Skip to main content

A Grammar of Graphics for Python

Project description

plotnine Image

Release License DOI Build Status Coverage

plotnine is an implementation of a grammar of graphics in Python based on ggplot2. The grammar allows you to compose plots by explicitly mapping variables in a dataframe to the visual characteristics (position, color, size etc.) of objects that make up the plot.

Plotting with a grammar of graphics is powerful. Custom (and otherwise complex) plots are easy to think about and build incrementally, while the simple plots remain simple to create.

To learn more about how to use plotnine, check out the documentation. Since plotnine has an API similar to ggplot2, where it lacks in coverage the ggplot2 documentation may be helpful.

Example

from plotnine import *
from plotnine.data import mtcars

Building a complex plot piece by piece.

  1. Scatter plot

    (
        ggplot(mtcars, aes("wt", "mpg"))
        + geom_point()
    )
    
    Image
  2. Scatter plot colored according some variable

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
    )
    
    Image
  3. Scatter plot colored according some variable and smoothed with a linear model with confidence intervals.

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
    )
    
    Image
  4. Scatter plot colored according some variable, smoothed with a linear model with confidence intervals and plotted on separate panels.

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
    )
    
    Image
  5. Adjust the themes

    I) Make it playful

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
        + theme_xkcd()
    )
    
    Image

    II) Or professional

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
        + theme_tufte()
    )
    
    Image

Installation

Official release

# Using pip
$ pip install plotnine             # 1. should be sufficient for most
$ pip install 'plotnine[extra]'    # 2. includes extra/optional packages
$ pip install 'plotnine[test]'     # 3. testing
$ pip install 'plotnine[doc]'      # 4. generating docs
$ pip install 'plotnine[dev]'      # 5. development (making releases)
$ pip install 'plotnine[all]'      # 6. everything

# Or using conda
$ conda install -c conda-forge plotnine

# Or using pixi
$ pixi init name-of-my-project
$ cd name-of-my-project
$ pixi add python plotnine

Development version

$ pip install git+https://github.com/has2k1/plotnine.git

Contributing

Our documentation could use some examples, but we are looking for something a little bit special. We have two criteria:

  1. Simple looking plots that otherwise require a trick or two.
  2. Plots that are part of a data analytic narrative. That is, they provide some form of clarity showing off the geom, stat, ... at their differential best.

If you come up with something that meets those criteria, we would love to see it. See plotnine-examples.

If you discover a bug checkout the issues if it has not been reported, yet please file an issue.

And if you can fix a bug, your contribution is welcome.

Testing

Plotnine has tests that generate images which are compared to baseline images known to be correct. To generate images that are consistent across all systems you have to install matplotlib from source. You can do that with pip using the command.

$ pip install matplotlib --no-binary matplotlib

Otherwise there may be small differences in the text rendering that throw off the image comparisons.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plotnine-0.15.2.tar.gz (6.8 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

plotnine-0.15.2-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file plotnine-0.15.2.tar.gz.

File metadata

  • Download URL: plotnine-0.15.2.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotnine-0.15.2.tar.gz
Algorithm Hash digest
SHA256 ec2e4cdf2d022eb0dab63ef4aa0017ce0d84c60bd99d55093e72637fddf757e6
MD5 6e6afe1a8815757503f3bf478d3a0bfc
BLAKE2b-256 11143adedabe6b8710caee34e4ac9f4edc48218a381594ee1980c323b8866577

See more details on using hashes here.

Provenance

The following attestation bundles were made for plotnine-0.15.2.tar.gz:

Publisher: release.yml on has2k1/plotnine

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file plotnine-0.15.2-py3-none-any.whl.

File metadata

  • Download URL: plotnine-0.15.2-py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotnine-0.15.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7dc508bc51625b9b9f945e274d8ee4463cf30b280749190a5b707e6828003fa6
MD5 bd71e4f582101bba322031c2a6cbb6c6
BLAKE2b-256 58274e6ffe2f095fbfd6285343aa6114903a4cf011564b4f1f2bb706341472df

See more details on using hashes here.

Provenance

The following attestation bundles were made for plotnine-0.15.2-py3-none-any.whl:

Publisher: release.yml on has2k1/plotnine

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

Image AWS Cloud computing and Security Sponsor Image Datadog Monitoring Image Depot Continuous Integration Image Fastly CDN Image Google Download Analytics Image Pingdom Monitoring Image Sentry Error logging Image StatusPage Status page