Image

Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

What complexity implications are there from not being in an abstract family of languages?

+5
−0

A classic result is that a if a language is not regular its decision problem requires more than constant memory (i.e. $\Omega(\log \log n)$).

I am wondering if there are similar results for other classes of language (e.g. context-free or tree-adjoining). Specifically results of the form

If a language is not a $X$, then it must have space/time complexity $\omega(f)$ (or $\Omega(f)$)

where $X$ is some abstract family of languages. Naturally I don't care about trivial results like "If a language is not $\mathrm{DSPACE}\left(n^2\right)$ then it requires $\omega(n^2)$ space". I am particularly interested when $X$ is between regular and context-sensitive.

I had a look for myself, and I was of course able to find tons of results that being a particular class of formal language implies the existence of an algorithm of a certain complexity, but none more of the form like the above.

History

0 comment threads

Sign up to answer this question »