-1).
Sequence starting with 7: 7, 16807, 40353607, 96889010407, ..., In OEIS: - A013786 7^(4n+1).
Sequence starting with 343: 343, 823543, 1977326743, 4747561509943,..., In OEIS: - A013787 7^(4n+3).
a(n) = 2744a(n-1).
Sequence starting with 14: 14, 38416, 105413504, 289254654976, ..., In OEIS: - A013754 14^(3n+1).
Sequence starting with 196: 196, 537824, 1475789056, ..., In OEIS: - A013755 14^(3n+2).
a(n) = 3125a(n-1).
Sequence starting with 5: 5, 15625, 48828125, 152587890625, ..., In OEIS: - A013834 5^(5n+1).
Sequence starting with 25: 25, 78125, 244140625, 762939453125, ..., In OEIS: - A013835 5^(5n+2).
Sequence starting with 125: 125, 390625, 1220703125, ..., In OEIS: - A013836 5^(5n+3).
Sequence starting with 625: 625, 1953125, 6103515625, ..., In OEIS: - A013837 5^(5n+4).
a(n) = 3375a(n-1).
Sequence starting with 15: 15, 50625, 170859375, 576650390625, ..., In OEIS: - A013756 15^(3n+1).
Sequence starting with 225: 225, 759375, 2562890625, 8649755859375, ..., In OEIS: - A013757 15^(3n+2).
a(n) = 4096a(n-1).
Sequence starting with 8: 8, 32768, 134217728, 549755813888, ..., In OEIS: - A013788 8^(4n+1).
Sequence starting with 16: 16, 65536, 268435456, 1099511627776, ..., In OEIS: - A013758 16^(3n+1).
Sequence starting with 256: 256, 1048576, 4294967296, 17592186044416, ..., In OEIS: - A013759 16^(3n+2).
Sequence starting with 512: 512, 2097152, 8589934592, 35184372088832, ..., In OEIS: - A013789 8^(4n+3).
a(n) = 4913a(n-1).
Sequence starting with 17: 17, 83521, 410338673, 2015993900449, ..., In OEIS: - A013760 17^(3n+1).
Sequence starting with 289: 289, 1419857, 6975757441, 34271896307633, ..., In OEIS: - A013761 17^(3n+2).
a(n) = 5832a(n-1).
Sequence starting with 18: 18, 104976, 612220032, 3570467226624, ..., In OEIS: - A013762 18^(3n+1).
Sequence starting with 324: 324, 1889568, 11019960576, 64268410079232, ..., In OEIS: - A013763 18^(3n+2).
a(n) = 6561a(n-1).
Sequence starting with 9: 9, 59049, 387420489, 2541865828329, ..., In OEIS: - A013790 9^(4n+1).
Sequence starting with 729: 729, 4782969, 31381059609, 205891132094649, ..., In OEIS: - A013791 9^(4n+3).
a(n) = 6859a(n-1).
Sequence starting with 19: 19, 130321, 893871739, 6131066257801, ..., In OEIS: - A013764 19^(3n+1).
Sequence starting with 361: 361, 2476099, 16983563041, 116490258898219, ..., In OEIS: - A013765 19^(3n+2).
a(n) = 7776a(n-1).
Sequence starting with 6: 6, 46656, 362797056, 2821109907456, ..., In OEIS: - A013838 6^(5n+1).
Sequence starting with 36: 36, 279936, 2176782336, 16926659444736, ..., In OEIS: - A013839 6^(5n+2).
Sequence starting with 216: 216, 1679616, 13060694016, 101559956668416, ..., In OEIS: - A013840 6^(5n+3).
Sequence starting with 1296: 1296, 10077696, 78364164096, ..., In OEIS: - A013841 6^(5n+4).
a(n) = 8000a(n-1).
Sequence starting with 20: 20, 160000, 1280000000, 10240000000000, ..., In OEIS: - A013766 20^(3n+1).
Sequence starting with 400: 400, 3200000, 25600000000, 204800000000000, ..., In OEIS: - A013767 20^(3n+2).
a(n) = 9261a(n-1).
Sequence starting with 21: 21, 194481, 1801088541, 16679880978201, ..., In OEIS: - A013768 21^(3n+1).
Sequence starting with 441: 441, 4084101, 37822859361, 350277500542221, ..., In OEIS: - A013769 21^(3n+2).
a(n) = 10000a(n-1).
