Showing posts with label Galileo. Show all posts
Showing posts with label Galileo. Show all posts

Thursday, 9 November 2023

Imaging Navigation Satellites

All of us have used Navigation Satellites, whether you realise it or not. Our modern western world can no longer function well without them. But it is a challenge to actually see them in the sky. In Medium Earth Orbit (MEO) at altitudes of ~20 000 km, they stay faint.

Four large constellations of Navigation satellites currently exist. The best known is the US GPS system (aka NAVSTAR). But there is also the European GALILEO system; the Chinese BEIDOU system; and the Russian GLONASS system. Together, they are often referred to as the Global Navigation Satellite System (GNSS).

In the evening of 6 November 2023, when the sky over Leiden was very clear, I by chance imaged examples of all four systems, largely within the same small part of the sky, while surveying for HEO objects. Here are some images, one each for each GNSS system (the images were made with a ZWO ASI 6200MM PRO camera and 1.2/85 mm lens, 10-second exposures):

 

Image
NAVSTAR 73 (GPS)

 
Image
GALILEO 21

 

Image
BEIDOU 3M7


Image
KOSMOS 2501 (GLONASS)

Wednesday, 13 December 2017

Objects from the Ariane VA240 launch (Galileo 19, 20, 21, 22) observed from the Netherlands [UPDATED]

Image
image 18:53 ~ 18:56 UT. Photograph (c) Klaas Jobse, Astronomy Project Oostkapelle
click to enlarge

On 12 December 2017 at 18:36:07 UT, an  Arianespace Ariane 5 ES rocket launched four Galileo navigation satellites into space from Kourou, French Guyana, for the European Space Agency (ESA).

Twenty minutes later, amateur astronomer Klaas Jobse (Astronomy Project Oostkapelle) in the village of Oostkapelle on the coast of the Netherlands imaged a phenomena in the sky (photograph above and photographs below). The imagery appears to show the tumbling Ariane EPC (Cryogenic Main Stage) and what appears to be a fuel dump cloud, about 10 minutes after separation of the EPC from the upper stage.

In one of the all sky images, a second trail is visible too (see detail image of all sky image below): this might be the EPS Upper Stage with the satellites, around the moment it shuts down and starts its coasting phase.

Image
All Sky image. (c) Klaas Jobse, Astronomy Project Oostkapelle
click to enlarge
Image
detail of the previous image.
(c) Klaas Jobse, Astronomy Project Oostkapelle
click to enlarge
Image
All Sky image. (c) Klaas Jobse, Astronomy Project Oostkapelle
click to enlarge

Image
detail of the previous image.
(c) Klaas Jobse, Astronomy Project Oostkapelle
click to enlargee
The flashing behaviour of the main trail (the suspected spent Cryogenic Main Stage) is probably due to tumbling after separation from the upper stage. On the first image (the one at the top of this post), which is a 30 seconds exposure, it is flashing 9 times, or about once every 3.3 seconds.

The images were captured by the automated routine meteor fireball patrol camera's of Astronomy Project Oostkapelle, which make continuous photographs of the night sky every clear night.

This is the approximate trajectory of the launch which I reconstructed from the Area Broadcast Warnings and information in the Arianespace presskit. It is approximate only:

Image
click map to enlarge




Update 1, 13 Dec 2017, 23:00 UT:

The map above was based on ascend to the parking orbit of the Upper stage. Below is a 178 x 3440 km, 54.95 degree inclined reconstructed orbit for the EPC Cryogenic Main Stage, fitted to match measurements on the first image (the image in top of this post). Orbital position shown is for 18:56 UT:

Image
click map to enlarge
 The rocket stage probably de-orbitted near the end of the first revolution, at about 20:40 UT.


 Update 2, 14 Dec 2017, 22:45 UT:

An engineer supporting the launch (@Dutchspace on Twitter) provided the info that the EPC Cryogenic Main Stage should have been in a 42 x 3340 km, 55.35 degree inclined orbit after separation and depressurization, with de-orbit at longitude 90.28 W. The elset and map below suit those constraints, and fit the observations from Oostkapelle closely:

Image
click map to enlarge

Ariane EPC r/b                                           42 x 3340 km
1 70004U 17999C   17346.77516204 0.00000000  00000-0  00000+0 0    07
2 70004  55.3500 305.8931 2043588 353.6368 349.8559 11.97683367    04

rms 0.06



Update 3, 16 Dec 2017, 11:00 UT:

The phenomena was also imaged from Germany (see this article in Der Spiegel, which quotes me) and from Belgium.


(I thank Klaas Jobse for permission to publish his photographs. Photographs (c) Klaas Jobse, Astronomy Project Oostkapelle)

Friday, 11 September 2015

Observing the Fregat upper stage with Galileo 9 and 10 manoeuvering into transfer orbit, just 22 minutes after launch

Image
Fregat upper stage with Galileo 9 and 10 after shadow exit, 11 Sep 2015, 2:30:12 UTC
click image to enlarge

Last night (11 Sep 2015) at 2:08:10 UT, ESA and Roskosmos launched a Soyuz from Kourou, French Guyana, with the new navigation satellites Galileo 9 and 10. The payloads are intended for a circular MEO orbit at an altitude of about 23 522 km

Cees Bassa alerted observers in Europe to the fact that the Fregat upper stage (with payloads still attached) would be visible over Europe during it's initial orbit insertion burn, exiting Earth shadow near 02:30 UT at an altitude of about 400 km altitude while cruising over Germany/Denmark. Engine cut-off for this stage of the launch would be 2 minutes later near 02:31:40 UT

This burn brought the Fregat stage and payloads in a ballistic transfer trajectory. A second burn about 3.5 hours after launch then inserted the stage and payloads in a circular orbit, upon which the payloads separated and the upper stage was de-orbitted.

Both Cees and I managed to observe the Fregat near 02:30 UT. This was about 22 minutes after the launch. Cees observed from Drente in the Northeast of the Netherlands(closer to the trajectory and with better observing conditions), while I observed from Cronesteyn Polder at the edge of Leiden in the West of the Netherlands.

Observing conditions were mediocre at my location: the sky was hazy, and light pollution a problem at lower elevations (it can be seen as an orange glow in the image above).

After exiting Earth shadow near 02:30:00 UT at about 45 degrees elevation in Ursa major, the Fregat stage was easily seen by the naked eye as an object of magnitude +2.

Above is one of my images, a 4-second exposure (Canon EOS 60D, EF 2.5/50mm lens, 800 ISO) starting at 02:30:12 UT.

Descending towards the Northeastern horizon the object became fainter, until I lost it in the light pollution and haze about a minute later.

Cees managed to image a developing hazy envelope around the trail low above the horizon (when it was already invisible to me), which is related to engine shut-down near 02:31:40 UT.