login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 62nd year, we have over 390,000 sequences, and we’ve reached 12,000 citations (which often say “discovered thanks to the OEIS”).

A022130
Fibonacci sequence beginning 4,9.
9
4, 9, 13, 22, 35, 57, 92, 149, 241, 390, 631, 1021, 1652, 2673, 4325, 6998, 11323, 18321, 29644, 47965, 77609, 125574, 203183, 328757, 531940, 860697, 1392637, 2253334, 3645971, 5899305, 9545276, 15444581, 24989857, 40434438, 65424295, 105858733, 171283028
OFFSET
0,1
COMMENTS
The associated Pisano series starts as in A001175, but differs for example for modulus 29 where it is 7, not 14. - R. J. Mathar, Nov 02 2011
The Pisano period also differs for modulus 58, where it is 21 instead of 42. Otherwise, the Pisano periods coincide with those of the Fibonacci numbers. - Klaus Purath, Jun 26 2022
LINKS
Tanya Khovanova, Recursive Sequences
H. Zhao and X. Li, On the Fibonacci numbers of trees, Fib. Quart., 44 (2006), 32-38.
FORMULA
a(n) = 4*Fibonacci(n+2) + Fibonacci(n).
G.f.: (4 + 5*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n)= Fibonacci(n-2) + Fibonacci(n+5). - Gary Detlefs, Mar 31 2012
MAPLE
a:= n-> (<<0|1>, <1|1>>^n.<<4, 9>>)[1, 1]:
seq(a(n), n=0..40); # Alois P. Heinz, Feb 22 2017
MATHEMATICA
a={}; b=4; c=9; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 40, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
LinearRecurrence[{1, 1}, {4, 9}, 40] (* Harvey P. Dale, Dec 15 2011 *)
PROG
(PARI) a(n)=4*fibonacci(n-1)+9*fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
(Magma) a0:=4; a1:=9; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..35]]; // Vincenzo Librandi, Jan 25 2017
CROSSREFS
Sequence in context: A240692 A345743 A384355 * A042125 A041905 A098004
KEYWORD
nonn,easy
STATUS
approved