Sequence starting with 10: 10, 100000, 1000000000, 10000000000000, ..., In OEIS: - A013792 10^(4n+1).
Sequence starting with 1000: 1000, 10000000, 100000000000, ..., In OEIS: - A013793 10^(4n+3).
a(n) = 10648a(n-1).
Sequence starting with 22: 22, 234256, 2494357888, 26559922791424, ..., In OEIS: - A013770 22^(3n+1).
Sequence starting with 484: 484, 5153632, 54875873536, ..., In OEIS: - A013771 22^(3n+2).
a(n) = 12167a(n-1).
Sequence starting with 23: 23, 279841, 3404825447, 41426511213649, ..., In OEIS: - A013772 23^(3n+1).
Sequence starting with 529: 529, 6436343, 78310985281, 952809757913927, ..., In OEIS: - A013773 23^(3n+2).
a(n) = 13824a(n-1).
Sequence starting with 24: 24, 331776, 4586471424, 63403380965376,..., In OEIS: - A013774 24^(3n+1).
Sequence starting with 576: 576, 7962624, 110075314176, ..., In OEIS: - A013775 24^(3n+2).
a(n) = 14641a(n-1).
Sequence starting with 11: 11, 161051, 2357947691, 34522712143931, ..., In OEIS: - A013794 11^(4n+1).
Sequence starting with 1331: 1331, 19487171, 285311670611, ..., In OEIS: - A013795 11^(4n+3).
a(n) = 16807a(n-1).
Sequence starting with 7: 7, 117649, 1977326743, 33232930569601, ..., In OEIS: - A013842 7^(5n+1).
Sequence starting with 49: 49, 823543, 13841287201, 232630513987207, ..., In OEIS: - A013843 7^(5n+2).
Sequence starting with 343: 343, 5764801, 96889010407, 1628413597910449, ..., In OEIS: - A013844 7^(5n+3).
Sequence starting with 2401: 2401, 40353607, 678223072849, ..., In OEIS: - A013845 7^(5n+4).
a(n) = 20736a(n-1).
Sequence starting with 12: 12, 248832, 5159780352, 106993205379072, ..., In OEIS: - A013796 12^(4n+1).
Sequence starting with 1728: 1728, 35831808, 743008370688, ..., In OEIS: - A013797 12^(4n+3).
a(n) = 28561a(n-1).
Sequence starting with 13: 13, 371293, 10604499373, 302875106592253, ..., In OEIS: - A013798 13^(4n+1).
Sequence starting with 2197: 2197, 62748517, 1792160394037, ..., In OEIS: - A013799 13^(4n+3).
a(n) = 32768a(n-1).
Sequence starting with 8: 8, 262144, 8589934592, 281474976710656, ..., In OEIS: - A013846 8^(5n+1).
Sequence starting with 64: 64, 2097152, 68719476736, ..., In OEIS: - A013847 8^(5n+2).
Sequence starting with 512: 512, 16777216, 549755813888, ..., In OEIS: - A013848 8^(5n+3).
Sequence starting with 4096: 4096, 134217728, 4398046511104, ..., In OEIS: - A013849 8^(5n+4).
a(n) = 38416a(n-1).
Sequence starting with 14: 14, 537824, 20661046784, 793714773254144, ..., In OEIS: - A013800 14^(4n+1).
Sequence starting with 2744: 2744, 105413504, 4049565169664, ..., In OEIS: - A013801 14^(4n+3).
a(n) = 50625a(n-1).
Sequence starting with 15: 15, 759375, 38443359375, 1946195068359375, ..., In OEIS: - A013802 15^(4n+1).
Sequence starting with 3375: 3375, 170859375, 8649755859375, ..., In OEIS: - A013803 15^(4n+3).
a(n) = 59049a(n-1).
Sequence starting with 9: 9, 531441, 31381059609, 1853020188851841, ..., In OEIS: - A013850 9^(5n+1).
Sequence starting with 81: 81, 4782969, 282429536481, ..., In OEIS: - A013851 9^(5n+2).
Sequence starting with 729: 8729, 43046721, 2541865828329, ..., In OEIS: - A013852 9^(5n+3).
Sequence starting with 6561: 6561, 387420489, 22876792454961, ..., In OEIS: - A013853 9^(5n+4).
a(n) = 65536a(n-1).
