PythonP值(PValue)

PythonP值(PValue) 首页 / 数据科学入门教程 / PythonP值(PValue)

p值与假设的强度有关,无涯教程基于一些统计模型创建假设,并使用p值比较模型的有效性,获得p值的一种方法是使用T检验。

这是对原假设(独立假设样本" a"的期望值(均值)等于给定总体均值 popmean )的原假设的双向检验。考虑以下示例。

from scipy import stats
rvs = stats.norm.rvs(loc = 5, scale = 10, size = (50,2))
print stats.ttest_1samp(rvs,5.0)

上面的程序将产生以下输出。

Ttest_1sampResult(statistic=array([-1.40184894, 2.70158009]),
pvalue=array([ 0.16726344, 0.00945234]))

比较两个样本

在以下示例中,有两个样本,它们可以来自相同或不同的分布,想测试这些样本是否具有相同的统计属性。

链接:https://www.learnfk.comhttps://www.learnfk.com/python-data-science/python-p-value.html

来源:LearnFk无涯教程网

ttest_ind-为两个独立的得分样本的平均值计算T检验。这是针对零假设的两个方面的检验,即两个独立样本的均值相同。此测试假设默认情况下总体具有相同的方差。

如果观察到来自相同或不同总体的两个独立样本,则可以使用此检验。让无涯教程考虑以下示例。

from scipy import stats
rvs1 = stats.norm.rvs(loc = 5,scale = 10,size = 500)
rvs2 = stats.norm.rvs(loc = 5,scale = 10,size = 500)
print stats.ttest_ind(rvs1,rvs2)

上面的程序将产生以下输出。

Ttest_indResult(statistic=-0.67406312233650278, pvalue=0.50042727502272966)

您可以使用具有相同长度但均值不同的新数组来测试相同对象。在 loc 中使用其他值并进行测试。

祝学习愉快!(内容编辑有误?请选中要编辑内容 -> 右键 -> 修改 -> 提交!)

教程推荐

计算机基础实战课 -〔彭东〕

攻克视频技术 -〔李江〕

说透芯片 -〔邵巍〕

高楼的性能工程实战课 -〔高楼〕

Go 并发编程实战课 -〔晁岳攀(鸟窝)〕

分布式数据库30讲 -〔王磊〕

视觉笔记入门课 -〔高伟〕

Web协议详解与抓包实战 -〔陶辉〕

iOS开发高手课 -〔戴铭〕

好记忆不如烂笔头。留下您的足迹吧 :)