Sequence starting with 16: 16, 1048576, 68719476736, 4503599627370496, ..., In OEIS: - A013804 16^(4n+1).
Sequence starting with 4096: 4096, 268435456, 17592186044416, ..., In OEIS: - A013805 16^(4n+3).
a(n) = 83521a(n-1).
Sequence starting with 17: 17, 1419857, 118587876497, 9904578032905937, ..., In OEIS: - A013806 17^(4n+1).
Sequence starting with 4913: 4913, 410338673, 34271896307633, ..., In OEIS: - A013807 17^(4n+3).
a(n) = 100000a(n-1).
Sequence starting with 10: 10, 1000000, 100000000000, 10000000000000000, ..., In OEIS: - A013854 10^(5n+1).
Sequence starting with 100: 100, 10000000, 1000000000000, ..., In OEIS: - A013855 10^(5n+2).
Sequence starting with 1000: 1000, 100000000, 10000000000000, ..., In OEIS: - A013856 10^(5n+3).
Sequence starting with 10000: 10000, 1000000000, 100000000000000, ..., In OEIS: - A013857 10^(5n+4).
a(n) = 104976a(n-1).
Sequence starting with 18: 18, 1889568, 198359290368, 20822964865671168, ..., In OEIS: - A013808 18^(4n+1).
Sequence starting with 5832: 5832, 612220032, 64268410079232, ..., In OEIS: - A013809 18^(4n+3).
a(n) = 130321a(n-1).
Sequence starting with 19: 19, 2476099, 322687697779, 42052983462257059, ..., In OEIS: - A013810 19^(4n+1).
Sequence starting with 6859: 6859, 893871739, 116490258898219, ..., In OEIS: - A013811 19^(4n+3).
a(n) = 160000a(n-1).
Sequence starting with 20: 20, 3200000, 512000000000, 81920000000000000, ..., In OEIS: - A013812 20^(4n+1).
Sequence starting with 8000: 8000, 1280000000, 204800000000000, ..., In OEIS: - A013813 20^(4n+3).
a(n) = 161051a(n-1).
Sequence starting with 11: 11, 1771561, 285311670611, 45949729863572161, ..., In OEIS: - A013858 11^(5n+1).
Sequence starting with 121: 121, 19487171, 3138428376721, ..., In OEIS: - A013859 11^(5n+2).
Sequence starting with 1331: 1331, 214358881, 34522712143931, ..., In OEIS: - A013860 11^(5n+3).
Sequence starting with 14641: 14641, 2357947691, 379749833583241, ..., In OEIS: - A013861 11^(5n+4).
a(n) = 194481a(n-1).
Sequence starting with 21: 21, 4084101, 794280046581, ..., In OEIS: - A013814 21^(4n+1).
Sequence starting with 9261: 9261, 1801088541, 350277500542221, ..., In OEIS: - A013815 21^(4n+3).
a(n) = 234256a(n-1).
Sequence starting with 22: 22, 5153632, 1207269217792, ..., In OEIS: - A013816 22^(4n+1).
Sequence starting with 10648: 10648, 2494357888, 584318301411328, ..., In OEIS: - A013817 22^(4n+3).
a(n) = 248832a(n-1).
Sequence starting with 12: 12, 2985984, 743008370688, ..., In OEIS: - A013862 12^(5n+1).
Sequence starting with 144: 144, 35831808, 8916100448256, ..., In OEIS: - A013863 12^(5n+2).
Sequence starting with 1728: 1728, 429981696, 106993205379072, ..., In OEIS: - A013864 12^(5n+3).
Sequence starting with 248832: 20736, 5159780352, 1283918464548864, ..., In OEIS: - A013865 12^(5n+4).
a(n) = 279841a(n-1).
Sequence starting with 23: 23, 6436343, 1801152661463, ..., In OEIS: - A013818 23^(4n+1).
Sequence starting with 12167: 12167, 3404825447, 952809757913927, ..., In OEIS: - A013819 23^(4n+3).
a(n) = 331776a(n-1).
Sequence starting with 24: 24, 7962624, 2641807540224, ..., In OEIS: - A013820 24^(4n+1).
Sequence starting with 13824: 13824, 4586471424, 1521681143169024, ..., In OEIS: - A013821 24^(4n+3).
a(n) = 371293a(n-1).
Sequence starting with 13: 13, 4826809, 1792160394037, ..., In OEIS: - A013866 13^(5n+1).
Sequence starting with 169: 169, 62748517, 23298085122481, ..., In OEIS: - A013867 13^(5n+2).
Sequence starting with 2197: 2197, 815730721, 302875106592253, ..., In OEIS: - A013868 13^(5n+3).
Sequence starting with 28561: 28561, 10604499373, 3937376385699289, ..., In OEIS: - A013869 13^(5n+4).
a(n) = 537824a(n-1).
Sequence starting with 14: 14, 7529536, 4049565169664, ..., In OEIS: - A013870 14^(5n+1).
Sequence starting with 196: 196, 105413504, 56693912375296, ..., In OEIS: - A013871 14^(5n+2).
Sequence starting with 2744: 2744, 1475789056, 793714773254144, ..., In OEIS: - A013872 14^(5n+3).
Sequence starting with 38416: 38416, 20661046784, 11112006825558016, ..., In OEIS: - A013873 14^(5n+4).
a(n) = 759375a(n-1).
Sequence starting with 15: 15, 11390625, 8649755859375, ..., In OEIS: - A013874 15^(5n+1).
Sequence starting with 225: 225, 170859375, 129746337890625, ..., In OEIS: - A013875 15^(5n+2).
Sequence starting with 3375: 3375, 2562890625, 1946195068359375, ..., In OEIS: - A013876 15^(5n+3).
Sequence starting with 50625: 50625, 38443359375, 29192926025390625, ..., In OEIS: - A013877 15^(5n+4).
a(n) = 1048576a(n-1).
Sequence starting with 16: 16, 16777216, 17592186044416, ..., In OEIS: - A013878 16^(5n+1).
Sequence starting with 256: 256, 268435456, 281474976710656, ..., In OEIS: - A013879 16^(5n+2).
Sequence starting with 4096: 4096, 4294967296, 4503599627370496, ..., In OEIS: - A013880 16^(5n+3).
Sequence starting with 65536: 65536, 68719476736, 72057594037927936, ..., In OEIS: - A013881 16^(5n+4).
a(n) = 1419857a(n-1).
Sequence starting with 17: 17, 24137569, 34271896307633, ..., In OEIS: - A013882 17^(5n+1).
Sequence starting with 289: 289, 410338673, 582622237229761, ..., In OEIS: - A013883 17^(5n+2).
Sequence starting with 4913: 4913, 6975757441, 9904578032905937, ..., In OEIS: - A013884 17^(5n+3).
Sequence starting with 83521: 83521, 118587876497, 168377826559400929, ..., In OEIS: - A013885 17^(5n+4).
a(n) = 1889568a(n-1).
Sequence starting with 18: 18, 34012224, 64268410079232, ..., In OEIS: - A013886 18^(5n+1).
Sequence starting with 324: 324, 612220032, 1156831381426176, ..., In OEIS: - A013887 18^(5n+2).
Sequence starting with 5832: 5832, 11019960576, 20822964865671168, ..., In OEIS: - A013888 18^(5n+3).
Sequence starting with 104976: 104976, 198359290368, 374813367582081024, ..., In OEIS: - A013889 18^(5n+4).
a(n) = 2476099a(n-1).
Sequence starting with 18: 19, 47045881, 116490258898219, ..., In OEIS: - A013890 19^(5n+1).
Sequence starting with 361: 361, 893871739, 2213314919066161, ..., In OEIS: - A013891 19^(5n+2).
Sequence starting with 6859: 6859, 16983563041, 42052983462257059, ..., In OEIS: - A013892 19^(5n+3).
Sequence starting with 130321: 130321, 322687697779, 799006685782884121, ..., In OEIS: - A013893 19^(5n+4).
a(n) = 3200000a(n-1).
Sequence starting with 20: 20, 64000000, 204800000000000, ..., In OEIS: - A013894 20^(5n+1).
Sequence starting with 400: 400, 1280000000, 4096000000000000, ..., In OEIS: - A013895 20^(5n+2).
Sequence starting with 8000: 8000, 25600000000, 81920000000000000, ..., In OEIS: - A013896 20^(5n+3).
Sequence starting with 16000: 160000, 512000000000, 1638400000000000000, ..., In OEIS: - A013897 20^(5n+4).
a(n) = 4084101a(n-1).
Sequence starting with 21: 21, 85766121, 350277500542221, ..., In OEIS: - A013898 21^(5n+1).
Sequence starting with 441: 441, 1801088541, 7355827511386641, ..., In OEIS: - A013899 21^(5n+2).
Sequence starting with 9261: 9261, 37822859361, 154472377739119461, ..., In OEIS: - A013900 21^(5n+3).
Sequence starting with 194481: 194481, 794280046581, 3243919932521508681, ..., In OEIS: - A013901 21^(5n+4).
a(n) = 5153632a(n-1).
Sequence starting with 22: 22, 113379904, 584318301411328, ..., In OEIS: - A013902 22^(5n+1).
Sequence starting with 484: 484, 2494357888, 12855002631049216, ..., In OEIS: - A013903 22^(5n+2).
Sequence starting with 10648: 10648, 54875873536, 282810057883082752, ..., In OEIS: - A013904 22^(5n+3).
Sequence starting with 234256: 234256, 1207269217792, 6221821273427820544, ..., In OEIS: - A013905 22^(5n+4).
a(n) = 6436343a(n-1).
Sequence starting with 23: 23, 148035889, 952809757913927, ..., In OEIS: - A013906 23^(5n+1).
Sequence starting with 529: 529, 3404825447, 21914624432020321, ..., In OEIS: - A013907 23^(5n+2).
Sequence starting with 12167: 12167, 78310985281, 504036361936467383, ..., In OEIS: - A013908 23^(5n+3).
Sequence starting with 279841: 279841, 1801152661463, 11592836324538749809, ..., In OEIS: - A013909 23^(5n+4).
a(n) = 7962624a(n-1).
Sequence starting with 24: 24, 191102976, 1521681143169024, ..., In OEIS: - A013910 24^(5n+1).
Sequence starting with 576: 576, 4586471424, 36520347436056576, ..., In OEIS: - A013911 24^(5n+2).
Sequence starting with 13824: 13824, 110075314176, 876488338465357824, ..., In OEIS: - A013912 24^(5n+3).
Sequence starting with 331776: 331776, 2641807540224, 21035720123168587776, ..., In OEIS: - A013913 24^(5n+4).
a(n) = 3n.
Sequence: 3, 6, 9, 12, 15, 18, 21, In OEIS: - A008585 Multiples of 3.
a(n) = a(n-1) + 4.
a(n) = 4n.
Sequence: 0, 4, 8, 12, 16, 20, 24, In OEIS: - A008586 Multiples of 4.
a(n) = 4n+1.
Sequence: 1, 5, 9, 13, 17, 21, 25, In OEIS: - A016813 4n+1; and similar to A004766 Binary expansion ends 01.
a(n) = 4n+2.
Sequence: 2, 6, 10, 14, 18, 22, 26, In OEIS: - A016825 4n+2. Also A073760 Smallest unrelated number belonging to a term of this sequence equals four.
a(n) = 17n.
Sequence: 0, 17, 34, 51, 68, 85, 102, In OEIS: - A008599 Multiples of 17.
a(n) = a(n-1) + 18.
a(n) = 18n.
Sequence: 0, 18, 36, 54, 72, 90, 108, In OEIS: - A008600 Multiples of 18.
a(n) = 18n+10.
Sequence: 10, 28, 46, 64, 82, 100, 118, In OEIS: - A082286 Numbers of the form 18n-8.
a(n) = 18n+14.
Sequence: 32, 50, 68, 86, 104, 122, 140, In OEIS: - A099048 Number of 5 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0), and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2, and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+1)2^(m-1)+2(n-1).
a(n) = a(n-1) + 19.
a(n) = 19n.
Sequence: 0, 19, 38, 57, 76, 95, 114, In OEIS: - A008601 Multiples of 19.
a(n) = a(n-1) + 20.
a(n) = 20n.
Sequence: 0, 20, 40, 60, 80, 100, 120, In OEIS: - A008602 Multiples of 20.
a(n) = a(n-1) + 21.
a(n) = 21n.
Sequence: 0, 21, 42, 63, 84, 105, 126, In OEIS: - A008603 Multiples of 21.
a(n) = a(n-1) + 22.
a(n) = 22n.
Sequence: 0, 22, 44, 66, 88, 110, 132, In OEIS: - A008604 Multiples of 22.
a(n) = a(n-1) + 23.
a(n) = 23n.
Sequence: 0, 23, 46, 69, 92, 115, 138, In OEIS: - A008605 Multiples of 23.
a(n) = a(n-1) + 24.
a(n) = 24n.
Sequence: 0, 24, 48, 72, 96, 120, 144, In OEIS: - A008606 Multiples of 24.
a(n) = 25n.
Sequence: 0, 25, 50, 75, 100, 125, 150, In OEIS: - A008607 Multiples of 25.
a(n) = a(n-1) + 26.
a(n) = 26n+20.
Sequence: 72, 98, 124, 150, 176, 202, 228, In OEIS: - A099943 Number of 5 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01,1), and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2, and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1)+2*m*(n-1)-2 for m>1 and n>1.
a(n) = a(n-1) + 27.
a(n) = 27n+18.
Sequence: 18, 45, 72, 99, 126, 153, 180, In OEIS: - A124388 Second differences of dodecahedral numbers (A006566).
a(n) = a(n-1) + 30.
a(n) = 30n+13.
Sequence: 13, 43, 73, 103, 133, 163, 193, In OEIS: - A082369 Solutions to 19^x+23^x == 29 mod 31.
a(n) = a(n-1) + 37.
a(n) = 37n.
Sequence: 0, 37, 74, 111, 148, 185, 222, In OEIS: - A085959 Multiples of 37.
a(n) = a(n-1) + 50.
a(n) = 50n+20.
Sequence: 20, 70, 120, 170, 220, 270, 320, In OEIS: - A053741 Sum of even numbers in range 10n to 10n+9.
a(n) = 50n+25.
Sequence: 25, 75, 125, 175, 225, 275, 325, In OEIS: - A053742 Sum of odd numbers in range 10n to 10n+9.
a(n) = 720n+1800.
Sequence: 2520, 3240, 3960, 4680, 5400, In OEIS: - A069476 First differences of A069475, successive differences of (n+1)^6-n^6.
a(n) = a(n-1) + 840.
a(n) = 840n+423.
Sequence: 423, 1263, 2103, 2943, 3783, 4623, In OEIS: - A096024 Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 5 and (n+6) mod 8 <> 1.
a(n) = a(n-1) + 997.
a(n) = 997n+1009.
Sequence: 1009, 2006, 3003, 4000, 4997, In OEIS: - A100776 a(n) = 997 * n + 1009.
a(n) = a(n-1) + 1000.
a(n) = 1000n+736.
Sequence: 736, 1736, 2736, 3736, 4736, In OEIS: - A067866 Numbers n such that n and 2^n end with the same three digits.
a(n) = a(n-1) + 3018.
a(n) = 3018n.
Sequence: 3018, 6036, 9054, 12072, 15090, In OEIS: - A086746 Multiples of 3018.
a(n) = a(n-1) + 3600.
a(n) = 3600n.
Sequence: 3600, 7200, 10800, 14400, 18000, In OEIS: - A096472 Numbers containing Pythagorean triples in their divisor set.
a(n) = a(n-1) + 10000.
a(n) = 10000n+2468.
Sequence: 2468, 12468, 22468, 32468, 42468, In OEIS: - A102689 Numbers of the form s2468 divisible by 2 and 4.
a(n) = 100000n+48736.
Sequence: 48736, 148736, 248736, 348736, In OEIS: - A067869 Numbers n such that n and 2^n end with the same 5 digits.
a(n) = a(n-1) + 142857.
a(n) = 142857n.
Sequence: 142857, 285714, 428571, 571428, 714285, In OEIS: - A101202 Multiples of 142857.
a(n) = a(n-1) + 1968751.
a(n) = 1968751n+533360.
Sequence: 533360, 2502111, 4470862, 6439613, In OEIS: - A010037 G.c.d. (n^5 + 5, (n+1)^5 + 5) more than 1.
a(n) = a(n-1) + 11184810.
a(n) = 11184810n+7629217.
Sequence: 7629217, 18814027, 29998837, In OEIS: - A080340 First known infinite sequence containing no odd integer of the form 2^m+p (p prime).
a(n) = 123456789n.
Sequence: 123456789, 246913578, 370370367, In OEIS: - A053654 Multiples of 123456789.
a(n) = a(n-1) + 1757711340.
a(n) = 1757711340n + 242.
Sequence: 242, 1757711582, 3515422922, 5273134262, In OEIS: - A055554 An arithmetic progression each term of which is followed by at least 4 non-square-free consecutive integers.